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Introduction

The origin of large mixing angles observed in leptonic charged currents is still largely unknown [START_REF] Mohapatra | Neutrino Mass and New Physics[END_REF]. A widespread belief is that it is linked to a quasi-degeneracy of neutrinos, but this connection was never firmly established. And it cannot be on simple grounds. Indeed, the mixing angles that are "observed" in neutrino oscillations are the ones occurring in charged currents, which combine the individual mixing matrices of fermions with different electric charges 1 ; the path that goes from the quasi-degeneracy of one of the two doublets to large mixing in the PMNS matrix [START_REF] Maki | Remarks on the unified model of elementary particles[END_REF] cannot thus be completely straightforward. Furthermore, homographic transformations on a (mass) matrix, while changing its eigenvalues, do not change its eigenvectors, neither, accordingly, mixing angles; an infinity of different mass spectra can thus be associated with a given mixing angle.

1 LPTHE (Laboratoire de Physique Théorique et Hautes Énergies), tour 13-14, 4 ème étage, UPMC Univ Paris 06, BP 126, 4 place Jussieu, F-75252 Paris Cedex 05 (France), Unité Mixte de Recherche UMR 7589 (CNRS / UPMC Univ Paris 06)

2 machet@lpthe.jussieu.fr 1 The electronic (νe), muonic (νµ), and tau (ντ ) neutrinos are defined as the neutrinos that couple, inside charged currents, to the mass eigenstates of charged leptons. They are accordingly related to the neutrino mass eigenstates by (νe νµ ντ ) T = K † ℓ Kν (νem νµm ντm) T where K ℓ and Kν are the mixing matrices respectively of charged leptons and neutrinos. This connection is seen to involve the hermitian conjugate K † ℓ Kν of the PMNS matrix.

We shall first focus on two pairs of fermions, making up two generations. For the sake of convenience (mainly for the simplicity of notations) we shall often call them generically (d, s) and (u, c). The first will be supposed to be close to degeneracy and the second largely split. Results are transposed to the leptonic sector: the Cabibbo angle θ c [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF] is then, in particular, replaced by the corresponding entry θ P M N S of the (2 × 2) PMNS matrix. Results which are specific to neutrinos will of course be written with the adequate notations.

This study, which finally supports a relation between quasi-degeneracy and large mixing, rests on the following argumentation.

The physical states are the eigenstates of the propagator at its poles; in case of a coupled system of n particles, like massive fermions in the standard model of electroweak interactions [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF] which are coupled through the scalar sector, the propagator, which is also the inverse of the quadratic Lagrangian, is a n × n matrix;

The determination of an orthogonal set of physical states accordingly requires the diagonalization of the sum of the kinetic terms and of the mass terms in the Lagrangian; At the classical level, this procedure yields the standard Cabibbo-Kobayashi-Maskawa (CKM) [START_REF] Cabibbo | Unitary Symmetry and Leptonic Decays[END_REF] [5] phenomenology. The classical Lagrangian is written from the start devoid a priori, in bare flavor space, of FCNC. In direct connection with the unitarity of mixing matrices, in particular the Cabibbo matrix, the SU (2) gauge algebra closes on a diagonal T3 generator, which eliminates FCNC at this order, in bare mass space as well as in bare flavor space 2 . FCNC are generated at 1-loop among bare flavor or mass states (see Fig. 1), but they are damped by the so-called "Cabibbo suppression". This phenomenology is, up to now, in very good agreement with experiment, and we choose to preserve it; Subtle issues arise when considering the quadratic effective Lagrangian at 1-loop since, in particular, non-diagonal kinetic-like transitions are generated (Fig, 2). Then, the mandatory re-diagonalization of kinetic terms, which is generally overlooked, exhibits two main features. First, due to the presence of mass-splittings, it unavoidably involves slightly non-unitary transformations, which introduces in bare flavor space at 1-loop, a new set of, mass and mixing (and p 2 ) dependent, FCNC. Secondly, the 1-loop corrections to the mixing angles are non-perturbative and present a high instability in the vicinity of degeneracy. This strongly motivates the introduction of counterterms "à la Shabalin" [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left-handed currents[END_REF] that cancel 1-loop non-diagonal transitions "on mass-shell". They restore a quasi-standard Cabibbo phenomenology, but for the persistence of extra, mass and mixing dependent, FCNC in bare flavor space. Their occurring is rooted in the non-degeneracy of fermions, which counterterms cannot turn off. They are built to cancel non-diagonal 1-loop transitions when one of the two concerned external fermions is on mass-shell, but the second can, then, only be off mass-shell. So, while 1-loop mass eigenstates, which result from the diagonalization of the effective 1-loop Lagrangian, are, by definition, orthogonal and, as we show, do not exhibit FCNC 3 , this is not exactly so for bare mass states: orthogonality only truly occurs among one on mass-shell and one off-mass shell fermion. We investigate at which condition these extra FCNC can get suppressed. Such a requirement establishes a connection between mass splittings and the Cabibbo angle θ c , which, for two generations and

m 2 u , m 2 d , m 2 s , m 2 c , p 2 ≪ M 2 W , writes cos 2θ c ≈ -1
closer to 35 o , nor for θ 13 , which could be much smaller [START_REF] Giunti | Fundamental of Neutrino Physics and Astrophysics[END_REF]. This is why the last part of this work is dedicated to the 3-generations case, making in particular the distinction between the leptonic case, where all known fermions stand well below the electroweak scale M W , and the quark case where the top quark weights roughly 2M W .

This work is structured as follows. Sections 2 to 6 deal with two generations of fermions, first, from section 2 to 4, without introducing Shabalin's counterterms, then, in sections 5 and 6, in their presence. Section 7 analyzes in detail the case of three generations.

In section 2, we explain the procedure to re-diagonalize, at 1-loop, the quadratic Lagrangian (kinetic + mass terms) of an SU (2) L gauge theory for several generations of massive fermions. In subsection 2.1 we first briefly recall the standard procedure to diagonalize, by a bi-unitary transformation, the classical quadratic Lagrangian. We then outline, taking the example of two generations, how it is modified when 1-loop transitions introduce non-diagonal, p 2 -dependent, kinetic-like interactions. In subsection 2.2 we give the analytical formulae in the limit p 2 ≪ m 2 W , which then largely simplify when the four fermions masses are much smaller than the W mass, too. Subsections 2.3 and 2.4 are respectively devoted to the re-diagonalization of kinetic terms, and of mass terms. The first are shown to unavoidably introduce, because of mass splittings, non-unitary transformations After these operations are done, the whole effective quadratic Lagrangian at 1-loop is back to diagonal, with its kinetic terms proportional; to the unit matrix I.

In section 3, we focus on the (realistic) case |m s -m d | ≪ |m c -m u |. We study individual mixing matrices (i.e. the ones in the (u, c) and (d, s) sectors) and the two corresponding mixing angles. Section 4 is devoted to the 1-loop Cabibbo matrix. First we show how gauge invariance dictates the form of the 1-loop effective Lagrangian, by, in particular, relating through the covariant derivative, kinetic terms to gauge currents. We then demonstrate that, unlike individual mixing matrices, the Cabibbo matrix stays unitary at 1-loop.

In section 5, we first show that, in the absence of counterterms, the 1-loop renormalization of the mixing angle for degenerate (d, s) is pathological. We then show how the introduction of Shabalin's counterterms restore the stability and reliability of 1-loop corrections to mixing angles, in particular in the vicinity of degeneracy. The 1-loop Cabibbo matrix still keeps unitary in their presence.

In section 6, still for two generations, we show how extra FCNC arise, and we we solve the constraints controlling their suppression, first in the absence of counterterms, then in their presence.

Section 7 is an extensive study of the 3-generation case, in the presence of Shabalin's counterterms. In subsection 7.1, we write the three equations which guarantee that no extra FCNC is present in the bare flavor (or mass) space. We then explicitly list all possible solutions. In subsection 7.2 we give analytical expressions concerning 1-loop transitions between fermions when one among the six fermions making up three generations (the top quark) is heavier than the W . In subsection 7.3 we solve the constraints for quarks. In subsection 7.4 we solve them for neutrinos.

The conclusions and outlook are given in section 8. We also give, there, a comparison between this work and previous approaches concerning the renormalization of mixing angles.

In appendix A, we briefly comment on the dependence on p 2 and some of its consequences, that we neglected in the core of the paper where we considered the limit p 2 ≪ m 2 W . For the sake of simplicity (like in [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left-handed currents[END_REF]), we work in a pure SU (2) L theory of weak interactions instead of the standard SU (2) L × U (1) electroweak model [START_REF] Glashow | Partial Symmetries of Weak Interactions[END_REF]. Since the theory is renormalizable, we use the unitary gauge, devoid of the intricacies due to scalar fields and which, consistently working at order g 2 , yields finite results for the quantities of concern to us. While we cannot, accordingly, verify the gauge independence of the results (independence on the ξ parameter in an R ξ gauge), gauge invariance is of primordial importance.

2 1-loop transitions between non-degenerate fermions ; re-diagonalizing the quadratic Lagrangian

Principle of the method

At the classical level, a bi-unitary transformation is used, in flavor space, to diagonalize the sum of kinetic + mass terms d0

f s0 f / p I -M 0 f   d 0 f s 0 f   into d0 m s0 m   / p I -   m d m s       d 0 m s 0 m   .
The two unitary transformations, acting respectively on right-and left-handed fermions, preserve the canonical form of both kinetic terms, which stay proportional to the unit matrix I. This defines the classical masses m d and m s . The corresponding classical mass eigenstates d 0 m and s 0 m are orthogonal with respect to the classical Lagrangian, which is akin to the property that no transition between them occurs at the classical level. In particular, the classical Lagrangian in flavor space is written devoid a priori of FCNC; this is directly related to the property that kinetic terms are proportional to the unit matrix, since gauge currents are simply deduced by introducing the covariant derivative with respect to the gauge group. The above diagonalization leads to the standard Cabibbo (or CKM) phenomenology, in which, in particular, non-diagonal neutral gauge currents only get generated at 1-loop (see Fig. 1), and are damped, when expressed in bare mass space, by the so-called "Cabibbo suppression". This phenomenology is, up to now, in agreement with experiment. However, 1-loop non-diagonal transitions, like s 0 m → d 0 m depicted in Fig. 2, trigger new phenomena which have not yet been fully considered and which, in particular, also generate FCNC. By the effect of the corresponding renormalization, the kinetic terms of left-handed fermions stay indeed no longer proportional to the unit matrix I but to some non-diagonal

K d = I + H d , H d = O(g 2 )
, which depends on the classical masses (fermions and gauge fields), on the classical Cabibbo mixing angle θ c , and on p 2 . The pure kinetic terms K d for (d 0 m , s 0 m ) written in (6) 4 can be cast back to their canonical form by a p 2 -dependent non-unitary transformation V d (p 2 , . . .) according to

V † d K d V d = I. (1) 
By [START_REF] Mohapatra | Neutrino Mass and New Physics[END_REF], which entails

K d = (V -1 d ) † V -1 d , the kinetic terms 5 (d 0 mL , s 0 mL )K d / p   d 0 mL s 0 mL   at 1-loop for
left-handed d and s in the bare mass basis rewrite

(d 0 mL , s 0 mL )(V -1 d ) † V -1 d / p   d 0 mL s 0 mL   , which leads to defining d 1 mL and s 1 mL such that   d 1 mL s 1 mL   = V -1 d   d 0 mL s 0 mL   .
The mass matrix, which had been made diagonal in the classical basis (d 0 m , s 0 m ), is no longer so in the basis (d 1 mL , s 1 mL ). The second step of the procedure is accordingly to re-diagonalize it by a second bi-unitary transformation. It leaves unchanged the canonical form of the kinetic terms that has been rebuilt in the first step of the procedure. After the two steps have been completed, the sum of kinetic + mass terms at 1-loop is diagonal. The resulting basis of 1-loop mass eigenstates (d mL (p 2 , . . .), s mL (p 2 , . . .)) is such that, at this order and at any given p 2 , there exists no transition between d mL and s mL . They are thus, by definition, orthogonal at 1-loop.

1-loop transitions: explicit calculations

We now explicitly calculate 1-loop transitions. Gauge interactions induce diagonal and non-diagonal transitions between bare mass states. For example, Fig. 2 describes non-diagonal s 0 m → d 0 m transitions, mediated by the W ± gauge bosons. Diagonal transitions are mediated either by W ± µ or by

W 3 µ . p p-q W q p s d m m 0 0 u ,c - m 0 m 0 Fig. 2: s 0 m → d 0 m transition at 1-loop
The one depicted in Fig. 2 contributes as a left-handed, kinetic-like, p 2 -dependent interaction

A sd d0 m / p(1 -γ 5 ) s 0 m , A sd = sin θ c cos θ c h(p 2 , m u , m W ) -h(p 2 , m c , m W ) , (2) 
that we abbreviate, with shortened notations sin θ c ≡ s c , cos θ c ≡ c c , into

A sd = s c c c (h u -h c ). (3) 
It depends in particular on the classical Cabibbo angle θ c = θ d -θ u . The function h is dimensionless.

It is straightforward to deduce that all (diagonal and non-diagonal) 1-loop transitions between s 0 m and d 0 m mediated by W ± gauge bosons transform their kinetic terms into

d0 m s0 m   I / p +   c 2 c h u + s 2 c h c s c c c (h u -h c ) s c c c (h u -h c ) s 2 c h u + c 2 c h c   / p(1 -γ 5 )     d 0 m s 0 m   = d0 m s0 m I / p + h u + h c 2 + (h u -h c ) T x (2θ c ) / p(1 -γ 5 )   d 0 m s 0 m   , (4) 
where we noted

T x (ϕ) = 1 2   cos ϕ sin ϕ sin ϕ -cos ϕ   . (5) 
To the contributions (4) we must add the diagonal transitions mediated by the W 3 µ gauge boson. The kinetic terms for left-handed d 0 m and s 0 m quarks then become (omitting the fermionic fields and the dependence on p 2 , . . .)6 

K d = I + H d ; H d =   A dd A ds A sd A ss   = h u + h c 2 + (h u -h c ) T x (2θ c ) + 1 2   h d h s   , (6) 
where

h d = h(p 2 , m d , m W ) and h s = h(p 2 , m s , m W ).
Likewise, in the (u, c) sector, one has

K u = I + H u ; H u =   A uu A uc A cu A cc   = h d + h s 2 + (h d -h s ) T x (-2θ c ) + 1 2   h u h c   . (7) 
Explicitly, one has

A sd = g 2 4 d 4 q (2π) 4 1 q 2 -m 2 W (2 -ǫ)(/ p -/ q) + 2q.(p -q)/ p -q 2 (/ p -/ q) m 2 W (1 -γ 5 ) V us V * ud (p -q) 2 -m 2 u + V cs V * cd (p -q) 2 -m 2 c unitarity of V = g 2 4 d 4 q (2π) 4 1 q 2 -m 2 W (2 -ǫ)(/ p -/ q) + 2q.(p -q)/ p -q 2 (/ p -/ q) m 2 W (1 -γ 5 ) V us V * ud m 2 u -m 2 c (p -q) 2 -m 2 u (p -q) 2 -m 2 c . (8) 
The factor V us V * ud in (8) is the s c c c of (2), which finally defines (h u -h c ) of (3). All our forthcoming results depend on differences like (h i -h j ). In the unitary gauge, after introducing 2 Feynman parameters x and y, the dimensionally (for n = 4 -ǫ dimension) regularized expression for (h i -h j ) writes (γ ≈ 0.572 is the Euler constant)

h i -h j = g 2 4 i 16π 2 (m 2 i -m 2 j ) 1 0 dx 1 0 dy 2y -(1 -y) 1 + y 2 p 2 2m 2 W 1 R 2 + 1 m 2 W -- 1 + 3y 2 2 ǫ + ln 4π -γ + 1 + y 2 + 1 + 3y 2 ln R 2 µ 2 , R 2 = -y(1 -y)p 2 + y(1 -x)m 2 j + xym 2 i + (1 -y)m 2 W . (9) 
To obtain [START_REF] Duret | Mixing angles and non-degenerate systems of particles[END_REF], the relation γ ν γ α γ ν = -(2 -ǫ)γ α between the Dirac matrices has been used. The scale µ originates from the necessity, in 4 -ǫ dimensions, to replace g 2 by g 2 µ ǫ . The exact analytical expression for all values of p 2 , m 2 i , m 2 j cannot be easily obtained, but, when p 2 ≪ m 2 W , y(1 -y)p 2 can be safely neglected with respect to (1 -y)m 2 W in R 2 , such that (9) simplifies into (we write this time its expression once renormalized in the M S scheme which amounts to eliminating from (9) the pole in 1/ǫ together with the terms proportional to ln 4π -γ)

h i -h j p 2 ≪m 2 W ≈ M S g 2 4 i 16π 2 (m 2 i -m 2 j ) 1 0 dx 1 0 dy 2y - 1 -y r 2 + 1 2m 2 W (1 + y) + (1 + 3y) ln r 2 µ 2 , r 2 = y(1 -x)m 2 j + xym 2 i + (1 -y)m 2 W . (10) 
The integration over x can be done explicitly. This leads to the expression

h i -h j p 2 ≪m 2 W ≈ M S g 2 4 i 16π 2 1 0 dy -2(1 -y) ln ym 2 i + (1 -y)m 2 W ym 2 j + (1 -y)m 2 W -2y 2 m 2 i -m 2 j m 2 W y(1 + 3y) m 2 i m 2 W ln ym 2 i + (1 -y)m 2 W µ 2 - m 2 j m 2 W ln ym 2 j + (1 -y)m 2 (m 2 W -m 2 i ) 2   -(i ↔ j)   + m 2 i m 2 W 1 (m 2 W -m 2 i ) 2 - 11m 4 W -7m 2 W m 2 i + 2m 4 i 6 + m 6 W ln m 2 W µ 2 + -3m 4 W m 2 i + 3m 2 W m 4 i -m 6 i ln m 2 i µ 2 m 2 W -m 2 i   -(i ↔ j)     . (12) 
Eq. ( 12) is only valid for p 2 ≪ m 2 W but its dependence on the fermion masses m i and m j is then exact. In the limit, always valid for 2 generations, when m 2 i , m 2 j ≪ m 2 W , it drastically simplifies to

h i -h j p 2 ,m 2 i ,m 2 j ≪m 2 W ≈ M S g 2 4 i 16π 2 m 2 i -m 2 j m 2 W - 17 4 + 3 2 ln m 2 W µ 2 . ( 13 
)
In the case of 3 generations of quarks, the top quark enters the game and one is in the situation when

p 2 , m 2 i ≪ m 2 W but m 2 j ≡ m 2 t ≥ m 2 W .
The corresponding formulae will be given in subsection 7.2. Note that, in the approximation p 2 ≪ m 2 W that we are using, the final result [START_REF] Kh | Do charged leptons oscillate?[END_REF] no longer depends on p 2 .

First step: re-diagonalizing kinetic terms back to the unit matrix

We shall now diagonalize the quadratic part of the effective 1-loop Lagrangian, which means putting the pure kinetic terms back to the unit matrix and, at the same time, re-diagonalizing the mass matrix. This is accordingly a two-steps procedure.

Since the kinetic terms of right-handed fermions are not modified, we shall only be concerned with the left-handed ones. The pure kinetic terms K d for (d 0 m , s 0 m ) written in ( 6) can be cast back to their canonical form by a p 2 -dependent non-unitary transformations V d (p 2 , . . .) according to [START_REF] Mohapatra | Neutrino Mass and New Physics[END_REF].

The procedure to find V d is the following. Let (1 + t d + ) and

(1 + t d -), t d + , t d -= O(g 2 )
, be the eigenvalues of the symmetric matrix K d ; explicitly

t d ± = h u + h c + h d +hs 2 2 ± 1 2 (h u -h c ) 2 + h d -h s 2 2 + 2 (h u -h c ) h d -h s 2 cos 2θ c . ( 14 
)
K d can be diagonalized by a rotation R(ω d ) ≡   cos ω d sin ω d -sin ω d cos ω d   according to R(ω d ) † K d R(ω d ) =   1 + t d + 1 + t d -   , (15) 
with

tan 2ω d = -(h u -h c ) sin 2θ c (h u -h c ) cos 2θ c + h d -hs 2 , (16) 
or, equivalently,

cos 2ω d = (h u -h c ) cos 2θ c + h d -hs 2 t d + -t d - , sin 2ω d = - (h u -h c ) sin 2θ c t d + -t d - , (17) 
in which (t d + -t d -) can be immediately obtained from (14) 7 . Eq. ( 16) defines ω d in particular as a function of θ c , ω d = ω d (θ c , . . .). Since both numerator and denominator of [START_REF] Dorsner | Neutrino masses and mixing: Singular mass matrices and Quark-lepton symmetry[END_REF] are O(g 2 ), ω d does not depend on the coupling constant g. The diagonal matrix obtained in [START_REF] Ma | Neutrino Mass: Mechanisms and Models[END_REF] is not yet the required unit matrix, but one simply gets to it by renormalizing the columns of R(ω d ) respectively by 

V d =       c ω d 1 + t d + s ω d 1 + t d - - s ω d 1 + t d + c ω d 1 + t d -       . ( 18 
)
It differs from the rotation R(ω d ) only at O(g 2 ) and satisfies

V d V † d = 1 (1 + t d + )(1 + t d -) I + t d + + t d - 2 -(t d + -t d -) T x (-2ω d ) , V † d V d =     1 1 + t d + 1 1 + t d -     . (19) For |m 2 d -m 2 s | ≪ |m 2 u -m 2 c |, |h d -h s | ≪ |h u -h c |, (t + -t -) ≈ (h u -h c
) and the expression for sin 2ω d in [START_REF] Casas | General RG equations for physical neutrino parameters and their phenomenological implications", hep-ph/9910420[END_REF] shows that ω d (θ c ) ≈ -θ c . So, when the pair (d, s) is close to degeneracy and (u, c) far from it, V d becomes close to a rotation R(-θ c ). We shall come back on this case in subsection 5.1. Eq. [START_REF] Chankowski | Quantum corrections to neutrino masses and mixing angles[END_REF] shows that mass splittings (t + = t -) are responsible for the non-unitarity of V, and, so, for the non-unitary relation between 1-loop and bare mass states (the same occurs in flavor space). Note that this non-unitarity persists when ω d → 0, which will be the case when counterterms are introduced (see subsection 6.2). Unitarity can only be achieved for t + = t -; according to [START_REF] Bilenky | Phenomenology of Neutrino Oscillations[END_REF], this requires

(h u -h c ) 2 + h d -hs 2 2 + 2(h u -h c ) h d -hs 2 cos 2θ c = 0, which, since cos 2θ c ∈ [-1, +1],
can only eventually occur:

-either for

(h u -h c ) = h d -hs 2 , that is, for (m u -m c ) = m d -ms √ 2 , in which case cos 2θ c = -1 ⇔ θ c = π; -or for h u = h c , h d = h s ⇔ m u = m c , m d =
m s (twice degenerate system). 7 Eq. ( 16) also rewrites sin 2(ω d +θc)

sin 2ω d = -h d -hs hu-hc , which shows that ω d → -θc when |ms -m d | ≪ |mu -mc|.
2.4 Second step: re-diagonalizing the mass matrix

1-loop mass eigenstates

As mentioned in subsection 2.1, the re-diagonalization of kinetic terms leads to defining the basis (d 1 mL , s 1 mL ), which is related to the bare mass basis by the non-unitary relation V d . In this basis, the mass terms

(d 0 mL , s 0 mL )M d   d 0 mR s 0 mR   + h.c., with M d = diag(m d , m s ), rewrite (d 1 mL , s 1 mL )V † d M d   d 0 mR s 0 mR   +
h.c.. Hence, the mass matrix that needs to be re-diagonalized is

V † d M d . It is done through two unitary transformations R(ξ d ) and S(ξ d ) such that R(ξ d ) † (V † d M d )S(ξ d ) = diag(µ d , µ s ). Since V † d M d M † d V d is a real symmetric matrix V † d M d M † d V d = V † d   m 2 d m 2 s   V d =        m 2 d c 2 ω d + m 2 s s 2 ω d 1 + t d + - s ω d c ω d (m 2 s -m 2 d ) (1 + t d + )(1 + t d -) - s ω d c ω d (m 2 s -m 2 d ) (1 + t d + )(1 + t d -) m 2 d s 2 ω d + m 2 s c 2 ω d 1 + t d -        , (20) 
R(ξ d ) can be taken as a rotation, according to

R(ξ d ) † V † d M d M † d V d R(ξ d ) =   µ 2 d µ 2 s   . (21) 
Being unitary, it preserves the canonical form of the kinetic terms that had been rebuilt in subsection 2.3. It satisfies

tan 2ξ d = -(m 2 d -m 2 s ) (1 + t d + )(1 + t d -) sin 2ω d (m 2 d -m 2 s ) 1 + t d + + t d - 2 cos 2ω d -(m 2 d + m 2 s ) t d + -t d - 2 . ( 22 
)
Through ω d (θ c , . . .), (22) defines ξ d in particular as a function of θ c , ξ d = ξ d (θ c , . . .).

Since the mass terms rewrite (d

1 mL , s 1 mL )R(ξ d ) diag(µ d , µ s ) S(ξ d ) †   d 0 mR s 0 mR   + h.c., the 1-loop left- handed mass eigenstates (d mL , s mL ) are defined by (d mL , s mL ) = (d 1 mL , s 1 mL )R(ξ d ), which leads to   d 0 mL s 0 mL   = V d R(ξ d )   d mL s mL   . ( 23 
)
By construction, at this order, there exists no transition between d mL and s mL , which are thus, by definition, orthogonal.

1-loop masses

The re-diagonalization of kinetic terms indirectly contributes to a renormalization of the masses:

m d → µ d , m s → µ s . For t d + -t d - 2 m 2 s -m 2 d m 2 s +m 2 d cos 2ω d ≪ 1 and t d + -t d - 2 m 2 s +m 2 d m 2 s -m 2 d cos 2ω d ≪ 1 8 , one gets, when m d = m s , from (20) 
µ 2 s ≈ m 2 s 1 - t d + + t d - 2 -m 2 d t d + -t d - 2 cos 2ω d , µ 2 d ≈ m 2 d 1 - t d + + t d - 2 + m 2
goes to a minimum, identical to its classical value, when θ c becomes maximal. A similar property is satisfied in the case of the MSW resonance (see for example [START_REF] Giunti | Fundamental of Neutrino Physics and Astrophysics[END_REF]). The classically degenerate case m d = m s is most easily studied directly from [START_REF] Kniehl | Simple On-Shell Renormalization Framework for the Cabibbo-Kobayashi-Maskawa Matrix[END_REF]. Degeneracy gets lifted at 1-loop since the renormalized masses become, then,

µ 2 d = m 2 d,s 1+t d + , µ 2 s = m 2 d,s 1+t d - , such that µ 2 s -µ 2 d µ 2 s +µ 2 d ≈ hc-hu 2 ≈ g 2 16π 2 m 2 c -m 2 u m 2 W
. It turns out to be the limit of (26) for m d = m s and vanishing θ c .

Individual mixing matrices and mixing angles at 1-loop 3.1 1-loop and classical mass eigenstates are non-unitarily related

According to (23), the left-handed 1-loop mass eigenstates (d mL , s mL ) are related to the bare ones via the product of a non-unitary transformation V d by a unitary one R(ξ d ). The two bases are accordingly non-unitarily related [START_REF] Giunti | Fock States of Flavor Neutrinos are Unphysical[END_REF].

We recall (see subsection 2.3 after ( 19)) that mass splittings are at the origin of the non-unitarity of V d .

[9] [10] [START_REF] Bene Š | Fermion flavor mixing in models with dynamical mass generation[END_REF].

Since bare mass states are related to bare flavor states by the classical mixing matrix C d0 ≡ R(θ d ) of the (d, s) pair, which is unitary, the physical mass eigenstates are also non-unitarily related to the latter. The relation is

  d 0 f L s 0 f L   = C d0   d 0 mL s 0 mL   (23) = C d0 V d R(ξ d )   d mL s mL   , (27) 

Individual mixing matrices and mixing angles at 1-loop

The (d, s) mixing angle

According to (27), the individual mixing matrix at 1-loop is given by [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF]), C d , though slightly non-unitary, stays nevertheless close to a rotation

C d = C d0 V d R(ξ d ) = R(θ d ) V d R(ξ d ). ( 28 
) Since V d ≈ R(ω d ) + O(g 2 ) (see
C d ≈ R(θ d + ω d + ξ d ) + O(g 2 ). (29) 
The quantity (ω d + ξ d ) is seen to renormalize the classical mixing angle θ d ; it satisfies, from (22), the relation (neglecting the terms proportional to t + +t - 2 which are of order g >2 ) , one deduces that, since

tan 2(ω d + ξ d ) ≈ -tan 2ω d t d + -t d m 2 d -m 2 s (h u -h c ) cos 2θ c + h d -hs 2 . (32) 3.2 
|h u -h c | ≫ |h d -h s |, ω u → 0. Then,
from the equivalent of (32), one gets tan 2(ω u + ξ u ) ≈ 1 2 (h d -h s ) sin 2θ c , which is very small (see [START_REF] Kh | Do charged leptons oscillate?[END_REF]).

4 The 1-loop Cabibbo matrix C(p 2 , . . .)

The effective Lagrangian at 1-loop (in the bare mass basis)

SU (2) L gauge invariance demands the replacement, in the Lagrangian, of the partial derivative ∂ by the covariant derivative D. This is how, at the classical level and in the bare mass basis, calling Ψ 0 T m = (u 0 mL , c 0 mL , d 0 mL , s 0 mL ), the kinetic + gauge terms write in their standard form i Ψ

0 m ← → D µ γ µ Ψ 0 m ≡ i 2 Ψ 0 m γ µ (D µ Ψ 0 m ) -(D µ Ψ 0 m )γ µ Ψ 0 m , such that L class = Ψ 0 m I (i∂ µ ) + g T . W µ γ µ Ψ 0 m + . . . (33) 
The T 's are the (Cabibbo rotated) SU (2) generators 9 For example, in the (νµ, ντ , ν, τ ) sector, the condition writes

T 3 = 1 2   1 -1   , T + =   C 0   , T -=   C † 0   , (34) 
m 2 ντ -m 2 νµ m 2 ντ +m 2 νµ < g 2 16π 2 m 2 τ -m 2 µ m 2 W
, the r.h.s. of which ≈ 1.9 10 -7 , while the l.h.s. is experimentally known to be O(10 -3 ) if one considers that the neutrino mass scale is O(eV ). The mismatch is similar in the (νe, ντ , e, τ ) sector and worse in the (νe, νµ, e, µ) sector.

where C 0 is the classical Cabibbo matrix

C 0 = R(θ c ) =   cos θ c sin θ c -sin θ c cos θ c   = C † u0 C d0 = R(θ u ) † R(θ d ). (35) 
Gauge currents and their SU (2) L algebra are thus directly related to kinetic terms by gauge invariance and the resulting Lagrangian is both gauge invariant and hermitian.

We shall use the same procedure to determine the Lagrangian after 1-loop transitions have been accounted for. Still in the bare mass basis Ψ 0 m , we have seen in subsection 2.2 that the kinetic terms, which are classically proportional, in momentum space, to I / p get renormalized at 1-loop into A(p 2 , m i , m W ) / p, with

A(p 2 , . . .) =   K u (p 2 , . . .) K d (p 2 , . . .)   = I +   H u (p 2 , . . .) H d (p 2 , . . .)   ; (36) 
p µ stands, there, for the common momentum of the ingoing and outgoing fermions, as depicted in Fig. 1.

The 1-loop kinetic + gauge Lagrangian that we will hereafter consider is accordingly i

Ψ 0 m ← -→ AD µ γ µ Ψ 0 m ≡ i 2 Ψ 0 m γ µ (AD µ Ψ 0 m ) -(AD µ Ψ 0 m ) γ µ Ψ 0 m , which yields L 1-loop = Ψ 0 m A (i∂ µ ) + g 2 (A T + T A). W µ γ µ Ψ 0 m + . . . (37) 
It has the required properties of gauge invariance and, thanks to the presence of the symmetric expression A T + T A, of hermiticity (hermiticity is, instead, not achieved if one considers a kinetic Lagrangian of the form i

Ψ 0 m --→ AD µ γ µ Ψ 0 m (with "→" instead of "↔" on top of AD µ ))
. Gauge invariance has in particular dictated the 1-loop expression of the gauge currents, from which we shall now deduce that of the 1-loop Cabibbo matrix.

The Cabibbo matrix C(p 2 , . . .) stays unitary

The 1-loop Cabibbo matrix in the bare mass basis can be read directly from the expression g 2 Ψ 0 m (A T + T A)γ µ Ψ 0 m of the gauge currents that results from (37). This yields

C bm (p 2 , . . .) = 1 2 (I + H u ) Ku(p 2 ,...) C 0 + C 0 (I + H d ) K d (p 2 ,...) . (38) 
A naive calculation could erroneously lead to the conclusion that C bm is non-unitary. Indeed, using in bare mass space, are orthogonal since no transition occurs between the two of them; but it is no longer so at 1-loop (see Fig. 1) 10 . The pure kinetic terms in (37) are, in particular, not normalized to I but to the non-diagonal matrix A. It is thus necessary, before drawing any conclusion, to go to the orthogonal basis of 1-loop mass eigenstates by using the relation (23). Because of the unitarity of the R(ξ) rotations, one

C 0 = R(θ d -θ u )
has ]V u,d R(ξ u,d )] † K u,d [V u,d R(ξ u,d )] ≡ R(ξ † u,d) [V † u,d K u,d V u,d ]R(ξ u,d ) (1) 
= R(ξ u,d ) † R(ξ u,d ) = I, such that the pure kinetic terms get now normalized to I. And, as we show next, the 1-loop Cabibbo matrix C(p 2 , . . .) rewrites, then, as a rotation. It becomes indeed in this basis

C(p 2 , . . .) = [V u R(ξ u )] † C bm (p 2 , . . .) [V d R(ξ d )]. (39) 
Transforming the general expressions (39) and (38) with the help of (1) which entails

K d = (V -1 d ) † V -1 d (K u = (V -1 u ) † V -1 u ), yields C = 1 2 R(ξ u ) † V -1 u C 0 V d + V † u C 0 (V -1 d ) † R(ξ d ) = 1 2 R(ξ u ) † V -1 u C 0 V d + (V -1 u C 0 V d ) -1 † R(ξ d ).
(40) Using the expression [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF] for the V's, one gets

V -1 u C 0 V d =     cos(θ c -ω u + ω d ) 1+t u + 1+t d + sin(θ c -ω u + ω d ) 1+t u + 1+t d - -sin(θ c -ω u + ω d ) 1+t u - 1+t d + cos(θ c -ω u + ω d ) 1+t u - 1+t d -     and V -1 u C 0 V d -1 † =     cos(θ c -ω u + ω d ) 1+t d + 1+t u + sin(θ c -ω u + ω d ) 1+t d + 1+t u - -sin(θ c -ω u + ω d ) 1+t d - 1+t u + cos(θ c -ω u + ω d ) 1+t d - 1+t u -     which leads finally to C(p 2 , . . .) = R θ d + ω d + ξ d -θ u + ω u + ξ u + O(g (>2) ). q.e.d. (41) 
C(p 2 ) stays thus unitary for any common value of p 2 at which its entries are evaluated 11 . (41) shows that the Cabibbo angle θ c = θ d -θ u gets renormalized by

(ω d + ξ d ) -(ω u + ξ u ).
In the basis of 1-loop mass eigenstates, the Lagrangian L rewrites

L = u mL c mL d mL s mL (p 2 , . . .) / p + g T(p 2 , . . .). W µ γ µ + . . .         u mL c mL d mL s mL         (p 2 , . . .) + . . . , (42) 
with "1-loop" SU (2) L generators T(p 2 , . . .) depending now on p 2 and on the masses

T 3 (p 2 , . . .) = 1 2   1 -1   , T + (p 2 , . . .) =   C(p 2 , . . .)   , T -(p 2 , . . .) =   C † (p 2 , . . .)   .
(43) Our procedure has accordingly preserved the SU (2) L structure of gauge currents at 1-loop, which guarantees in particular that the corresponding Ward identities are satisfied.

We keep mentioning the dependence on p 2 , reminding that it only goes away (becoming sub-leading in powers of ), the terms proportional to them in (39) can be calculated with the expressions of R(ξ d ) and V d at O(g 0 ), that is, for t + = 0 = t -; one can accordingly take in there R(ξ d )

(22) → R(-ω d ) and V d (18) → R(ω d ), such that V d R(ξ d ) → I.
The same approximation can be done in the (u, c) sector. The resulting expression for C is

C(p 2 , . . .) O(g 2 ) ≈ R(ξ u ) † V † u C 0 V d R(ξ d ) + 1 2 H u C 0 + C 0 H d O(g 2 ) , (44) 
which leads to the announced formula after using (35), and (28) and its equivalent for

C u . Since C(p 2 ) is unitary, the non-unitarity of C † u C d gets compensated by that of 1 2 (H u C 0 + C 0 H d ).
5 Restoring "perturbative stability": canceling non-diagonal transitions at 1-loop with counterterms

Instability close to degeneracy

Quasi-degenerate systems are known to be unstable with respect to small perturbations. This property is easily verified here, through the amount by which classical mixing angles are renormalized when 1loop transitions are accounted for. It undergoes indeed large variations when the classical masses span a very small interval in the neighborhood of degeneracy: we first consider the case of exact classical degeneracy (m d = m s ), secondly the pole of (30), which corresponds to a situation where d and s are extremely close to degeneracy (see subsection 3.2), and, last, the pole of tan 2ξ, which also corresponds to quasi-degenerate fermions, but not as close as previously.

• For exact classical degeneracy h d = h s such that, by the expression of sin 2ω d in [START_REF] Casas | General RG equations for physical neutrino parameters and their phenomenological implications", hep-ph/9910420[END_REF], According to (41), the Cabibbo mixing angle gets renormalized from its classical value

ω d = -θ c . ( 20 
) shows then that V † d M d M † d V d stays diagonal,
θ c to θ c + (ω d + ξ d ) -(ω u + ξ u ) = -(ω u + ξ u )
. This is vanishing by the equivalent of ( 16) which yields ω u = 0 for h d = h s , and then by that of (22) which entails ξ u = 0 for ω u = 0. To such a system is accordingly associated a vanishing 1-loop Cabibbo angle. Renormalization effects can thus be large.

• At the pole of (30), by definition, the renormalization of θ d becomes maximal (± π 4 ). • At the pole of tan 2ξ d , it becomes instead minimally small (see subsection 3.2.1). So, in a close neighborhood of degeneracy, the renormalization (ω d +ξ d ) of θ d undergoes large variations. So does the one of the Cabibbo angle.

The counterterms of Shabalin

Let us now add to the classical Lagrangian in bare mass space the counterterms which were first proposed by Shabalin in his study [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left-handed currents[END_REF] of the electric dipole moment of quarks. They are devised to cancel the (p 2 -dependent) s 0 m ↔ d 0 m transitions when either p 2 = m 2 d or p 2 = m 2 s (d or s on mass-shell). So, an on mass-shell s 0 m cannot anymore transmute into a d 0 m with the same virtuality, and vice versa. They were also introduced in [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF] and [START_REF] Duret | Quark Lagrangian diagonalization versus nondiagonal kinetic terms[END_REF]. In the short letter [START_REF] Duret | Quark Lagrangian diagonalization versus nondiagonal kinetic terms[END_REF], the inclusion of these counterterms was proposed as a solution to rescue the standard CKM phenomenology. In [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF], only the classical Lagrangian + the counterterms were re-diagonalized, but the effective 1-loop transitions were not included. This completion is the goal of the lines below. We shall go through the same steps as previously, re-diagonalizing simultaneously the effective kinetic and mass terms up to O(g 2 ), including Shabalin's counterterms.

Following [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF], let us accordingly add to the bare Lagrangian the kinetic and mass-like counterterms which concern both chiralities of fermions

-A d d 0 m / p (1 -γ 5 ) s 0 m -B d d 0 m (1 -γ 5 ) s 0 m -E d d 0 m / p (1 + γ 5 ) s 0 m -D d d 0 m (1 + γ 5 ) s 0 m . (45) 
Requesting that s 0 m → d 0 m transitions vanish when either s 0 m or d 0 m is on mass-shell yields (see Appendix A of [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF])

A d = s c c c m 2 d (h u -h c ) p 2 =m 2 d -m 2 s (h u -h c ) p 2 =m 2 s m 2 d -m 2 s ≈ s c c c (h u -h c ) p 2 =m 2 d + m 2 s ∂(h u -h c ) ∂p 2 p 2 =m 2 d , E d = s c c c m s m d (h u -h c ) p 2 =m 2 d -(h u -h c ) p 2 =m 2 s m 2 d -m 2 s ≈ s c c c m s m d ∂(h u -h c ) ∂p 2 p 2 =m 2 d , B d = -m s E d , D d = -m d E d , (46) 
The re-diagonalization of the left-handed kinetic terms at 1-loop is operated via a non-unitary transformation V d of the same form as [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF]. Counterterms only induce the replacement of

s c c c (h u -h c )(p 2 , . . .) with s c c c (h u -h c )(p 2 , . . .) -A d , such that the angle ω d changes from (16) to tan 2ω dL (p 2 , . . .) = -2 s c c c (h u -h c )(p 2 , . . .) -A d (h u -h c )(p 2 , . . .) cos 2θ c + (h d -hs)(p 2 ,...) 2 , (47) 
in which we have added a subscript " L " to ω d to distinguish it from its counterpart ω dR associated with right-handed fermions.

The quantity s c c c (h u -h c )(p 2 , . . .) -A d , which will be often encountered, writes

s c c c (h u -h c )(p 2 , . . .) -A d ≈ s c c c (h u -h c )(p 2 , . . .) -(h u -h c ) p 2 =m 2 d -m 2 s ∂(h u -h c ) ∂p 2 p 2 =m 2 d ≈ s c c c p 2 -(m 2 d + m 2 s ) ∂(h u -h c ) ∂p 2 p 2 =m 2 d , (48) 
in which we have taken p 2 ∼ m 2 d ∼ m 2 s . By differentiating [START_REF] Bene Š | Fermion flavor mixing in models with dynamical mass generation[END_REF] with respect to p 2 , one gets, still in the limit p 2 , m 2 i , m 2 j ≪ m 2 W and in the M S scheme

∂(h i -h j ) ∂p 2 p 2 ,m 2 i ,m 2 j ≪m 2 W ≈ M S 3 g 2 4 i 16π 2 m 2 i -m 2 j m 4 W . ( 49 
)
One has now (we added a superscript "d" to t + and t -because

A d = A u , such that t d + = t u + , t u -= t d
-, and also a subscript " L " to recall that they concern left-handed fields)

t d ±L (p 2 , . . .) = h u + h c + h d +hs 2 2 (p 2 , . . .) ± 1 2 (h u -h c )(p 2 , . . .) cos 2θ c + (h d -h s )(p 2 , . . .) 2 2 + 4 s c c c (h u -h c )(p 2 , . . .) -A d 2 , (50) 
which gives back ( 14) when A d is set to zero.

As far as the right-handed kinetic terms are concerned, they are controlled by the matrix

  1 -E d -E d 1  
and are accordingly re-diagonalized into the unit matrix by a non-unitary transformation

U d U † d   1 -E d -E d 1   U d = I, U d = 1 √ 2   1 √ 1+E d 1 √ 1-E d -1 √ 1+E d 1 √ 1-E d   ⇒ U d U † d = 1 1 -E 2 d   1 E d E d 1   . (51) It corresponds to ω dR = π 4 , t d +R = E d , t d -R = -E d . The mass matrix to diagonalize is now V † d M d U d
, where, including the counterterms, M d is now given by

M d =   m d D d ≡ -m d E d B d ≡ -m s E d m s   . ( 52 
)
The rotation R(ξ dL ) will accordingly diagonalize the matrix

(V † d M d U d )(U † d M † d V d ).
Neglecting irrelevant terms proportional to E ≥2 and to g >2 , one gets

V † d M d U d U † d M † d V d =     m 2 d c 2 ω dL +m 2 s s 2 ω dL +4m d msE d sω dL cω dL 1+t d +L (m 2 d -m 2 s )sω dL cω dL -2m d msE d (c 2 ω dL -s 2 ω dL ) (1+t d +L )(1-t d -L ) (m 2 d -m 2 s )sω dL cω dL -2m d msE d (c 2 ω dL -s 2 ω dL ) (1+t d +L )(1-t d -L ) m 2 d s 2 ω dL +m 2 s c 2 ω dL -4m d msE d sω dL cω dL 1+t d -L     + m d m s E d   -sin 2ω dL cos 2ω dL cos 2ω dL sin 2ω dL   . (53) 
The expression (22) for tan 2ξ d gets replaced by

tan 2ξ dL (p 2 , . . .) = -(m 2 d -m 2 s ) sin 2ω dL + 2m d m s E d cos 2ω dL (m 2 d -m 2 s ) cos 2ω dL + 2m d m s E d sin 2ω dL -(m 2 d + m 2 s ) t d +L -t d -L 2 , (54) 
in which we have neglected factors

(1 + αt d +L + βt d -L ), α, β = O(1)
, which yield contributions of unwanted higher order in g.

Unless cos 2θ c ≈ -1 2 h d -hs hu-hc (13) 
≈ -

m 2 d -m 2 s m 2 u -m 2 c , (47) 
, ( 48) and (49), show that, when

p 2 ≪ m 2 W and since m 2 u , m 2 c ≪ m 2 W , ω dL ∼ m 2 s /m 2
W is very small. Then, using sin 2ω dL ≈ tan 2ω dL , the expression for E d in (46) and the one for t d +L -t d -L coming from (50) (in which we neglect the term 4(s c c c (h u -h d )-A d )), (54) rewrites (the term 2m d m s E d sin 2ω dL in its denominator can always be neglected)

tan 2ξ dL ≈ 2s c c c ∂(h u -h c ) ∂p 2   (m 2 d -m 2 s ) p 2 -(m 2 d + m 2 s ) + m 2 d m 2 s (m 2 d -m 2 s ) - m 2 d +m 2 s 2 (h u -h c ) cos 2θ c + h d -hs 2   , (55) 
showing, with (49), that ξ dL ∼ (p 2 , m 2 )/m 2 W is also very small.

When cos 2θ c ≈ -

1 2 h d -hs hu-hc (13) 
≈ -

m 2 d -m 2 s m 2 u -m 2 c
, tan 2ω dL → ∞, which corresponds to ω dL maximal. Then, (54) and (50) yield tan 2ξ dL → -

m 2 d -m 2 s 2m d msE d -(m 2 d +m 2 s ) sccc(hu-h d )-A d
, which, using (46) and (48), is finally equivalent to tan 2ξ dL = -

m 2 d -m 2 s sccc ∂(hu-hc) ∂p 2 1 2m 2 d m 2 s -(m 2 d +m 2 s ) p 2 -(m 2 d +m 2 s )
. Unless d and s are exactly degenerate (in which case ξ dL shrinks to 0), this yields a quasi-maximal ξ dL , because of the very small value of ∂(hu-hc) ∂p 2

, given in (49). This is however not true when the numerator of (47) vanishes, which occurs for s c c c (h u -h c ) -A d = 0, or, likewise, by (50), for t + dL = t - dL . In this case, ω dL is undetermined and can be taken to vanish, since the matrix of kinetic terms is proportional to the unit matrix. One then finds a very small tan 2ξ

dL = 2m d msE d m 2 d -m 2 s
(see ( 46) and ( 49)).

The expressions obtained in the (u, c) channel are very similar. One gets:

A u = -s c c c m 2 u (h d -h s ) p 2 =m 2 u -m 2 c (h d -h s ) p 2 =m 2 c m 2 u -m 2 c ≈ -s c c c (h d -h s ) p 2 =m 2 u + m 2 c ∂(h d -h s ) ∂p 2 p 2 =m 2 u ; E u = -s c c c m u m c (h d -h s ) p 2 =m 2 u -(h d -h s ) p 2 =m 2 c m 2 u -m 2 c ≈ s c c c m s m d ∂(h d -h s ) ∂p 2 p 2 =m 2 u ; B u = -m c E u , D u = -m u E u ; ( 56 
)
tan 2ω uL (p 2 , . . .) = -2 -s c c c (h d -h s )(p 2 , . . .) -A u (h d -h s )(p 2 , . . .) cos 2θ c + (hu-hc)(p 2 ,...) 2 ;
(57)

-s c c c (h d -h s )(p 2 , . . .) -A u ≈ -s c c c (h d -h s )(p 2 , . . .) -(h d -h s ) p 2 =m 2 u -m 2 c ∂(h d -h s ) ∂p 2 p 2 =m 2 u ≈ -s c c c p 2 -(m 2 u + m 2 c ) ∂(h d -h s ) ∂p 2 p 2 =m 2 u ; (58) 
t u ±L (p 2 , . . .) = hu+hc 2 + h d + h s 2 (p 2 , . . .) ± 1 2 (h d -h s )(p 2 , . . .) cos 2θ c + (h u -h c )(p 2 , . . .) 2 2 + 4 -s c c c (h d -h s )(p 2 , . . .) -A u 2 ;
(59)

tan 2ξ uL (p 2 , . . .) = -(m 2 u -m 2 c ) sin 2ω uL + 2m u m c E u cos 2ω uL (m 2 u -m 2 c ) cos 2ω uL + 2m u m c E u sin 2ω uL -(m 2 u + m 2 c ) t u +L -t u -L 2 ≈ -2s c c c ∂(h d -h s ) ∂p 2 (m 2 u -m 2 c ) p 2 -(m 2 u + m 2 c ) + m 2 u m 2 c (m 2 u -m 2 c ) -m 2 u +m 2 c 2 (h d -h s ) cos 2θ c + hu-hc 2 . ( 60 
)
Unlike in the (d, s) sector, because |m d -m s | < |m u -m c |, tan 2ω ul given by (57) cannot have any pole. This makes ω uL always very small and, likewise, ξ uL . Furthermore, the equality t + uL = t - uL can never be achieved (see also section 6). These results stay true when m d = m s , in which case h d = h s , which entails that A u , E u , B u , D u , ω uL and ξ uL vanish.

Stability is restored

We now check that Shabalin's counterterms stabilize 1-loop mixing angles in the vicinity of d -s degeneracy.

Still except when cos 2θ

c = -1 2 h d -hs
hu-hc , which corresponds, when m d = m s , to θ c maximal (see also subsection 6.2), ω dL stays small when m d ≈ m s . From (47), (48), (49), one gets

tan 2ω dL p 2 ,m 2 d ∼m 2 s ,m 2 u ,m 2 c ≪m 2 W ≈ M S -3 p 2 -2m 2 d m 2 W tan 2θ c , (61) 
and so does ξ dL , which, from (55), becomes

tan 2ξ dL p 2 ,m 2 d =m 2 s ,m 2 u ,m 2 c ≪m 2 W ≈ M S -3 m 2 d m 2 W 1 -17 4 + 3 2 ln m 2 W µ 2 tan 2θ c , (62) since, for µ 2 ∈ [m 2 K , m 2 D ], -17 4 + 3 2 ln m 2 W µ 2 ∈ [7, 12].
So, when m d ≃ m s , the mixing angle θ dL is accordingly renormalized at 1-loop by the small quantity

ω dL + ξ dL ≈ 1 2 (tan 2ω dL + tan 2ξ dL ) ∼ m 2 d m 2 W tan 2θ c .
In the (u, c) sector, E u = 0 = A + u when m d = m s and one gets

tan 2ξ u ≈ -tan 2ω uL = - 4A u h u -h c = 0, (63) 
such that θ uL is not renormalized at all.

The Cabibbo matrix C(p 2 , . . .) still stays unitary

The expression for C(p 2 , . . .) is still given by ( 40), but one must now accounts for t u ±L = t d ±L since 

A u = A d . One gets now V -1 u C 0 V d =     cos(θ c -ω u + ω d ) 1+t u +L 1+t d +L sin(θ c -ω u + ω d ) 1+t u +L 1+t d -L -sin(θ c -ω u + ω d ) 1+t u -L 1+t d +L cos(θ c -ω u + ω d ) 1+t u -L 1+t d -L     and V -1 u C 0 V d -1 † =     cos(θ c -ω u + ω d ) 1+t d +L 1+t u +L sin(θ c -ω u + ω d ) 1+t d +L 1+t u -L -sin(θ c -ω u + ω d ) 1+t d -L 1+t u +L cos(θ c -ω u + ω d ) 1+t d -L 1+t u -L     ,

Suppressing extra flavor changing neutral currents

The absence of flavor changing neutral currents is classically implemented ab initio in bare flavor space by the canonical choice of the kinetic terms, proportional to the unit matrix, and by that of the SU (2) L generators which, in the (u, c, d, s) basis, write We have seen with ( 43), and this stays valid in the presence of Shabalin's counterterms, that, in the 1loop mass basis, the SU (2) L algebra closes on the "canonical"

T 3 = 1 2   1 -1   , T + =   1   , T -=   1   .
T 3 ≡ T 3 = 1 2   1 -1   . So, after
1-loop transitions of the type of Fig. 2, have been accounted for, one is back to a situation similar to the classical one. 1-loop non-diagonal neutral gauge currents are triggered by vertex corrections. As for the second origin of FCNC, insertion of Fig. 2 on one of the external leg of a W 2 f f vertex (Fig. 1 right), it is important to recall, as was demonstrated in [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF] (Appendix B), that the introduction of Shabalin's counterterms do not modify transitions of the type s → dW 3 : the counterterms do cancel the nondiagonal transitions on external legs, but s → dW 3 transitions are re-created with the same amplitude through the covariant derivative that has to be used inside them.

Is the situation strictly identical to the standard one? The answer is "not exactly", and this is what we investigate now. The issue is that of the existence of mass splittings, which are responsible for two facts: * the slight non-unitarity of the connection between the orthogonal set of 1-loop mass eigenstates and bare mass (or flavor) states; * that the two fermions concerned by 1-loop non-diagonal transitions (Fig. 2) cannot be both on massshell, such that Shabalin's counterterms can only restore 1-loop orthogonality between one on mass-shell fermion and a second one which is off mass-shell. Since, by construction, 1-loop mass eigenstates as we defined them, by the diagonalization of the 1loop quadratic effective Lagrangian (kinetic + mass terms), are orthogonal, the non-unitarity of their connection to bare mass states (and, thus, to bare flavor states, since the last two are unitarily connected) makes FCNC still occur in bare flavor (or mass) space. This trivially appears by transforming back the W 3 f f coupling in the space of 1-loop mass states, that we emphasized to be "canonical" (proportional to T 3 ), to bare flavor space. So, we face a situation where, because of (unavoidable) mass splittings, the standard situation in bare flavor space is spoiled. We adopt a conservative point of view, require that the phenomenology should not differ from the standard one, and therefore that these extra FCNC vanish or, at least, are strongly damped.

When no counterterm is added

As soon as 1-loop transitions Fig. 2 are accounted for, the bare flavor (or mass) states do not form anymore an orthogonal set, such that requesting the absence of FCNC in this basis appears somewhat academic. In spite of this, and since the principle of the method and formulae will keep valid when counterterms are introduced, we proceed with this first case.

To that purpose, it is enough to use the relation (27) between 1-loop mass eigenstates and bare flavor states (and its equivalent in the (u, c) sector), which leads to the expression (28) for the 1-loop mixing matrix C d . Neutral gauge currents in the space of 1-loop mass eigenstates being proportional to T 3 , their expression in bare flavor space gets simply proportional to

(C -1 d ) † C -1 d = (C d C † d ) -1 (28) = (C d0 V d V † d C † d0 ) -1
, and a similar expression in the (u, c) sector. From the expression (18) of V d , it is easy matter to get (T x is defined in ( 5))

C d0 V d V † d C † d0 = 1 (1 + t d +L )(1 + t d -L ) 1 + t d +L + t d -L 2 -(t d +L -t d -L )T x -2(θ dL + ω dL ) ⇒ (C d0 V d V † d C † d0 ) -1 ≈ (1 + t d +L )(1 + t d -L ) 1 - t d +L + t d -L 2 + (t d +L -t d -L )T x -2(θ dL + ω dL ) , (64) 
which makes FCNC's proportional to -(t d +L -t d -L ) sin 2(θ dL +ω dL ) (the sine function corresponds to the non-diagonal terms of T x , as it appears in ( 5)), and an equivalent expression in the (u, c) sector. According to (64), in both the (d, s) and (u, c) sectors, their suppression requires that (t u,d +L -t u,d -L ) sin 2(θ uL,dL + ω uL,dL ) vanishes or, at least, that it be as small as possible.

• According to [START_REF] Bilenky | Phenomenology of Neutrino Oscillations[END_REF], the equality of t d +L and

t d -L requires cos 2θ c = -1 2 hu-hc h d -hs + h d -hs hu-hc ≈ -1 2 m 2 c -m 2 u m 2 s -m 2 d + m 2 s -m 2 d m 2 c -m 2 u
. This corresponds to | cos 2θ c | > 1, which can never be satisfied. • FCNC's can accordingly only be suppressed if (ω dL + θ dL ) ≈ 0 and an equivalent condition in the (u, c) sector. As already mentioned in subsection 2.3, when (d, s) are much closer to degeneracy that (u, c), ω dL ≈ -θ c such that the condition for FCNC suppression rewrites θ dL ≈ θ c . One also finds that θ uL ≈ -ω uL becomes small (see subsection 5.3). So, FCNC's get suppressed when bare flavor and mass states for the fermion pair which is the farthest from degeneracy get close to alignment. No condition on θ c arises in this case.

In the presence of Shabalin's counterterms

If bare flavor states were a set of truly orthogonal states at 1-loop, they could only be unitarily connected with 1-loop mass eigenstates since the latter are constructed as being orthogonal. Then, the absence of FCNC would naturally translate from one basis to the other. That, instead, non-unitarity persists even in the presence of counterterms can be traced out in the expression [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF] for V d , to the relations [START_REF] Chankowski | Quantum corrections to neutrino masses and mixing angles[END_REF], and is due to t + dL = t - dL . Relations (64) keep valid such that the discussion stays formally the same as in subsection 6.1). Results are different because the expression of ω dL has changed into (47); so has the formula for t ± which is now given by (50). Unlike previously, maximal mixing turns out to be one of the two types of solutions that arise.

• While, in the absence of counterterms, neither t + dL = t - dL , nor t + uL = t - uL could be satisfied, in their presence the first relation now can be. According to (50), the equality of t d +L and t d -L requires both 

cos 2θ c = -1 2 h d -hs hu-hc ≈ -1 2 m 2 d -m 2 s m 2 u -m 2 c and (s c c c (h u -h c ) -A d ) = 0.

.).

Strictly speaking, since θ uL is a constant and ω uL a function of p 2 and of the masses, the equality can only take place at one value of p 2 . However, since all dependence's on p 2 are always very weak, (θ uL + ω uL ) will only deviate very little from zero when p 2 varies. Since (-s c c c (h d -h s ) -A u ) is always very small, the equivalent of (47) entails that so is ω uL (p 2 , . . .), and, by the equivalent of (54), so is ξ uL (p 2 , . . .). The set (t d +L = t d -L , θ uL = -ω uL ) constitutes the first possibility to suppress FCNC's at 1-loop. It corresponds to a quasi-maximal Cabibbo angle, to small θ uL , small ω uL , to ω dL = 0 and to small ξ dL . Accordingly, θ dL is also quasi-maximal, and all angles get renormalized at 1-loop by small quantities, which makes this solution perturbatively safe. Note that, since θ uL is small and stays so at 1-loop, this corresponds to a quasi-alignment of flavor and mass states in the channel with the largest mass splitting. For the same θ c (close to maximal) but when

p 2 = m 2 d + m 2 s , (s c c c (h u -h c ) -A d )
stays very small (see (48), (49)). tan 2ω dL given by (47) becomes infinite, which corresponds to ω dL maximal. The FCNC's can be taken to vanish (neglecting a very weak dependence on p 2 ) for θ dL = -ω dL , which is then maximal, too (like in the previous case). θ dL gets renormalized at 1-loop into

θ dL + ω dL + ξ dL = ξ dL such that tan 2ξ dL (54) ≈ - m 2 d -m 2 s 2m d msE d -(m 2 d +m 2 s ) f d (p 2 ,...)-A d 2
, which is very large. So, ξ dL becomes close to maximal, too. This makes the classical and maximal θ dL renormalized by a small amount, which however results from the cancellation between two large angles. In the (u, c) channel, things are like previously: small θ uL = -ω uL , and small ξ uL .

This case is thus similar to the previous one in the sense that θ c has the same large value, θ dL too, that θ uL is small, and that all of them are renormalized at 1-loop by small quantities. However, that the renormalization of θ dL results from the cancellation between two large angles raises the question whether this situation is perturbatively safe. The answer is positive for two reasons: * a small variation in p 2 away from (m 2 d + m 2 s ), that is outside any of the two concerned mass-shells, is not expected to change the nature of the perturbative series; * the 1-loop calculation that we performed in the bare mass basis can as well be done in the bare flavor basis; since the two are related by a unitary transformation R(θ dL ), such a transformation cannot change either the character of the perturbative series. Going through the same steps, one easily finds that ω dL gets replaced by (ω dL + θ dL ), which is now very small. In the bare flavor basis, one finds that the maximal θ dL still gets, of course, renormalized by a small amount, but this now results from the sum of two small quantities, which is a perturbatively safe situation.

• Like in the absence of counterterms, from (64), FCNC's can also be canceled when the two conditions, respectively θ dL = -ω dL (p 2 , . . .) in the (d, s) channel, and θ uL = -ω uL (p 2 , . . .) in the (u, c) channel, are satisfied (or very close to this, because of the very weak dependence on p 2 ), without, now, any relation connecting

(t d +L -t d -L ) and θ c . Then, since, for p 2 , m 2 < m 2 W , (s c c c (h u -h d ) -A d ) and (s c c c (h d -h s ) -A u )
are small, so are ω uL,dL (p 2 , . . .) and ξ uL,dL (p 2 , . . .). Accordingly, θ uL and θ dL are both small and renormalized at 1-loop by small quantities. This corresponds to a small θ c , which is also renormalized by a small quantity. This configuration is perturbatively safe. This discussion can be straightforwardly transposed to the leptonic case.

In addition to stabilizing the 1-loop renormalization of mixing angles in the vicinity of degeneracy, the introduction of Shabalin's counterterms has been seen to promote maximal mixing (in one channel, accompanied with quasi-alignment in the other channel) as one of the two natural solutions to the suppression of extra FCNC in the bare flavor basis. Maximal mixing cannot play this role in their absence.

A delicate issue is of course to discriminate between the two types of solutions, and to determine why one or the other should be preferred. Since t ±L are the eigenvalues of the 1-loop kinetic terms, the equality t +L = t -L corresponds to the case where, up to an overall renormalization 1 √ 1+t ± , they can be re-diagonalized by a unitary V (see [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF]); in the corresponding channel, which corresponds to the fermionic pair the closest to degeneracy, the individual mixing matrix [C 0d V d R(ξ d )](p 2 , . . .) becomes unitary, too (such that, in addition to the suppression of FCNC, neutral gauge currents also satisfy the property of universality). A quasi-maximal Cabibbo (or PMNS) angle corresponds to a minimization of FCNC's, to the smallest possible deviation from unitarity of the individual mixing matrix in the channel which is the closest to degeneracy, to a quasi-maximal individual mixing in this same channel, and to the quasi-alignment of flavor and mass eigenstates in the other channel. This situation corroborates a common argumentation that mass and flavor eigenstates of charged leptons coincide [START_REF] Kh | Do charged leptons oscillate?[END_REF].

In the quark sector, reversely, the distinction between the two types of fermions, both charged, and which, furthermore, are not observed as particles, is less clear. The second solution to the suppression of FCNC's, in which both mixing angles are small, and which treats the two channels on an equal footing, looks then more adapted to the situation.

Note that the landscape that we obtain in this work is similar to the one present in [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF]. Two types of solutions to the unitarization equation were uncovered there: the so-called "Cabibbo-like" solutions, in which no constraint occurred for the Cabibbo angle, and maximal mixing. The Cabibbo angle could then only be constrained by additional assumption; it turned out, there, that a suitable one was that universality and the absence of FCNC were violated with the same strength.

The case of 3 generations

Our goal is now to generalize the previous calculations to the case of 3 generations of fermions, asking in particular that no extra (with respect to the "standard" phenomenology) FCNC is present at 1-loop in the basis of bare flavor states in the presence of Shabalin's counterterms.

A major difference with the case of two generations is, in the quark sector, the presence of the heavy top quark m t ≃ 2m W . This makes in particular invalid the approximation m ≪ m W for all fermion masses m, that we used in this case.

Conditions for suppressing extra FCNC (in the presence of counterterms)

Like in the case of two generations, extra FCNC will be absent in the

(d, s, b) sector iff C d0 V d V † d C † d0 = diag(α d , β d , γ d ) diagonal.
(not necessarily proportional to the unit matrix), where C d0 represents now the 3 × 3 classical mixing matrix for (d, s, b) quarks. Similar expressions occur in the (u, c, t) sector and for the two leptonic ones. K d being the kinetic terms of (d, s, b) at 1-loop (eventually including Shabalin's counterterms), ( 1)

⇒ V d V † d = K -1 d , such that K -1 d = C † d0 diag(α d , β d , γ d ) C d0
. Now, Shabalin's counterterms are precisely devised so as to (nearly, that is, up to a very weak dependence in p 2 ) cancel non-diagonal terms in K d , which originate from 1-loop transitions of the type depicted in Fig. 2. Accordingly, in their presence, K d , and thus K -1 d , too, are practically diagonal. The condition for suppressing extra FCNC rewrites accordingly

C † d0 diag(α d , β d , γ d ) C d0 = diagonal.
and we insist that it is only valid in the presence of counterterms.

Since C d0 is unitary, the condition rewrites:

α d I + C † d0 diag(0, u d ≡ β d -α d , v d ≡ γ d -α d ) C d0 diagonal.
The first term, proportional to α d , being already diagonal, the condition applies to the second contribution. Forgetting, as we always did, about CP violating phases, it is convenient to parametrize

C d0 = R 23 R 13 R 12 , with R 23 =      1 0 0 0 c d 23 s d π 2 , θ d 23 = 0, v d = 0 (⇔ α d = γ d ); (l) : θ d 12 = π 2 = θ d 23 , u d = 0 (⇔ α d = β d ); (m) : θ d 12 = π 2 , θ d 13 = 0, u d = v d (⇔ β d = γ d ); (n) : θ d 23 = 0 = θ d 13 , u d = 0 (⇔ α d = β d ); (o) : θ d 23 = π 2 , θ d 13 = 0, v d = 0 (⇔ α d = γ d ). (68) 
Note that θ 13 = 0 = θ 23 is a solution of (65) included in (g). These solutions correspond to the following C d0 's:

(a)

α d =β d =γ d → any; (b) → I; (c) →      1 0 0 0 0 1 0 -1 0      ; (d) →      0 1 0 0 0 1 1 0 0      ; (e) →      0 1 0 -1 0 0 0 0 1      ; (f ) n=1 →      0 0 1 -1 0 0 0 -1 0      n=2 or      0 0 1 0 -1 0 1 0 0      n=3 or      0 0 1 1 0 0 0 1 0      ; (g) β d =γ d →      0 0 1 -s d 12+23 c d 12+23 0 -c d 12+23 -s d 12+23 0      ; (h) α d =γ d → R 13 ; (i) α d =β d →      c d 13 0 s d 13 -s d 13 0 c d 13 0 -1 0      ; (j) β d =γ d → R 23 ; (k) α d =γ d →      0 c d 13 s d 13 -1 0 0 0 -s d 13 c d 13      ; (l) α d =β d →      0 c d 13 s d 13 0 -s d 13 c d 13 1 0 0      ; (m) β d =γ d →      0 1 0 -c d 23 0 s d 23 s d 23 0 c d 23      ; (n) α d =β d → R 12 ; (o) α d =γ d →      c d 12 s d 12 0 0 0 1 s d 12 -c d 12 0      . (69) 
Similar formulae are obtained in the (u, c, t) sector. The relevant parameters will be then given a superscript "u" instead of "d".

We see that the configurations that suppress FCNC are described by two possible sets of conditions: the ones which concern the (d, s, d) mixing angles θ d ij , fixing the mass-flavor relations in this channel (partial or total alignment etc), and the ones concerning α d , β d , γ d which establish connections between the masses (fermions, W , µ) and the CKM angles θ ij , δ. Solution (a) is of the second type; (b), (c), (d), (e), (f) are of the first type; all others are mixed.

The physical mixing patterns that are observed exhibit, in addition to approximate alignment as one goes up the generations, some peculiar values of some of CKM angles. This is why we shall focus in the following on the solutions that possibly constrain the latter, i.e. (a) and (g) to (o).

The conditions of the second type may not be possible to achieve. The first task is accordingly to scrutinize the conditions α = β, β = γ, α = γ in both channels, (d, s, b) and (u, c, t), and to select the ones that can be fulfilled. If, for example, in the (d, s, b) channel, only α d = β d can be achieved, one has to choose among the 7 solutions (b), (c), (d), (e), (f), (i), (l), (n). The first four are very constrained solutions. For (b), there is total mass-flavour alignment in this sector. For (c), (d) and (e), the 3 angles in the (d, s, b) sector are either vanishing of equal to π 2 . For (f), θ d 13 = π 2 while the sum of the 2 other angles is a multiple of π 2 . In (i) and (l), θ d 12 and θ d 23 are constrained, respectively to 0 or π 2 and to π 2 , leaving θ d 13 free, while in (n), θ d 13 and θ d 23 are both constrained to 0, while θ d 12 is left free. Still with the example of the (d, s, b) channel, the conditions

α d = β d , β d = γ d , α d = γ d write respec- tively A ± dd + A 3 dd = A ± ss + A 3 ss , A ± ss + A 3 ss = A ± bb + A 3 bb , A ± dd + A 3 dd = A ± bb + A 3 bb , (70) 
in which, like in subsection 2.2, A ± ii and A 3 ii denote the 1-loop amplitudes for the diagonal transition i → i mediated respectively by W ± and W 3 .

It is simple matter, using the unitarity of V , to get

A 3 ii -A 3 jj = 1 2 (h i -h j ). (71) 
A ± dd = |V ud | 2 (h u -h t ) + |V cd | 2 (h c -h t ), A ± ss = |V us | 2 (h u -h t ) + |V cs | 2 (h c -h t ), A ± bb = |V ub | 2 (h u -h t ) + |V cb | 2 (h c -h t ), A ± uu = |V ud | 2 (h d -h b ) + |V us | 2 (h s -h b ), A ± cc = |V cd | 2 (h d -h b ) + |V cs | 2 (h s -h b ), A ± tt = |V td | 2 (h d -h b ) + |V ts | 2 (h s -h b ). (72) 
The 6 non-trivial conditions (3 in the (d, s, b) sector and 3 in the (u, c, t) sector) that we need consider write accordingly

α u = β u : 1 2 (h d -h s ) + (|V ud | 2 -|V us | 2 )(h u -h t ) + (|V cd | 2 -|V cs | 2 )(h c -h t ) = 0, (73a) 
β u = γ u : 1 2 (h s -h b ) + (|V us | 2 -|V ub | 2 )(h u -h t ) + (|V cs | 2 -|V cb | 2 )(h c -h t ) = 0, (73b) 
α u = γ u : 1 2 (h d -h b ) + (|V ud | 2 -|V ub | 2 )(h u -h t ) + (|V cd | 2 -|V cb | 2 )(h c -h t ) = 0, (73c) 
α d = β d : 1 2 (h u -h c ) + (|V ud | 2 -|V cd | 2 )(h d -h b ) + (|V us | 2 -|V cs | 2 )(h s -h b ) = 0, (73d) 
β d = γ d : 1 2 (h c -h t ) + (|V cd | 2 -|V td | 2 )(h d -h b ) + (|V cs | 2 -|V ts | 2 )(h s -h b ) = 0, (73e) 
α d = γ d : 1 2 (h u -h t ) + (|V ud | 2 -|V td | 2 )(h d -h b ) + (|V us | 2 -|V ts | 2 )(h s -h b ) = 0. (73f) 
The 6 equations (73) include only 2 pairs of independent conditions ((73a) +(73a)=(73c), (73d)+(73e)=(73f)).

The particular case of 2 generations, that we studied before, is easily recovered. One has, then,

|V ud | 2 = c 2 c = |V cs | 2 , |V us | 2 = s 2 c = |V cd | 2 . (73) shrinks to α u = β u : 1 2 (h d -h s ) + (c 2 c -s 2 c )(h u -h c ) = 0, α d = β d : 1 2 (h u -h c ) + (c 2 c -s 2 c )(h d -h s ) = 0, (74) 
of which only the first can be realized, leading to a large (quasi-maximal) Cabibbo angle, and leaving mass-flavor alignment as the only possibility in the (u, c) sector.

Coping with the top quark: analytic expressions for (h

i -h t )
The approximate expression of (h i -h j ) for m 2 i , m 2 j , p 2 ≪ m 2 W is given by [START_REF] Kh | Do charged leptons oscillate?[END_REF]. It is valid for u, d, s, c, b quarks, all leptons, but it is not valid when the top quark is involved. In this case, an approximate expression for (h i -h t ) can still be obtained from [START_REF] Duret | Quark Lagrangian diagonalization versus nondiagonal kinetic terms[END_REF], which is valid for for m 2 i , p 2 ≪ m 2 W , and keeps exact in the top quark mass dependence m t :

h i -h t ≈ g 2 4 i 16π 2 - 3 2 -ln m 2 W µ 2 + m 2 i m 2 W - 17 4 + 3 2 ln m 2 W µ 2 + t terms , t terms ≈ 2 3 m 2 t m 2 W + 7 2 m 2 W m 2 W -m 2 t + 1 4 5 - m 2 t m 2 W m 2 t m 2 W -m 2 t +2 m 2 W ln m 2 W µ 2 -m 2 t ln m 2 t µ 2 m 2 W -m 2 t - 1 2 2 + m 2 t m 2 W m 4 W ln m 2 W µ 2 -m 4 t ln m 2 t µ 2 (m 2 W -m 2 t ) 2 - m 2 t m 2 W 1 (m 2 W -m 2 t ) 2   - 11m 4 W -7m 2 W m 2 t + 2m 4 t 6 + m 6 W ln m 2 W µ 2 + (-3m 2 t m 4 W + 3m 4 t m 2 W -m 6 t ) ln m 2 t µ 2 m 2 W -m 2 t   . (75) 
When m t becomes larger and larger, t terms scale like

t terms mt≫m W ∼ m 2 t m 2 W 7 12 - 1 2 ln m 2 t µ 2 . ( 76 
)
In practice, according to (73), one needs (h u -h t ) and (h c -h t ).

Solving the constraints for 3 generations of quarks

The CKM matrix we parametrize as 

V =      V ud V us V ub V cd V cs V cb V td V ts V tb      =      c 12 c
|V us | 2 -|V ub | 2 = s 2 (79f)
Notice that (79d) is the only equation which is not influenced by the large mass of the top quark.

For θ 23 = 0 = θ 13 , (79a) reduces to 1 2 (m 2 d -m 2 s ) = (m 2 c -m 2 u ) cos 2θ 12 , which is the constraint on the Cabibbo angle when 2 generations only are present (the first of eqs. (74)).

Once the masses of the fermions, the one of the W gauge boson, and the renormalization scale µ are fixed, they constitute a system of 4 equations for the 4 CKM angles θ 12 , θ 23 , θ 13 and δ. Some simplifications can be performed. First, even in the large interval µ ∈ [100 M eV, m W ], the t terms largely dominate over 

m 2 u,c m 2 W -17 4 + 3 2 ln m 2 W µ 2 ,
β d = γ d : t terms ≈ 2 m 2 b m 2 W - 17 4 + 3 2 ln m 2 W µ 2 c 2 13 cos 2θ 23 ; (80e) 
α d = γ d : t terms ≈ 2 m 2 b m 2 W - 17 4 + 3 2 ln m 2 W µ 2 c 2 13 -s 2 13 -s 2 23 c 2 13 . (80f) 
It is important to stress that the system (80) is only approximate, while (79) is exact; this why, in particular, while the simultaneous fulfillment of (79b) and (79c) (resp. (79e) and (79f)) entails that of (79a) (resp. (79d)), the same does not occur for (80b), (80c) and (80a) (resp. (80e), (80f) and (80d)) .

As a short numerical calculation shows, (80e) can never be satisfied, because it would correspond to |c 2 13 cos 2θ 23 | > 300 (still for µ ∈ [100 M eV, m W ]). The same argumentation shows that (80f) cannot be satisfied either. So, in the (d, s, b) sector, only α d = β d can eventually be satisfied and solutions (b), (c), (d), (e), (f), (i), (l), (n) are the only ones that should be considered. Summing (80b) and (80c) yields a constraint which does not include θ 12 nor δ:

1 t terms m 2 b m 2 W - 17 4 + 3 2 ln m 2 W µ 2 = 3c 2 13 (1 + s 2 23 ) -1, (81) 
such that the quantity 3c 2 13 (1 + s 2 23 ) -1 must be a small number, the modulus of which does not exceed 1.5 10 -3 . The condition 0 ≤ s 2 23 ≤ 1 entails

1 6 ≤ c 2 13 ≤ 1 3 θ 13 ∈[0, π 2 ] ⇒ 55 0 ≤ θ 13 ≤ 66 o . ( 82 
)
which is not compatible with the observed value of θ 13 in the CKM matrix. (80b) and (80c) are not either individually compatible with the observed values of the CKM angles. Indeed, plugging in these values, their r.h.s. come close to 2t terms , which is much larger than their l.h.s.

Let us now consider (80a) and (80d tan θ 23 ≈ .618 tan θ 23 . Though the precise values disagree with experiment, they satisfy, as observed, θ 13 < θ 23 . As we show now, a very heavy top quark tends to drag the value of the Cabibbo angle down from quasimaximal (which is the prediction for 2 generations) to a smaller value. For that purpose, let us perform the same study assuming now that m t ≪ m W , only, for example, slightly heavier than the bottom quark. Instead of the system (79), eqs. (73) now yield 

α u = β u : 1 2 (m 2 d -m 2 s ) = -c
(m 2 d -m 2 s ) = cos 2θ 12 (m 2 c -m 2 u ) + m 2 t 2 3 + m 2 b 3m 2 t
. Because of the term proportional to m 2 t , the corresponding modulus of cos 2θ 12 gets accordingly smaller than for 2 generations; this corresponds to a larger Cabibbo angle, thus still closer to maximal. This is the opposite of what happens when the top quark gets much heavier than the W . So, as announced, by going across the electroweak scale and getting more and more massive, the top quark shifts down the modulus of the 1-loop Cabibbo angle with respect to the 2-generation case.

Solving the constraints for 3 generations of leptons

The case that we just investigated, when all fermion masses for 3 generations stand below the W scale corresponds a priori to the leptonic sector. There, while one knows that m e ≪ m µ ≪ m τ , our knowledge about the neutrino messes essentially concerns the extreme smallness of their differences [14][7]. This is why all 3 equations (90a), (90b) and (90c), in which the differences of neutrino mass squared occurring in the r.h.s.'s are always much smaller than the ones of charged leptons occurring in the l.h.s.'s, can never be satisfied. This leaves only (b), (c), (d), (e) and (f) as possible solutions of (68) for charged leptons. (b) corresponds to general mass-flavor alignment; in (c) and (e), 1 flavor state is aligned with the corresponding mass state, while exact swapping, 2 by 2, occurs for the remaining 4 states; for example,, for (c), e f = e m , µ f = τ m , τ f = -µ m ; in (d) and (f), the 6 states are swapped 2 by 2, with no alignment for any pair. This corroborates the common, but never demonstrated statement, that charged leptons do not oscillate [START_REF] Kh | Do charged leptons oscillate?[END_REF].

As for equations (90d), (90e) and (90f), the extreme smallness of their l.h.s.'s forces their r.h.s.'s to be practically vanishing. Shabalin's counterterms play a decisive role. They are very seldom introduced, though they were already proved to be determinant in the calculation of the electric dipole moment of the quarks [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left-handed currents[END_REF]. We have shown that, in their absence, quantum corrections to mixing angle go all the more out of control as fermions come closer to degeneracy. One then faces technical problems such that results of perturbative calculations cannot manifestly be trusted. As we explicitly saw in the case of two generations, they furthermore allow for non-trivial solutions to the suppression of extra FCNC. In their absence, while mass-flavor quasi-alignment occurs for the fermion pair the farthest from degeneracy, no special condition arises concerning the Cabibbo angle. Instead, in their presence, in addition to the trivial, aligned, solution, quasi-maximal mixing for the fermion pair the closest to degeneracy, associated with mass-flavor quasialignment for the other pair comes out as another suitable possibility. In the case of three generations, we systematically introduced them, which had also the technical advantage to largely ease the calculations because they "nearly" cancel non-diagonal kinetic terms.

The results that we obtained in the leptonic sector have the twofold advantage to be quite encouraging (nice agreement for θ 12 and θ 23 ) and also easily falsifiable in coming neutrinos experiments since we also predict a large θ 13 ≈ 35 o . The quark sector looks more problematic. We have been unable to get a small Cabibbo angle, and the other two CKM angles also come out much too large. The only encouraging point is the role of a heavy quark m t ≪ m W which decreases the value of the 1-loop θ 12 possibly down to 38 o . Unfortunately. this value is still much too large. So, what is happening in the hadronic sector 13 ? The role of leptons and quarks seem to have been interchanged because, while, previously, the large values of the neutrino mixing angles were problematic, it is now the small values of the ones of quarks that are hard to accounted for. One could be tempted to invoke the eventual existence of more super-heavy fermions that could eventually drag down still more the renormalized mixing angles. But the complexity of calculations in the presence of extra generations of fermions rises so dramatically that it can only be the object of a (long and tedious) forthcoming work. More simply, the small measured values could just be thought of as second order corrections to the trivial solution with general mass-flavor alignment for all quark species. Unfortunately, 2-loops calculations in the presence of Shabalin's like counterterms stand at present also beyond our technical abilities.

Should physics "beyond the standard model" be invoked? Suppose that the leptonic θ 13 is measured to be large ≈ 35 o as we predict. The conservative conjecture of ours that Shabalin's counterterms are enough to cancel extra FCNC with respect to the standard CKM phenomenology looks then reliable and presumably carries some part of truth. Then, if BSM physics is needed, it is to find a theoretical more sound basis to this statement. The situation looks different for hadrons, but one should not be too much in a hurry to invoke BSM physics before calculations of 2-loop corrections have been achieved.

We end up this work by pointing out at some differences with previous approaches of the subject. This study is based on the mandatory (re)-diagonalization of the sum of kinetic and mass terms to suitably determine an orthogonal set of mass eigenstates. While this requirement is always and simply taken care of at the classical level by a bi-unitary diagonalization of the mass matrix, it is generally overlooked as soon as radiative corrections are concerned [START_REF] Dorsner | Neutrino masses and mixing: Singular mass matrices and Quark-lepton symmetry[END_REF] [17] [START_REF] Balaji | Generation of large flavor mixing from radiative corrections[END_REF] [19] [START_REF] Kniehl | Simple On-Shell Renormalization Framework for the Cabibbo-Kobayashi-Maskawa Matrix[END_REF]. In particular, only considering selfmass contributions to determine the renormalized mass states from the renormalized mass matrix exposes to the problem that they are not orthogonal since there still exist kinetic-like transitions between them. We show that the re-diagonalization of kinetic terms can have important effects. * First, and this is not a new result [START_REF] Giunti | Fock States of Flavor Neutrinos are Unphysical[END_REF] [9] [10] [START_REF] Bene Š | Fermion flavor mixing in models with dynamical mass generation[END_REF] but we confirm it, bare mass (or flavor) states are nonunitarily related to 1-loop mass eigenstates for non-degenerate systems. It turns out however, that, unlike individual mixing matrices, the 1-loop Cabibbo matrix C(p 2 ) occurring in charged currents stays unitary (see however the caveat in appendix A.1). It is a consequence of gauge invariance, which in particular connects, through the covariant derivative of fermion fields, kinetic terms to gauge currents, both at the classical level and including radiative corrections. The expression of the 1-loop Cabibbo matrix C(p 2 ) is thus directly dictated by that of the 1-loop kinetic terms, which is one more reason to pay a special attention to them; * then, by a cascade of mechanisms, mixing angles close to maximal naturally appear if one wants to preserve the standard CKM phenomenology.

We hope to have convinced the reader that a reasonable argumentation exists that can account for large mixing angles by linking them with small mass splittings without invoking BSM physics from the start. If explaining both leptonic and hadronic sectors still remains a challenge, at least 2 among the 3 neutrino mixing angles come out with magnitudes which are close to their measured values. Future lies accordingly in the hands and both experimentalists and theorists, the first, in p[[articular, to measure the leptonic θ 13 , and the second to estimate higher order corrections to mass-flavor quasi-alignment of quarks and see whether their can account for the smallness of the CKM angles.

Acknowledgments: It is a pleasure to thank M.I. Vysotsky for comments and advice.

A The dependence on p 2 . Canceling transitions between non-degenerate physical states

A.1 Non-orthogonality of non-degenerate physical states

Eqs. ( 10), ( 11), ( 12), ( 13), which we obtained in the absence of Shabalin's counterterms, are only valid when p 2 ≪ m 2 W , but it must kept in mind that all formuae depend on p 2 , even though this dependence becomes very weak when p 2 ≪ m 2 W . At the price, when no counterterms are introduced, of a high instability in the vicinity of degeneracy (see subsection 5.1) the Cabibbo procedure can be rescued and a p 2 -dependent, unitary renormalized Cabibbo matrix C(p 2 , . . .) be defined. The 1-loop effective Lagrangian is made diagonal (see section 2) in the basis d mL (p 2 , . . .), s mL (p 2 , . . .), in which p µ stands for the common 4-momentum of d and s (see Fig. 2). This means that there exist no more non-diagonal transitions between them, such that d mL (p 2 , . . .) and s mL (p 2 , . . .) are, by definition, orthogonal at 1-loop. However, as soon as a mass splitting exists, both cannot be simultaneously on mass-shell and the physical fermions 

which belong to two different sets of orthogonal states, are themselves expected to be non-orthogonal. So, unless subtle cancellations take place, non-diagonal transitions are expected to occur among them, which is akin to saying that the 1-loop Lagrangian, despite it has been built by diagonalization, is itself not diagonal when re-expressed in terms physical non-degenerate eigenstates. At the same time, unlike C(p 2 ) in (38), which is defined for an overall global p 2 , the "on mass-shell" Cabibbo matrix is expected to exhibit some slight non-unitarity [START_REF] Duret | Mixing angles and non-degenerate systems of particles[END_REF] [10] [START_REF] Bene Š | Fermion flavor mixing in models with dynamical mass generation[END_REF].

More specifically, the 1-loop quadratic effective Lagrangian (kinetic and mass terms) can be generically rewritten in the basis of physical eigenstates 

A.2 Recovering orthogonality on mass-shell

Whether Shabalin's counterterms are included or not, the same technique of diagonalizing the effective, p 2 -dependent, quadratic Lagrangian yields by definition orthogonal 1-loop mass eigenstates d m (p 2 ), s m (p 2 ), which are however not the physical states. Therefore, an argumentation similar to the one used, in the absence of counterterms, in subsection A.1, can be invoked in their presence: non-diagonal transitions between physical mass eigenstates at 1-loop are expected to occur, and, when expressed in terms of them, the effective Lagrangian at 1-loop is expected to also be of the form (100).

When classical physical states (which are nothing more than bare mass states) and 1-loop physical states do not drastically differ (for example would they differ by perturbative amounts), one expects the nondiagonal "scalar products" not to be drastically different either within the two sets. This cannot be guaranteed in the absence of Shabalin's counterterms because of the non-perturbative nature of the link that occurs, then, between the two sets. In their presence, instead, they only differ by "small amounts" and the above property is expected to be true: since non-diagonal transitions between bare mass states are, then, canceled at O(g 2 ), this is certainly also true among 1-loop physical states.

Higher order non-diagonal transitions that still exist, in the presence of Shabalin's counterterms, between on mass-shell 1-loop s mL (p 2 ) and d mL (p 2 ) can always be canceled by another set of counterterms. This is shown in subsection A.3 below. However, being presumably of order higher than g 2 , they should only be introduced in the framework of a 2-loop calculation, which is out of the scope of the present work.

A.3 Expression of the additional counterterms in the basis of physical states

From any Lagrangian of the form (100), on-diagonal, p 2 -dependent transitions between on mass-shell fermions, like µ ↔ e are expected This can be embarrassing since defining on mass-shell muon and electron as asymptotic states seems then problematic. They can however be themselves canceled by introducing counterterms, as follows. But for the fact that we are now working in the space of physical states, the procedure is formally similar to the one used in [START_REF] Shabalin | Electric dipole moment of the quark in a gauge theory with left-handed currents[END_REF] to determine Shabalin's counterterms, which we recalled in section 5.2 (see also [START_REF] Duret | Mixing angles of quarks and leptons in quantum field theory[END_REF], appendix A). Canceling, for example, (on mass-shell s) → (on mass-shell d) transitions can be done by adding to (100) four kinetic and mass-like counterterms, concerning both chiralities of fermions:

- 

Fig. 1 :

 1 Fig. 1: "Standard" flavor changing neutral currents at 1-loop

.

  The looked-for non-unitary matrix V d writes finally

. 2 The

 2 (u, c) mixing angle In the same configuration |m d -m s | ≪ |m u -m c |, from the expression equivalent to (16) in the (u, c) sector, tan 2ω u = (h d -hs) sin 2θc (h d -hs) cos 2θc+[ hu-hc 2 ]



  and the expressions (6)[START_REF] Giunti | Fundamental of Neutrino Physics and Astrophysics[END_REF] for K d and K u , one finds C bm (C bm ) † = I. However, these expressions are written in a basis which is non-orthogonal at 1-loop. Consider indeed, for example, the relationC * 11 C 12 + C * 21 C 22 = 0.It traduces the non-orthogonality of the two vectors C when their scalar product is evaluated with the metric (1, 1). However, this is the appropriate metric only at the classical level, where

  and, so, ξ d = 0 12 . The classical (d, s) mixing angle θ d is renormalized (see (29)) by (ω d + ξ d ) = -θ c and becomes θ d -θ c = θ u , the classical mixing angle of the (u, c) pair.

  The diagonality of the T 3 generator ensures that the W 3 gauge boson only couples, in both (u, c) and (d, s) sectors, to diagonal fermionic currents: no FCNC occurs classically. That this property is preserved in bare mass space is the essence of the GIM mechanism: the closure of the SU (2) L algebra (34) on the same T 3 as above is ensured by the unitarity of the classical Cabibbo matrix C 0 . The situation is different at 1-loop since vertex corrections with an internal charged gauge boson induce non-diagonal couplings of the W 3 gauge field (see Fig.1left) and also, for example, the non-diagonal s → d transition of Fig. 2 inserted on one of the two external fermion legs of a W 3 ss vertex triggers: -1-loop FCNC's if one considers s 0 f → d 0 f transitions, -their equivalent for mass states if one considers, like we did, s 0 m → d 0 m transitions (see Fig. 1 right).

hu+hc+ h d +hs 2 2 I

 2 This corresponds to a Cabibbo angle close to maximal and, according to (48), to p 2 = m 2 d + m 2 s . At these values of θ c and p 2 , the 1-loop kinetic terms for the d-type fermions become proportional to 1 + , making ω dL undetermined. It can be in particular taken to vanish, such that, according to (54), ξ dL is then very small. In the (u, c) channel, since (m c -m u ) > (m s -m d ), one can never have t u +L = t u -L because this would correspond to | cos 2θ c | > 1. So, FCNC's can only be suppressed, there, for θ uL = -ω uL (p 2 , . .

Excluding θ 13 = ± π 2 ,

 2 scheme µ), the constraints that we obtained connect these parameters.

  d phys mL ≡ d mL p 2 = µ 2 d (p 2 ) = [(V d R(ξ d )) -1 ] 11 p 2 = µ 2 d (p 2 ) d 0 mL + [(V d R(ξ d )) -1 ] 12 p 2 = µ 2 d (p 2 ) s 0 mL , s phys mL ≡ s mL p 2 = µ 2 s (p 2 ) = [(V d R(ξ d )) -1 ] 21 p 2 = µ 2 s (p 2 ) d 0 mL + [(V d R(ξ d )) -1 ] 22 p 2 = µ 2 s (p 2 ) s 0 mL ,

L 1 g 1 (p 2 ) g 2 (p 2 ) g 3 (p 2 ) g 4 (p 2 )ρ 1 (p 2 ) ρ 2 (p 2 ) ρ 3 (p 2 ) ρ 4 (p 2 )σ 1 (p 2 ) σ 2 (p 2 ) σ 3 (p 2 ) σ 4 (p 2 )

 1122232421222324212223242 with (23) which relates bare mass states to 1-loop mass eigenstates, (99) entails that the coefficients of the linear relation between the latter and physical states are functions of (p 2 , . . .). Hermiticity requires the (supposedly real and presumably O(g 2 )) quantities g 2 , g 3 , σ 2 , σ 3 , ρ 2 , ρ 3 to satisfy the relationsg 3 = g 2 , ρ 2 = σ 3 , ρ 3 = σ 2 . Furthermore,since right-handed fermions are not concerned by 1-loop transitions, (1 + γ 5 )d phys m = (1 + γ 5 )d 0 m and (1 + γ 5 )s phys m = (1 + γ 5 )s 0 m .

  A d d phys m / p(1 -γ 5 )s phys m -B d d phys m (1 -γ 5 )s phys m -E d d phys m / p(1 + γ 5 )s phys m -D d d phys m (1 + γ 5 )s phys m . (101)

  ≪ m 2 W . Since we are not able to get the exact dependence on this variable, we shall keep on working in this approximation, which is only justified at energies well below the electroweak scale. Some remarks concerning the p 2 dependence are given in appendix A. One can easily demonstrate that C(p 2 , . ..) = C † u C d + O(g 2 ), reminiscent of the classical relation C 0 = C † u0 C d0 ,as follows. Since H u and H d in (38) are O(g 2

	p 2 W m 2	when p 2

Note:

  13 s 12 c 13 s 13 e -iδ -s 12 c 23 -c 12 s 23 s 13 e iδ c 12 c 23 -s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 -c 12 c 23 s 13 e iδ -c 12 s 23 -s 12 c 23 s 13 e iδ c 23 c 13 |V ud | 2 -|V us | 2 = c 2 13 cos 2θ 12 ; |V cd | 2 -|V cs | 2 = cos 2θ 12 (-c 2 23 + s 2 13 s 2 23 ) + sin 2θ 12 sin 2θ 23 s 13 cos δ;

		
		
	 	,
		
	(77)
	such that	

  at least by a factor 1000. The latter can thus always be neglected. The same t terms dominate over ln

									1 2	s 13 sin 2θ 12 sin 2θ 23 cos δ ;	(80d)
									m 2 W µ 2 by at least a factor 3, and over 3 2 by at least a factor 6.
	It is accordingly a reasonable approximation to only consider their contribution inside the corresponding
	[ ] brackets. Secondly, it is also reasonable to neglect m 2 d ≪ m 2 b , m 2 s ≪ m 2 b , m 2 u ≪ m 2 c and, even, m 2 d ≪ m 2 s . The system (79) then simplifies to
	α u = β u :	m 2 s m 2 W	-	17 4	+	3 2	ln	m 2 W µ 2	≈ 2 t terms (c 2 13 -c 2 23 + s 2 23 s 2 13 ) cos 2θ 12 + s 13 sin 2θ 12 sin 2θ 23 cos δ ; (80a)

  ). Since, for µ ∈ [100 M eV, m W ], m 2 ) cos 2θ 12 + s 13 sin 2θ 12 sin 2θ 23 cos δ ≈ 0, (83) which is presumably only trustable for δ = 0 since we did not introduce any CP -violating phase in the partial rotations R 12 , R 23 , R 13 . deduces that very small values of θ 23 and θ 13 , like observed in the quark sector, are only compatible with θ 12 quasi-maximal: cos 2θ 12 ≈ us determine which values of θ 12 are compatible with (79a) and realistic values of θ 23 and θ 13 . (79a) rewrites (for δ = 0)

	s m 2 W 13 In case (80a) and (80d) are simultaneously satisfied, eliminating the CP -violating phase δ between the -17 4 + 3 2 ln m 2 W µ 2 ≪ 2t terms , (80a) rewrites α u = β u : (s 2 23 -s 2 13 + s 2 23 s 2 two of them yields m 2 c ≈ -2 2 m 2 s c 2 13 cos 2θ 12 + m 2 b s 2 12 (c 2 13 -s 2 23 s 2 13 ) -c 2 12 c 2 23 -1 2 (c 2 13 -c 2 23 + s 2 23 s 2 13 ) cos 2θ 12 , (84) 5-1 from which one √ 2

The terminology FCNC is certainly not very good when dealing with (bare) mass states. The reader should understand it as "non-diagonal currents in mass space".

with a subtlety, due to the dependence of p 2 , that is evoked in appendix A.1.

For the sake of convenience, we work in the bare mass basis.

The subscript "L" refers to left-handed fermions and "R" to right-handed ones.

From now onwards, to lighten the notations, we shall frequently omit the dependence on p 2 and on the masses.

The first condition is immediately seen to be always satisfied. The second too, unless (d, s) are extremely close to degeneracy or degenerate, which does not occur for any known fermions.

Likewise, for any matrix U , the relation U U † = 1 traduces unitarity only if U is expressed in an orthogonal basis of states (i.e. no transition exists between them at the order that is considered).

This may not be in contradiction with the non-unitarity claimed in[START_REF] Duret | Mixing angles and non-degenerate systems of particles[END_REF] and[START_REF] Bene Š | Fermion flavor mixing in models with dynamical mass generation[END_REF] when the two external fermions legs are on different mass-shell, since, then, two different p 2 are involved. See also appendix A.1

This is in agreement with (22) which shows that tan 2ξ d has no pole when m d = ms.

Instead of working on the approximate system (80), let us rather consider the exact one (79) and, more specifically, (79a) in a realistic situation when θ 23 and θ 13 are not strictly vanishing but only very small. Solution (n) is not, then, exactly satisfied at 1-loop, but it could be at higher orders. More precisely, let

for the Cabibbo angle, one gets s 13 ≈

A solution has been proposed in[START_REF] Dorsner | Neutrino masses and mixing: Singular mass matrices and Quark-lepton symmetry[END_REF] in which, in the quark sector, (d, s) and (u, c) mixing angles largely cancel each other while, in the lepton sector, the opposite occurs.

As emphasized at the end of subsection A.2, when Shabalin's counterterms are already present, the additional counterterms invoked here are presumably of higher order in g.

(d) :

(f ) :

(g) :

(j) :

Neglecting m e ≪ m µ , m µ ≪ m τ , the approximate solution of (97) writes tan θ 12 ≈ -2s 13 cos δ

The values that we have found for θ 12 and θ 23 are very close to the experimental values. We furthermore predict |θ 13 | ≈ 35 o , which is still to be measured in future experiments.

Before concluding on the neutrino sector, and in relation with the common prejudice that θ 13 is small, let us check that no other solution among (68) can accommodate for such a small angle. The only one that could eventually fit is (o). Then, the equivalent of (90f) writes (taking

which, due to the strong hierarchy (m 2 τ -m 2 e ) ≫ (m 2 νµ -m 2 νe ), has no solution.

Outlook

We have paid in this study special attention to 1-loop transitions and to their role in fermionic mixing. They spoil the diagonality of kinetic terms which must be, first, cast back into their canonical form before the mass matrix is re-diagonalized and orthogonal mass eigenstates suitably determined.

A first property that we encountered is that, for non-degenerate systems, bare mass states and 1-loop mass states are non-unitarily related.

A second property is that the 1-loop mixing matrix C(p 2 ) occurring in charged currents (Cabibbo, PMNS . . . ) stays unitary at O(g 2 ).

The third point concerns the 1-loop value of the CKM angles, and their equivalent for leptons. The classical standard model does not provide any hint that could help connecting masses and mixing angles. Therefore, most investigations have concerned special structures or textures of classical mass matrices that could eventually be explained by subtle and broken symmetries, the origin of which being itself lying presumably "beyond the standard model" [START_REF] Ma | Neutrino Mass: Mechanisms and Models[END_REF]. To make it short, there are more free parameters than masses and mixing angles in the classical standard model, and one is looking for constraints that reduce their number, so as to, ultimately, put masses and mixing in one-to-one correspondence.

The classical SM is like a smooth polished sphere and it is extremely hard to find a defect or asperity to break in and put it in jeopardy. The diagonalization of classical mass matrix by bi-unitary transformations is perfectly adequate and kinetic terms keep unchanged since they are chosen from the beginning to be proportional to the unit matrix. Through the covariant derivative, this form of the kinetic terms dictates that of gauge currents, in particular neutral currents, for which FCNC can only occur at 1-loop with the so-called "Cabibbo suppression", "unfortunately" very successful, too. The last cornerstone which bears this elegant construction is the unitarity of the Cabibbo (CKM) matrix, which ensures, in bare mass space, the closure of the SU (2) L algebra, when embedded in SU (2n f ) (n f is the number of flavors), on a diagonal T 3 generator, in which both n f × n f sub-blocks are proportional to the unit matrix. The grain of salt that may grip this beautiful machinery is, for example, if kinetic terms are no longer diagonal. Through gauge invariance and the covariant derivative, neutral gauge currents are then no longer diagonal either: extra FCNC have been generated, which we know is extremely dangerous because these are very constrained by experiments. Now, experiments concern physical states, which are defined at the poles of the full propagator. Since for them the standard CKM phenomenology is perfectly successful, we think rather unlikely that "something goes wrong" in this space. Getting, there, a suitable SU (2) L algebra which closes on "good old diagonal T 3 " is therefore a suitable goal to achieve. This goes, for example, with a unitary renormalized CKM matrix. Then, where can things go "wrong"? If not in physical mass space, maybe in bare mass or flavor space, the two of them being unitary related. Classically, physical and bare mass spaces are identical. But they are not at 1-loop. Extra FCNC can be generated in bare mass space if they are no longer unitarily related with physical states. Since physical states are constructed to be orthogonal (one diagonalizes the renormalized quadratic Lagrangian), a non-unitary relation with bare mass states can only occur if the latter are non-orthogonal i.e. if there exists non-diagonal transitions among them. This is the point that we exploited in this work. Bare mass or flavor states are no longer orthogonal at 1-loop, and they can never be, because of mass splittings. We show that it is much better, for the stability of corrections, to introduce counterterms "à la Shabalin", but they cannot completely restore the orthogonality of bare mass states on mass shell, because the different mass-shells do not coincide. So, some trace of non-orthogonality always subsists in this space, and thus, a slight non-unitarity in the connection between physical states and bare mass (or flavor) states always remains, too. Therefore, in these last bases, some extra FCNC are always generated at 1-loop with respect to the classical SM. This means in particular that, in there, the gauge structure (generators, closure on nice T 3 . . . ) is not perturbatively stable. It might be possible to cope with this, but, in this work, we chose to be very conservative and to perturbatively preserve the structure of the Lagrangian that was chosen at the classical level. We therefore asked that these extra FCNC vanish or, at least, be strongly damped. Since they depend on the classical CKM (or PMNS) angles, on the fermion and W masses (and on one renormalization