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MIXING AT 1-LOOP INA SU (2)r, GAUGE THEORY OF WEAK INTERACTIONS

B. Machefj i

Abstract: Flavor mixing is scrutinized at 1-loop in 8U(2);, gauge theory of massive fermions. The
main issue is to cope with kinetic-like, momentupt) dependent effective interactions that arise at
this order. They spoil the unitarity of the connection bedwdlavor and mass states, which potentially
alters the standard Cabibbo-Kobayashi-Maskawa (CKM) pimemology by giving rise, in particular,

to extra flavor changing neutral currents (FCNC). We expthe= conservative requirement that these
should be suppressed, which yields relations between thé &igles, the fermion an’ masses, and a
renormalization scalg. For two generations, two solutions arise: either the ngixngle of the fermion
pair the closer to degeneracy is close to maximal while rgelg, the mass and flavor states of the other
pair are quasi-aligned, or mixing angles in both sectorsrang small. For three generations, all mixing
angles of neutrinos are predicted to be larggs( ~ maximal is the largest) and the smallness of their
mass differences induces mass-flavor quasi-alignmentlfonarged leptons. The hadronic sector differs
in that the top quark is twice as heavy as e The situation is, there, bleaker, as all angles come out
too large, but, nevertheless, encouraging, becéysgecreases as the top mass increases. Whether other
super-heavy fermions could drag it down to realistic valstags an open issue, together with the role of
higher order corrections. The same type of counterterntduhaed off the 4th order static corrections to
the quark electric dipole moment are, here too, needed,riicpkar to stabilize quantum corrections to
mixing angles.

PACS:12.15.Ff 12.15.Lk 14.60.Pq Keywords: mixing, radiative corrections, mass-splitting

1 Introduction

The origin of large mixing angles observed in leptonic chdrgurrents is still largely unknowfi[1]. A
widespread belief is that it is linked to a quasi-degenem@fcyeutrinos, but this connection was never
firmly established. And it cannot be on simple grounds. ldddlee mixing angles that are “observed”
in neutrino oscillations are the ones occurring in chargadents, which combine the individual mixing
matrices of fermions with different electric charffeghe path that goes from the quasi-degeneracy of one
of the two doublets to large mixing in the PMNS matiik [2] cahthus be completely straightforward.
Furthermore, homographic transformations on a (mass)bmathile changing its eigenvalues, do not
change its eigenvectors, neither, accordingly, mixindes)@n infinity of different mass spectra can thus
be associated with a given mixing angle.
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The electroniqv.), muonic(v,), and tau(v, ) neutrinos are defined as the neutrinos that couple, insiaget currents,
to the mass eigenstates of charged leptons. They are auglyrdélated to the neutrino mass eigenstategiyy,, v.)7 =
K}K,,(yem vum Vrm)T WhereK, and K, are the mixing matrices respectively of charged leptonsnantirinos. This connec-
tion is seen to involve the hermitian conjugdféKV of the PMNS matrix.



We shall first focus on two pairs of fermions, making up twoeyations. For the sake of convenience
(mainly for the simplicity of notations) we shall often ctiilem genericallyd, s) and(u, ¢). The first will

be supposed to be close to degeneracy and the second latieliResults are transposed to the leptonic
sector: the Cabibbo angt [(] is then, in particular, replaced by the correspondingyefi» ;v s of the

(2 x 2) PMNS matrix. Results which are specific to neutrinos wiltotirse be written with the adequate
notations.

This study, which finally supports a relation between quiggjeneracy and large mixing, rests on the
following argumentation.

The physical states are the eigenstates of the propagaitsrpiles; in case of a coupled systemrof
particles, like massive fermions in the standard model edtebweak interactiong][4] which are coupled
through the scalar sector, the propagator, which is alsmtleese of the quadratic Lagrangian, is & n
matrix;

The determination of an orthogonal set of physical statesrdingly requires the diagonalization of the
sum of the kinetic terms and of the mass terms in the Lagrangia

At the classical level, this procedure yields the standaabilibo-Kobayashi-Maskawa (CKMJ] [3[][5]
phenomenology. The classical Lagrangian is written froendtart devoida priori, in bare flavor space,
of FCNC. In direct connection with the unitarity of mixing tniaes, in particular the Cabibbo matrix,
the SU(2) gauge algebra closes on a diagdfidlgenerator, which eliminates FCNC at this order, in bare
mass space as well as in bare flavor sffacECNC are generated at 1-loop among bare flavor or mass
states (see Fig. 1), but they are damped by the so-called§B@abuppression”. This phenomenology is,
up to now, in very good agreement with experiment, and we shoo preserve it;

Subtle issues arise when considering the quadratic eféetfigrangian at 1-loop since, in particular,
non-diagonal kinetic-like transitions are generated ,(B)g Then, the mandatory re-diagonalization of
kinetic terms, which is generally overlooked, exhibits tmain features. First, due to the presence of
mass-splittings, it unavoidably involves slightly nonitary transformations, which introduces in bare
flavor space at 1-loop, a new set of, mass and mixing f&hdlependent, FCNC. Secondly, the 1-loop
corrections to the mixing angles are non-perturbative aedgmt a high instability in the vicinity of de-
generacy. This strongly motivates the introduction of ¢erterms “a la Shabalin]6] that cancel 1-loop
non-diagonal transitions “on mass-shell”.

They restore a quasi-standard Cabibbo phenomenologypbtlté persistence of extra, mass and mix-
ing dependent, FCNC in bare flavor space. Their occurringdted in the non-degeneracy of fermions,
which counterterms cannot turn off. They are built to cameel-diagonal 1-loop transitions when one of
the two concerned external fermions is on mass-shell, buidebond can, then, only be off mass-shell. So,
while 1-loop mass eigenstates, which result from the diatipation of the effective 1-loop Lagrangian,
are, by definition, orthogonal and, as we show, do not exﬁitBNCﬂ, this is not exactly so for bare mass
states: orthogonality only truly occurs among one on mas#l-and one off-mass shell fermion.

We investigate at which condition these extra FCNC can gppr&ssed. Such a requirement estab-
lishes a connection between mass splittings and the Calsibble 6., which, for two generations and
m2,m3, m2,m2,p* < MZ, writescos 20, ~ —%:jjﬁ 6. is seen to be quasi-maximal as soon as
|ms — mg| < |m. —m,/, that is, when one of the two fermion pair is much closer toedegacy than
the second. A similar condition is realized in the 2-gerienateptonic sector, pushing to large values
the similar angle of the PMNS matrix. Thus, the conservataguirement that the standard classical
Cabibbo phenomenology should be preserved at 1-loop msyitirough FCNC, a connection between
large mixing and the quasi-degeneracy of two same-chargedes.

Nature is however more complex: — first, there are three ahdmy two generations; secondly, in the
quark sector, all mixing angles are small; — last, while hia kepton sector, the “atmospheric” anglg
seems actually close to maximal, this is not the case forgbkt” angled,» which, though large, looks

2The terminology FCNC is certainly not very good when dealirith (bare) mass states. The reader should understand it as
“non-diagonal currents in mass space”.
Swith a subtlety, due to the dependencedfthat is evoked in append|x 4.1.



closer t035°, nor for 6,3, which could be much smallef][7]. This is why the last part ki twork is
dedicated to the 3-generations case, making in partiduadistinction between the leptonic case, where
all known fermions stand well below the electroweak scdlg , and the quark case where the top quark
weights roughly2 My .

This work is structured as follows. Sectioﬁs Zﬂo 6 deal witlb generations of fermions, first, from
section[P td}4, without introducing Shabalin’s countertgrhen, in sectiong 5 affl 6, in their presence.
Section[}f analyzes in detail the case of three generations.

In section[R, we explain the procedure to re-diagonalizé.-labp, the quadratic Lagrangian (kinetic +
mass terms) of asU(2), gauge theory for several generations of massive fermiansubsectior 2.1
we first briefly recall the standard procedure to diagonakgea bi-unitary transformation, the classical
guadratic Lagrangian. We then outline, taking the examptevo generations, how it is modified when
1-loop transitions introduce non-diagonaf-dependent, kinetic-like interactions. In subsecfioh\2e2?
give the analytical formulee in the limi® < m?;,, which then largely simplify when the four fermions
masses are much smaller than hiemass, too. Subsectiofs]2.3 gnd 2.4 are respectively detmtad
re-diagonalization of kinetic terms, and of mass terms. firseare shown to unavoidably introduce, be-
cause of mass splittings, non-unitary transformationgifiese operations are done, the whole effective
guadratic Lagrangian at 1-loop is back to diagonal, witlkiitetic terms proportional; to the unit matrix
IL.

In section[B, we focus on the (realistic) cdse, — my| < |m. — m,|. We study individual mixing
matrices i.e. the ones in théu, ¢) and(d, s) sectors) and the two corresponding mixing angles.

Section[}4 is devoted to the 1-loop Cabibbo matrix. First wewshow gauge invariance dictates the form
of the 1-loop effective Lagrangian, by, in particular, tilg through the covariant derivative, kinetic terms
to gauge currents. We then demonstrate that, unlike ingé@ichixing matrices, the Cabibbo matrix stays
unitary at 1-loop.

In section[ls, we first show that, in the absence of countedgtine 1-loop renormalization of the mixing
angle for degenerate, s) is pathological. We then show how the introduction of Shafsatounterterms
restore the stability and reliability of 1-loop correct®oto mixing angles, in particular in the vicinity of
degeneracy. The 1-loop Cabibbo matrix still keeps unitamheir presence.

In sectiorﬂs, still for two generations, we show how extra RC3ise, and we we solve the constraints
controlling their suppression, first in the absence of cexetms, then in their presence.

Section[} is an extensive study of the 3-generation caségipresence of Shabalin’s counterterms. In
subsection) 7]1, we write the three equations which guagaht no extra FCNC is present in the bare
flavor (or mass) space. We then explicitly list all possiligons. In subsectioh 7.2 we give analytical
expressions concerning 1-loop transitions between farsmiwhen one among the six fermions making
up three generations (the top quark) is heavier thatithén subsectior 7}3 we solve the constraints for
quarks. In subsectidn 7.4 we solve them for neutrinos.

The conclusions and outlook are given in secfion 8. We als, ¢fiere, a comparison between this work
and previous approaches concerning the renormalizatiamafg angles.

In appendix[A, we briefly comment on the dependencepdand some of its consequences, that we
neglected in the core of the paper where we considered tlitepfee m, .

For the sake of simplicity (like in[[6]), we work in a pur®U(2),, theory of weak interactions instead
of the standardbU (2);, x U(1) electroweak mode[J4]. Since the theory is renormalizabie use the
unitary gauge, devoid of the intricacies due to scalar fialts which, consistently working at ordet,
yields finite results for the quantities of concern to us. M/ke cannot, accordingly, verify the gauge
independence of the results (independence org tharameter in ar?; gauge), gauge invariance is of
primordial importance.



2 1-loop transitions between non-degenerate fermions; rdiagonalizing
the quadratic Lagrangian

2.1 Principle of the method

At the classical level, a bi-unitary transformation is usaedlavor space, to diagonalize the sum of kinetic
+ mass termg 2 30 I— M9 LN 0 50 e &

{& ) pr-mp)| ] o (@ ) 0

Sf Mg S,

The two unitary transformations, acting respectively aghtd and left-handed fermions, preserve the
canonical form of both kinetic terms, which stay proporéibto the unit matrixI. This defines the
classical masses; andm. The corresponding classical mass eigenstdiesind sY, are orthogonal
with respect to the classical Lagrangian, which is akin ® ghoperty that no transition between them
occurs at the classical level. In particular, the clasdiggrangian in flavor space is written devad
priori of FCNC; this is directly related to the property that kioeterms are proportional to the unit
matrix, since gauge currents are simply deduced by intiadute covariant derivative with respect to
the gauge group. The above diagonalization leads to théatarCabibbo (or CKM) phenomenology,
in which, in particular, non-diagonal neutral gauge cusesnly get generated at 1-loop (see Fig. 1),
and are damped, when expressed in bare mass space, by thkkedo“€abibbo suppression”. This
phenomenology is, up to now, in agreement with experiment.

U@
p=q
S W- ¢ > &
p g p p-r

Fig. 1. “Standard” flavor changing neutral currents dt-loop

However, 1-loop non-diagonal transitions, likf — d° depicted in Fig. 2, trigger new phenomena
which have not yet been fully considered and which, in paldic also generate FCNC. By the effect
of the corresponding renormalization, the kinetic termseftthanded fermions stay indeed no longer
proportional to the unit matriX but to some non-diagondty = 1+ Hy, Hy = O(g?), which depends
on the classical masses (fermions and gauge fields), onassichl Cabibbo mixing angk, and onp?.

The pure kinetic termg<, for (d,,s% ) written in (6)f] can be cast back to their canonical form by a

m’=m

p?-dependent non-unitary transformativi(p?, . . .) according to

V; Kd Vd =1 (1)

- d°
By (i), which entailsk, = (V; 1)V, !, the kinetic termd] (d°, , , s , ) K4 3 ( glL ) at 1-loop for
SmL

- d°
left-handedd and s in the bare mass basis rewritd? . s0 (V; 1)V !y ;”L , which leads to

SmL

“For the sake of convenience, we work in the bare mass basis.
The subscript £” refers to left-handed fermions ang " to right-handed ones.



1 0
dmL — dmL

definingd’ ; ands! ; such that ; =V .7 |- The mass matrix, which had been made
SmL SmL
diagonal in the classical bagig?,, s,), is no longer so in the basig’ ;, s. ;). The second step of the

procedure is accordingly to re-diagonalize it by a secongniitery transformation. It leaves unchanged
the canonical form of the kinetic terms that has been rebuithe first step of the procedure. After the
two steps have been completed, the sum of kinetic + mass tdrinkoop is diagonal. The resulting basis
of 1-loop mass eigenstatés, . . (p?,...), smr(p?%,...)) is such that, at this order and at any given
there exists no transition betweép ; ands,,r. They are thus, by definition, orthogonal at 1-loop.

2.2 1-loop transitions: explicit calculations

We now explicitly calculate 1-loop transitions. Gauge fattions induce diagonal and non-diagonal
transitions between bare mass states. For example, Figcilses non-diagonal, — d°, transitions,
mediated by thé&/’* gauge bosons. Diagonal transitions are mediated eith&r byor by 12,

u%, G

s d;

P q p

Fig. 2: 5% — d9, transition at 1-loop

The one depicted in Fig. 2 contributes as a left-handedtikiike, p>-dependent interaction
Asq do (1 —75) 85, Aga = sin . cos 0. (h(p*, my, mw) — h(p*, me, mw)), (2
that we abbreviate, with shortened notatiehsf,. = s., cos 8. = ¢, into
Asa = scce(hy — he). 3

It depends in particular on the classical Cabibbo afgle 6, — 6,.. The functionh is dimensionless.

It is straightforward to deduce that all (diagonal and n@gdnal) 1-loop transitions betweef) andd?,
mediated byl * gauge bosons transform their kinetic terms into

chy + 82he  scce(hy — he) d

(@ =) |1s+ $(1 =)
scCe(hy — he)  82hy + Che

SO SO

)

(&, §9n)[w+(h“;hc+<hu—hc>7;<2ec>>¢<1—75>] ") @

where we noted
1 [ cosy sin

Te(p) = 2 . ®)

singp —cosy



To the contributions[[4) we must add the diagonal transitiorediated by théV; 3 gauge boson. The
kinetic terms for left-handed?, ands?, quarks then become (omitting the fermlonlc fields and the de-
pendence op?,...) fi

Ky = I+ Hg;
Add Ads By + he 1{ h

Hd - aa ¢ - _2|— + (hu - hc) 7;(290) + 5 I ) (6)
Asd Ass hS

wherehy = h(p?, mq, my ) andhg = h(p?, ms, my ). Likewise, in the(u, ¢) sector, one has

Auu Aue hg+ hs 1 I
H, = = == (ha = he) To(=200) + 5 o
Acu Acc hC

Explicitly, one has

2 4 _ — a2y —
" [ Vus Vi " VesVia ]
(p—aq)?-mi  (p—q?*—m?
unitarity of V 92 d4q 1 B Q)ﬁ q (y d)
= 4 / (2m)% ¢2 — my, [(2 A + miy ]( )

2 2
My, —Me

u [(p—q)? —m2][(p— q)> —m2]
8

Vu S

The factorV,,;V.*, in (@) is thes.c. of (@), which finally definegh,, — h.) of (B).

Al our forthcoming results depend on differences litg — /). In the unitary gauge, after introducing
2 Feynman parametessandy, the dimensionally (fon = 4 — e dimension) regularized expression for
(hi — h;) writes ¢y ~ 0.572 is the Euler constant)

g
hi —h; = 1 I6n dac dy2y
1 1 1 2
< > S —( +3y>< +Indr — >+ﬂ+ 3y, B,
miy 2 2 2
R = —y(l—y)p* +y(l —2)m] + zymi + (1 — y)miy. )

To obtain [P), the relation, .7, = —(2 — €)v, between the Dirac matrices has been used. The gcale
originates from the necessity, in- e dimensions, to replacg by ¢2,¢. The exact analytical expression
for all values ofp?, m? m cannot be easily obtained, but, whgh< m#,, y(1 — y)p* can be safely
neglected with respect ((1 y)mW in R2, such that[(9) simplifies into (we write this time its expiess
once renormalized in th&7.S scheme which amounts to eliminating frofh (9) the pold jia together

®From now onwards, to lighten the notations, we shall fretjyesmit the dependence gif and on the masses.



with the terms proportional th 47 — )

p2<<m%V 921' 7,2
hi—h; |~ _ dzr | dy 2 1 143y)n =],
T / x/ yy[ (( +y>+<+y>nﬂz)]
—

1—ac)m +aym? + (1 —y)miy,. (10)

_|_

2
2m myy

The integration over can be done explicitly. This leads to the expression

2gm? 2 1 24 (1— 2 m? —m?
N Y IR I e
S 4 1672 J, m; + (1 —y)myy miy
2 2 2 2 2 2
m? m:+ (1 —y)m m; ymi+(1—y)m
y(1+ 3y) 5 In 7 ( 5 ymiy _ - In —~ 5 1, (11)

myy i miy i

2 2
o P g7 2mi —mj miy In 8 —miIn 75 (i & )
— ~ Z - — (i <
N Vi 4 1672 3 mi, mé, —m? J
2
Zz mlz/V ml%V <m12/V In %~ — mf In u—g)
+ 2+ 2 T2 2 2 2\2
myy, my, —m; (miy, —my)
2 2
1mi, +m? lmévlnn;—g"—mfln% (o)
- - 7
4m12,V—m22 2 (m2, —m?)2 J
ml2 1 11mf‘,v — 7m%,vmz2 + 2m;1
* m¥, (m¥, —m?)? B 6
2
mwlnﬁw%-( 3mévm?+3m%,vmff—m?)ln% ' .
+ 5 5 —(t .
My — My
(12)

Eq. (12) is only valid fop? < m3, but its dependence on the fermion massgsindm; is then exact.
In the limit, always valid for 2 generations, whery, m? < m%,, it drastically simplifies to

1 (13)

hi — h; ; In—&

pamimi<ml, 2§ omi-mi /17 3 md,
s AT6n? mp, 2

In the case of 3 generations of quarks the top quark entergdame and one is in the situation when
p*,mi < miy, butm? = mi > mW The corresponding formulze will be given in subsecfioh Rate
that, in the approxmatlop < m¥, that we are using, the final result]13) no longer depends’on

2.3 First step: re-diagonalizing kinetic terms back to the uit matrix

We shall now diagonalize the quadratic part of the effectiteop Lagrangian, which means putting the
pure kinetic terms back to the unit matrix and, at the same,tie-diagonalizing the mass matrix. This
is accordingly a two-steps procedure.

Since the kinetic terms of right-handed fermions are notifiezj we shall only be concerned with the
left-handed ones.

The pure kinetic termd¢, for (d9,, %) written in (@) can be cast back to their canonical form by a

p?-dependent non-unitary transformationgp?, . . .) according to[(1).

7



The procedure to find, is the following. Let(1 +¢%) and(1+ %), 4.4 = O(¢?), be the eigenvalues
of the symmetric matrix¥<;; explicitly

hu + he+ |2t ha — hs 2 ha — h
ti: 2[ 2 ]15 (hu—hc)2+[%} +2 (hy — he) { d2 S]cos%c. (14)

) ) ) cosSwy Sinwy .
K, can be diagonalized by a rotati®®(w,) = according to
—sinwg coswy

1+t
R(wa)l KaR(wa) = i (15)
1+t

with hy — he) sin 26

tan 2wy = ~(hu = he) sin 26 ) (16)
(hy — he) cos 20, + [@}
or, equivalently,
(hy — he) cos 20, + | hahe _ in?2

cos 2wy = [ 2 } ,  Sin2wg = — Uty = he)sin 967 (17)

d d d d
td —td td —¢d

in which (¢4 — t4) can be immediately obtained frofn {18

Eq. (I§) definesy, in particular as a function df., wg = w4(6., . ..). Since both numerator and denomi-
nator of (1p) ared(g?), wy does not depend on the coupling constant

The diagonal matrix obtained ifi {15) is not yet the required matrix, but one simply gets to it by

renormalizing the columns oR(wy) respectively by\/ L y and \/ L —. The looked-for non-unitary
1Jr2£+ 14+t¢

matrix Vy writes finally

Cuy Swy
Ji+td 1+t
Vy = S e | (18)

Ji+td 1+t

It differs from the rotatioriR (w,) only atO(g?) and satisfies

1 td 4+ ¢4 1+
ViVl = T <H+ + 5 — (4 —td) 7;(—2wd)> . VIV = T
1+td

(19)
For |m2 — m2| < |m2 — m?2|, |hg — hs| < |hy — hel, (t4 —t-) =~ (hy, — h.) and the expression for
sin 2wg in (L7) shows thatuy(6.) ~ —6.. So, when the paifd, s) is close to degeneracy arid, c) far
from it, V; becomes close to a rotatidd(—6..). We shall come back on this case in subsedfioh 5.1.
Eq. (I9) shows that mass splittings, # ¢_) are responsible for the non-unitarity Bf and, so, for the
non-unitary relation between 1-loop and bare mass stdtesséme occurs in flavor space). Note that
this non-unitarity persists when; — 0, which will be the case when counterterms are introduced (se
subsectior 62). Unitarity can only be achievedtfor= ¢ _; according to[(1}4), this requirés,, — h.)? +

2
[@} +2(hy —he) [%} cos 20 = 0, which, sincecos 260, € [—1, +1], can only eventually occur:

— either for(h, — he) = 25" thatis, for(m, —m.) = M7 in which caseos 20, = —1 & 6, =,
—orforhy, = he, hqg = hs & my = me, mg = m; (twice degenerate system).

"Eq. (16) also rewriteg 2(eat0e) — _ ha=hs \which shows thaty — —0. When|ms — ma| < |ma, — me|.

sin 2wq hy—he!

8



2.4 Second step: re-diagonalizing the mass matrix
2.4.1 1-loop mass eigenstates

As mentioned in subsectign P.1, the re-diagonalizatioriradtic terms leads to defining the ba(ii’ém, s}nL),

which is related to the bare mass basis by the non-unitagtioalV,. In this basis, the mass terms

U dinr . . dinr
mL)Md + h.c., with My = diag(mg, ms), rewrite (d}nL7 mL)V My . +

SmR SmR

h.c.. Hence, the mass matrix that needs to be re-diagonalizvglj\isi. It is done through two unitary

transformationsk (£;) and.S(&;) such thaﬂz(gd)T(leMd)S(gd) = diag(pq, ps)- SincerlMdMJVd is

a real symmetric matrix

(D,

mL>

m3cl, +m?s?, B Sty Cuy (M2 — m32)
d
m2 1+5 1+t)(1+ 1
VchMdM;devg ¢ Va = 2 2 \/(2 2 )(2 2 ) )
mg _ SwyCuwq (ms — md) MgSu, + MgCoy
d
V) +) 1+12
(20)
R(&q) can be taken as a rotation, according to
2
v
Rt (ViMaMfVa) R = | (21)
s

Being unitary, it preserves the canonical form of the kin&irms that had been rebuilt in subsecfion 2.3.
It satisfies

—(mj — mg)\/(l +t4)(1 + t4) sin 2wy

tan 2&; = (22)

td_d'

Jr —
2

td 44
(m2 —m2) <1+ + : )cosde—(mi—Fmg)

Throughw, (0., . ..), (22) defines, in particular as a function df., &5 = £4(6., . . .).

- d°
Since the mass terms rewritd! , . s!  YR(&4) diag(pa, ps) S(€q)T ;”R + h.c., the 1-loop left-

SmR
handed mass eigenstal@s, ., s,.1.) are defined byd,.z,5mz) = (d\ , ,s.  )R(¢4), which leads to
dgl dmr,
Y = VaR(&) : (23)
SmL SmL

By construction, at this order, there exists no transitietweend,,,;, ands,,;,, which are thus, by defini-
tion, orthogonal.

2.4.2 1-loop masses

The re-diagonalization of kinetic terms indirectly cohtries to a renormalization of the masses; —

td 7td 2_ .2 td 7td
BT cos 2wy < 1 and A= + d 4 cos 2wq < 1f, one gets, whem, #

m2 2
s +md

[id; M — fis. FOr =

8The first condition is immediately seen to be always satisflés second too, unle$d, s) are extremely close to degener-
acy or degenerate, which does not occur for any known fersnion



ms, from (20)

th + 1t td —td
,ug ~ m? (1— + )—mz +2 cos 2wy,

t4 44 td —¢d
w2 m3 <1 - ) + m? +T oS 2wy. (24)

Q

This yields in particular, still when the two conditions niened at the beginning of this subsection are

satisfied,

2 2 2 2 4 4
,us—,udmms—md_(td_td) mg +my,
+ —

~ cos 2wy, (25)
p2+pd m2+m? (m2 + m?2)?
which becomes, fomg ~ mgq (ms # my)
u2 — ,u?l msamg M2 — m?l ti —td
5 5 ~ 5 5 — CoS 2wy
My + Hg mg + my 2
(@) mﬁ—m?l l(h he) ‘29_m§—m3 g m2—m? 99
~ — % 2—2 u — Ne)CO8 20 = — 3 1672 2 COS 2aUc.
mg +myg mg + my us myy
(26)
27 2 . . . - - -
Supposingos 20, > 0 andm,. > my, Z;+Zg goes to a minimum, identical to its classical value, when
s d

6. becomes maximal. A similar property is satisfied in the cdtbeoMSW resonance (see for example

(D).

The classically degenerate casg = m, is most easily studied directly fronj (20). Degeneracy gets
2

. . . m m2 22
lifted at 1-loop since the renormalized masses become, tifer 1:{5 2= 1+d£5 , such tha% ~~
+ - s d

2 2_..2 . . . .
heshu o 8 T it turns out to be the limit of(26) fomy = m, and vanishing...
w

3 Individual mixing matrices and mixing angles at 1-loop

3.1 1-loop and classical mass eigenstates are non-unitgrielated

According to [2B), the left-handed 1-loop mass eigenstatgs,, s,,;,) are related to the bare ones via
the product of a non-unitary transformatidfy by a unitary oneR(£;). The two bases are accordingly
non-unitarily related[[8].

We recall (see subsectign P.3 aftpr] (19)) that mass spfittare at the origin of the non-unitarity vf.
(81 (£ (L.

Since bare mass states are related to bare flavor states tlpshal mixing matrixC;) = R(64) of the
(d, s) pair, which is unitary, the physical mass eigenstates aceran-unitarily related to the latter. The
relation is
dY d° dmr
I ) B eyvren , (27)

0
SfL SmL SmL

= Cqo

3.2 Individual mixing matrices and mixing angles at 1-loop
3.2.1 The(d, s) mixing angle
According to [2]), the individual mixing matrix at 1-loopgs/en by
Ca = Cao VaR(&a) = R(0a) VaR(&a)- (28)

10



SinceV,; ~ R(wg) + O(g?) (see [1B)).Cq, though slightly non-unitary, stays nevertheless close to
rotation
Ca ~ R(0q + wa + &) + O(g°). (29)

The quantity(wy + &) is seen to renormalize the classical mixing angyjeit satisfies, from[(22), the
relation (neglecting the terms proportionalte;’= which are of ordeg™2)

td 7td m2 +m2
_ + b Mg, 1
tan 2wd [ 2 m?ifmg cos 2wd]

tan 2(wg + &) ~ (30)

1 + tan2 2wy — [

d d .
t9 =t m2+4+m? 1 }

2 m?lfmg cos 2wy

In practice,tan 2(wy + &4) stays small, and so does, accordindly; + £;). Renormalization effects
could become large only close to the pole[of (30). It occurs fo

d d 2 2
L 5 —tZmy+mg a1
2wy 2 2 2 (31)
COS 2wy ms — mj
: 1 2 m2+m? . . .
that is, for— oy = O(g%) x —4——, which is usually unphysical because it corresponds:te 2w,| >
d s
1. | cos 2 Id b ller thainonly if ically|ma=m3 | < Bt ¢ mEomi \nich
. | cos 2wy| could become smaller thanonly if, generically, wimr | < T R T Whic

is never satisfied for known fermions, quarks or lepthns
From (30), [1B) and(17) one also gets: 2(w, + &,) as a function of,. and the classical masses

tan 2(wgq + &4) =~ (32)

3.2.2 The(u,c) mixing angle

In the same configuratiopin, — ms| < |m,, — m.|, from the expression equivalent {0}(16) in the c)

sectortan 2w, = (hd_l(lh‘)fo’;;);iiffi_hc], one deduces that, sinpe, — he| > |hq — hs|, wy — 0. Then,
S (& 2

from the equivalent of (32), one getsn 2(w,, +&,) ~ & (hg — hs) sin 26., which is very small (sed (L3)).

4 The 1-loop Cabibbo matrix ¢(p?, .. .)

4.1 The effective Lagrangian at 1-loop (in the bare mass bas)

SU(2)r, gauge invariance demands the replacement, in the Lagrarafithe partial derivativé by the
covariant derivativeD. This is how, at the classical level and in the bare mass ,beaitng \IISIT =
(ud ;,c® . d0 . s0 ), the kinetic + gauge terms write in their standard form

i Dyrw, = i (" (D w5,) — (D W5, )9 WS, ), such that

Letass = Uon (1(i8,,) + gT- W, ) y# 00, + ... (33)
TheT"s are the (Cabibbo rotated)U (2) generators

1 1 C
— R T+ g 0 5 Tﬁ — 3 (34)
2 -1 cl

T? =

m2 —m?2

i . i m; 2_ 2
°For example, in thév,,, v, v, 7) sector, the condition wrlt%si” iR

< £, the rh.s. of whiche 191077,
T m2,

vr
2 2
my +m”ﬂ

while the L.h.s. is experimentally known to I@(10?) if one considers that the neutrino mass scal@(sV’). The mismatch
is similar in the(ve, v-, e, 7) sector and worse in th., v, e, 1) Sector.
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where( is the classical Cabibbo matrix

—sinf. cosf,

cosf. sinf, t i
Co=R(0.) = =C,0Cao = R(6.)' R(04). (35)

Gauge currents and the$tU (2);, algebra are thus directly related to kinetic terms by gangariance
and the resulting Lagrangian is both gauge invariant anchitien.

We shall use the same procedure to determine the Lagrarftgari-doop transitions have been accounted
for. Still in the bare mass basiB?,, we have seen in subsectipn]2.2 that the kinetic terms, wérieh
classically proportional, in momentum space,l b get renormalized at 1-loop intd(p?, m;, mw) p,
with

Ap?,..) = (K”(pz’”’) ‘ )]I+(Hu(p2"") ‘ ); (36)
| Ka(*.) | Ha(p?,..)

p,, Stands, there, for the common momentum of the ingoing argbmg fermions, as depicted in Fig. 1.

The 1-loop kinetic + gauge Lagrangian that we will hereaftersider is accordinglg’@?n AD, YO0 =
! (@Snfy“(ADu 1) — (AD,¥0) fngl) , which yields

L1 toop = Ty, (A(i0) + %(Af + TA), ) 708, + 37)

It has the required properties of gauge invariance andkghianthe presence of the symmetric expression
AT +T A, of hermiticity (hermiticity is, instead, not achieved ii®@considers a kinetic Lagrangian of the

form z@?n AD, w0 (with “—” instead of %" on top of AD,)). Gauge invariance has in particular
dictated the 1-loop expression of the gauge currents, friiohwwe shall now deduce that of the 1-loop
Cabibbo matrix.

4.2 The Cabibbo matrix €(p?, .. .) stays unitary

The 1-loop Cabibbo matrix in the bare mass basis can be reactlgifrom the expressio@@?n(Af +
TA)v*¥ of the gauge currents that results from]| (37). This yields

1
¢ (p?,. ) = 5 [([L+ Ha) Co+Co (T+ Ha)|. (38)
~—— ~——
Ku(pQ,---) Kd(p27"')

A naive calculation could erroneously lead to the concludizat C®™ is non-unitary. Indeed, using
Co = R(0; — 6,,) and the expression§| (4] (7) féf; and K, one findsC’™ (C™)" # 1. However, these
expressions are written in a basis which is non-orthogohatlaop. Consider indeed, for example, the

Ci2
Ca2

1 C
andC ( ) = ( H ) when their scalar product is evaluated with the méefttid ). However, this is
0 Ca1

0
relationCy;Ci2 +C5,Ca2 # 0. It traduces the non-orthogonality of the two veciﬁr{ )
1

0 1
the appropriate metric only at the classical level, whére ) and , Which represent fermions
1 0

in bare mass space, are orthogonal since no transitionsbetween the two of them; but it is no longer

12



so at 1-loop (see Fig. fY. The pure kinetic terms iff (B7) are, in particular, not ndizeal tol but to the
non-diagonal matrix. It is thus necessary, before drawing any conclusion, tadbd orthogonal basis
of 1-loop mass eigenstates by using the relatjoh (23). Becafithe unitarity of thek (¢) rotations, one

has]vu,dR(gu,d)]TKu,d[Vu,dR(Eu,d)] = R(&i@) [V;dKu,qu,d]R(gu,d) (:) R(gu,d)TR(gu,d) - ]L SUCh
that the pure kinetic terms get now normalizeditoAnd, as we show next, the 1-loop Cabibbo matrix
¢(p?,...) rewrites, then, as a rotation. It becomes indeed in thisbasi

P’ ..) = WV REC™ (0, ..) VaR(&))- (39)

Transforming the general expressiohd (39) (38) witthee of (1) which entailgs, = (V; )TV, *
(K, = (Y HTv 1, yields

€ = JRE) Vil Cova + VIEoi )] Ri&) = SR Vi ova+ (7 v ™| Riew)

(40)
Using the expression ([L8) for thés, one gets
cos (0. — wy, + wyq) ii;i sin(f, — wy + wq) izs ;
Vo1V = + — | and [(vflcovd)*l] _
“ 14t 144 “

—sin(f. — wy + wq) cos(f. — wy + wq)

)
1+t7

1+t . 1+t
cos(0. — wy, + wy) 1+t§ sin(fe — wy + wq)4/ ﬁ

"y "y which leads finally to
. t [ 1+t
—sin(f. — wy + wq) Jti cos(0 — wy + wq) JTE
C(p?,...) = R((Qd + wgq + fd) — (Gu + wy + £u)) + O(g(>2)). q.e.d. (42)

¢(p?) stays thus unitary for any common valugpdfat which its entries are evaluatEll (41) shows that
the Cabibbo anglé. = 6, — 6,, gets renormalized b, + &) — (wy, + &u)-

In the basis of 1-loop mass eigenstates, the Lagrangisawrites

UmL
L 5 N CmL
=t @z dur sz ) ) (BHo W)W+ ) d AR
mL
SmL

(42)
with “1-loop” SU(2), generator€ (p?, . ..) depending now op? and on the masses

53(1)2,);(1 )’§+(p2,‘“) ( ‘ ¢(p2,)),‘z(p2’) ( ‘ )
-1 | et |
(43)

Our procedure has accordingly preserved$i&?2) . structure of gauge currents at 1-loop, which guar-
antees in particular that the corresponding Ward identdire satisfied.

We keep mentioning the dependencepBnreminding that it only goes away (becoming sub-leading in
powers ofW’L’—j whenp? < m%,[, Since we are not able to get the exact dependence on théblerive
w

10, ikewise, for any matrix/, the relation/ Ut = 1 traduces unitarity only it/ is expressed in an orthogonal basis of states
(i.e. no transition exists between them at the order that is censit).

"This may not be in contradiction with the non-unitarity ataid in E)] and|[1[1] when the two external fermions legs are on
different mass-shell, since, then, two differhtare involved. See also appendlix JA.1
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shall keep on working in this approximation, which is onlgtjtied at energies well below the electroweak
scale. Some remarks concerning tRedependence are given in appenidjx A.

Note: One can easily demonstrate titgp?, ...) = C} C; + O(g?), reminiscent of the classical relation
Co = Cio Cqo, as follows. Sinced,, and H, in (B8) areO(4?), the terms proportional to them if {39)
can be calculated with the expressionsRift,) andV, at O(¢°), that is, fort, = 0 = ¢_; one can

accordingly take in ther&(&,) ) R(—wq) andVy o R(wq), such thatV;R({;) — I. The same
approximation can be done in tie, ¢) sector. The resulting expression fois

0(g?) 1
PP, ) R R(E)VE Co VaR(&a) + 5 (HuCo + Co Hy), (44)

0(g?)

which leads to the announced formula after us[ng (35), pBY4Rd its equivalent fo€,,. Since€(p?) is
unitary, the non-unitarity of},Cy gets compensated by that %)ﬁHuCO + CoHy).

5 Restoring “perturbative stability”: canceling non-diagonal transitions
at 1-loop with counterterms

5.1 Instability close to degeneracy

Quasi-degenerate systems are known to be unstable withatespsmall perturbations. This property
is easily verified here, through the amount by which classigaing angles are renormalized when 1-
loop transitions are accounted for. It undergoes indeegk laariations when the classical masses span
a very small interval in the neighborhood of degeneracy: w& &onsider the case of exact classical
degeneracyrg, = ms), secondly the pole of (BO), which corresponds to a sitnatibered and s are
extremely close to degeneracy (see subsegtidn 3.2), atdtHa pole otan 2¢, which also corresponds

to quasi-degenerate fermions, but not as close as preyiousl|

e For exact classical degeneraky = h, such that, by the expression gifi 2w, in (L), wg = —6..
(BQ) shows then thafledM;Vd stays diagonal, and, s¢; = 0. The classicald, s) mixing angled,

is renormalized (se¢ (29)) by, + £4) = —6. and become8,; — 6. = 6,, the classical mixing angle of
the (u, c) pair.

According to [4]L), the Cabibbo mixing angle gets renornealirom its classical valué. to 6, + (wy +
£1) — (wy + &) = —(wy + &,). This is vanishing by the equivalent df {16) which yields = 0 for
ha = hs, and then by that of[ (22) which entaifs = 0 for w,, = 0. To such a system is accordingly
associated a vanishing 1-loop Cabibbo angle. Renormializatfects can thus be large.

o Atthe pole of [3D), by definition, the renormalizationffbecomes maximat-7 ).
e Atthe pole oftan 2¢,, it becomes instead minimally small (see subsedtion]3.2.1)

So, in a close neighborhood of degeneracy, the renormializ@t,; + ;) of 6; undergoes large variations.
So does the one of the Cabibbo angle.

5.2 The counterterms of Shabalin

Let us now add to the classical Lagrangian in bare mass spa@®tinterterms which were first proposed
by Shabalin in his study[]6] of the electric dipole moment ofiks. They are devised to cancel the
(p?-dependent}’, «» d2, transitions when either> = m?2 or p> = m? (d or s on mass-shell). So, an on
mass-shelk?, cannot anymore transmute intaly with the same virtuality, anglice versa They were
also introduced in[[40] and [L2]. In the short letter][12] thclusion of these counterterms was proposed

This is in agreement witr ($2) which shows thah 2¢, has no pole whem, = m..
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as a solution to rescue the standard CKM phenomenology.Q ¢hly the classical Lagrangian + the
counterterms were re-diagonalized, but the effectiveop-lmansitions were not included. This comple-
tion is the goal of the lines below. We shall go through the esateps as previously, re-diagonalizing
simultaneously the effective kinetic and mass terms uf(t¢’), including Shabalin’s counterterms.
Following [10], let us accordingly add to the bare Lagrangihe kinetic and mass-like counterterms
which concern both chiralities of fermions

— AgdS (1 —~°) 80 — Bydd, (1 —~°) 8% — Egd% (1 +7°) % — Dgdd, (1++°)s0,.  (45)

Requesting that®, — d% transitions vanish when eithe}, or d°, is on mass-shell yields (see Appendix

A of [0])

m?2 (hy — he)pz—p2 — M2 (hy — he)p2—m2 O(hy — h
Ad = S¢Cc d “ P 7771; ; v op e [ ScCe ((hu - hc)p2:m2 + mg ( - 2 C) 2) )
ms — m; d Op p2=m2
R (e e ) O — he)
E; = scce 3 5 N ScCeMsMyg B} )
m5 — m? Ip p?=mg
Bg=—-mgsEq, Dgq=—mqkFEqy, (46)

The re-diagonalization of the left-handed kinetic term&-&top is operated via a non-unitary transfor-
mationV; of the same form a$ (lL8). Counterterms only induce the repiaat ofs.c. (h, — he)(p?, .. .)
with s.ce (hy, — he)(p?,...) — Ag, such that the angle, changes from[(16) to

tan 2wz, (p%,...) = —2(3606 (h = he) ¥, ) = Ad) 47

(hu — he)(p2. ) cos 20, + [ L)

in which we have added a subscript’to w, to distinguish it from its counterpatt;r associated with
right-handed fermions.

The quantity(scce (hy — he)(p?, - ..) — Ag), which will be often encountered, writes

O(hy — he
5cCe (hy —he)(P?,...) — Ay~ sece <(hu —he)(P?,..) = (hu — hc)pQ:m?i — mgi( o ) e 2)
=mg
O(hy — he)
~ s.ce (p? — (m2+m?)) L < , 48
(p ( d s)) apz p2=m(2i ( )

in which we have takep? ~ m2 ~ m2.
By differentiating [1ll) with respect to?, one gets, still in the limip?, m?, m3 < mj;, and in theM S

scheme

O(h; — hj) p*mimi<mi, 5 g i mi-— m? (49)
Op? MS 4 1672 my,

One has now (we added a superscrigitto ¢, and¢_ becaused; # A,, such thaitglL £ tU 1 £ 1,
and also a subscript,” to recall that they concern left-handed fields)

Pu + he + | Bghs]

ot ) = )

2
:I:l\/<(hu — he)(p?,...) cos 26, + [(hd —hs) @2, q) + 4(scce (hy — he)(p?,...) — Ad)Q,

2 2
(50)

which gives back[(14) whed, is set to zero.
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—E,

~E; 1
and are accordingly re-diagonalized into the unit matrixabyon-unitary transformatiait,;

As far as the right-handed kinetic terms are concerned ategontrolled by the matri

1 —Ey 1 [ = = 1 1 Ey
uj Up =1, Us=—5 VIR VIR S Yl = -

It corresponds tovgr = 5,t%, = Eq,t% p = —Ej.
The mass matrix to diagonalize is nCv@Md Uy, where, including the counterterm&l; is now given by
my Dd = _ded

My = . (52)
B;=—msE, Mg

The rotationR (£,47,) will accordingly diagonalize the matringdud)(u;Mgvd).
Neglecting irrelevant terms proportional B2 and tog>2, one gets

mica’dL—’—m sde+4mdmsEdSdedeL (m?l m2)8dedeL—2mdmsEd( “"dL de)
1+t] 1+ed )(a-td
MMV, = - Vi
Vd d4dy dVd - (m2— m2)sdecde—2mdm;Ed( Coar ™ de) misadL—l—m cde—4mdmsEdsdecde
d
\/(1+t )(1—td | 1+t2

—sin2wgr,  €os 2wy,
+ magm sEd . (53)
coS 2wy,  sin2wyr,

The expression (P2) famn 2¢, gets replaced by

—(m2 — m?2) sin 2war, + 2mgmsEq cos 2wy,

tan 2647, (p%,...) = (54)

_d )

(m2 — m2) cos 2wgy, + 2mgmsEgsin 2wy, — (m2 + mz)%
in which we have neglected facto($ + at?, + Bt?,), o, 8 = O(1), which yield contributions of
unwanted higher order in

2_ .2 .

Unlesscos 20, ~ —4 ji=te @) — e, (@), (@) and[(49), show that, whefl < mj;, and since
m2,m? < m3y,, war, ~ m?/mi, is very small. Then, usingin 2wy, & tan 2wy, the expression foE,
in (A8) and the one forl ; —¢¢ ; coming from [BP) (in which we neglect the tertfis.c. (b, — hq) — Ag)),

(F4) rewrites (the term@m msE, sin 2wy, in its denominator can always be neglected)

9h. —h 2 _ m2) (p2 — (m2 + m?2)) + m2m?2
tan 26y, ~ 2s,c, 2L e) i m) v~ (g ) i) gy
p (m2 —m2) — %((hu — he) cos 260, + [%} )
showing, with [4P), that,;, ~ (p?, m?)/m3, is also very small.
Whencos 20, ~ ;ZZ Zi @) % tan 2wq;, — oo, Which corresponds te,;, maximal. Then,
2 2
and [BD) yieldtan 2 — b ULE hich, using [(46) and[(#8), is
(@) ) yl an gdL % 2mdmsEd7(m3+m§)(sccc(hufhd)fAd), W I 3 u I g@ ) @ )l I
mg—mg 1

finally equivalent tdan 26,7, = —

) . Unlessd ands are exactly
scce 225 9m2m2 —(m3+m32) (p2—(m3+m2) )

degenerate (in which cagg;, shrinks to0), this yields a quasi-maxima};;,, because of the very small
value ofa(h“ he) given in [@9).
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This is however not true when the numerator|of (47) vanisikgh occurs fors.c.(h, — h.) — Ag = 0,

or, likewise, by [5k)), fot}L =t . Inthis casew,y, is undetermined and can be taken to vanish, since the
matrix of kinetic terms is proportional to the unit matrixn@then finds a very smatn 2¢,;, = 274¢™<Cd

(see [4p) and (39)). o

The expressions obtained in the ¢) channel are very similar. One gets:

mz (hd - hs)p2=m% - mz (hd - hs);ﬂ:m% 28(hd - hs)

o R —8.Ce ((hd — hs)pzzmg +mg 072

mMyMme ((hd - hs)pQ:m% - (hd - hs)pQ:mg) 8(hd — hs)

R SeCeMsMy ap?

Au = —ScCc

E, = -—sc.

2 _ 2 B )
mg — mg p2=m2

By =-m.E,, D,=—myEy;

tan 2w, (p?,...) = —2(—sccc (ha = 1) (7, ) _Au) ; (57)

(hq — hs)(p?,...) cos 20, + [(hufth)(pQ,---)] ’

)
p? =m%>

(56)

O(hg — hs
— ScCe (hd — hs)(pQ, .. ) — Au X  —S8cCe ((hd — hs)(pQ, .. ) — (hd — hS)p2:m% — z% p2:m2>
O(ha — hs) ’
= s (F = () SRS o
hu+h
u AuThe | hd + hs
Y. = 2 ]2 (p?,...)
1 - 21\
ii\/<(hd — hs)(p?,...)cos 26, + [(hu hCQ)(p - q) +4( = scce (ha — hs)(P?,...) — AU)Z;
(59)
9 —(m2 — m?2)sin 2w, 1, + 2mymcE, cos 2w, 1,
tan 28,1 (p*,...) = T —_

: thp—tty
(m2 —m2) cos 2wy, + 2mymeEy sin 2wy, — (M2 4 m2)H—L

O(ha — hs) (my —m2) (p° — (mg + m2)) + mgm?
op* (m2 —m2) — 2 ((hy — hy) cos 20, + [huzhe]) )

o

—25¢Cc

Q

(60)

Unlike in the (d, s) sector, becaus@ny — ms| < |m, — m.|, tan 2w,; given by (57) cannot have any
pole. This makesy,;, always very small and, likewis&,, ;. Furthermore, the equalib;{fL = t,, can
never be achieved (see also secfibn 6). These results seawkenm, = m,, in which casehy = hs,
which entails thatd,,, E,,, By, D, wyr, and&, z, vanish.

5.3 Stability is restored

We now check that Shabalin’s counterterms stabilize 1-lnopng angles in the vicinity ofl — s degen-
eracy.

Still except whercos 20, = _%22:22 , Which corresponds, whem,; = mg, to . maximal (see also
subsection) 612)y,;, stays small whem; ~ m,. From (47), [48),[(49), one gets

2,02 2,02 .2 2 2 2
P 7mdes 7m'u,=mc <<mW p - 2m
tan 2wy, ~ -3 72‘1 tan 26.., (61)
MS myy
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and so doeg,,, which, from [5b), becomes

2,022 ,.2 2 2 2
p amdfms 7mu7mc<<mw m 1
tan 2&47, ~ -3 —4 tan 26, (62)
MS m? 17 3 miy ’
w (_T +3ln 7)

2
since, foru? € [m%,m%), (—% +3n ”;—ZV) € [7,12].
So, whenmy ~ my, the mixing angled,;, is accordingly renormalized at 1-loop by the small quantity
2
war, + ar = %(tan 2wqr, + tan2&41) ~ 2—2;/ tan 20..

In the (u, ¢) sector,E,, = 0 = A 4+ u whenmy = mg and one gets

tan 2&, &~ —tan 2w, = —h4Auh =0, (63)

such that,,r, is not renormalized at all.

5.4 The Cabibbo matrix €(p?, . ..) still stays unitary

The expression foe(p?,...) is still given by (4D), but one must now accounts f¢r, # t‘iL since

Tt ) 1+t
cos(fc — wu + wa) | T sin(fe — wu + wa) | | T
A, # Aq. One gets now;, 'CyV,; = +r L
. 1+t p 1+t
—sin(fe — wy, + wq) T, cos(f. — wy + wq) 1+,
el . 1+td
ot cos(f. — wy, + wq) T, sin(f. — wy, + wyq) e .
and [(v;lcovd) ] = * - , which leads

- . 1+tiL 1+tciL
—sin(f, — wy + wq)y/ T, cos(0c — wy, + wq)4/ T,

to the same formuld (#1) as before fofp?, .. .), which is unitary. Accordingly, like in the absence of

Shabalin’s counterterms, the classical Cabibbo af\gtets renormalized at 1-loop by

(de + gdL)(ZDQ, mga mga m%n mg? m%/[/) - (wuL + guL)(pQ, mé, mg, m%p mza mIQ/V)

For more remarks concerning thé dependence, see append]x A.

6 Suppressing extra flavor changing neutral currents

The absence of flavor changing neutral currents is classicaplementedab initio in bare flavor space
by the canonical choice of the kinetic terms, proportiowathie unit matrix, and by that of th&€U (2),
1 1
generators which, in théu, c, d, s) basis, writeT® = % I A— , T =
-1

. The diagonality of thd? generator ensures that thé? gauge boson only couples, in both
1

(u,c) and(d, s) sectors, to diagonal fermionic currents: no FCNC occurssitally. That this property

is preserved in bare mass space is the essence of the GIM misoh#he closure of th8U (2), algebra
(B4) on the sam@&® as above is ensured by the unitarity of the classical Cabidinix Cy. The situation

is different at 1-loop since vertex corrections with an linté charged gauge boson induce non-diagonal
couplings of thd¥ 3 gauge field (see Fig. 1 left) and also, for example, the nagahals — d transition

of Fig. 2 inserted on one of the two external fermion legs ®¥3s5 vertex triggers: — 1-loop FCNC'’s

if one considers;? — d?c transitions, — their equivalent for mass states if one dmsj like we did,

59 — d° transitions (see Fig. 1 right).
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We have seen witi (#3), and this stays valid in the presen&habalin’'s counterterms, that, in the 1-

. So, after

NO[—=

loop mass basis, th&U/ (2);, algebra closes on the “canonic&@® = T3 =
-1

1-loop transitions of the type of Fig. 2, have been accoufdedne is back to a situation similar to the

classical one. 1-loop non-diagonal neutral gauge curimetsriggered by vertex corrections. As for the

second origin of FCNC, insertion of Fig. 2 on one of the exaétag of alW?f f vertex (Fig. 1 right),

it is important to recall, as was demonstrated[if} [10] (AgperB), that the introduction of Shabalin’s

counterterms do not modify transitions of the type— dW?3: the counterterms do cancel the non-

diagonal transitions on external legs, But+ dWW3 transitions are re-created with the same amplitude

through the covariant derivative that has to be used insielet

Is the situation strictly identical to the standard one? @&hswer is “not exactly”, and this is what we
investigate now. The issue is that of the existence of mdgsrgys, which are responsible for two facts:

* the slight non-unitarity of the connection between thehogonal set of 1-loop mass eigenstates and
bare mass (or flavor) states;

* that the two fermions concerned by 1-loop non-diagonabgitions (Fig. 2) cannot be both on mass-
shell, such that Shabalin’s counterterms can only restéoef orthogonality between one on mass-shell
fermion and a second one which is off mass-shell.

Since, by construction, 1-loop mass eigenstates as we ddtieen, by the diagonalization of the 1-
loop quadratic effective Lagrangian (kinetic + mass ternas¢ orthogonal, the non-unitarity of their
connection to bare mass states (and, thus, to bare flaves stitce the last two are unitarily connected)
makes FCNC still occur in bare flavor (or mass) space. Thimlly appears by transforming back the
W3 f coupling in the space of 1-loop mass states, that we em@ithgizbe “canonical” (proportional
to 7%), to bare flavor space. So, we face a situation where, becdijsaavoidable) mass splittings, the
standard situation in bare flavor space is spoiled.

We adopt a conservative point of view, require that the phmmmlogy should not differ from the standard
one, and therefore that these extra FCNC vanish or, at Ex@sstrongly damped.

6.1 When no counterterm is added

As soon as 1-loop transitions Fig. 2 are accounted for, treeftavor (or mass) states do not form anymore
an orthogonal set, such that requesting the absence of FE@Msibasis appears somewhat academic.
In spite of this, and since the principle of the method andchidae will keep valid when counterterms are
introduced, we proceed with this first case.

To that purpose, it is enough to use the relatipny (27) betvielop mass eigenstates and bare flavor

states (and its equivalent in tije, ¢) sector), which leads to the expressin] (28) for the 1-looxingi
matrix Cy. Neutral gauge currents in the space of 1-loop mass eigessiaing proportional t@*, their

expression in bare flavor space gets simply proportloné(lfgd)TC L= (¢, CT) 1 &) (CdOVdVTC ) ,
and a similar expression in tije, ¢) sector. From the expressidn [18))f, it is easy matter to getl(v is
defined in [B))

1 td, +tt
+L L, —t )T —2(0ar, + de)))

CaoVaViCly =
doVd d~do (1+tiL)(1+tdL)< + 2

44
= CaVaViCi)™ =~ (1+td,)(+ tciL)<1 - % + (=t ) Te(— 2(0ar + de))),
(64)

which makes FCNC's proportional to(t? —td ) sin 2(641, +wqr,) (the sine function corresponds to the
non-diagonal terms of, as it appears ||ﬁ(5)) and an equivalent expression ifxthg sector. According
to (64), in both the(d, s) and (u, c) sectors, their suppression requires thﬁtz — %Y sin 2(0yr,.ar, +
wyr,,41,) Vanishes or, at least, that it be as small as possible.
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e According to [T#), the equality af! ; andt? ; requires

cos 20, = —3 <Z;+Z + ZZ%Z) ~ -1 <Zi:$§ + Z;:Z;) This corresponds tpcos 26| > 1, which
can never be satisfied.

e FCNC'’s can accordingly only be suppresseduf;;, + 641) ~ 0 and an equivalent condition in the
(u, c) sector. As already mentioned in subsecfior} 2.3, wkr) are much closer to degeneracy that
(u,c), wqgr, = —0. such that the condition for FCNC suppression rewrftgs~ 6.. One also finds that
0.1, ~ —w, 1, becomes small (see subsectjor] 5.3). So, FCNC’s get suppdregen bare flavor and mass
states for the fermion pair which is the farthest from degatyeget close to alignment. No condition on

0. arises in this case.

6.2 Inthe presence of Shabalin’s counterterms

If bare flavor states were a set of truly orthogonal stateslabg, they could only be unitarily connected
with 1-loop mass eigenstates since the latter are consttad being orthogonal. Then, the absence of
FCNC would naturally translate from one basis to the othéat]Tinstead, non-unitarity persists even in
the presence of counterterms can be traced out in the eiqpre§) for),, to the relations[(19), and is
due tot}, #t,;.

Relations [[64) keep valid such that the discussion staysdtly the same as in subsectipn]6.1). Results
are different because the expressiongf has changed intg (#7); so has the formulatfowhich is now
given by (5D). Unlike previously, maximal mixing turns ootlie one of the two types of solutions that
arise.

o While, in the absence of counterterms, neithgr =ty north = t,; could be satisfied, in their

presence the first relation ng)w (;an be. According[td (50),etinaality oftg{L andt? ; requires both
cos 20, = —%,’:djz ~ —%% and (scce(hy — he) — Ag) = 0. This corresponds to a Cabibbo
angle close to maximal and, according fto] (48)pto= m?2 + m?2. At these values of,. andp?, the

R
2

1-loop kinetic terms for the d-type fermions become prdpodl to | 1 + ] I, making

wqr, undetermined. It can be in particular taken to vanish, sbah ticcording to[(54)4z, is then very
small.

In the (u,c) channel, sincgm, — m,) > (ms; — mgy), One can never havg; = t*; because this
would correspond tocos 26.| > 1. So, FCNC'’s can only be suppressed, theredfer= —w.,r.(p?,...).
Strictly speaking, sincé,, is a constant and, ;, a function ofp? and of the masses, the equality can only
take place at one value pf. However, since all dependence’s ghare always very weaKf,,;, + wr,)

will only deviate very little from zero whep? varies. Sincé—s.c.(hq— hs) — A,) is always very small,
the equivalent of[(47) entails that saus,, (p?, . . .), and, by the equivalent of (b4), sodsr (p?%, . . .).

The set(t‘}rL = t‘iL,euL = —uw,) constitutes the first possibility to suppress FCNC’s atdplo It
corresponds to a quasi-maximal Cabibbo angle, to séhall smallw,,,, to wgr, = 0 and to small,;,.
Accordingly, 8,7, is also quasi-maximal, and all angles get renormalized labgt-by small quantities,
which makes this solution perturbatively safe. Note thagesd,, ;, is small and stays so at 1-loop, this
corresponds to a quasi-alignment of flavor and mass stathe thannel with the largest mass splitting.

For the samd,. (close to maximal) but whep® £ m2 + m2, (scc.(hy — he) — Aq) stays very small
(see [(4B), [(49)). tan 2w,;, given by [4F) becomes infinite, which correspondsutg, maximal. The
FCNC's can be taken to vanish (neglecting a very weak depeedenp?) for 6;;, = —wqy,, Which is
then maximal, too (like in the previous case);, gets renormalized at 1-loop infQ;, +wqr, +&ar. = &ar
such thattan 2,7, (z) — mg—m ———, Which is very large. Sc5,;, becomes close to
2mgms Bg—(m3+m2) {aP=s)=Ad
maximal, too. This makes the classical and maxifgalrenormalized by a small amount, which however
results from the cancellation between two large angleshérid, ¢) channel, things are like previously:

smallf,;, = —w,r,, and smalk,, ..
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This case is thus similar to the previous one in the sensg/thas the same large valugy;, too, that
0.1, is small, and that all of them are renormalized at 1-loop bwlbauantities. However, that the
renormalization ofl4;, results from the cancellation between two large anglessdlse question whether
this situation is perturbatively safe. The answer is pesifor two reasons:

* a small variation inp? away from(m? + m?2), that is outside any of the two concerned mass-shells, is
not expected to change the nature of the perturbative series

* the 1-loop calculation that we performed in the bare masssb@an as well be done in the bare flavor
basis; since the two are related by a unitary transformaify, ), such a transformation cannot change
either the character of the perturbative series. Goingitifraghe same steps, one easily finds that gets
replaced by(wqr, + 041), Which is now very small. In the bare flavor basis, one finds tia maximal
041, still gets, of course, renormalized by a small amount, bigtribw results from the sum of two small
guantities, which is a perturbatively safe situation.

e Like in the absence of counterterms, from|(64), FCNC'’s can hk canceled when the two conditions,
respectivelyf ;, = —wqr(p?,...) in the (d, s) channel, and,;, = —w,r(p?, ...) in the (u, c) channel,
are satisfied (or very close to this, because of the very weglertence op?), without, now, any
relation connectindt?, — t4,) and6,.. Then, since, fop?,m? < m¥,, (sccc(hy — hq) — Ag) and
(scce(hg —hs) — Ay) are small, so arey,r, 4z, (p?, . ..) andé,r ar(p?, . . .). Accordingly,6,,;, andd,;, are
both small and renormalized at 1-loop by small quantitidsis Torresponds to a small, which is also
renormalized by a small quantity. This configuration is pdratively safe.

This discussion can be straightforwardly transposed tdegienic case.

In addition to stabilizing the 1-loop renormalization ofximg angles in the vicinity of degeneracy, the in-
troduction of Shabalin’s counterterms has been seen togisomaximal mixing (in one channel, accom-
panied with quasi-alignment in the other channel) as onb@fwo natural solutions to the suppression
of extra FCNC in the bare flavor basis. Maximal mixing canriay ghis role in their absence.

A delicate issue is of course to discriminate between thetypes of solutions, and to determine why
one or the other should be preferred. Singe are the eigenvalues of the 1-loop kinetic terms, the
equalityt,; = t_r corresponds to the case where, up to an overall renorm’ahz%i:i, they can
be re-diagonalized by a unitay (see [1B)); in the corresponding channel, which correspdadhe
fermionic pair the closest to degeneracy, the individuating matrix [CogVaR(£4)](p?, . ..) becomes
unitary, too (such that, in addition to the suppression oNECheutral gauge currents also satisfy the
property of universality). A quasi-maximal Cabibbo (or PEBN\angle corresponds to a minimization of
FCNC's, to the smallest possible deviation from unitarityhe individual mixing matrix in the channel
which is the closest to degeneracy, to a quasi-maximal il mixing in this same channel, and to
the quasi-alignment of flavor and mass eigenstates in ther otiannel. This situation corroborates a
common argumentation that mass and flavor eigenstates fecheptons coincidg L3].

In the quark sector, reversely, the distinction betweenvloetypes of fermions, both charged, and which,
furthermore, are not observed as patrticles, is less clégrs&cond solution to the suppression of FCNC's,
in which both mixing angles are small, and which treats the ¢hannels on an equal footing, looks then
more adapted to the situation.

Note that the landscape that we obtain in this work is similathe one present iff [10]. Two types of
solutions to the unitarization equation were uncoveredeththe so-called “Cabibbo-like” solutions, in
which no constraint occurred for the Cabibbo angle, and makinixing. The Cabibbo angle could then
only be constrained by additional assumption; it turned thre, that a suitable one was that universality
and the absence of FCNC were violated with the same strength.

7 The case of 3 generations

Our goal is now to generalize the previous calculations éxctse of 3 generations of fermions, asking in
particular that no extra (with respect to the “standard”mareenology) FCNC is present at 1-loop in the

21



basis of bare flavor states in the presence of Shabalin'sedarms.

A major difference with the case of two generations is, indhark sector, the presence of the heavy top
quarkm; ~ 2myy . This makes in particular invalid the approximation< my;, for all fermion masses
m, that we used in this case.

7.1 Conditions for suppressing extra FCNC (in the presencef@ounterterms)

Like in the case of two generations, extra FCNC will be absgettite (d, s,b) sector ifdeOVdelelo =
diag(a?, p,+%) diagonal. (not necessarily proportional to the unit matrixhereC,y, represents now
the 3 x 3 classical mixing matrix fo(d, s, b) quarks. Similar expressions occur in the ¢, t) sector and
for the two leptonic ones.
K, being the kinetic terms ofd, s, b) at 1-loop (eventually including Shabalin’s countertern{d) =
vV = K71, such thatk ;1 = ¢l diag(a?, 8%,7%) Cao. Now, Shabalin's counterterms are precisely
devised so as to (nearly, that is, up to a very weak dependen£® cancel non-diagonal terms i,
which originate from 1-loop transitions of the type depitia Fig. 2. Accordingly, in their presence,
K4, and thust*I, too, are practically diagonal. The condition for suppireg®xtra FCNC rewrites
accordinglyCl diag(a?, 3%, %) Cqo = diagonal. and we insist that it is only valid in the presence of
counterterms.
SinceCy is unitary, the condition rewritesil + C}, diag(0,u? = ¢ — a, v = % — a?) Cy diagonal.
The first term, proportional te?, being already diagonal, the condition applles to the seaamtri-
bution. Forgetting, as we always did, ab@uP violating phases, it is convenient to parametiizg =
1 0 O c§l3 0 5‘113 cdy 58, 0
RosRizRi2, WithRoz = | 0 4y sdy | Riz= 01 0 [:Riz| —st ¢ 0 [,
0 —sds i, -5l 0 0 01
to search for eventual solutions different frarfi = 3¢ = ¢ (u? = 0 = v%). Equating to zero the 3
non-diagonal entries of the symmetric maigi, diag(a?, 5%, ~%) Cqo yields the 3 equations:

(Ud + Ud) 5(1120?2(0(113)2 = (Ud - Ud) [—3(113 sin 2953 Cos 29?2 - 5(1120%2 cos 2953(1 + (5?3)2)] ;  (65q)

(u? 4+ v?) dysdscly = (u? —v?) ¢y [6%28%3 cos 209, — 59y sin 2933} ; (65b)

(u? +v?) stysizels = (u? — o) {3(1123(113 cos 2033 + cf sin 2933} ) (65c)

that we now solve.
First make the ratio of[(6bb) and (65c). Fef;cl; # 0 andcfy # 0, it yields f%
12

d
012313 cos 2923 312 sin 2923

s‘fsctfsﬂ]ﬂ(lis#o

= sin20%; = 0= 04, = 0 or Z.

sf2 sz cos 2923+012 sin 29

For64, = 0 (68) become

d, dy.d d/.d d dy.d d d
(u” + v )512012(013)2 = —(u” —v%) s7ycir (1 + (513)2)§ (66a)
(u? +v?) ey sfsels = (ut — v?) cfysfscts; (66b)
(u? + v?) sfysfsetly = (u? — v?) styslscfs. (66¢)

Sinces{scdy # 0, (B6I) and [(6dc) demand® = 0 which, plugged into[(66a), yielddu?s{,ci, = 0,

requiring eithern? = 0 or [sdycdy = 0= 0%, = 0or 0, = Z].
Forf4, = Z (63) become

(u? + v?) sfycly(cfs)? = (u? — v?) sfyely (1 + (s5)?); (67a)
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d , dy.d .d d d_dy.d .d d
(u + %) cfas73¢13 = —(u” — %) c9575¢03; (67b)

(u? +v7) stysfaels = —(u? = v?) sfysisets. (67¢)
Sinces{yciy # 0, (67H) and [[67c) demand’ = 0 which, plugged into[(67a), yield&v sy cd, = 0,

requmng eithen? = 0 or [s{yc12 = 0 = 69, = 0 or 09, = Z].

4, = 0is a trivial solution of [65p) and@bc)@Sa) becomes, then

(u? — v?) [sin 2045 cos 260¢, + sin 20¢, cos 20%;] = 0 = 0¢, = —0%; + 2F or u = v.
Fors{, =0, .) and[(69c) entail agajrin 20%; = 0 = 04, = 0 or 923 = 2], oru? = v, while (65%)
becomegu? + v?)sfycty = —(ud — vd)sggcgg cos 204,. Foru? = v? this requiresx‘)il2 =0or %, for

023 = 0, this requires eithea? = 0 or [#¢, = 0 or 2] and, fora23 = Z, this requires eithes? = 0 or
[0, =0 or 3)-

To summarize, the solutions to the suppression of FCNC abft-in bare flavor space are the following:

wl = 0=t (& af = = 5);

(a)
(b) 0, = 0 = 04, = 6%, . general mass-flavor alignment (trivial solution)

™
(c) 613 9127 923 =9

™

(@ efgzo R

™
(e) 913 =0= 9235 912 9

nm
(f) 913: 5,923: 9?24_7’
(g) 0 g,ud :,Ud (<:> ﬁd_’}/d),
(h) 0 _0:933’1)d:0(<:> Oédzlyd)a
(@) 0 :0’933:gaud=0(<:>ad:ﬁd),
(7) 0y = 0 = 0y, u = v (& 87 = +);
(k) 0 25’923_0’2} :0(<:>Oéd: d)’
O =T et = 0(eat= Y,
™

)+ O S =0t (o =)
(n) 933 :0:9g3,ud20(<:> ad—ﬁd)7
) 0% = 5,01 = 00" = 0 (& a’ = 7). (68)

Note thatf13 = 0 = 63 is a solution of [(§5) included in (g). These solutions cquoesl to the following
Cao’s:

1 0 0 010 0 10
(a) at=pi=r" any; D)=L )= 0 0o 1 |: =001 ]:E—=| =10 0
0 -1 0 100 0 01

0 0 1 0 0 1 00 1 0 0
OS] 1 0 o |@ o o |@ 100505 e
0 -1 0 1 0 0 010 —fyr03 —5%103

Cil:s 0 5?3 0 0‘113 5(113

W R )T sty 0y | OTF R T 1 0 o

0 -1 0 0 —sty o
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@)

d d d d
0 cf35 503 0 1 O cfy 81 0

d_pd Bd—ryd d_pd d_.d
0 —sdy oy [ m) S —d 0 osdy | ()T R (0" ] 0 0 1
1 0 0 sds 0 gy sdy —cfy, 0

(69)

Similar formulee are obtained in the, ¢, t) sector. The relevant parameters will be then given a super-
script “u” instead of ‘d".

We see that the configurations that suppress FCNC are dedduip two possible sets of conditions:
the ones which concern thé, s, d) mixing angles&;fj, fixing the mass-flavor relations in this channel
(partial or total alignmengtc), and the ones concerning’, 3¢, 7% which establish connections between
the masses (fermionsl/, 1) and the CKM angle$;;, . Solution (a) is of the second type; (b), (c), (d),

(e), (f) are of the first type; all others are mixed.

The physical mixing patterns that are observed exhibitdufitton to approximate alignment as one goes
up the generations, some peculiar values of some of CKM andléis is why we shall focus in the
following on the solutions that possibly constrain thedgite. (a) and (g) to (0).

The conditions of the second type may not be possible toaehihe first task is accordingly to scruti-
nize the conditionsx = 3, 8 = 7, « = ~ in both channels(d, s,b) and(u, ¢, t), and to select the ones
that can be fulfilled. If, for example, in thl, s, b) channel, onlyr? = 3¢ can be achieved, one has to
choose among the 7 solutions (b), (c), (d), (e), (), (i),(@). The first four are very constrained solutions.
For (b), there is total mass-flavour alignment in this sedtor (c), (d) and (e), the 3 angles in thé s, b)
sector are either vanishing of equaljoFor (f), 9f3 = 5 while the sum of the 2 other angles is a multiple
of Z. In (i) and (1), 8, anddg, are constrained, respectively(®r Z and toZ, leavingd{, free, while in
(n), 6%, andpg, are both constrained @ while 6%, is left free.

Still with the example of théd, s, b) channel, the conditions? = 8¢, 3¢ = 44, a4 = 42 write respec-
tively

A@+A;::A;+Ag
Ass =+ Ags = "4[:57 + Agb’
AL+ AL = Ay + A, (70)

in which, like in subsectiofi 2.245 and.A?% denote the 1-loop amplitudes for the diagonal transition
i — i mediated respectively by’ and W3,

It is simple matter, using the unitarity &f, to get

A = ALy = S(hi— ) (71)
AZ = [Vaal(hu — he) + [Vea*(he — hy),
-Asﬂ,:s = |VUS|2(hu—ht)+|VCS|2(hc_ht),
AE;, = |Vip)*(hu = he) + Vi |* (he — ha),
A, = |Vaal?(ha — ) + [Vas|* (hs — ),
Az = |Veal*(ha — he) + [Ves|* (hs — ha),
AL = [Vial*(ha — he) + [Vis[*(hs — hp). (72)

The 6 non-trivial conditions (3 in thé&l, s,b) sector and 3 in théu, ¢, t) sector) that we need consider
write accordingly
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ot =p": (hd — hs) + (Vadl® = [Vaus*) (= he) + ([Veal® = [Ves[*) (he — he) =0, (73a)
B =" = S (s = )+ (Vaol? = Vo) (= ) + (Vesl? = [VaP)he — ) =0, (730)
at =q": %(hd — hy) + ([Vaal® = Vi) (s = he) + ([Veal® = [Ves|*) (e — he) = 0, (73c)
0 = 5+ L~ he) - (Vial® — Veal)(ha — o) + (Vasl? = [Veol2) (s — ) =0, (730)
5= e = ha) + (Veal? = [Vial)(ha = ha) + (Vo = Vi) (ks — ) =0, (73)

1
at =47 5 (P = he) + (IVaal® = [Veal*) (ha = ho) + (Vas|* = [Vis[*) (hs — 1) = 0. (73f)

The 6 equationg (73) include only 2 pairs of independent itiond ([73h) H73a)$(7Bc)[(7Bd)f(13e)=(73f)).

The particular case of 2 generations, that we studied befoeasily recovered. One has, théi, > =
= |Ves|?, [Vaus|? = 82 = |Vea|?. ([73) shrinks to
a' =" s (hg — hs) + (Cz )(hu —he) = 0,

(hu = he) + (cz = 52)(ha = hs) = 0, (74)

N Do —

al=p7:

of which only the first can be realized, leading to a large $@ua@aximal) Cabibbo angle, and leaving
mass-flavor alignment as the only possibility in thec) sector.

7.2 Coping with the top quark: analytic expressions for(h; — h;)

The approximate expression @f; —h; ) for m2, mj,p < mW is given by [1B). Itis valid for, d, s, ¢, b
quarks, all leptons, but it is not valid when the top quarkrigolved. In this case an approximate
expression fokh; — h;) can still be obtained fron{ (L2), which is valid for for?, p? < mW, and keeps
exact in the top quark mass dependenge

2 3 m3 m2 17 3. m?
hi —hy =~ gz <———IDM—W+mZ <—_+§lnlu—w>+tterms>a

tterms ~

3mi, Tg%,—m? m¥, ) m¥, —m? )
m%,lnTEV—mglnu—; 1 m? mf‘,vlnu—‘é" mi In &
+2 2 2 -5 |2+ 2 2 2\2
myy, —my 2 myy (;”W - mg) ,
m
m 1 _ Lmiy —Tmdym? + 2mf miy In =3 + (=3mimyy + 3mimf, —mf)In 7F
m3, (m?, —m3?)? 6 m3, —m3
(75)
Whenm; becomes larger and large,,... scale like
2 2
> m 7 1. m
tterms " NmW t (12 5 In M_2t> ‘ (76)

In practice, according t¢ (JV3), one nedds — h;) and(h. — hy).
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7.3 Solving the constraints for 3 generations of quarks

The CKM matrix we parametrize as

Vud Vus Vub
V=1 Vi Ves Va
Via Vis Vi
such that
|Vud|22_ |VUS|2
|‘/ch|2 - |‘/;s|2
‘VUS‘ - ‘Vub’
Vudl® = Vi |?
Vesl* — [Ves|?
Vadl® = |Vl
‘VuS‘Z - ‘VCSP
Veal” = |V |?
Veal* = [Vial®
Ves|* = [Vis|?
Vadl* = [Vial?
’Vus,z - ’Wé"z

C12€13 $12€13 size”’
— i 6
= | —s12¢23 — c12823813 €0 C12023 — S12823513 € Sa3c1z | o
i i
$12823 — C12C23813 €' —C12823 — S12€23813 €0 €23C13
(77)
= 0%3 cos 2619;
= oS 2912(—053 + 5%3533) + sin 2619 sin 2093513 cos 0;
2.2 2
= 512013 = S135
= (12613 — 513; )
2 2 2 2 2 2 . .
= C{9Ch3 + S33(—Cl3 + ST9ST3) — 5 sin 2019 sin 26023513 cos J;
1. .
= y(By — 5335%3) — s29cas — 5 Sin 2019 sin 2653513 cos 0;
1
2 (2 2 2 2 2 . .
= sia(cl3 — S53873) — ClaChs + 5 Sin 2015 sin 2653513 cos 0;
1
2 2 2 (2 2 2 . .
= s79C53 + s53(c1as13 — €13) + 5 Sin 2019 sin 2653513 cos 0;
= €05 2093(5%9 — Clgs533) + sin 26015 sin 2693513 oS J;
= €05 2093(cy — 579575) — sin 26015 sin 2693513 oS J;
2 (2 2 2 2 .2 . . '
= clo(Cls — C33873) — S12853 + 5 sin 26012 sin 2023513 cos ;
= s%(ch; — C335%3) — Clysag — 3 sin 2619 sin 2023513 cos 9. (78)

The constraintg (73) become (we remind that,,s is given in (75))
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2mW

1m§—m

17 3 2
4 2 p?
2 2 17 3

3 m m m?
—0%3 COS 2912 |:<—§ —1In —ZV + m2u <_Z + 5 In M—ZV> + tterms>:|
w

“

— [cos 2912(—033 + 8%3833) + sin 2615 sin 2053513 cos 5]

1m

2mW

—(3%20%3 -

2

2
u u,lmd

2 2

2 2
s my

ﬂu:7u 5 D)

2
_mb

3 m? 2 17 3. m?
[(———ln—g/—i— TnQC <__+_IHM—ZV> +tterms>]§

miy 4 2
(79a)

3 m¥,  m?2 17 3. m?
st (5w (-7 + 305 )|

W

1. .
C39C3s + s35(—Chgy + s395%5) — 5 Sin 2012 sin 2023513 cos &

3 m? m?2 17 3. m?
___ln—g/+ 26 __‘{'_ln—gv + tterms )
2 7 miy 4 2 7

(79b)
17 3 m%,v
<—z+51“7>—



3 my  omi (17 3. mi
w
1
— |s3yc35 + 553(9s73 — c13) + 2 sin 2614 sin 2053513 cos 5}

3 m? m? 17 3. m?
___ln—gv‘{' 20 __+_1n_gv + tterms ;
miy 4 2 5

2 7
(79c)
d_ pd L, o 2 2 2\ | 2 (.2 2 .2 2 o 1. .
ot =p% §(m“ —mZ) = —(m3—m3) |cla(cls — S53513) — STaCa3 — 5 sin 2019 sin 2053513 cos 0
1
—(m? —m2) [3%2 (33 — 833573) — ooy + 3 sin 2619 sin 26093513 cos 5] ; (79d)

1 2 2 1 2
ﬁd:fyd [ |:<_§_1nm—gv—|— Me (— 7+glnm—‘§/> +tterms>:| =

2 \ 2 , uw m%/v , 4 uw
— 17 3

_my - my, (__ +—=1In m_g[,> [cos 2093 (535 — 395%3) + sin 2015 sin 2093513 cos 5]
miy 4 2
2 2 2

- —— 4+ —-In—2~ 5 20 - — sin 2019 sin 20 50| ;
m%v < 1 + 5 n 2 [cos 23(Cly — S79873) — sin 2612 sin 2623513 cos },

(79e)
1 3 my,  m2 17 3. m?
d__ d . w w _
=t s g | (- (T g ) ) -

2 2 2

mg—my (17T 3. My \ |2 9 o o 2 2 , 1. :

-t 0 _— 4 —ln— - - = sin 204 sin 20 50
m%/v ( 1 + 510 2 c1o(Cls — C53573) — S19553 + 5 510 2612 5in 2633513 cos
2 2 2
— 17 3 1

_my i my <_Z 2 In m_g/> [5%2(0%3 — (335%3) — CPys2s — 3 sin 2619 sin 2023513 cos 6] .
myy

(79f)

Notice that [79(d) is the only equation which is not influenbgdhe large mass of the top quark.
Forfa; = 0 = 613, [79%) reduces t§(m? — m2) = (m? — m2) cos 2012, which is the constraint on the
Cabibbo angle when 2 generations only are present (the fiesfso [7#)).

Once the masses of the fermions, the one ofifhegauge boson, and the renormalization sgalgre
fixed, they constitute a system of 4 equations for the 4 CKMestj,, 623, 013 andsd.

Some simplifications can be performed. First, even in trgelamtervaly € [100 M eV, my |, thetierms

2 2
largely dominate ovei%: <—1I7 + %ln ”;—EV> at least by a factot000. The latter can thus always be

neglected. The sang.,.,,s dominate ovein ’Z—%V by at least a factor 3, and ovérby at least a factoé.

It is accordingly a reasonable approximation to only comsttieir contribution inside the corresponding
[ ] brackets. Secondly, it is also reasonable to neglegt< m7, m? < mi, m? < m? and, even,
m?l < m2. The system[(79) then simplifies to

2 2
17 3
my (__ 4 3 In m—‘;V> ~ 2tierms <(c%3 — 033 + 3333%3) cos 26015 + 513 sin 2015 sin 2053 cos 5);
L

m%,[, 4
(80a)
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2 2
m 17 3. m
g =" b < + 2 In M—I;V> ~ 2tterms (8%20%3 — 815 + CTyCh3 + s33(—cls + s19515)

m%/v 4
1
— 5813 sin 2619 sin 2693 cos 5) ; (80b)
2 2
m 17 3. m
at =" —2b (‘Z + ) In —2[1) ~ 2tterms (0%20%3 — 513 + $TaC33 + s3(clasTs — i3)
miyy 1
1
—1—5 sin 26019 sin 2693513 cos 5) ; (80c)
od =51 . m2ax -2 <m§ [cos 2012 (033 + 2y — 3333%3) — 513 sin 261 sin 26023 cos 5]
1
+m3 [S%Q(C%g — §335%5) — Ca9C3s + 5 513 sin 261 sin 2693 cos 6} ) ; (80d)
2 2
m 17 3. m
gl = 7d D terms N Zﬁ <_Z + 3 In M—ZV> 0%3 cos 2093; (80e)
d d . ~ mp 17 3 my 2 2 2 2
a® =" 1 terms N 2% 17153 In 2 (cfs — s13 — 553¢13) - (80f)

It is important to stress that the system](80) is only appnate, while [79) is exact; this why, in
particular, while the simultaneous fulfillment df (79b) af®¢) (resp. [(79e) and (79f)) entails that of
(79%) (resp.[(79d)), the same does not occur(for] (80b)] @d)80R) (resp| (8Pe), ($0f) ar{d (BOd)) .

As a short numerical calculation showg, (80e) can never tisfisd, because it would correspond to
|25 cos 2023] > 300 (still for p € [100 MeV, my/]). The same argumentation shows tHat|(80f) cannot be
satisfied either. So, in thel, s, b) sector, onlyn® = 37 can eventually be satisfied and solutions (b), (c),
(d), (e), (), (), (), (n) are the only ones that should besidered.

Summing [80b) and (8Pc) yields a constraint which does radtiéed; 5 nor 4:

1 m? ( 17 3 m%[,> 5 5
—2 (== + In—% ) =3c55(1 + s33) — 1, 81
trorms m%/v 4 2 Iug 13( 23) (81)

such that the quantityc?, (1 + s35) — 1 must be a small number, the modulus of which does not exceed
1.51073. The condition) < s3, < 1 entails

1 10 0,Z
5 < 3y < 3 05 550 < g, < 6. (82)

which is not compatible with the observed valuglof in the CKM matrix. (80p) and (8pc) are not either
individually compatible with the observed values of the Clalgles. Indeed, plugging in these values,
their r.h.s. come close ®%;.,,,s, Which is much larger than their I.h.s.

2
Let us now consider[ (8pa) anfl (80d). Since, forc [100 MeV, mw], ;L”%i <_% + %m’”f;_gv) <
2tterms, (BOR) rewrites

ot = g% (533 — 5%3 + 5538%3) cos 26012 + s13 sin 2019 sin 2053 cos § = 0, (83)
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which is presumably only trustable fér= 0 since we did not introduce any P-violating phase in the
partial rotationsR s, Ra3, R13.

In case [(80a) and (8Pd) are simultaneously satisfied, editinig theC P-violating phase’ between the
two of them yields

mg ~ =2 <2 m3ciy cos 2019 + mj [3%2(0%3 — $33573) — ClaChy — % (cis — c33 + s33573) cos 2912]

(84)
from which one deduces that very small valueggfand6, s, like observed in the quark sector, are only
compatible with9,, quasi-maximalicos 265 ~ W (012 =~ 44°), which is not the observed value
(A12 =~ 13°) of the Cabibbo angle. Consequently, a rather small Cakdloigée can only be achieved if at
least one among the two anglég andf,3 is not very small. As we saw by summm@Ob) ahd]80c),
this must be the case 6f;. From (81) and[(84), one gets, after neglectngn— < b

4 m2 4
5%3 ~ gc%Q + 2—7752 R 56%2 +4.51072, (85)
b

which entails in particulas3; > 4.51072 = 693 > 12° andc?, < 2 = 0y > 30°.
To summarize, the only equations that can eventually belgimeously satisfied arg (73a) fo (f3d). They

lead to CKM angles which are not the ones observed in the qgetor, and which are all fairly large
(exceptfyz which can go as low ak°).

There are of course other possibilities, which are to bedddir among the solutions (a) to (0) in each
of the two sectorsd, s,b) and(u, c, t).
It is appropriate to consider solution (b) which means dlabass-flavor alignment, in one of the two
sectors, first, for exampleu, ¢, t). The only left over constraint from the demanded suppressie@xtra
FCNC is accordingly[(80d), which correspondsatb= 3¢ (we recall that[(8Qe) and (§0f) can never be
satisfied). Only solutions (b), (c), (d), (e), (f), (i), ((n) are thus to be considered. They apply to mixing
angles of the(d, s,b) sector, but these can be identified with CKM angle due to tfgnaent in the
u-type sector. (b) corresponds to global mass-flavor alegnrin the(d, s, b) sector, too. (c), (d), (e), (f)
correspond to the CKM matrices represented i (69). Thesr of6 special interest, mixing angles being
0or 3. (i), with 012 = 0,023 = 7, yieldscos 203 ~ —2”1—32 which is impossible because itis 1. (1),

2

with 615 = 5 = 3, corresponds toos 2653 = — ) ULE T very small, such that, 5 is close to maximal.
(n), with 813 = 0 = 643, corresponds toos 265 = —Q(mié) such that);, is close to maximal.

Let us then choose global mass-flavor alignment in(the, b) sector. Only [(73a),[(78b) anfl (73c) can
then be considered as eventual constraints to suppreasF&MC, and we shall consider them o 0,
neglectingC P-violation effects. If the 3 of them are realized, we haveadly seen that, s will be large

55° < 613 < 66°. Since this is in contradiction with observation, we haveetax at least one of the three
constraints. Since they are not independent, at least Zaf thust be relaxed, otherwise the 3rd would
be automatically satisfied. Keeping onfy (¥3b) or offly | 78ahnot accommodate for very sméf and

623 (see [6B)), such that, if one looks for solutions close tdityedt looks appropriate to relax both of
them and only keefd (7Ba), associated with the constedint 3“. Among the solutions associated with
the latter, (n) (see[(p8)) is specially worth investigatimerause the exact suppression of extra FCNC
corresponds then to vanishiiigs andé;s. In this case, as we already mentiondd, |(79a) reduces to the

2_ 2
2-generation constrairbs 26,5 = 1 4 2 , Which corresponds to a Cabibbo angle close to maximal. A
not fully complete suppression can be thought to possibtp@enodate for small values 683 andé; 3.
Instead of working on the approximate systén] (80), let useratonsider the exact one 79) and, more
specifically, [79a) in a realistic situation whég, andé,3 are not strictly vanishing but only very small.
Solution (n) is not, then, exactly satisfied at 1-loop, butoitild be at higher orders. More precisely, let
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us determine which values 6f, are compatible with[(79a) and realistic valuesdof and ;5. ([793)
rewrites (for§ = 0)

1m2—m2 m?2—m?
5 d2 5 — 5" cos 201y
myy, myy, , ,
ms . ) 5 ms 9 5\ Mm&
—— sin 26093513 sin 2619 + <313m—2 — s53(1 + 513)m2 cos 2619
w w w

+ <(s%3 — 533 — 515593 c0S 2015 — sin 2093513 sin 2912) T (mg, mw, 1),

2 2
B 1m™w o™ (71,
_5 —In 2 12 Y+ tierms my>my 2 In u? + 2 < 2 In )

mi, W
Tome, muy s 1) = 17 | 37, ™ 17 | 37, ™
— =L 2 —W 2l 2 W
1 T 5In e 7 T5In e

(86)

The expression fot;.,s is given in (7b) and its behaviour as; grows, which we used in the r.h.s. of
(B9), has been given i (76).

The prediction for 2 generations is obtained by putting thesr of (8p) to0, that is, for example, by
settin9323 =0 = s13.

The modulus off” is larger tharl.45 as soon ag > 10 MeV, while = c ~ 3.510~*. So, we can neglect
W

2—26523513 sin 2912 with respect t®7Tso3513 sin 201 is the r.h.s. of[(86). As for the terms proportional

t0 cos 2019, 553573 £ < s355%,T, such that[(§6) can be approximated by

1m2—m2 m2—m? s2am?2 — s2.m?
S 5 — ——5—c0s 2012 = MCOS 2012
2 myy miy my,
2 2 2 2 . .
+ <(313 — S53 — S73S53) €08 2019 — sin 203513 sin 2912>T(mt, mw,u).  (87)

The vanishing of the I.h.s. of (87) is the condition for noraXtCNC for 2 generations only (sde](74)).
Its modulus is always smaller thaﬁz— So is the modulus of the first term in the r.h.s. [of| (87). At the

opposite, the modulus df is, as we mentloned larger tham5 for u > 10 MeV. Accordingly, the
coefficient of " in (B7) should be very small, which writes

1m ma—my _ me(sgy)—mi(hsly) (oc9g.
) ) 5 o ) . mi, my, —4
S13—853—S513553) COS 2019 —sin 2093513 sin 2012 | ~ =210 <L
|( 13523 —513523) 12 23513 12‘ T (mye, mw, 1) -
(88)

There are two ways to consider the relatipr] (88):

* the first is to directly plug in the experimental values fer and s;3 and see whether they corre-
spond to a suitable value of the Cabibbo arjle Experimentallyd,s ~ 13°, s13 ~ Vi ~ 4.11073,
s93 &~ Vi &~ 421073, such that the I.h.s. of (B8) is found approximately equal.5al0~3 instead of a
few 10~%. The agreement is far from being good;

* egs. (7p) and[(86) show that the I.h.s. [pf|(88) scales, whegets larger and larger, like,

2
c

m3(1+ Ao In %)
and goes accordingly @ when the hlerarch%— increases. Whem; gets very largen; > myy, the
CKM angles must therefore satisfy the condition

m

2 2 2 2
S7a — S50 — 8738
tan 20y ~ 3723 13723 (89)
$13 sin 26053

If one plugs in [89) the observed valueséf and 6,3, one finds that this corresponds g, ~ 38°.
Reciprocally, plugging in a realistic valugan26,2| ~ 1 for the Cabibbo angle, one getss ~
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@ tan 693 =~ .618tan A23. Though the precise values disagree with experiment, thgghg as ob-
servedfis < fa3.

As we show now, a very heavy top quark tends to drag the valtieed€abibbo angle down from quasi-
maximal (which is the prediction for 2 generations) to a demalalue. For that purpose, let us perform
the same study assuming now that < myy, only, for example, slightly heavier than the bottom quark.
Instead of the systenj (79), eds.](73) now yield

1
at =p" §(m§ —m?2) = —c25 cos 2019(m?% — m?)
— [cos 2019(—C35 + 533533) + sin 2015 sin 2093513 cos 4] (m2 — m2); (90a)
Lo 9 2 2 2 2 2 2
pr =" §(ms —mj) = —(s1¢13 — 513) (My, — 7))
1
— {0%2033 + 823 (—C35 + 5%5573) — 3 sin 2615 sin 2093513 cos 5} (m? —m?); (90b)
1
at =A% §(m§ —mj) = —(cyets — st3)(mi; — my)
1
- {3%2%3 + 833(C3gs%y — c25) + 3 sin 2619 sin 2693513 cos 5] (m?% —m?); (90c)
1 1. .
ot =pt E(mi —m?) = — [0%2(0%3 — §335%5) — 839Chg — 5 Sin 2019 sin 2653513 cos 6] (m2 —m?)
1
— [8%2(6%3 — §335%) — CooC3s + 5 sin 261 sin 26093813 cos 5} (m? — m3); (90d)
1
pgl=~2 . §(mg —m?) = — [cos 2023 (535 — 395%3) + sin 2015 sin 2093513 cos 4 (m2 —m3)
— [cos 2093(c2y — 539575) — sin 2015 sin 2093513 cos J] (m? —m2); (90e)
1 1. .
ad =4 §(m3 —m?) = — | Ey(cly — By573) — 579555 + 5 Sin 2019 sin 2623513 cos 6] (m3 —m3)
1
— [3%2(0%3 — (335%3) — (29535 — 3 sin 26012 sin 2693513 cos 5} (m? —m2). (90f)

Neglectingmg < ms, ms < mypy, mg < mp, my <K me, my, < my and supposing also that, < my,
(BO&) approximates to

%(m?l —m?2) — (m? —m?2) cos 2015 = m? | (—515¢3 + 553) cOS 2019 + s135in 2093 8in 26012 |;  (91)
the sum of [[90b) and (9Pc) yields ,
Z—g ~ 1= 3ciychs; (92)
Eq. (90¢) becomes ,
O - (93)

N ,
m; 2 cf3cos 2023

and {90f)

2
S S U SRR SR o
m% 2 0%3033 — 573 2 cos 2013 — 3330%3



Egs. (9B) and[(34) can only be simultaneously verified?if ~ 1, such that);3 ~ 0. Plugging this
result into [9p) requires?; ~ % ( - Z—%) This entailsfz; > arccos o= ~ 54°. Then, [9]1) yields
$(m% — m2) = cos 20;2 [(mg —m2) 4+ m? (% + %)} Because of the term proportional #e?, the
corresponding modulus @bs 2615 gets accordingly smaller than for 2 generations; this epoads to

a larger Cabibbo angle, thus still closer to maximal. Thithé&sopposite of what happens when the top
guark gets much heavier than tHé. So, as announced, by going across the electroweak scadgetimnd)
more and more massive, the top quark shifts down the moddiline d.-loop Cabibbo angle with respect

to the 2-generation case.

7.4 Solving the constraints for 3 generations of leptons

The case that we just investigated, when all fermion masse3 lenerations stand below the scale
corresponds priori to the leptonic sector. There, while one knows that< m,, < m., our knowledge
about the neutrino messes essentially concerns the exsr@ness of their differencels J1H[7].

This is why all 3 equations] (90a),_(90b) arjd (90c), in whicé differences of neutrino mass squared
occurring in the r.h.s.’s are always much smaller than thres arfi charged leptons occurring in the l.h.s.’s,
can never be satisfied. This leaves only (b), (c), (d), (e)@nak possible solutions of (68) for charged

leptons. (b) corresponds to general mass-flavor alignnre(tt) and (e), 1 flavor state is aligned with the

corresponding mass state, while exact swapping, 2 by 2re¢outhe remaining 4 states; for example,,

for (C), ey = em, iy = T, Tr = —pm; in (d) and (f), the 6 states are swapped 2 by 2, with no aligrime

for any pair. This corroborates the common, but never detrettesl statement, that charged leptons do
not oscillate [13].

As for equations[(9Qd),[(90e) anf (00f), the extreme smsdire their I.h.s.’s forces their r.h.s.’s to be
practically vanishing.[(9De) anfl (POf) become respedtivel
m2cls cos 2093 ~ 0 (95)
and
2 2 2y _
mZ(cos 26013 — s33¢13) = 0. (96)

Excluding;3 = £3, (08) yieldscos 26235 = 0 = 623 maximal=- c3; = 1 = s3,; when plugged into
(B9). this entailsan? 615 = ¢33 = 3 = 613 ~ £35°. One hass;3 ~ +.577,c13 ~ .816. When the
numerical values of3, andc3, are plugged in[(90d), it becomes

1 1 1.
{6%2 <C%3 - 55%3 - 55%2 — 5sin 2019813 cos 6} (m? — mi)
1 1 1
+ |:S%2 <C%3 - 50%) + 55%2 ~ 3 sin 2612513 cos 5] (mz —m?2) =0. (97)

. . . . 5=0
Neglectingm,. < m,, m, < m., the approximate solution of (97) writésn ;, ~ — 2513050 "y

30%3
F.577 = |012] = 30°.
The values that we have found féy, andf,3 are very close to the experimental values. We furthermore
predict|f;3| ~ 35°, which is still to be measured in future experiments.

Before concluding on the neutrino sector, and in relatioinwie common prejudice théts is small, let
us check that no other solution amoifig] (68) can accommodateit a small angle. The only one that
could eventually fit is (0). Then, the equivalent [of {90f) tesi (takingfas = Z, 613 ~ 0)

1
L2 = m2) ~ (- sh)(md, —md,). (%8)

which, due to the strong hierarcliy:2 — mg2) > (m;, —m;, ), has no solution.
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8 Outlook

We have paid in this study special attention to 1-loop tténss and to their role in fermionic mixing.
They spoil the diagonality of kinetic terms which must bestficast back into their canonical form before
the mass matrix is re-diagonalized and orthogonal massstaes suitably determined.

Afirst property that we encountered is that, for non-degaeesystems, bare mass states and 1-loop mass
states are non-unitarily related.

A second property is that the 1-loop mixing mateig?) occurring in charged currents (Cabibbo, PMNS
...) stays unitary aP(g?).

The third point concerns the 1-loop value of the CKM anglag] their equivalent for leptons. The
classical standard model does not provide any hint thatideeip connecting masses and mixing angles.
Therefore, most investigations have concerned speciaitates or textures of classical mass matrices
that could eventually be explained by subtle and broken sgtmes, the origin of which being itself lying
presumably “beyond the standard mod¢l"| [15]. To make it sttbere are more free parameters than
masses and mixing angles in the classical standard modkegranis looking for constraints that reduce
their number, so as to, ultimately, put masses and mixingn@to-one correspondence.

The classical SM is like a smooth polished sphere and it iemely hard to find a defect or asperity to
break in and put it in jeopardy. The diagonalization of diz@lamass matrix by bi-unitary transformations
is perfectly adequate and kinetic terms keep unchangeeé ey are chosen from the beginning to be
proportional to the unit matrix. Through the covariant dative, this form of the kinetic terms dictates
that of gauge currents, in particular neutral currents,wibich FCNC can only occur at 1-loop with
the so-called “Cabibbo suppression”, “unfortunately”weuccessful, too. The last cornerstone which
bears this elegant construction is the unitarity of the Gladi( CKM) matrix, which ensures, in bare mass
space, the closure of theU(2),, algebra, when embedded §U (2ns) (n is the number of flavors),
on a diagonall™® generator, in which both; x n sub-blocks are proportional to the unit matrix. The
grain of salt that may grip this beautiful machinery is, feaample, if kinetic terms are no longer diagonal.
Through gauge invariance and the covariant derivativetrakgauge currents are then no longer diagonal
either: extra FCNC have been generated, which we know ismeily dangerous because these are very
constrained by experiments. Now, experiments concernigdiystates, which are defined at the poles of
the full propagator. Since for them the standard CKM phenwiwgy is perfectly successful, we think
rather unlikely that “something goes wrong” in this spaceetti®g, there, a suitabléU(2);, algebra
which closes on “good old diagon@P” is therefore a suitable goal to achieve. This goes, for gtam
with a unitary renormalized CKM matrix. Then, where can ¢isrgo “wrong”? If not in physical mass
space, maybe in bare mass or flavor space, the two of them beitagy related. Classically, physical
and bare mass spaces are identical. But they are not at 1Hxtqa FCNC can be generated in bare mass
space if they are no longer unitarily related with physidates. Since physical states are constructed
to be orthogonal (one diagonalizes the renormalized gtiadragrangian), a non-unitary relation with
bare mass states can only occur if the latter are non-orttage. if there exists non-diagonal transitions
among them. This is the point that we exploited in this worlardmass or flavor states are no longer
orthogonal at 1-loop, and they can never be, because of ipidtiags. We show that itis much better, for
the stability of corrections, to introduce counterterradd Shabalin”, but they cannot completely restore
the orthogonality of bare mass states on mass shell, betaeishfferent mass-shells do not coincide.
So, some trace of non-orthogonality always subsists inghace, and thus, a slight non-unitarity in
the connection between physical states and bare mass (or) fiates always remains, too. Therefore,
in these last bases, some extra FCNC are always generateldad With respect to the classical SM.
This means in particular that, in there, the gauge strudiyeeerators, closure on ni@ ...) is not
perturbatively stable. It might be possible to cope wittsthiut, in this work, we chose to be very
conservative and to perturbatively preserve the structittee Lagrangian that was chosen at the classical
level. We therefore asked that these extra FCNC vanishleast, be strongly damped. Since they depend
on the classical CKM (or PMNS) angles, on the fermion &¥dmasses (and on one renormalization
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scheme.), the constraints that we obtained connect these parasneter

Shabalin’s counterterms play a decisive role. They are selgom introduced, though they were already
proved to be determinant in the calculation of the electijolé moment of the quarkg][6]. We have
shown that, in their absence, quantum corrections to mizimgle go all the more out of control as
fermions come closer to degeneracy. One then faces tetipniddems such that results of perturbative
calculations cannot manifestly be trusted. As we expjichw in the case of two generations, they
furthermore allow for non-trivial solutions to the supmies of extra FCNC. In their absence, while
mass-flavor quasi-alignment occurs for the fermion paifdhtaest from degeneracy, no special condition
arises concerning the Cabibbo angle. Instead, in theiepoes in addition to the trivial, aligned, solution,
guasi-maximal mixing for the fermion pair the closest to@wgracy, associated with mass-flavor quasi-
alignment for the other pair comes out as another suitaldsilpitity. In the case of three generations, we
systematically introduced them, which had also the tecthr@dvantage to largely ease the calculations
because they “nearly” cancel non-diagonal kinetic terms.

The results that we obtained in the leptonic sector havewbéotd advantage to be quite encouraging
(nice agreement faty; andf,3) and also easily falsifiable in coming neutrinos experirmairice we also
predict a largéd;3 =~ 35°. The quark sector looks more problematic. We have been enalget a small
Cabibbo angle, and the other two CKM angles also come out tmaclarge. The only encouraging point
is the role of a heavy quark; < my which decreases the value of the 1-lggp possibly down ta38°.
Unfortunately. this value is still much too large. So, wisahappening in the hadronic secfd? The role

of leptons and quarks seem to have been interchanged bewdikse previously, the large values of the
neutrino mixing angles were problematic, it is now the smallies of the ones of quarks that are hard to
accounted for. One could be tempted to invoke the eventustieeice of more super-heavy fermions that
could eventually drag down still more the renormalized mixangles. But the complexity of calculations
in the presence of extra generations of fermions rises soatieally that it can only be the object of a
(long and tedious) forthcoming work. More simply, the snma#lasured values could just be thought of as
second order corrections to the trivial solution with gaehenass-flavor alignment for all quark species.
Unfortunately, 2-loops calculations in the presence oft@ha’s like counterterms stand at present also
beyond our technical abilities.

Should physics “beyond the standard model” be invoked? Gehat the leptoni&; s is measured to be
large~ 35° as we predict. The conservative conjecture of ours that&imbcounterterms are enough to
cancel extra FCNC with respect to the standard CKM phenotogndooks then reliable and presumably
carries some part of truth. Then, if BSM physics is needei, tib find a theoretical more sound basis
to this statement. The situation looks different for hadrdsut one should not be too much in a hurry to
invoke BSM physics before calculations of 2-loop corrattitiave been achieved.

We end up this work by pointing out at some differences wittvjmus approaches of the subject. This
study is based on the mandatory (re)-diagonalization ofstira of kinetic and mass terms to suitably
determine an orthogonal set of mass eigenstates. Whiledfpisrement is always and simply taken care
of at the classical level by a bi-unitary diagonalizatiortttd mass matrix, it is generally overlooked as
soon as radiative corrections are concerrjef [L6] [L1] [I8] [2Q]. In particular, only considering self-
mass contributions to determine the renormalized masssdtaim the renormalized mass matrix exposes
to the problem that they are not orthogonal since thereestiit kinetic-like transitions between them.
We show that the re-diagonalization of kinetic terms caretimportant effects.

* First, and this is not a new resu[l] [§] [9][LA] [11] but we diom it, bare mass (or flavor) states are non-
unitarily related to 1-loop mass eigenstates for non-degda systems. It turns out however, that, unlike
individual mixing matrices, the 1-loop Cabibbo mateikp?) occurring in charged currents stays unitary
(see however the caveat in appendix]A.1). It is a consequeihgauge invariance, which in particular
connects, through the covariant derivative of fermion fekinetic terms to gauge currents, both at the
classical level and including radiative corrections. Tkpression of the 1-loop Cabibbo matiXp?)

13A solution has been proposed [16] in which, in the quarkared, s) and(u, ¢) mixing angles largely cancel each other
while, in the lepton sector, the opposite occurs.
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is thus directly dictated by that of the 1-loop kinetic termdich is one more reason to pay a special
attention to them;

* then, by a cascade of mechanisms, mixing angles close tonmabxaturally appear if one wants to
preserve the standard CKM phenomenology.

We hope to have convinced the reader that a reasonable amtptioe exists that can account for large
mixing angles by linking them with small mass splittings waitit invoking BSM physics from the start.
If explaining both leptonic and hadronic sectors still rémsaa challenge, at least 2 among the 3 neutrino
mixing angles come out with magnitudes which are close to theasured values. Future lies accord-
ingly in the hands and both experimentalists and theottssiirst, in p[[articular, to measure the leptonic
f.3, and the second to estimate higher order corrections to-flea®s quasi-alignment of quarks and see
whether their can account for the smallness of the CKM angles

Acknowledgmentdt is a pleasure to thank M.I. Vysotsky for comments and@vi

A The dependence op?. Canceling transitions between non-degenerate
physical states

A.1 Non-orthogonality of non-degenerate physical states

Egs. (IP), [(11),[(32),[(13), which we obtained in the abseicghabalin’s counterterms, are only valid
whenp? < m%,[, but it must kept in mind that all formuge depend;@n even though this dependence
becomes very weak whert < m¥,.

At the price, when no counterterms are introduced, of a higtability in the vicinity of degeneracy (see
subsectior 5} 1) the Cabibbo procedure can be rescued;grdependent, unitary renormalized Cabibbo
matrix ¢(p?,...) be defined. The 1-loop effective Lagrangian is made diag(ses sectioff] 2) in the
basisd,.r(p?, . . .), smr(p?, . . .), in whichp,, stands for the common 4-momentunycdnds (see Fig. 2).
This means that there exist no more non-diagonal transiti@tween them, such thdt,z, (p?,...) and
smr(p?,...) are, by definition, orthogonal at 1-loop. However, as sooa agss splitting exists, both
cannot be simultaneously on mass-shell and the physicaidas

A = dr, (07 = p3(P%) = [(VaR (&) 11 (0® = 13(0?)) dor, + [(VaR(€2) 2 (0% = 13 (1%)) 551
s = s (02 = 12(0?)) = [(VaR(E2) Von (02 = 12(0?)) dOr, + [(VaR(Ea)) Haa (p? = 12(0?)) S%E;Ld)

which belong to two different sets of orthogonal states,theenselves expected to be non-orthogonal.
So, unless subtle cancellations take place, non-diagosuagitions are expected to occur among them,
which is akin to saying that the 1-loop Lagrangian, despiteas been built by diagonalization, is itself

not diagonal when re-expressed in terms physical non-éegeneigenstates. At the same time, unlike
¢(p?) in (BY), which is defined for an overall globat, the “on mass-shell” Cabibbo matrix is expected
to exhibit some slight non-unitarit|[9[ TLO[ L 1].

More specifically, the 1-loop quadratic effective Lagramg{kinetic and mass terms) can be generically
rewritten in the basis of physical eigenstates
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2 2 phys ] phys
Elfloop _ ( dphys Sphys )ﬁ gl(p ) 92(]? ) dmL + < dphys Sphys )ﬁl dmR
mL mL ( 2) 2 phys mR mR phys
g3(p°)  9a(p?) SinL SmR
h
( P s > p(P?)  pa(p?) dyy
— [ h
e p3(P?)  pa(p?) Sttt
h
_ ( JPhys - gphys ) o1(p*) o2(p%) At + (100)
mR  SmR 9 2 phys
o3(p?) oa(p”) SmL

Indeed, combined witH (23) which relates bare mass statéddop mass eigenstate§, ](99) entails that
the coefficients of the linear relation between the latted physical states are functions @f,...).
Hermiticity requires the (supposedly real and presuméhlily?)) quantitiesgs, gs, o2, 03, p2, p3 to satisfy
the relationgys = g9, p2 = 03, p3 = oo. Furthermore, since right-handed fermions are not coecehy
1-loop transitions(1 + ~3)dir¥* = (1 4 ~°)d?, and(1 + 7%)shes = (1 4+~°)s0,.

A.2 Recovering orthogonality on mass-shell

Whether Shabalin’s counterterms are included or not, theegachnique of diagonalizing the effective,
p>-dependent, quadratic Lagrangian yields by definitionagtimal 1-loop mass eigenstatgs(p?), s (p?),
which are however not the physical states. Therefore, amaegtation similar to the one used, in the
absence of counterterms, in subsecfion A.1, can be invokélkir presence: non-diagonal transitions
between physical mass eigenstates at 1-loop are expeatedun and, when expressed in terms of them,
the effective Lagrangian at 1-loop is expected to also baefdrm (10D).

When classical physical states (which are nothing more llaa@ mass states) and 1-loop physical states
do not drastically differ (for example would they differ benpurbative amounts), one expects the non-
diagonal “scalar products” not to be drastically differeither within the two sets. This cannot be guar-
anteed in the absence of Shabalin’s counterterms becaitise nbn-perturbative nature of the link that
occurs, then, between the two sets. In their presenceathdigey only differ by “small amounts” and the
above property is expected to be true: since non-diagomasitions between bare mass states are, then,
canceled a(g¢?), this is certainly also true among 1-loop physical states.

Higher order non-diagonal transitions that still existthie presence of Shabalin’s counterterms, between
on mass-shell 1-loop,,1,(p?) andd,,.;.(p?) can always be canceled by another set of counterterms. This
is shown in subsectioh A.3 below. However, being presumabtyrder higher tham?, they should only

be introduced in the framework of a 2-loop calculation, vahig out of the scope of the present work.

A.3 Expression of the additional counterterms in the basis fophysical states

From any Lagrangian of the fornf (300), on-diagona;dependent transitions between on mass-shell
fermions, likey <+ e are expected This can be embarrassing since defining onshaksnuon and
electron as asymptotic states seems then problematic. ddreyowever be themselves canceled by
introducing counterterms, as follows. But for the fact thatare now working in the space of physical
states, the procedure is formally similar to the one usedjrtd determine Shabalin’s counterterms,
which we recalled in section 5.2 (see alfd| [10], appendixG®nceling, for example, (on mass-shéll

— (on mass-shell) transitions can be done by adding [to (100) four kinetic andsalike counterterms,
concerning both chiralities of fermions:

— Ay dfr?ysﬂ(l o 75)51%1315 — By df,?ys(l . 75)5%”’8 — & dﬁ?ysﬂ(l + 75)51%1315 —Dy df,?ys(l + 75)8%1315.
(101)
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Sinces2™* is on mass-shell, one gets the condition (we call respégtive and i the 1-loop physical
masses of andd, that is, the square roots of the valuegdfolutions ofp? = n2(p?) andp? = p3(p?)

(see subsectidn 2.4.2))

92 (12) i (147 Vs sT¥* — po(1i2) din* (1 + 7°)sbe¥® — o (4i2) di* (1 = 7°) b
= Aqdit?* (1472 )ugshi® + By dig* (1 = 7 )shiv® + Eq di™* (1 = 7)oy + Dy di* (1 4+ 7°)shiv*,
(102)

and sincef”™"* is also on mass-shell,

92 (113) S (1 — 7°) g SEPYS — po(u3) din™ (1 + 7°) PRV — go(p3) din¥™ (1 — o) sBhvs

= Agdin™* (1= 7°)pashi¥® + Badi™ (L = 7°)shev® + Eq din™* (1 + 7 )uashi¥® + Da din™* (1 + ) shiv”.

(103)
Equating the terms with identical chiralities [n (].02) afi@3) yields the four equations
s ga(113) — P2(N§) = psAq+ Dy,
_0'2(/1'3) = Msgd + Bd7
1ia 92(15) — 02(!@) = pagAq+ Ba,
—p2(pg) = paa+ Da, (104)
which have the)(g?) solutions
A, — 1z 92(13) — 13 92(13) + ps (p2(ud) — p2(13)) — pa (o2(13) — o2(p3))
2 — ng ’
g, = Haps (9205) = o) + pua (palng) = p2(p)) = s (o2(45) — 92113)
2 — g ’
By = _02(/‘5) — ps€a,
Dy = —palpg) — pala- (105)

Likewise, four countertermsly, £, B4, Dy can get rid of the on mass-ghdﬁ?ys — sPhYs transitions.
Hermiticity (see above) constrains them to satigffy = Ay, &5 = E4,B4 = Dy, Dy = By. Similar
additions can be done in tlfe, ¢) sector.

As emphasized at the end of subsecfion] A.2, when Shabatinisterterms are already present, the addi-
tional counterterms invoked here are presumably of highderdan g.
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