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MIXING AT 1-LOOP FOR QUASI-DEGENERATE FERMIONS
INA SU(2)r, GAUGE THEORY OF WEAK INTERACTIONS

B. Machef] f

Abstract: 1-loop transitions induce diagonal and non-diagonal iéAéte, momentum %) dependent
interactions between fermionic bare mass eigenstates.ovkespondingly re-examine the Cabibbo pro-
cedure, which requires in particular the simultaneousagahalization of kinetic and mass terms. When
two fermions get close to degeneracy, a resonance existdyiel the “Cabibbo” angle becomes close
to maximal and is simply connected with the masses of all feumions inside the concerned two gen-
erations and to that of thB” gauge boson. It proves also, then, the closest to its cldssitue. Mass
splittings are furthermore shown to make slightly non-amyitthe connection between bare flavor (or
mass) states and 1-loop mass eigenstates. Still, the 1dabjpbo (PMNS) matrixt (p?), the expression
of which is dictated by gauge invariance, stays unitary.

PACS: 12.15.Ff 12.15.Lk 14.60.Pq Keywords: mixing, radiative corrections, mass-splitting

1 Introduction

The origin of large mixing angles observed in leptonic chedrgurrents is still largely unknowfi[1]. A
widespread belief is that it is linked to a quasi-degenem@fcyeutrinos, but this connection was never
firmly established. And it cannot be on simple grounds. lddéee mixing angles that are “observed”
in neutrino oscillations are the ones occurring in chargadents, which combine the individual mixing
matrices of fermions with different electric chargﬂasthe path that goes from the quasi-degeneracy of
one of the two doublets to large mixing in the PMNS matfjx f#tje example of which is proposed below,
cannot thus be completely straightforward. Furthermoomdgraphic transformations on a (mass) ma-
trix, while changing its eigenvalues, do not change itsmigetors, neither, accordingly, mixing angles;
an infinity of different mass spectra can thus be associatédangiven mixing angle.

We will focus here on two pairs of fermions, making up two gatiens. For the sake of convenience, we
shall call them genericallyd, s) and(u, ¢). The first will be supposed to be close to degeneracy and the
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The electronidv. ), muonic(v,,), and tau(r, ) neutrinos are defined as the neutrinos that couple, insiaget currents,
to the mass eigenstates of charged leptons. They are auglyrdtlated to the neutrino mass eigenstdies,, vm, Vrm) by
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whereK, and K, are the mixing matrices respectively of charged leptonsreudrinos. This connection is seen to involve the
hermitian conjugaté(gKl, of the PMNS matrix.



second largely split. Results can easily be translatedettethtonic sector, which we rather have in mind.
The Cabibbo anglé, [B] is then replaced by the corresponding erttpy; s of the PMNS matrix.

This study implements the necessary (re)-diagonalizaiidooth kinetic and mass terms of a quadratic
Lagrangian to suitably determine an orthogonal set of magnstates. While this requirement is al-
ways and simply taken care of at the classical level by a hagndiagonalization of the mass matrix,
it is generally overlooked as soon as radiative correctamesconcerned][4[]5[]6][J7][J8]. In particular,
only considering self-mass contributions to determinerém®rmalized mass states from the renormal-
ized mass matrix exposes to the problem that they are nadgwottal since there still exist kinetic-like
transitions between them. We show that the re-diagonaizatf kinetic terms can have important ef-
fects. The first is that, for non-degenerate systems, bass (oa flavor) states are non-unitarily related
to 1-loop mass eigenstates. The second is that a resonapearapat which large mixing in charged
currents (PMNS, Cabibbo) gets indeed associated (ith) quasi-degeneracy.

The procedure goes as follows (for the sake of conveniemtellations are done in the bare mass basis).
Though, at 1-loop, diagonal and non-diagonal correctionisrtetic terms only occur ab(g?), casting
them back to their canonical forday T ¥ (I stands for the unit matrix) involves an anglewhich depends

on the classical Cabibbo andglg, on the masses of all four fermiofg: 4, ms, m,,, m.), and onmyy. It
does not depend on the coupling consgaand gets close to-6..) when the two fermions are much closer
to degeneracy than the second pair in the same two genevafidre corresponding transformation,
which is slightly non-unitary as soon as the fermions aredegenerate, modifies the mass matrix which
stays no longer diagonal, but keeps nevertheless symmégice-diagonalization requires accordingly
a simple rotatioriR(£) which, being in particular unitary, does not change anyntbeekinetic terms.
So, after the two transformationg and R (§) have been performed, the quadratic Lagrangian is fully
diagonal, which determines the 1-loop mass eigenstates.

Like w, the angl€ depends ofi. and on the fermion masses. In the same situation as abovéeftwimns
guasi-degenerate and the other pair far from degenetaay)¢ exhibits a pole. The pole condition is
a simple relation betweefy, the masses of all four fermions and tiHé mass. When it is fulfilled¢
becomes maximal and very close to the 1-loop value of thelbalangle. We also demonstrate that the
(d, s) mixing angle is then also the closest to its classical vanel, the(u, c) mixing angle extremely
close to it. This makes the Cabibbo angle at resonance bosie ¢b maximal and the closest to its
classical value.

That mass splittings trigger non-unitary relations betwbare flavor states and 1-loop mass states is
not a new result[J9[I0[[A1[[A2]. It turns out however, thahlike individual mixing matrices, the 1-
loop Cabibbo matrixt(p?) occurring in charged currents stays unitary. It is a consece of gauge
invariance, which in particular connects, through the dave derivative of fermion fields, kinetic terms
to gauge currents, both at the classical level and includidiiative corrections. The expression of the
1-loop Cabibbo matrixt(p?) is thus directly dictated by that of the 1-loop kinetic teymich is one
more reason to pay a special attention to them.

This study also exhibits the instability of quasi-degetesystems with respect to small (perturbative)
variations of the Lagrangian. This is definitely not a newulgsut it may call for techniques that go
beyond perturbation theory.

In the last section, we briefly show that 1-loop correctioagena negligible influence on the propagation
of neutrinos in matter and, more specifically, on the MW [fi4] resonance.

For the sake of simplicity, we shall work in a putd/(2);, theory of weak interactions instead of the
standardSU (2), x U(1) electroweak model. Since the theory is renormalizable,haé ase the unitary
gauge, devoid of the intricacies due to scalar fields and lwlionsistently working at order, yields
finite results for the quantities of concern to us. While waras, accordingly, verify the gauge inde-
pendence of the results (independence or¢tharameter in ai?; gauge), gauge invariance, as already
mentioned, is of primordial importance in this work.



2 1-loop transitions between non-degenerate fermions. Re-diagonalizing
the quadratic L agrangian

2.1 1-loop transitions

Like in the Standard Model of electroweak interactiohg [1Bg diagonalization of the classical mass
matrix by a bi-unitary transformation leads to the cladsinass eigenstates, for examplg andd?,,
with classical masses; andm,. They are orthogonal with respect to the classical Lagean@ivhich

is akin to the property that no transition between them eairthe classical level). However, at 1-
loop, gauge interactions induce diagonal and non-diagoaasitions between them. For example, Fig. 1
describes non-diagonaf), — d, transitions, mediated by tH&’* gauge bosons. Diagonal transitions
are mediated either ij or by Wj.

u%,

S d;

P q p

Fig. 1: s, — d% transition at1-loop

We investigate in this work how the Cabibbo procedure imgets in the presence of these transitions
[Ld]. The one depicted in Fig. 1 contributes as a left-hankliesktic-like, p>-dependent interaction of the

type

sin 90 Co8 HC(h(p2> My, ’I’)’LW) - h(p27 Mme, mW)) g?nﬁ(l - 75) 89}17 (2)
that we abbreviate, with transparent notations, into
SeCelhy — he) do, # (1 —75) s2,. 3

It depends on the classical Cabibbo amgjle= 6, — 6,,. The functionh is dimensionless.

It is simple matter to realize that all (diagonal and norgdiaal) 1-loop transitions betweef}, andd’,
mediated byl * gauge bosons transform their kinetic terms into

c2hy + s2h.  scce(hy — he) do,
(@ ) |1+ #(1—5)
5cCe(hy — he)  82hy + c2he s

0
= (@ ) | (P 0 T8 - )] ( "l @
Sm
where we noted
1 cos 0 sin 6
7.(0) = 5 ( ) - ©)
sinf —cos6

To the contributions[[4) we must add the diagonal transitiorediated by théVj gauge boson. The
kinetic terms for left-handed?, ands®, quarks then become (omitting the fermionic fields and the de-
pendence op?,...)f}

2From now onwards, to lighten the notations, we shall fretjyemit the dependence gif and on the masses.

3



Ky = 1+Hy;

b + he h
oy = Ml g hy) 7;(2ec)+( d ) ©6)
h

2

wherehy = h(p?, mq, my ) andhg = h(p?, ms, my). Likewise, in the(u, ¢) sector, one has

Ky, = I+ Hy;
h hs Iy
Hu = d—; + (hd - hs) 7;(290) + ( ) . (7)
he

In the unitary gauge, fomn?, m?, p? < m,, one has

h—hjmg—z% 1+mwl mW2p] 92% 1_|__<p_2> + ... (8)
47 P p? miy, 8 miy 3 \my,

We shall now diagonalize the quadratic part of the effectiifeop Lagrangian, which means putting the
pure kinetic terms back to the unit matrix and, at the same,tie-diagonalizing the mass matrix. This
is accordingly a two-steps procedure.

Since the kinetic terms of right-handed fermions are notifreat] we shall only be concerned with the
left-handed ones.

2.2 First step: re-diagonalizing kinetic terms back to the unit matrix

0,59 written in (@) can be cast back to their canonical form by a
p>-dependent non-unitary transformationgp?, . . .) according to

The pure kinetic termg<, for (d°

VK V=1 ©)

The procedure to find; is the following. Let(1+¢,) and(1+t_),t,,t_ = O(g?), be the eigenvalues
of the symmetric matri¥<;. One has explicitly

hy + he + R hy 1
++d+ \/h—h

ty = + (hg — hs)* + 2 (hy — he) (hg — hg) cos 20..  (10)

coswy Sinwy

K, can be diagonalized by a rotati®®(w,) =
—sinwg coswy

) according to

1+t4
R(wg)! Ky R(wy) = , (11)
1+t
with (hu — he) sin 20
- — sin
t 9 _ u c c 12
an 2wd (hy — he) cos 20, + hg — hg’ (12)
or, equivalently,
u_hc 20 _hs . u_hc i 290
cos 2wy = (A ) 0520 + hq , sin2wg = — (A ) sin , (13)
ty —t_ ty —t_



in which (¢, — t_) can be immediately obtained frofn [1) (I2) definesv, in particular as a function
of 0., wg = wgq(fe, ...). Since both numerator and denominator [of (12) @re?), wy does not depend
on the coupling constant Nor does it depend op?, for the same reason.

The diagonal matrix obtained ifi {11) is not yet the requirea’i matrix, but one simply gets to it by
renormalizing the columns dR(w,) respectively bf\/1+t and The looked-for non-unitary

\/1+t,'
matrix V; writes finally
Cuy Swy
Vo= | Vit Vit (14)
o Wy Wq
VIt JI+t
It differs from the rotatioriR (w,) only atO(g?) and satisfies
1
1 ty +1i_ 14+¢
f = I+t — (ty —t_) T(—2 = T
1+1t-
(15)

Unlike wy, it slightly depends op?.

For|hg—hs| < |hy, — he|, which is the situation that we shall always keep in miftq,—¢_) ~ (h, —h.)
and the expression fein 2w, in (L3) shows thaty;(6.) ~ —0,. (see also footnotd 3). So, when the pair
(d, s) is close to degeneracy aiid, c) far from it, VV; becomes close to a rotatidt(—6,).

The non-degeneracy ¢f, s) or (u, ¢) is enough to trigger a non-trivial non-unitarity bf. Instead, for
mg = mg andm,, = me, t; = t_ = t, which entailsvdvg ~ levd = ILH: in this twice degenerate
case, a simple rotation to which is added a global diagonakviianction renormalization is enough to

diagonalize théd, s) kinetic terms at 1-loop.

2.3 Second step: re-diagonalization of the mass matrix

d°
By @), the kinetic term§ (d° , 0 mL)Kd i/ ;”L at 1-loop for left-handed! and s in the bare

SmL
S d°
mass basis rewritéd? ,,s0 \(V; )TV p ;”L , which leads to definingi® ; and s} ; such

SmL
dinL -1 d?nL 0 dgnR ;
that . =V . . The mass term¢d® ,,s0 )M, . + h.c., with My =
SmL SmL SmR
d°
diag(mq, ms), rewrite accordingly(d’, ,,sL WiMy [ ™" | + h.c.. Hence, the mass matrix that
SmR

needs to be re-diagonalizedli%Md. It is done through two unitary transformatio®y¢,;) and.S(&y)
such thaﬂz(gd)T(VgMd)S(gd) = diag(fid, Ps)- SincevledM;Vd is a real symmetric matrix

m3 ¢k, +m2sk, SuwyCuy (M2 — m32)
) _
mq L+t L+t )1+t
le MdM;[ Va= VJ 2 Va= Su,Coy (M2 —m32) \7{@(232 1)77(@20 ) » (16)
ms _ Pwqtwq s d d s“wq
VI +t) (1 +to) 1+t_
*[3) also rewrlteé”‘jffgdz@f) = —qd=t=, which shows thaty — —6. when|m, — ma| < [m. — me|.

“The subscript, refers to left-handed fermlons anrdto right-handed ones.



R(&4) can be taken as a rotation, according to
2

R (V; MdM;Vd> R(E) = P23, ) . a7)
w2 (?, )

SinceR(&y) is unitary, it preserves the canonical form of the kinetitrte that had been rebuilt in sub-
section[22. It satisfies

—(m2 —m?2)/(1+t4)(1 +t_) sin 2wy

tan2£d: P
(mfl—mg) <1+ R

(18)

ty —t
)7

) cos 2wq — (M2 + m? 5

Throughw, (0., . ..), (08) defines, in particular as a function df., £; = £4(6., . . .).

We shall see in subsecti¢n 4.3 that, for quasi-degenédate and largely split(u, c), £;(6.) ultimately
becomes the 1-loop Cabibbo angle, which is accordinglyititiyl expressed by[(18) as a function of the
masses of fermions and gauge fields.
- d°
Since the mass terms rewritd! ;. s!  YR(&4) diag(ua, ps) S(€q)T ( ;”R ) + h.c., the 1-loop left-
SmR
handed mass eigenstates, ., (p?, . ..), s,z (p?, . ..)) are defined bYd,,,r,5mr) = (dL ;. st )R(Ea),

which leads to
4 dinl
Pl = vaR(€a) : (19)
S?I’LL SmL

By construction, at this order and at any giveh there exists no transition betweép,; (p?,...) and
smr(p?,...), which are thus, by definition, orthogonal.

2.3.1 Theresonance (pole of tan 2£,)

One should keep careful about approximations. For exanm@édave seen in subsectipn]2.2 that; —
mg| < |my — me| yieldswy ~ —6.; however [1B) should not be approximatedtay 2¢,; ~ tan 26..,
nor the conclusion drawn that the combined action® ahdR (£;) sum up to zero or close to it. Indeed,
though the?(¢?) quantity (¢, —t_) in the denominator of(18) is indeed small, it cannot be retgtbwith
respect to the other contribution whérand s are quasi-degenerate and whes 2w, is small enough,
that is, ford,. close to maximal.

(L§) is indeed characterized by the existence of a pole.clirs(neglecting terms @ (¢g>2)) for

2 2
m5; —m
m COS 2(,dd(90) ~ t+ —1_. (20)
d s
2_ 2 _ . .
That| cos 2w,| must be smaller thah requires Z;Jng > 2= In practice, for known fermions of
s d

the (d, s) type, it is always satisfied, ensuring the existence of this.pThis is however not the case for
fermions of thgu, ¢) type when they are largely split whil€, s) is close to degeneracy. Indeed, no value
of 6. can then satisfy the equivalent ¢f}(20) afd| (12) fidrs) < (u,c) (in particular because, — 0,
see also subsectign 4.3), such that, untike2¢,, tan 2, cannot have a pole.

Using the expression @bs 2w, given in (1B), [2P) becomes

2 2
P (hu—he) c0s 20+ (ha—hs) ) = (£~ ) @ ()24 (hame) 2200 —he) (ha—hs) cos 20,

2
m§ +m? -



which, for (d, s) close to degeneracyns — mq| < |m. — m,|, can be approximated by

mg—m 1 (b — he)’ . (22)
m2+m?2 2 (hy — he)cos 26, + (hg — hs)
Then, the pole ofan 2¢,; occurs for
1 mé + mg hg — hg
CcOoSs 290|pole = 5 (hu - hc)mé — mg - By — e (23)

in which we recall thati, s, u, ¢, 8. are generic notations standing either for quarks or foolept The
corresponding value df. is always, in practice, close to maximal. Indeed, as far asrtbdulus of the
second contribution to the r.h.s. ¢f]23) is concerned: @léptonic sector it is smaller tham—16 (the
reasonable upper bound of neutriimass)? = O(1 eV?) divided by the smallest difference between the

(mass)? of charged leptons, which is very closertq)); in the quark sector, it is smaller th%ltm;”fgm2 ~
2

. ) _— . Z4m2 | . .
5 10~3. Concerning now the first contribution: for leptons, thed%xt:zz_im; is smaller thatl0> while

vy vj
2 2

_l’_
~ 21077; for quarks, the ratlc*m Ty
J

a;

. 2 .
%’h@l — hy,| is smaller thanlg% n’;"; for ¢i;,q; = (d,s,b) is

alwaysO(1) and%]hu — he| = 1077 (we will not consider the top quark here, for whigh (8) is noder
valid).

In this same configuration, the resonance conditjoh (20)beawritten (remember that; ~ —0., see
subsectiorj 2]2),

Img—ms|<K|mu—me| Gp m2 +m?

2 2 2 23 Mg 5

ms — m3) cos 2w ~ ——(m; —m;)—— 24

( s d) d \/57_‘_2( c u) 2 ( )
For the(ve, vy, e N) system, the r.h.s. 0@4) which is independent of the gnefdghe neutrinos, be-

+m

mue+mu mue
comes -G£ m? Lo 3 10 8 e

Vor? 2

m,% +m,2j l, . .
\/Gi; m2—5—T ~ 212107 6 M r (01/2), By comparison, the resonance condition fgr— v,

oscillations in matter wnteﬂlm&}m cos 20 = 2/2EGrN,, whereF is the energy of the neutrinos
and N, the electron density. In the core of the sun, whafe~ 100N, em ™3 (N4 is the Avogadro
number) and for neutrinos of energy10 MeV, one get2v2EG N, ~ 10~* (eV?) [[8], while in the
core of the earth, whe®, ~ 6 N4 cm =3 and forl MeV neutrinos, Am? cos 20 ~ 10~5(eV2) [LLg].

“(eV?); for the (v,,v.,pu,7) System, it becomes

2.3.2 1-loop masses

The re-diagonalization of kinetic terms indirectly cohtries to a renormalization of the masses; —

pa(p?,...),ms — ps(p?,...). For 55t —;:r cos 2wy < 1 and 45 —gm T4 cos 2wy < 1], one
gets from [1)
t t_ ty —t_
W%, = m? <1— “QL )—mi 5 cos 2wg,
ty +t_ by —t-
pa(p®,-..) = myg (1_+T>+mg s (2

(E3) is not valid form, = m.

®The first condition is immediately seen to be always satisflée: second too, unlegd, s) are extremely close to degener-
acy or degenerate, which does not occur for any known fersnion



This yields in particular, still when the two conditions ntiened at the beginning of this subsection are
satisfied,

2 2 2 2 4 4
— ms—m ms+m
Iu; n ,Ug ~ ; T g — (t+ — t_)ﬁ COS de, (26)
:us /j’d ms md ms md
which becomes, fomg ~ mgq (ms # my)
/I/g — /J,?l msmgqg mg — m?l t_|_ — t_
5 5 ~ 5 5 — €os 2wy
Mt E mg i mg 2 2 2 2 2 2
ms —m 1 ms —m —
WMo g peos20, = Za My 9 Mo M o0p  (27)
mg+my 2 mg +mg 167 my,

Supposingos 260, > 0 andm,. > my, ”;+ ¢ goes to a minimum, identical to its classical value, when
6. becomes maximal. This is the case, as we saw in subsdctidh at3he¢, resonance. Note that a

similar property is satisfied in the case of the MSW resongsee for examplg[18]).
The classically degenerate casg = m; is most easily studied directly fronﬂlG) Degeneracy gets
2

2 _ ~
lifted at 1-loop since the renormalized masses become ﬂﬁlen 1+t+7:u‘s = 1+t : 2+ CS
he—hy A, _g° mZ—m3

T2 7 I6w2

. It turns out to be the limit of (27) fom, = ms andd. maximal.

3 Individual mixing matrix and 1-loop mixing angle

3.1 1-loop and classical mass eigenstates are non-unitarily related

According to [1p), the left-handed 1-loop mass eigenstatgs,, s,,;) are related to the bare ones via
the product of @?-dependent non-unitary transformativyp by ap?-dependent unitary ong(&,). We
have seen in subsectipn]2.2 that mass splittings are atitfie of the non-unitarity oft’;. The two bases
are accordingly non-unitarily relatef] [9]]1Q]J14]]12].

On mass-shell (respectively gt = 1:2(p?) andp? = p2(p?)), one deduces fronf (19) the expressions of
the physical mass eigenstates

& = dr, (9% = 13(P%) = [(VaR(E)) i1 (07 = 13(0?)) doy + [(VaR(ED) a2 (0% = 13(%)) 551

St = s (P = 12(0%)) = [(VaR(E) o1 (07 = 12(0)) dir, + [(Va R(E) a2 (0° = 12(0%)) 3%[,7)
28

such that a second source of non-unitarity, dug 6% 15, adds to the one due ; (as we mentioned

at the end of subsectidn P.2, both, = ms andm,, = m, are necessary to dim the non-unitarity)9f
Since bare mass states are unitarily related to bare flaat@sstthe physical mass eigenstates are also
non-unitarily related to the latter.

3.2 Individual mixing matrix and 1-loop mixing angle

Classical flavor eigenstates and 1-loop mass eigenstaeslated to each other according to

d° . i,
N R AR , (29)
SfL SmL SmL

whereCyy = R(6,) is the classical mixing matrix of th&l, s) pair. The individual mixing matrix at
1-loop is thus given by
Ca(p?, ) = Cao VaR(&a) = R(0a) Va R(Ea), (30)



which slightly deviates from unitarity. Sinde; ~ R(w,) + O(g?) (see [I}))C, stays nevertheless close
to a rotation

Ca(P?,...) ® R(0q + wy + &) + O(g?). (31)

The quantity(w, + &) is seen to renormalize the classical mixing angjeit satisfies, from[(18), the
relation (neglecting, as if (R0), the terms proportionat§'= which are of ordep™2)

2 2
- ty—t_ mg+mg 1
tan 2wd [ 2 mi—mg cos 2wy

tan 2(wg + &) ~ (32)

2 2 N
1 + tan2 2wy — [”_t* mgtms 1 }

2 mg—mg cos 2wy

In practice,tan 2(wy + &) stays small, and so does, accordindly; + £;). Indeed, renormalization
effects could become large only close to the pold df (32). [@tier, which occurs for

1 ty —t_m2+m?
e RS (33)
cos 2wy 2 my—mg
: 1 2y, matmi . : :
that is, for oty = O(g%) x —4——, is usually unphysical because it correspondgcts 2w | > 1.
d s

2
U

< ty—t_ __ g2 mi-m

2 2
. . mg—mjg . .
| cos 2wy| could become smaller thanonly if, genencally,‘ b PR T R which is

never satisfied for known fermions, quarks or lepthns
From (32), [1R) and(13) one also ges 2(w, + &) as a function o), and the classical masses

2 2
lw(hu — he) sin 26,
d

tan 2(wg + &) ~ (34)

~ 3 (= he) <0320 + ha — hs)
d E

3.3 1-loop mixing angles at the resonance
331 The(d, s) mixingangle

2 2
The interest of introducing the quantif(w,) = |“5= T4 s 1 ] in 2) is that, according to

md—mg cos 2wy

(BQ), it is equal tal at the pole oftan 2¢,. So, whent; becomes maximatan 2(wy + £4) = —m,
which is very small. Indeed, fomg — ms| < |my, — me|, |ha — hs| < |hy, — he| and (2) yields

2
> which is very small for known fermions. So, at the

2 2 2
hu—hc md+m3 — 92 m3 mg n’Ld—"_rnS
2
—m2

~ u
€oS 2w ~ 2 m2-m2 T 1672 mZ, m2

pole,w, is very close to maximd).
Furthermore, from the expressidn](32)taf 2(w, + &;), one deduces
dtan 2(wg + &4) 2f(wd)(f(wd) - 1)

— 35
dwy 1 — f(wg)cos? 2wy’ (35)

which provides a characterization of the resonaeg=- 4| is then minimal, such that the 1-lodg, s)
mixing angle is the closest to its classical vafije
Note: From the expressiof (12) foan 2w, and (21) forcos 2wy, one get% = 1 cos? de‘“%f“’d —

(hu—he) [(hu—he)+(hg—hs) cos 20, | [ma—mis| <|mu—me|
B (ty—t-)? -
at the pole, the dependence(af; + £;) on 6. vanishes.

—1, such thaldta“z(g’d*fd) ~ _dtan2wités) g

dwy

2

. . . 7”,2/ —my, 2 m2-—_m?2 .
®For example, in thév,,, v, v, 7) sector, the condition writels—s™——»2 | < <4 I ™ the r.h.s. of whiche 1.91077,
mg_ +muﬂ 167 my,

while the I.h.s. is experimentally known to @(10~?) if one considers that the neutrino mass scal@(sV’). The mismatch
is similar in the(ve, v-, €, 7) sector and worse in th@., v, e, 11) sector.
"And so is accordingly. (see the end of subsectipn|2.2).



3.32 The (u,c) mixing angle

In the same configuratiopng — ms| < |m., — m.|, from the expression equivalent {0}(12) in the c)
sector,tan 2w, = (hd:}(f:‘)i;o’;sz)eiﬁiic_hc, one deduces that, single, — h.| > |hg — hs|, wy, — 0. Then,
from the equivalent of[(32)tan 2(w, + &,) gets suppressed with respectttm 2w, by an additional

factor O(g?).
One also getd ™2 2uttn) ~ (b, — p.) and L2 2euttn) o (hazhe)si20:  This s extremely small

at the resonance afn 2&4 wherewy is close to maX|maI and |tt722futjfrthermore damped by the small
factor (hy — hs). Accordingly, for largely split(u, ¢), not only, at the pole ofan 2&4, w,, and(w,, + &)

are small (such that the 1-lodqm, c) mixing angle stays, like thédl, s) mixing angle, very close to its
classical value), but, alséw,, + &,) depends extremely weakly @h (though, unlike for(w, + £4), we

cannot speak of a minimum here).

4 The 1-loop Cabibbo matrix

4.1 Theeffective Lagrangian at 1-loop (in the bare massbasis)

SU(2)r gauge invariance demands the replacement, in the Lagrangiighe partial derivativeé) by
the covariant derivativ®. This is how, at the classical level and in the bare mass bealling V9 7 =

(u .® d0 0 ) the kinetic + gauge terms write in their standard foii¥., D, "0
mL’ CnL> YLy SmL)s m PuY m
= (T 4#(D,10,) — (D10, )" w%), such that

Letass = Uop (1 (i0,,) + gT- W, ) y# 00, + ... (36)

TheT’s are the (Cabibbo rotated)/ (2) generators

PCIR N I T = S R , 37)
2 -1 cl

where(, is the classical Cabibbo matrix

—sinf,. cosf,

cosf,. sind, t i
Co=TR(0:) = = CyoCao = R(0u)" R(6a)- (38)

Gauge currents and theStU (2), algebra are thus directly related to kinetic terms by gaugariance
and the resulting Lagrangian is both gauge invariant anchitien.

We shall use the same procedure to determine the Lagrantgari-doop transitions have been accounted
for. Still in the bare mass basig?,, we have seen in subsectipn]2.1 that the kinetic terms, wdrieh
classically proportional, in momentum spacel b get renormalized at 1-loop intd(p?, m;, mw) p,

with
2 2
A(p2,,,,)(KU(p7.”) K(2 ))H—I—(HU(pP“) H(2 ))’ (39)
a(p®, ... (P2, ...

p,, Stands, there, for the common momentum of the ingoing argbmg fermions, as depicted in Fig. 1.

The 1-loop kinetic + gauge Lagrangian that we will hereaftarsider is accordinglg‘@?n 24—1),; 0 =
(U (AD,, W5,) — TAD,W%,) 7, ), which yields

L1 toop = Ty, (A(i0) + g(Af + TA)W, ) 108, + (40)
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It has the required properties of gauge invariance andk#hanthe presence of the symmetric expression
AT +T A, of hermiticityf]. Gauge invariance has in particular dictated the 1-loopesgion of the gauge
currents, from which we shall now deduce that of the 1-loopifilzo matrix.

4.2 The Cabibbo matrix staysunitary at 1-loop

The 1-loop Cabibbo matrix in the bare mass basis can be reactlgifrom the expressio@@?n(/lf +
TA)v*¥ of the gauge currents that results from] (40). This yields

1
M (p?,. ) = 5 [(L+ Hu) Co+Co (L+ Hy)|. (41)
SN—— S~——
Ku(p2,...) Kd(p27"')

A naive calculatior] could erroneously lead to the conclusion tG&t is non-unitary, but it relies on the
implicit assumption that the bare mass basis is orthogaviaikh is untrue at 1-loop. The pure kinetic
terms in [4D) are, in particular, not normalizeditbut to the non-diagonal matrit. So, it is suitable to

go to the orthogonal basis of 1-loop mass eigenstates by tsinrelation[(79). Because of the unitarity
of the R(¢) rotations, one ha@V, 4R (&ua)]' KualVudR(&ua)] = R(E 4 V] 1KuaVudR(Ewa) b

R(€u.4)"R(€u.q) = 1, such that the pure kinetic terms get now normalizetl tAnd, as we show next,
the 1-loop Cabibbo matrig(p?, . . .) rewrites, then, as a rotation. It becomes indeed in thisB3si

e(p’,...) = VuRETC™ (P, ...) VaR(£a)]. (43)

Transforming the general expressiohd (43) (41) witthehe of (§) which entailgs, = (V; 1)V, *
(Ku = (V)Y 1), yields

¢ = SRE Vil Cova + ViEoi )] Ri&) = SR Vi ova+ (7 v ™)' Riew)
(44)

8Hermiticity is, instead, not achieved if one considers afimLagrangian of the forri@?n AD,, 4*¥? (with — instead

of < aboveAD,).

*UsingCo = R(fa — 6.) and the expressionf] (6] (7) féf, and K., one findsc*™ (C*™)" # 1. However, this does
not mean that the Cabibbo matrix is non-unitarity becaussetexpressions are written in a basis which is non-ortradgan
1-loop. Consider indeed, for example, the relatidnC.2 + C3;C22 # 0. It traduces the non-orthogonality of the two vectors

0 C 1 C
¢ = ) andc = "] when their scalar product is evaluated with the me(ticl). However,
1 022 0 C21

0 1
this metric is the correct one only at the classical levelylath and ( ) , Which represent fermions in bare mass
1 0

space, are orthogonal since no transition occurs betweetwih of them; but it is no longer so at 1-loop (see Fig. 1). And,
indeed, when one goes, as we do next in the text, to the ontlabpasis of 1-loop mass eigenstates, this apparent noarityi
gets exactly canceled. Likewise, for any mattix the relationUU' = 1 traduces unitarity only i/ is expressed in an
orthogonal basis of stateisd. no transition exists between them at the order that is censit).
%One can easily demonstrate tigp?, . ..) = C} Ca+O(g?), reminiscent of the classical relatiGs = C! , C40, as follows.
SinceH,, andH, in @) areO(g?), the terms proportional to them ilﬂ43) can b@calculated thie expressions G2 (¢4) and
Ly

V4 atO(g°), that is, forty = 0 = ¢_; one can accordingly take in thef(¢,) R(—wq) andVy 9 R(wa), such that

VaR(£q4) — L. The same approximation can be done in(tlage) sector. The resulting expression fdis
2 0(92) 1yt 1
Q(p e ) ~ 'R(fu) Vi Co Va 'R(fd) + §(Hu Co+CoHgy ), (42)
N—————
0O(g2)

which leads to the announced formula after us (38), @ﬁdﬁd its equivalent fo€,,. That&(p?) is unitary means that the
non-unitarity ofC}C4 gets compensated by that?(HuCO + CoHy).
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Noticing thatt andt¢_ given in (1) are the same féd, s) and(u, ¢) and using the expressioh [14) for

cos(wy —wq — ;) —/ iH* sin(wy, — wq — 60,)

) -1 _ +t— H

the V'’s, one gets), "CoVy = ( . ; ; , Which
e sin(wy, — wq — 60,) cos(wy —wq — ;)

leads finally to

C?,...) = R((ed +wa@?, )+ ) = (Ou+waD? ) + &l .))) + 0>, qed.

(45)
¢(p?) stays thus unitary for any common valuepdfat which its entries are evaluatgl
In the basis of 1-loop mass eigenstates, the Lagrangisawrites
UmL
- - - CmL
LZ(’LLmL CmL dmL m)(P2,)(Zj+QT(P27)Wu’Y“+) d (p27)+7
mL
SmL
(46)

with “1-loop” SU(2);, generatorK (p?, . . .) depending now op? and on the masses

- () o (222 - ()
! | 2. |
(47)

Our procedure has accordingly preserved$iag2);, structure of gauge currents at 1-loop, which guar-
antees in particular that the corresponding Ward idestdre satisfied.

4.3 The 1-loop Cabibbo angle and itslarge value at the resonance

(B9) shows that the Cabibbo angle= 6, — 6,, gets renormalized bitv; + £4) — (wy + &4).

At the pole oftan 2¢,, we have seen théb, + &,) (see subsectidn 3.8.1), afd, + &,) (see subsection
B-3.2) become extremely small. So behaves accordifgly+ &;) — (w, + &), such that the 1-loop
Cabibbo angle stays, then, very close to its classical yath&h is, according tdﬂiS), close to maximal.

Another property is that, whethands are close to degeneracy, whileandc are far from it,

C(p?...) = R(&(0.)). (48)

This results fromw,(6.) ~ —6. demonstrated at the end of subsec{iof 22rancels, then(f; — 6,,)

in @3). (w, + &), that we just showed to be very small, does not alter thiseptgp The 1-loop value

of the Cabibbo angle finally becomes closef§¢d..) as given by[(18); it is accordingly determined by
the rotation that casts back, at 1-loop, the mass matrixeofjtlasi-degenerate pair to diagonal. The role
of the (u, ¢) fermion pair far from degeneracy is blurred; indeed, the/drdce left is the dependence,
at the resonance, @f; andé. on the masses of all four fermiotis.y, ms, m,,, m.). But the situation is
nevertheless different from a naive “alignment”(af ¢) mass and flavour eigenstates. This would mean
a vanishing(u, ¢) mixing angle, while what we get is the quasi-vanishing ofghke quantum correction
(wy + &4); we have no control on the classici).

1This may not be in contradiction with the non-unitarity aheid in ] andEZ] when the two external fermions legs are on
different mass-shell, since, then, two differeftare involved. See also the end of secﬂ)n 7.

12



5 Instability closeto degeneracy

Quasi-degenerate systems are known to be unstable withatespsmall perturbations. This property is
easily verified here, through the amount by which classidaing angles are renormalized when 1-loop
transitions are accounted for. It undergoes indeed largatins when the classical masses span a very
small interval in the neighborhood of degeneracy: we firasater the case of exact classical degeneracy
(ma = ms), secondly the pole of (B2), which corresponds to a sitnatihered and s are extremely
close to degeneracy (see subsecfioh 3.2), and, last, taeopoln 2¢, which also corresponds to quasi-
degenerate fermions, but not as close as previously. Théitsta@ases are very likely purely academic
(see [2P] and subsectign B.2), but this is no relevance fatwie want to show here. The third case can
be physically relevant, as we noticed in subsecfion P.3.1.

e For exact classical degeneraky = hs such that, by the expression gfi 2w, in (I3), wg = —6..

(L) shows then thangdM;Vd stays diagonal, and, s§; = 0[4. The classicald, s) mixing anglef,

is renormalized (sed (31)) kw, + £4) = —6. and become8, — 6. = 6,,, the classical mixing angle of
the (u, ¢) pair.

According to [4b), the Cabibbo mixing angle gets renornealifrom its classical valué. to 6, + (wq +

&a) — (wy + &) = —(wy + &) Which is very close to vanishing when the péir, ) is largely split. To
such a system is accordingly associated a near-vanishiogpl€abibbo angle. Renormalization effects
can thus be large.

e Atthe pole of [3R), by definition, the renormalizationéyfbecomes maximak-7 ).

e Atthe pole oftan 2¢,, it becomes instead minimally small (see subsedtion]3.3.1)

So, in a close neighborhood of degeneracy, the renormializ@t,; + ;) of 6; undergoes large variations.
So does the one of the Cabibbo angle.

6 Propagation in matter

Coherent forward scattering of neutrinos in matter has sbewn [1P] [18] to modifyM,, M, (M, is the
classical mass matrix for neutrinos). In the space of edeatrand muonic neutrino8., v,,) that couple
to charged leptons mass eigenstates (see foofhote B, cos(8pans)Vem — SIn(@pynNs)Vym, vy =

sin(0pyrns)Vem + cos(0prNs)Vum, it becomes

1 1 0
(M, MF)vevn) = 5( 2+ m?ju + Acc)
01
L L Ace- (m3, —mj,)cos(20pnuns) (m3, —mz,)sin(20parns)
2 (m%ﬂ —m2 ) sin(20parns) —Acc + (m%ﬂ —m2 ) cos(20prins)

(49)

with Acc = 2v2EGrN,, E being the energy of thé,) ultra-relativistic neutrinos and, the elec-
tronic density of the medium, which can vary in space. Edaily, in the bare mass space in which we
have been WorkingM,,MJ becomes

(M, MH)P™ = R(@pans) (M, M)V IR(Oprrns)
m?j A 1
= ¢ Tiiaios + Ace To(20prins). (50)

m?,H 2 1

“2This is in agreement witH (1.8) anfi {20) which show that 2¢, has no pole whemy = m..
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After kinetic terms have been cast back to their canoniaathfmne has to re-diagonalize, according to
the procedure explained in subsectfor] 2.3, the expresSinsandwiched between), andV, as given
by the equivalent of[(14) for the neutrino sector. Singer = O(g?), when transforming the parts pro-
portional to it, we can neglect i, all termso ¢+, which amounts to taking, ~ R(w,). So doing,

to the expression foViM,,MJVI, equivalent to 6) for the neutrino sector, one finds thatronst add

1 1
R(wy)t [Acc + Acc T(20puns) | R(wu) = Ace |3 + T2 (2(0pmns + wu))
1 1
2 2 2 2 2 2
The pole oftan 2£; occurs now for. ve wf:t:“ wy e “’fftm v Acccos2(0pyns +wy) =0,

which can be approximated @2, —m? ) cos 2w, — (m2, +m2 ) “5=+ Acc cos 2(0puns+w,) = 0.

For|m,, —my,| < |me—myl, w, = —HPMNS (see subsectloﬂ 2) and the pole equation becomes

ty —
2

It differs from the one in vacuunj (R0) by the terhr o, and we also recall that the relation at the classical

MSW resonance write$ 19187, — m7. ) cos(20parns) + Ace = 0. Looking at the magnitude of

the different contributions shows that 1- Ioop effects aggligible in matter and no not modify the MSW

resonance. Indeed, the orders of magnitudes roughly miagtveen(im? v — m? ) which is known to

be O(10~°eV? and Acc, which, as we mentioned at the end of subsedtion]2. 3 1, agrbetweenl 0—*

to 1075 ¢V2, depending whether one considers the sun or the earth. Fhisughly speaking, why

the MSW resonance can happen even for “small values of thanghangle”cos 2w, cos 20pyrns ~ 1.

By contrast, the term in the middle df [51), coming2 from lgooorrections, is much smaller since,

. . to—t_ 2 my ,m2
considering thatm;, +m;, ) ~ 1eV?, “5= ~ a2 210 9,

2
Ve

(m; — mlz,u) cos 2w, — (M, + mlz,u) — + Acc = 0. (51)

1672

7 Summary and prospects

We have paid in this study special attention to 1-loop tteorss between fermions. They spoil the diag-
onality of kinetic terms which must be first cast back intartleanonical form before the mass matrix is
suitably re-diagonalized and orthogonal 1-loop mass sigées suitably determined.

A first property that we encountered is that, for non-degateesystems, bare mass states and 1-loop mass
states are non-unitarily related.

A second property is that the 1-loop mixing mateigy?) occurring in charged currents (Cabibbo, PMNS
..) stays unitary a®(g?), whatever be the common scafeat which all its entries are evaluated.

The third point concerns the 1-loop value of the “Cabibbojlar(or its equivalent for leptons). We have
shown that it exhibits a pole when, inside the two generatimfermions that are considered, one pair is
close to degeneracy (we have been concerned with the casetivdether pair of fermions is far from
degeneracy). The pole condition stands as a relation batéeeclassicab., the masses of the four
fermions and that of th&/. It appears furthermore as a stability condition sincen thiee (d, s) mixing
angle at 1-loop is the closest to its classical value. As$aha(u, c) mixing angle is concerned, it also
stays extremely close to its classical value. At resonatieerenormalization of. appears thus to be
not only very small but “minimal”, and the resonance comditide factq a condition between the 1-loop
Cabibbo angle, which is close to maximal, and the set of nsadsle have also shown that, then, the 1-
loop masses get the closest to each other. A new charati@mizd maximal mixing thus appears, a nice
aspect of which is that it connects large mixingcharged currentsas observed, to the quasi-degeneracy
of one of the two doublets (the widespread belief postulatstead the alignment of mass and flavor
states for the largely split fermions to establish the saommection). The final statement stays however
weak: “For two fermions close to degeneracy and the secomdgsarom it, there exists a resonance
at which both the 1-loop “Cabibbo angle” adxn?/m? get the closest to classical; the former is then
close to maxima(+7/4) and the second minimal”. This seems suited to(thg v-, i, 7) system, but
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we have, at the moment, no other criterion why a specific quétat resonance and not the others. We
have indeed seen that, for all values of known fermion masisesgole condition[(23) corresponds to a
large mixing angle. So, i3 is large, one has also to explain why, for example, the Cabéigle is
notﬁ. The resonant phenomenon that we presented in this worlcesdingly, at the moment, just one
among a series of mechanisms that can participate to thdifmibf large mixing angles (see for example
[L3] [L4] [B]). They are eventually supplemented with synimeonsiderations[[8][31], which is not the
case here (with the sole exception of gauge invariance).

Another standard property that we encountered is that thhengnemong quasi-degenerate fermions is
highly unstable. We witnessed this at 1-loop by evolving i phfermions from exact degeneracy, to
approximate degeneracy: the renormalizationt £) of the corresponding mixing angle undergoes large
variations and so does the one of the Cabibbo angle. So, &vas \we noticed, real systems are in a
regime where renormalization turns out finally to be smalid(@ven minimal), one should not forget
that this comes from a cancellation between the two arfgéeslw which are “non-perturbatively” close
to 6. and eventually large. So, it may happen that the resultswieabbtained inaccurately describe
the physics of quasi-degenerate fermions and that an ajpe@preatment requires techniques that go
beyond perturbation theory. That the resonance at 1-loemséo correspond to some “quasi-classical”
configuration could be a sign in this direction.

A last issue should be evoked before concluding this worke Ttoop effective Lagrangian was made
diagonal in the basig,,,(p?, ...), smr(p?, ...), in which p,, stands for the common 4-momentumcdf
ands (see Fig. 1). This means that there exist no more non-diagareitions between them and that
dmr(p?,...) ands,,r(p?,...) are, by definition, orthogonal at 1-loop. However, as sooa msss split-
ting exists betweer ands, both cannot be simultaneously on mass-shell and the @iysitnions [28),
which belong to two different sets of orthogonal statestlaenselves expected to be non-orthogonal. So,
unless subtle cancellations take place, non-diagonasitiams are likely to occur between them at this
order, which is akin to saying that the 1-loop Lagrangiarigslf no longer diagonal when re-expressed
in terms of them. The existence and relevance of these ti@msshould be scrutinized, together with the
opportunity to introduce counterternis [22][16][11] to cahthem (see Append[x] A). At the same time,
unlike ¢(p?) in (F3), which is defined for an overall globat, the “on mass-shell” Cabibbo matrix is
expected to exhibit some slight non-unitarity. This cosisavith the work][[[7] in which it is conjectured
to be unitaryf} and where, seemingly, the basis of orthogonal states hasdbesen to be that of phys-
ical d ands. Ours and the approach if] [7] are thaipriori slightly nonequivalent and making a closer
connection between the two requires rewriting our resulteeims of physical fermions together with
performing a complete treatment and re-diagonalizatiothekinetic terms in[[7]. One has in particular
to face the issues of the hermiticity of the 1-loop Lagrangiahich was assumed if][7] for the mass
terms and that we achieved in(40) for the whole Lagrangianyj that of theSU(2), structure of its
gauge currents (which we confirmed [n](47)). This matter isesuly under investigation.

Acknowledgmentdt is a pleasure to thank M.l. Vysotsky for comments andcelvi

13A solution has been proposed E’ [8] in which, in the quarkag¢tl, s) and(u, ¢) mixing angles largely cancel each other
while, in the lepton sector, the opposite occurs.
lsee also footnotﬂ 9: unitarity is conjecturedﬁln [7] but ireaib that is likely to be non-orthogonal at 1-loop.
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A Cancding transitions between non-degener ate physical states

The 1-loop quadratic effective Lagrangian (kinetic and sriasms), that we made diagonal (see section
B) in the basigd,..(p?,...), smr(p?,...)) of 1-loop mass eigenstates, can be generically rewritten, i
the basis of physical eigenstates

— —— 2 2 phys hys
El—loop — ( dphys Sphys >Zﬂl gl(p ) 92(17 ) dmL N ( W Sphys )Z%H dmR
mL mL 2) ( 2 phys mR mR phys
93(p°)  9a(p”) st Sy
—_— —— h
( s phys ) p(p?) p2(p?) s
N mL Sl N
p3(P®)  pa(p?) sy
—_— — h
_ ( d;l?hys phys > 01(p2) 0'2(p2) dfngs N (52)
mR SmR 9 9 phys .
o3(p?) oa(p?) sty

Indeed, combined witH (19) which relates bare mass statéddop mass eigenstate§, |(28) entails that
the coefficients of the linear relation between the latted physical states are functions @f,...).
Hermiticity requires the (supposedly real and presumélily?)) quantitiesgs, g3, o2, 03, p2, p3 to satisfy
the relationgys = g9, p2 = o3, p3 = 09. Furthermore, since right-handed fermions are not coeckeby
1-loop transitions(1 + 7% )dbr¥s = (1 4 ~4°)d°, and(1 + 7%)shr¥* = (1 +~5)s0 .

As seen on[(32), non-diagonaP-dependent transitions spring again, now between physiiatds, which
can be traced back to their non-degeneracy. Though moriedietavestigations are needed, the resulting
“oscillations”, likee™ « 1, look embarrassing. They can however be canceled by intiogspecific
counterterms, as we now show. The procedure is similar torteeused in[[42]. Canceling, for example,
(on mass-shelf) — (on mass-shell) transitions can be done by adding[tg (52) four kinetic andsafife
counterterms, concerning both chiralities of fermions:

— Ag dPY(1—P)sPhYs — B PR (1—7P) 5P — By dPIYS(1447 ) sEPYS — Dy dB0YS (14+0)sPhs . (53)

Sinces?™* is on mass-shell, one gets the condition (we call respégtive and 14 the 1-loop physical
masses of andd, that is, the square roots of the valuegdfolutions ofp? = n2(p?) andp? = p3(p?)

(see subsectidn 2.3.2))

2 (12) A (14 7 s SERYS — po(1i2) din (14 7°)sERYS — oo (p2) din®® (1 — ) s
= Ay dpmhys(l + f’),ussﬁfys + By dfr?ys(l — 75)3%”/5 + Ey d‘f,fys(l - 75),1138%’98 + Dy dfr?ys(l + 75)3%‘3/5,
(54)

and sincef”?"* is also on mass-shell,

92 (12) d* (1 — ~°) g sEYS — pa(p2) din (1 + 7°) PR — g (u3) dip¥™ (1 — ~°) v
= AgdinP (1 — %) stV + By din¥ (1 — ~°)sEhs o By dir¥™ (1 + 4% ugsth¥® + Dg din® (1 +~°)stivs.
(55)

Equating the terms with identical chiralities [n(54) ah8)Fields the four equations

fs g2 (p2) — p2(p?) = psAgq+ Dq,
—o2(p?) = psEq+ By,
pa 92(pg) — o2(p3) = paAa+ Ba,
—p2(p3) = paEq+ Dy, (56)
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which have the?(¢?) solutions

12 ga(p2) — 12 g2(13) + s (p2(p3) — p2(p?)) — pa (o2(p2) — o2(p3))

Ag =

pE — ’
g, - Fans (9205) ~ 92045) + 1a (p2(53) —2p2(u§)) — s (92(59) — 02(1d))
Hs — Ky
By = _02(:“?) — psEq,
Dy = —pa(pg) — paFa. (57)

Likewise, four countertermdl,, £, By, D4 can get rid of the on mass-shelf’¥* — s2™* transitions.
Hermiticity (see above) constrains them to satisfy = Ay, E; = E4, By = Dy, Dy = B,. Similar
additions can be done in tlfe, ¢) sector.

The bare Lagrangian to which the€k¢?) counterterms have been added is suitable for a perturbative
expansion. It can, as before, be performed in the bare mass bawhich the counterterms can be re-
expressed with the help df{28); it has the advantage tha&th@);, generators are simply expressed by
(B7). TheO(g?) effective Lagrangian that is, then, obtained after addigpp transitions like we did in
subsection) 2}1 includes now:

* O(g?) kinetic-like diagonal and non-diagonal terms for left-had fermions which are either-
dependent (the same as in subsedtioh 2.1)?andependent (counterterms);

* 0(g?) kinetic-like non-diagonal and diagon§j counterterms for right-handed fermions which do not
depend onp?;

* O(g?) non-diagonal and diagonal mass counterterms which do mpatrdeonp?, and which spoil the
diagonality of the mass matrix at this order.

Kinetic (left and right) and mass terms can be diagonali2ebli-unitary transformation is now in general
necessary for the latter, which leadsliag(jiq(p?), fis(p?)). This procedure defines I, 1, (p?), 5z (p%))
and right(d,,z(p?), 5mr (p%)) mass eigenstates, which, since they diagonalize the wHoleplquadratic
Lagrangian, are by definition orthogonal at this order. Taeyexpected to differ from the ones obtained
in section[R. So do the effective masses; one expegts?) # 1a(p?), fis(p?) # ps(p?), which leads

to distinguish mass-shells with and without counterteri@ce the latter have been shaped to cancel
non-diagonal transitions betwedp,., (p*> = 13(p*)) ands,,r(p? = p2(p?)) at 1-loop, this Lagrangian
is also expected to describe orthogonal two such statess, Tiese should be unitarily related with any
set(dmr (p?), 5mr(p?)) (Which is orthogonal by construction).

The appropriatesU (2), structure of gauge currents is generated by replacing eatyatve acting on

a left-handed fermion by the correspondifif (2), covariant derivative. The difference with subsection
B.1 is again that the kinetic-like left-handed counteremust now be included in the procedure. Left-
handed charged gauge currents then exhibit a Cabibbo naattixoop which slightly differs from that
given in subsectiof 4.2. It is expected to be unitary wherLtgrangian is expressed in the orthogonal
basisd,, . (p? = u2(p*)) ands,,r(p? = u2(p?)).

By modifying the theory in particular on mass-shell, theoduction of counterterms could only ensure
orthogonality of states which are no longer physical inrtpe¢sence. And, because of this discrepancy
between physical states with and without the countertenms,diagonal transitions are still likely to exist
betweend,,; (p* = ji2(p?)) ands,,r.(p> = i2(p?)) (on mass-shell (with counterterms) states). The hope
is that they are of ordey™2, but this should be carefully checked.

%In the basis of physical states, the kinetic-like right-deeh counterterms are only non-diagonal but diagonal onebea
generated when going to the bare mass basis.
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