
HAL Id: hal-00422646
https://hal.science/hal-00422646v2

Preprint submitted on 8 Oct 2009 (v2), last revised 15 Jun 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixing at 1-loop for quasi-degenerate fermions in a
SU(2)_L gauge theory of weak interactions

Bruno Machet

To cite this version:
Bruno Machet. Mixing at 1-loop for quasi-degenerate fermions in a SU(2)_L gauge theory of weak
interactions. 2009. �hal-00422646v2�

https://hal.science/hal-00422646v2
https://hal.archives-ouvertes.fr


October 8th, 2009 arXiv: 0910.1442 [hep-ph]

MIXING AT 1-LOOP FOR QUASI-DEGENERATE FERMIONS

IN A SU(2)L GAUGE THEORY OF WEAK INTERACTIONS

B. Machet1 2

Abstract: 1-loop transitions induce diagonal and non-diagonal kinetic-like, momentum (p2) dependent
interactions between fermionic bare mass eigenstates. We correspondingly re-examine the Cabibbo pro-
cedure, which requires in particular the simultaneous re-diagonalization of kinetic and mass terms. When
two fermions get close to degeneracy, a resonance exists, atwhich the “Cabibbo” angle becomes close
to maximal and is simply connected with the masses of all fourfermions inside the concerned two gen-
erations and to that of theW gauge boson. It proves also, then, the closest to its classical value. Mass
splittings are furthermore shown to make slightly non-unitary the connection between bare flavor (or
mass) states and 1-loop mass eigenstates. Still, the 1-loopCabibbo (PMNS) matrixC(p2), the expression
of which is dictated by gauge invariance, stays unitary.

PACS: 12.15.Ff 12.15.Lk 14.60.Pq Keywords: mixing, radiative corrections, mass-splitting

1 Introduction

The origin of large mixing angles observed in leptonic charged currents is still largely unknown [1]. A
widespread belief is that it is linked to a quasi-degeneracyof neutrinos, but this connection was never
firmly established. And it cannot be on simple grounds. Indeed, the mixing angles that are “observed”
in neutrino oscillations are the ones occurring in charged currents, which combine the individual mixing
matrices of fermions with different electric charges1 ; the path that goes from the quasi-degeneracy of
one of the two doublets to large mixing in the PMNS matrix [2],one example of which is proposed below,
cannot thus be completely straightforward. Furthermore, homographic transformations on a (mass) ma-
trix, while changing its eigenvalues, do not change its eigenvectors, neither, accordingly, mixing angles;
an infinity of different mass spectra can thus be associated with a given mixing angle.

We will focus here on two pairs of fermions, making up two generations. For the sake of convenience, we
shall call them generically(d, s) and(u, c). The first will be supposed to be close to degeneracy and the
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1The electronic(νe), muonic(νµ), and tau(ντ ) neutrinos are defined as the neutrinos that couple, inside charged currents,

to the mass eigenstates of charged leptons. They are accordingly related to the neutrino mass eigenstates(νem, νµm, ντm) by
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whereKℓ andKν are the mixing matrices respectively of charged leptons andneutrinos. This connection is seen to involve the
hermitian conjugateK†

ℓ Kν of the PMNS matrix.
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second largely split. Results can easily be translated to the leptonic sector, which we rather have in mind.
The Cabibbo angleθc [3] is then replaced by the corresponding entryθPMNS of the PMNS matrix.

This study implements the necessary (re)-diagonalizationof both kinetic and mass terms of a quadratic
Lagrangian to suitably determine an orthogonal set of mass eigenstates. While this requirement is al-
ways and simply taken care of at the classical level by a bi-unitary diagonalization of the mass matrix,
it is generally overlooked as soon as radiative correctionsare concerned [4] [5] [6] [7] [8]. In particular,
only considering self-mass contributions to determine therenormalized mass states from the renormal-
ized mass matrix exposes to the problem that they are not orthogonal since there still exist kinetic-like
transitions between them. We show that the re-diagonalization of kinetic terms can have important ef-
fects. The first is that, for non-degenerate systems, bare mass (or flavor) states are non-unitarily related
to 1-loop mass eigenstates. The second is that a resonance appears, at which large mixing in charged
currents (PMNS, Cabibbo) gets indeed associated with(d, s) quasi-degeneracy.

The procedure goes as follows (for the sake of convenience, calculations are done in the bare mass basis).
Though, at 1-loop, diagonal and non-diagonal corrections to kinetic terms only occur atO(g2), casting
them back to their canonical formΨ /p I Ψ (I stands for the unit matrix) involves an angleω, which depends
on the classical Cabibbo angleθc, on the masses of all four fermions(md,ms,mu,mc), and onmW . It
does not depend on the coupling constantg and gets close to(−θc) when the two fermions are much closer
to degeneracy than the second pair in the same two generations. The corresponding transformation,V,
which is slightly non-unitary as soon as the fermions are non-degenerate, modifies the mass matrix which
stays no longer diagonal, but keeps nevertheless symmetric. Its re-diagonalization requires accordingly
a simple rotationR(ξ) which, being in particular unitary, does not change anymorethe kinetic terms.
So, after the two transformationsV andR(ξ) have been performed, the quadratic Lagrangian is fully
diagonal, which determines the 1-loop mass eigenstates.

Like ω, the angleξ depends onθc and on the fermion masses. In the same situation as above (twofermions
quasi-degenerate and the other pair far from degeneracy)tan 2ξ exhibits a pole. The pole condition is
a simple relation betweenθc, the masses of all four fermions and theW mass. When it is fulfilled,ξ
becomes maximal and very close to the 1-loop value of the Cabibbo angle. We also demonstrate that the
(d, s) mixing angle is then also the closest to its classical value,and the(u, c) mixing angle extremely
close to it. This makes the Cabibbo angle at resonance both close to maximal and the closest to its
classical value.

That mass splittings trigger non-unitary relations between bare flavor states and 1-loop mass states is
not a new result [9][10][11][12]. It turns out however, that, unlike individual mixing matrices, the 1-
loop Cabibbo matrixC(p2) occurring in charged currents stays unitary. It is a consequence of gauge
invariance, which in particular connects, through the covariant derivative of fermion fields, kinetic terms
to gauge currents, both at the classical level and includingradiative corrections. The expression of the
1-loop Cabibbo matrixC(p2) is thus directly dictated by that of the 1-loop kinetic terms, which is one
more reason to pay a special attention to them.

This study also exhibits the instability of quasi-degenerate systems with respect to small (perturbative)
variations of the Lagrangian. This is definitely not a new result, but it may call for techniques that go
beyond perturbation theory.

In the last section, we briefly show that 1-loop corrections have a negligible influence on the propagation
of neutrinos in matter and, more specifically, on the MSW [13][14] resonance.

For the sake of simplicity, we shall work in a pureSU(2)L theory of weak interactions instead of the
standardSU(2)L×U(1) electroweak model. Since the theory is renormalizable, we shall use the unitary
gauge, devoid of the intricacies due to scalar fields and which, consistently working at orderg2, yields
finite results for the quantities of concern to us. While we cannot, accordingly, verify the gauge inde-
pendence of the results (independence on theξ parameter in anRξ gauge), gauge invariance, as already
mentioned, is of primordial importance in this work.
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2 1-loop transitions between non-degenerate fermions. Re-diagonalizing
the quadratic Lagrangian

2.1 1-loop transitions

Like in the Standard Model of electroweak interactions [15], the diagonalization of the classical mass
matrix by a bi-unitary transformation leads to the classical mass eigenstates, for examples0

m andd0
m,

with classical massesms andmd. They are orthogonal with respect to the classical Lagrangian (which
is akin to the property that no transition between them occurs at the classical level). However, at 1-
loop, gauge interactions induce diagonal and non-diagonaltransitions between them. For example, Fig. 1
describes non-diagonals0

m → d0
m transitions, mediated by theW± gauge bosons. Diagonal transitions

are mediated either byW±
µ or byW 3

µ .
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Fig. 1: s0
m → d0

m transition at1-loop

We investigate in this work how the Cabibbo procedure implements in the presence of these transitions
[16]. The one depicted in Fig. 1 contributes as a left-handed, kinetic-like,p2-dependent interaction of the
type

sin θc cos θc

(
h(p2,mu,mW )− h(p2,mc,mW )

)
d̄0

m /p(1− γ5) s0
m, (2)

that we abbreviate, with transparent notations, into

sccc(hu − hc) d̄0
m /p (1− γ5) s0

m. (3)

It depends on the classical Cabibbo angleθc = θd − θu. The functionh is dimensionless.

It is simple matter to realize that all (diagonal and non-diagonal) 1-loop transitions betweens0
m andd0

m

mediated byW± gauge bosons transform their kinetic terms into

(

d̄0
m s̄0

m

)



I /p +




c2
chu + s2

chc sccc(hu − hc)

sccc(hu − hc) s2
chu + c2

chc



 /p(1 − γ5)








d0

m

s0
m





=
(

d̄0
m s̄0

m

)[

I /p +

(
hu + hc

2
+ (hu − hc) Tx(2θc)

)

/p(1 − γ5)

]



d0

m

s0
m



 , (4)

where we noted

Tx(θ) =
1

2




cos θ sin θ

sin θ − cos θ



 . (5)

To the contributions (4) we must add the diagonal transitions mediated by theW 3
µ gauge boson. The

kinetic terms for left-handedd0
m ands0

m quarks then become (omitting the fermionic fields and the de-
pendence onp2, . . .) 2

2From now onwards, to lighten the notations, we shall frequently omit the dependence onp2 and on the masses.
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Kd = I + Hd ;

Hd =
hu + hc

2
+ (hu − hc) Tx(2θc) +




hd

hs



 , (6)

wherehd = h(p2,md,mW ) andhs = h(p2,ms,mW ). Likewise, in the(u, c) sector, one has

Ku = I + Hu ;

Hu =
hd + hs

2
+ (hd − hs) Tx(2θc) +




hu

hc



 . (7)

In the unitary gauge, form2
i ,m

2
j , p

2 ≪ m2
W , one has

hi − hj ≈
g2

4π2

m2
j −m2

i

p2

[

1 +
m2

W

p2
ln

m2
W − p2

m2
W

]

≈ g2

8π2

m2
i −m2

j

m2
W

[

1 +
2

3

(
p2

m2
W

)2

+ · · ·
]

. (8)

We shall now diagonalize the quadratic part of the effective1-loop Lagrangian, which means putting the
pure kinetic terms back to the unit matrix and, at the same time, re-diagonalizing the mass matrix. This
is accordingly a two-steps procedure.

Since the kinetic terms of right-handed fermions are not modified, we shall only be concerned with the
left-handed ones.

2.2 First step: re-diagonalizing kinetic terms back to the unit matrix

The pure kinetic termsKd for (d0
m, s0

m) written in (6) can be cast back to their canonical form by a
p2-dependent non-unitary transformationsVd(p

2, . . .) according to

V†d Kd Vd = I. (9)

The procedure to findVd is the following. Let(1 + t+) and(1 + t−), t+, t− = O(g2), be the eigenvalues
of the symmetric matrixKd. One has explicitly

t± =
hu + hc + hd + hs

2
± 1

2

√

(hu − hc)
2 + (hd − hs)

2 + 2 (hu − hc) (hd − hs) cos 2θc. (10)

Kd can be diagonalized by a rotationR(ωd) ≡




cos ωd sin ωd

− sin ωd cos ωd



 according to

R(ωd)
† KdR(ωd) =




1 + t+

1 + t−



 , (11)

with

tan 2ωd =
−(hu − hc) sin 2θc

(hu − hc) cos 2θc + hd − hs
, (12)

or, equivalently,

cos 2ωd =
(hu − hc) cos 2θc + hd − hs

t+ − t−
, sin 2ωd = −(hu − hc) sin 2θc

t+ − t−
, (13)
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in which (t+ − t−) can be immediately obtained from (10)3 . (12) definesωd in particular as a function
of θc, ωd = ωd(θc, . . .). Since both numerator and denominator of (12) areO(g2), ωd does not depend
on the coupling constantg. Nor does it depend onp2, for the same reason.

The diagonal matrix obtained in (11) is not yet the required unit matrix, but one simply gets to it by
renormalizing the columns ofR(ωd) respectively by 1√

1+t+
and 1√

1+t−
. The looked-for non-unitary

matrixVd writes finally

Vd =






cωd√
1 + t+

sωd√
1 + t−

− sωd√
1 + t+

cωd√
1 + t−




 . (14)

It differs from the rotationR(ωd) only atO(g2) and satisfies

Vd V†d =
1

(1 + t+)(1 + t−)

(

I +
t+ + t−

2
− (t+ − t−) Tx(−2ωd)

)

, V†d Vd =






1

1 + t+
1

1 + t−




 .

(15)
Unlike ωd, it slightly depends onp2.

For |hd−hs| ≪ |hu−hc|, which is the situation that we shall always keep in mind,(t+−t−) ≈ (hu−hc)
and the expression forsin 2ωd in (13) shows thatωd(θc) ≈ −θc (see also footnote 3). So, when the pair
(d, s) is close to degeneracy and(u, c) far from it,Vd becomes close to a rotationR(−θc).

The non-degeneracy of(d, s) or (u, c) is enough to trigger a non-trivial non-unitarity ofVd. Instead, for
md = ms andmu = mc, t+ = t− = t, which entailsVdV†d ≈ V

†
dVd = I

1+t
: in this twice degenerate

case, a simple rotation to which is added a global diagonal wave function renormalization is enough to
diagonalize the(d, s) kinetic terms at 1-loop.

2.3 Second step: re-diagonalization of the mass matrix

By (9), the kinetic terms4 (d0
mL, s0

mL)Kd /p




d0

mL

s0
mL



 at 1-loop for left-handedd and s in the bare

mass basis rewrite(d0
mL, s0

mL)(V−1
d )†V−1

d /p




d0

mL

s0
mL



, which leads to definingd1
mL and s1

mL such

that




d1

mL

s1
mL



 = V−1
d




d0

mL

s0
mL



. The mass terms(d0
mL, s0

mL)Md




d0

mR

s0
mR



 + h.c., with Md =

diag(md,ms), rewrite accordingly(d1
mL, s1

mL)V†dMd




d0

mR

s0
mR



 + h.c.. Hence, the mass matrix that

needs to be re-diagonalized isV†dMd. It is done through two unitary transformationsR(ξd) andS(ξd)

such thatR(ξd)
†(V†dMd)S(ξd) = diag(µd, µs). SinceV†dMdM

†
dVd is a real symmetric matrix

V†d MdM
†
d Vd = V†d




m2

d

m2
s



Vd =








m2
d c2

ωd
+ m2

ss
2
ωd

1 + t+
− sωd

cωd
(m2

s −m2
d)

√

(1 + t+)(1 + t−)

− sωd
cωd

(m2
s −m2

d)
√

(1 + t+)(1 + t−)

m2
ds

2
ωd

+ m2
sc

2
ωd

1 + t−








, (16)

3(12) also rewritessin 2(ωd+θc)
sin 2ωd

= − hd−hs

hu−hc
, which shows thatωd → −θc when|ms − md| ≪ |mu − mc|.

4The subscriptL refers to left-handed fermions andR to right-handed ones.
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R(ξd) can be taken as a rotation, according to

R(ξd)
†

(

V†d MdM
†
d Vd

)

R(ξd) =




µ2

d(p
2, . . .)

µ2
s(p

2, . . .)



 . (17)

SinceR(ξd) is unitary, it preserves the canonical form of the kinetic terms that had been rebuilt in sub-
section 2.2. It satisfies

tan 2ξd =
−(m2

d −m2
s)

√

(1 + t+)(1 + t−) sin 2ωd

(m2
d −m2

s)

(

1 +
t+ + t−

2

)

cos 2ωd − (m2
d + m2

s)
t+ − t−

2

. (18)

Throughωd(θc, . . .), (18) definesξd in particular as a function ofθc, ξd = ξd(θc, . . .).

We shall see in subsection 4.3 that, for quasi-degenerate(d, s) and largely split(u, c), ξd(θc) ultimately
becomes the 1-loop Cabibbo angle, which is accordingly implicitly expressed by (18) as a function of the
masses of fermions and gauge fields.

Since the mass terms rewrite(d1
mL, s1

mL)R(ξd) diag(µd, µs) S(ξd)
†




d0

mR

s0
mR



 + h.c., the 1-loop left-

handed mass eigenstates(dmL(p2, . . .), smL(p2, . . .)) are defined by(dmL, smL) = (d1
mL, s1

mL)R(ξd),
which leads to 


d0

mL

s0
mL



 = VdR(ξd)




dmL

smL



 . (19)

By construction, at this order and at any givenp2, there exists no transition betweendmL(p2, . . .) and
smL(p2, . . .), which are thus, by definition, orthogonal.

2.3.1 The resonance (pole of tan 2ξd)

One should keep careful about approximations. For example,we have seen in subsection 2.2 that|md −
ms| ≪ |mu − mc| yieldsωd ≈ −θc; however (18) should not be approximated bytan 2ξd ≈ tan 2θc,
nor the conclusion drawn that the combined actions ofV andR(ξd) sum up to zero or close to it. Indeed,
though theO(g2) quantity(t+−t−) in the denominator of (18) is indeed small, it cannot be neglected with
respect to the other contribution whend ands are quasi-degenerate and whencos 2ωd is small enough,
that is, forθc close to maximal.

(18) is indeed characterized by the existence of a pole. It occurs (neglecting terms ofO(g>2)) for

2
m2

d −m2
s

m2
d + m2

s

cos 2ωd(θc) ≈ t+ − t−. (20)

That | cos 2ωd| must be smaller than1 requires
∣
∣
∣
m2

s−m2
d

m2
s+m2

d

∣
∣
∣ ≥ t+−t−

2 . In practice, for known fermions of

the(d, s) type, it is always satisfied, ensuring the existence of this pole. This is however not the case for
fermions of the(u, c) type when they are largely split while(d, s) is close to degeneracy. Indeed, no value
of θc can then satisfy the equivalent of (20) and (12) for(d, s) ↔ (u, c) (in particular becauseωu → 0,
see also subsection 4.3), such that, unliketan 2ξd, tan 2ξu cannot have a pole.

Using the expression ofcos 2ωd given in (13), (20) becomes

2
m2

d −m2
s

m2
d + m2

s

(

(hu−hc) cos 2θc+(hd−hs)
)

= (t+−t−)2
(10)
= (hu−hc)

2+(hd−hs)
2+2(hu−hc)(hd−hs) cos 2θc,

(21)
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which, for(d, s) close to degeneracy,|ms −md| ≪ |mc −mu|, can be approximated by

m2
d −m2

s

m2
d + m2

s

≈ 1

2

(hu − hc)
2

(hu − hc) cos 2θc + (hd − hs)
. (22)

Then, the pole oftan 2ξd occurs for

cos 2θc|pole =
1

2

[

(hu − hc)
m2

d + m2
s

m2
d −m2

s

− hd − hs

hu − hc

]

, (23)

in which we recall thatd, s, u, c, θc are generic notations standing either for quarks or for leptons. The
corresponding value ofθc is always, in practice, close to maximal. Indeed, as far as the modulus of the
second contribution to the r.h.s. of (23) is concerned: in the leptonic sector it is smaller than10−16 (the
reasonable upper bound of neutrino(mass)2 = O(1 eV 2) divided by the smallest difference between the

(mass)2 of charged leptons, which is very close tom2
µ); in the quark sector, it is smaller that1

2
m2

s

m2
c−m2

u
≈

5 10−3. Concerning now the first contribution: for leptons, the ratio

∣
∣
∣
∣

m2
νi

+m2
νj

m
ν2
i
−m2

νj

∣
∣
∣
∣

is smaller that105 while

1
2 |hℓ1 − hℓ2 | is smaller than g2

16π2
m2

τ

m2
W

≈ 2 10−7; for quarks, the ratio

∣
∣
∣
∣

m2
qi

+m2
qj

m2
qi
−m2

qj

∣
∣
∣
∣

for qi, qj = (d, s, b) is

alwaysO(1) and 1
2 |hu − hc| ≈ 10−7 (we will not consider the top quark here, for which (8) is no longer

valid).

In this same configuration, the resonance condition (20) canbe written (remember thatωd ≈ −θc, see
subsection 2.2),

(m2
s −m2

d) cos 2ωd

|md−ms|≪|mu−mc|≈ GF√
2π2

(m2
c −m2

u)
m2

d + m2
s

2
. (24)

For the(νe, νµ, e, µ) system, the r.h.s. of (24), which is independent of the energy of the neutrinos, be-

comes GF√
2π2

m2
µ

m2
νe

+m2
νµ

2 ≈ 3 10−8 m2
νe

+m2
νµ

2 (eV 2); for the (νµ, ντ , µ, τ) system, it becomes

GF√
2π2

m2
τ

m2
νµ

+m2
ντ

2 ≈ 2.12 10−6 m2
νµ

+m2
ντ

2 (eV 2). By comparison, the resonance condition forνe ↔ νµ

oscillations in matter writes [17][18]∆m2 cos 2θ = 2
√

2EGF Ne, whereE is the energy of the neutrinos
andNe the electron density. In the core of the sun, whereNe ≈ 100NA cm−3 (NA is the Avogadro
number) and for neutrinos of energy≈ 10 MeV , one gets2

√
2EGF Ne ≈ 10−4 (eV 2) [18], while in the

core of the earth, whereNe ≈ 6 NA cm−3 and for1 MeV neutrinos,∆m2 cos 2θ ≈ 10−6(eV 2) [18].

2.3.2 1-loop masses

The re-diagonalization of kinetic terms indirectly contributes to a renormalization of the masses:md →
µd(p

2, . . .),ms → µs(p
2, . . .). For t+−t−

2
m2

s−m2
d

m2
s+m2

d

cos 2ωd ≪ 1 and t+−t−
2

m2
s+m2

d

m2
s−m2

d

cos 2ωd ≪ 1 5 , one

gets from (16)

µ2
s(p

2, . . .) ≈ m2
s

(

1− t+ + t−
2

)

−m2
d

t+ − t−
2

cos 2ωd,

µ2
d(p

2, . . .) ≈ m2
d

(

1− t+ + t−
2

)

+ m2
s

t+ − t−
2

cos 2ωd; (25)

(25) is not valid formd = ms.

5The first condition is immediately seen to be always satisfied. The second too, unless(d, s) are extremely close to degener-
acy or degenerate, which does not occur for any known fermions.
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This yields in particular, still when the two conditions mentioned at the beginning of this subsection are
satisfied,

µ2
s − µ2

d

µ2
s + µ2

d

≈ m2
s −m2

d

m2
s + m2

d

− (t+ − t−)
m4

s + m4
d

(m2
s + m2

d)
2

cos 2ωd, (26)

which becomes, forms ≈ md (ms 6= md)

µ2
s − µ2

d

µ2
s + µ2

d

ms≈md≈ m2
s −m2

d

m2
s + m2

d

− t+ − t−
2

cos 2ωd

(13)
≈ m2

s −m2
d

m2
s + m2

d

− 1

2
(hu − hc) cos 2θc =

m2
s −m2

d

m2
s + m2

d

+
g2

16π2

m2
c −m2

u

m2
W

cos 2θc. (27)

Supposingcos 2θc > 0 andmc > mu,
µ2

s−µ2
d

µ2
s+µ2

d

goes to a minimum, identical to its classical value, when

θc becomes maximal. This is the case, as we saw in subsection 2.3.1, at theξd resonance. Note that a
similar property is satisfied in the case of the MSW resonance(see for example [18]).

The classically degenerate casemd = ms is most easily studied directly from (16). Degeneracy gets

lifted at 1-loop since the renormalized masses become, thenµ2
d =

m2
d,s

1+t+
, µ2

s =
m2

d,s

1+t−
, such that

µ2
s−µ2

d

µ2
s+µ2

d

≈
hc−hu

2 ≈ g2

16π2
m2

c−m2
u

m2
W

. It turns out to be the limit of (27) formd = ms andθc maximal.

3 Individual mixing matrix and 1-loop mixing angle

3.1 1-loop and classical mass eigenstates are non-unitarily related

According to (19), the left-handed 1-loop mass eigenstates(dmL, smL) are related to the bare ones via
the product of ap2-dependent non-unitary transformationVd by ap2-dependent unitary oneR(ξd). We
have seen in subsection 2.2 that mass splittings are at the origin of the non-unitarity ofVd. The two bases
are accordingly non-unitarily related [9] [10] [11] [12].

On mass-shell (respectively atp2 = µ2
d(p

2) andp2 = µ2
s(p

2)), one deduces from (19) the expressions of
the physical mass eigenstates

dphys
mL ≡ dmL

(
p2 = µ2

d(p
2)

)
= [(VdR(ξd))

−1]11
(
p2 = µ2

d(p
2)

)
d0

mL + [(VdR(ξd))
−1]12

(
p2 = µ2

d(p
2)

)
s0
mL,

sphys
mL ≡ smL

(
p2 = µ2

s(p
2)

)
= [(VdR(ξd))

−1]21
(
p2 = µ2

s(p
2)

)
d0

mL + [(VdR(ξd))
−1]22

(
p2 = µ2

s(p
2)

)
s0
mL,
(28)

such that a second source of non-unitarity, due toµd 6= µs, adds to the one due toVd (as we mentioned
at the end of subsection 2.2, bothmd = ms andmu = mc are necessary to dim the non-unitarity ofV).
Since bare mass states are unitarily related to bare flavor states, the physical mass eigenstates are also
non-unitarily related to the latter.

3.2 Individual mixing matrix and 1-loop mixing angle

Classical flavor eigenstates and 1-loop mass eigenstates are related to each other according to




d0

fL

s0
fL



 = Cd0




d0

mL

s0
mL




(19)
= Cd0 VdR(ξd)




dmL

smL



 , (29)

whereCd0 ≡ R(θd) is the classical mixing matrix of the(d, s) pair. The individual mixing matrix at
1-loop is thus given by

Cd(p2, . . .) = Cd0 VdR(ξd) = R(θd)VdR(ξd), (30)
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which slightly deviates from unitarity. SinceVd ≈ R(ωd)+O(g2) (see (14)),Cd stays nevertheless close
to a rotation

Cd(p2, . . .) ≈ R(θd + ωd + ξd) +O(g2). (31)

The quantity(ωd + ξd) is seen to renormalize the classical mixing angleθd; it satisfies, from (18), the
relation (neglecting, as in (20), the terms proportional tot++t−

2 which are of orderg>2)

tan 2(ωd + ξd) ≈
− tan 2ωd

[
t+−t−

2
m2

d
+m2

s

m2
d
−m2

s

1
cos 2ωd

]

1 + tan2 2ωd −
[

t+−t−
2

m2
d
+m2

s

m2
d
−m2

s

1
cos 2ωd

] . (32)

In practice,tan 2(ωd + ξd) stays small, and so does, accordingly,(ωd + ξd). Indeed, renormalization
effects could become large only close to the pole of (32). Thelatter, which occurs for

1

cos 2ωd

=
t+ − t−

2

m2
d + m2

s

m2
d −m2

s

, (33)

that is, for 1
cos 2ωd

= O(g2) × m2
d
+m2

s

m2
d
−m2

s
, is usually unphysical because it corresponds to| cos 2ωd| > 1.

| cos 2ωd| could become smaller than1 only if, generically,
∣
∣
∣
m2

d
−m2

s

m2
d
+m2

s

∣
∣
∣ < t+−t−

2 ≈ g2

16π2
m2

c−m2
u

m2
W

, which is

never satisfied for known fermions, quarks or leptons6 .

From (32), (12) and (13) one also gestan 2(ωd + ξd) as a function ofθc and the classical masses

tan 2(ωd + ξd) ≈
1
2

m2
d
+m2

s

m2
d
−m2

s
(hu − hc) sin 2θc

1− 1
2

m2
d
+m2

s

m2
d
−m2

s

(
(hu − hc) cos 2θc + hd − hs

) . (34)

3.3 1-loop mixing angles at the resonance

3.3.1 The (d, s) mixing angle

The interest of introducing the quantityf(ωd) ≡
[

t+−t−
2

m2
d
+m2

s

m2
d
−m2

s

1
cos 2ωd

]

in (32) is that, according to

(20), it is equal to1 at the pole oftan 2ξd. So, whenξd becomes maximal,tan 2(ωd + ξd) = − 1
tan 2ωd

,
which is very small. Indeed, for|md − ms| ≪ |mu − mc|, |hd − hs| ≪ |hu − hc| and (20) yields

cos 2ωd ≈ hu−hc

2
m2

d
+m2

s

m2
d
−m2

s
= g2

16π2
m2

u−m2
c

m2
W

m2
d
+m2

s

m2
d
−m2

s
which is very small for known fermions. So, at the

pole,ωd is very close to maximal7.

Furthermore, from the expression (32) oftan 2(ωd + ξd), one deduces

d tan 2(ωd + ξd)

dωd
=

2f(ωd)
(
f(ωd)− 1

)

1 − f(ωd) cos2 2ωd
, (35)

which provides a characterization of the resonance:|ωd + ξd| is then minimal, such that the 1-loop(d, s)
mixing angle is the closest to its classical valueθd.

Note: From the expression (12) fortan 2ωd and (21) forcos 2ωd, one getsdωd

dθc
≡ 1

2 cos2 2ωd
d tan 2ωd

dθc
=

− (hu−hc)
[
(hu−hc)+(hd−hs) cos 2θc

]

(t+−t−)2

|md−ms|≪|mu−mc|≈ −1, such thatd tan 2(ωd+ξd)
dθc

≈ −d tan 2(ωd+ξd)
dωd

. So,

at the pole, the dependence of(ωd + ξd) on θc vanishes.

6For example, in the(νµ, ντ , ν, τ ) sector, the condition writes

˛

˛

˛

˛

m2

ντ
−m2

νµ

m2
ντ

+m2
νµ

˛

˛

˛

˛

< g2

16π2

m2

τ −m2

µ

m2

W

, the r.h.s. of which≈ 1.9 10−7,

while the l.h.s. is experimentally known to beO(10−3) if one considers that the neutrino mass scale isO(eV ). The mismatch
is similar in the(νe, ντ , e, τ ) sector and worse in the(νe, νµ, e, µ) sector.

7And so is accordinglyθc (see the end of subsection 2.2).
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3.3.2 The (u, c) mixing angle

In the same configuration|md −ms| ≪ |mu −mc|, from the expression equivalent to (12) in the(u, c)

sector,tan 2ωu = −(hd−hs) sin 2θc

(hd−hs) cos 2θc+hu−hc
, one deduces that, since|hu − hc| ≫ |hd − hs|, ωu → 0. Then,

from the equivalent of (32),tan 2(ωu + ξu) gets suppressed with respect totan 2ωu by an additional
factorO(g2).

One also getsd tan 2(ωu+ξu)
dωu

≈ (hu − hc) and d tan 2(ωu+ξu)
dθc

≈ (hd−hs) sin 2θc

tan 2ωd
. This is extremely small

at the resonance oftan 2ξd whereωd is close to maximal, and it is furthermore damped by the small
factor(hd − hs). Accordingly, for largely split(u, c), not only, at the pole oftan 2ξd, ωu and(ωu + ξu)
are small (such that the 1-loop(u, c) mixing angle stays, like the(d, s) mixing angle, very close to its
classical value), but, also,(ωu + ξu) depends extremely weakly onθc (though, unlike for(ωd + ξd), we
cannot speak of a minimum here).

4 The 1-loop Cabibbo matrix

4.1 The effective Lagrangian at 1-loop (in the bare mass basis)

SU(2)L gauge invariance demands the replacement, in the Lagrangian, of the partial derivative∂ by
the covariant derivativeD. This is how, at the classical level and in the bare mass basis, calling Ψ0 T

m =

(u0
mL, c0

mL, d0
mL, s0

mL), the kinetic + gauge terms write in their standard formiΨ
0
m

←→
DµγµΨ0

m

≡ i
2

(

Ψ
0
mγµ(DµΨ0

m)− (DµΨ0
m)γµ Ψ0

m

)

, such that

Lclass = Ψ
0
m

(
I (i∂µ) + g ~T . ~Wµ

)
γµΨ0

m + . . . (36)

TheT ’s are the (Cabibbo rotated)SU(2) generators

T 3 =
1

2




1

−1



 , T+ =




C0



 , T− =





C†0



 , (37)

whereC0 is the classical Cabibbo matrix

C0 = R(θc) =




cos θc sin θc

− sin θc cos θc



 = C†u0 Cd0 = R(θu)†R(θd). (38)

Gauge currents and theirSU(2)L algebra are thus directly related to kinetic terms by gauge invariance
and the resulting Lagrangian is both gauge invariant and hermitian.

We shall use the same procedure to determine the Lagrangian after 1-loop transitions have been accounted
for. Still in the bare mass basisΨ0

m, we have seen in subsection 2.1 that the kinetic terms, whichare
classically proportional, in momentum space, toI /p get renormalized at 1-loop intoA(p2,mi,mW ) /p,
with

A(p2, . . .) =




Ku(p2, . . .)

Kd(p
2, . . .)



 = I +




Hu(p2, . . .)

Hd(p
2, . . .)



 ; (39)

pµ stands, there, for the common momentum of the ingoing and outgoing fermions, as depicted in Fig. 1.

The 1-loop kinetic + gauge Lagrangian that we will hereafterconsider is accordinglyiΨ
0
m

←−→
ADµ γµΨ0

m ≡
i
2

(

Ψ
0
mγµ(ADµ Ψ0

m)− (ADµΨ0
m) γµΨ0

m

)

, which yields

L1−loop = Ψ
0
m

(

A (i∂µ) +
g

2
(A ~T + ~TA). ~Wµ

)

γµΨ0
m + . . . (40)
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It has the required properties of gauge invariance and, thanks to the presence of the symmetric expression
A~T + ~TA, of hermiticity8. Gauge invariance has in particular dictated the 1-loop expression of the gauge
currents, from which we shall now deduce that of the 1-loop Cabibbo matrix.

4.2 The Cabibbo matrix stays unitary at 1-loop

The 1-loop Cabibbo matrix in the bare mass basis can be read directly from the expressiong2Ψ
0
m(A ~T +

~TA)γµΨ0
m of the gauge currents that results from (40). This yields

Cbm(p2, . . .) =
1

2

[
(I + Hu)
︸ ︷︷ ︸

Ku(p2,...)

C0 + C0 (I + Hd)
︸ ︷︷ ︸

Kd(p2,...)

]
. (41)

A naive calculation9 could erroneously lead to the conclusion thatCbm is non-unitary, but it relies on the
implicit assumption that the bare mass basis is orthogonal,which is untrue at 1-loop. The pure kinetic
terms in (40) are, in particular, not normalized toI but to the non-diagonal matrixA. So, it is suitable to
go to the orthogonal basis of 1-loop mass eigenstates by using the relation (19). Because of the unitarity

of theR(ξ) rotations, one has]Vu,dR(ξu,d)]
†Ku,d[Vu,dR(ξu,d)] ≡ R(ξ†

u,d)[V
†
u,dKu,dVu,d]R(ξu,d)

(9)
=

R(ξu,d)
†R(ξu,d) = I, such that the pure kinetic terms get now normalized toI. And, as we show next,

the 1-loop Cabibbo matrixC(p2, . . .) rewrites, then, as a rotation. It becomes indeed in this basis 10

C(p2, . . .) = [VuR(ξu)]† Cbm(p2, . . .) [VdR(ξd)]. (43)

Transforming the general expressions (43) and (41) with thehelp of (9) which entailsKd = (V−1
d )†V−1

d

(Ku = (V−1
u )†V−1

u ), yields

C =
1

2
R(ξu)†

[

V−1
u C0Vd + V†uC0(V−1

d )†
]

R(ξd) =
1

2
R(ξu)†

[

V−1
u C0Vd +

(
(V−1

u C0Vd)
−1

)†
]

R(ξd).

(44)

8Hermiticity is, instead, not achieved if one considers a kinetic Lagrangian of the formi Ψ
0
m

−−−→
ADµ γµΨ0

m (with → instead
of ↔ aboveADµ).

9Using C0 = R(θd − θu) and the expressions (6) (7) forKd andKu, one findsCbm(Cbm)† 6= I. However, this does
not mean that the Cabibbo matrix is non-unitarity because these expressions are written in a basis which is non-orthogonal at
1-loop. Consider indeed, for example, the relationC∗

11C12 + C∗
21C22 6= 0. It traduces the non-orthogonality of the two vectors

C

0

@

0

1

1

A ≡

0

@

C12

C22

1

A andC

0

@

1

0

1

A ≡

0

@

C11

C21

1

A when their scalar product is evaluated with the metric(1, 1). However,

this metric is the correct one only at the classical level, atwhich

0

@

0

1

1

A and

0

@

1

0

1

A, which represent fermions in bare mass

space, are orthogonal since no transition occurs between the two of them; but it is no longer so at 1-loop (see Fig. 1). And,
indeed, when one goes, as we do next in the text, to the orthogonal basis of 1-loop mass eigenstates, this apparent non-unitarity
gets exactly canceled. Likewise, for any matrixU , the relationUU† = 1 traduces unitarity only ifU is expressed in an
orthogonal basis of states (i.e. no transition exists between them at the order that is considered).

10One can easily demonstrate thatC(p2, . . .) = C†
u Cd +O(g2), reminiscent of the classical relationC0 = C†

u0 Cd0, as follows.
SinceHu andHd in (41) areO(g2), the terms proportional to them in (43) can be calculated with the expressions ofR(ξd) and

Vd atO(g0), that is, fort+ = 0 = t−; one can accordingly take in thereR(ξd)
(18)
→ R(−ωd) andVd

(14)
→ R(ωd), such that

VdR(ξd) → I. The same approximation can be done in the(u, c) sector. The resulting expression forC is

C(p2
, . . .)

O(g2)
≈ R(ξu)† V†

u C0 Vd R(ξd) +
1

2

`

Hu C0 + C0 Hd
| {z }

O(g2)

´

, (42)

which leads to the announced formula after using (38), and (30) and its equivalent forCu. ThatC(p2) is unitary means that the
non-unitarity ofC†

uCd gets compensated by that of1
2
(HuC0 + C0Hd).
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Noticing thatt+ andt− given in (10) are the same for(d, s) and(u, c) and using the expression (14) for

the V ’s, one getsV−1
u C0Vd =




cos(ωu − ωd − θc) −

√
1+t+
1+t−

sin(ωu − ωd − θc)
√

1+t−
1+t+

sin(ωu − ωd − θc) cos(ωu − ωd − θc)



, which

leads finally to

C(p2, . . .) = R
((

θd + ωd(p
2, . . .) + ξd(p

2, . . .)
)
−

(
θu + ωu(p2, . . .) + ξu(p2, . . .)

))

+O(g(>2)). q.e.d.

(45)
C(p2) stays thus unitary for any common value ofp2 at which its entries are evaluated11.

In the basis of 1-loop mass eigenstates, the LagrangianL rewrites

L =
(

umL cmL dmL smL

)

(p2, . . .)
(

/p + g ~T(p2, . . .). ~Wµ γµ + . . .
)











umL

cmL

dmL

smL











(p2, . . .) + . . . ,

(46)
with “1-loop” SU(2)L generators~T(p2, . . .) depending now onp2 and on the masses

T
3(p2, . . .) =

1

2




1

−1



 ,T+(p2, . . .) =




C(p2, . . .)



 ,T−(p2, . . .) =





C†(p2, . . .)



 .

(47)
Our procedure has accordingly preserved theSU(2)L structure of gauge currents at 1-loop, which guar-
antees in particular that the corresponding Ward identities are satisfied.

4.3 The 1-loop Cabibbo angle and its large value at the resonance

(45) shows that the Cabibbo angleθc = θd − θu gets renormalized by(ωd + ξd)− (ωu + ξu).

At the pole oftan 2ξd, we have seen that(ωd + ξd) (see subsection 3.3.1), and(ωu + ξu) (see subsection
3.3.2) become extremely small. So behaves accordingly(ωd + ξd) − (ωu + ξu), such that the 1-loop
Cabibbo angle stays, then, very close to its classical value, which is, according to (23), close to maximal.

Another property is that, whend ands are close to degeneracy, whileu andc are far from it,

C(p2, . . .) ≈ R
(
ξd(θc)

)
. (48)

This results fromωd(θc) ≈ −θc demonstrated at the end of subsection 2.2;ωd cancels, then,(θd − θu)
in (45). (ωu + ξu), that we just showed to be very small, does not alter this property. The 1-loop value
of the Cabibbo angle finally becomes close toξd(θc) as given by (18); it is accordingly determined by
the rotation that casts back, at 1-loop, the mass matrix of the quasi-degenerate pair to diagonal. The role
of the (u, c) fermion pair far from degeneracy is blurred; indeed, the only trace left is the dependence,
at the resonance, ofξd andθc on the masses of all four fermions(md,ms,mu,mc). But the situation is
nevertheless different from a naive “alignment” of(u, c) mass and flavour eigenstates. This would mean
a vanishing(u, c) mixing angle, while what we get is the quasi-vanishing of thesole quantum correction
(ωu + ξu); we have no control on the classicalθu.

11This may not be in contradiction with the non-unitarity claimed in [10] and [12] when the two external fermions legs are on
different mass-shell, since, then, two differentp2 are involved. See also the end of section 7.
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5 Instability close to degeneracy

Quasi-degenerate systems are known to be unstable with respect to small perturbations. This property is
easily verified here, through the amount by which classical mixing angles are renormalized when 1-loop
transitions are accounted for. It undergoes indeed large variations when the classical masses span a very
small interval in the neighborhood of degeneracy: we first consider the case of exact classical degeneracy
(md = ms), secondly the pole of (32), which corresponds to a situation whered ands are extremely
close to degeneracy (see subsection 3.2), and, last, the pole of tan 2ξ, which also corresponds to quasi-
degenerate fermions, but not as close as previously. The twofirst cases are very likely purely academic
(see [20] and subsection 3.2), but this is no relevance for what we want to show here. The third case can
be physically relevant, as we noticed in subsection 2.3.1.

• For exact classical degeneracyhd = hs such that, by the expression ofsin 2ωd in (13), ωd = −θc.
(16) shows then thatV†dMdM

†
dVd stays diagonal, and, so,ξd = 0 12. The classical(d, s) mixing angleθd

is renormalized (see (31)) by(ωd + ξd) = −θc and becomesθd − θc = θu, the classical mixing angle of
the(u, c) pair.

According to (45), the Cabibbo mixing angle gets renormalized from its classical valueθc to θc + (ωd +
ξd) − (ωu + ξu) = −(ωu + ξu) which is very close to vanishing when the pair(u, c) is largely split. To
such a system is accordingly associated a near-vanishing 1-loop Cabibbo angle. Renormalization effects
can thus be large.

• At the pole of (32), by definition, the renormalization ofθd becomes maximal(±π
4 ).

• At the pole oftan 2ξd, it becomes instead minimally small (see subsection 3.3.1).

So, in a close neighborhood of degeneracy, the renormalization (ωd+ξd) of θd undergoes large variations.
So does the one of the Cabibbo angle.

6 Propagation in matter

Coherent forward scattering of neutrinos in matter has beenshown [19] [18] to modifyMνM
†
ν (Mν is the

classical mass matrix for neutrinos). In the space of electronic and muonic neutrinos(νe, νµ) that couple
to charged leptons mass eigenstates (see footnote 1),νe = cos(θPMNS)νem − sin(θPMNS)νµm, νµ =
sin(θPMNS)νem + cos(θPMNS)νµm, it becomes

(MνM †
ν)(νe,νµ) =

1

2
(m2

νe
+ m2

νµ
+ ACC)




1 0

0 1





+
1

2




ACC − (m2

νµ
−m2

νe
) cos(2θPMNS) (m2

νµ
−m2

νe
) sin(2θPMNS)

(m2
νµ
−m2

νe
) sin(2θPMNS) −ACC + (m2

νµ
−m2

νe
) cos(2θPMNS)



 ,

(49)

with ACC = 2
√

2EGF Ne, E being the energy of the(νe) ultra-relativistic neutrinos andNe the elec-
tronic density of the medium, which can vary in space. Equivalently, in the bare mass space in which we
have been working,MνM

†
ν becomes

(MνM †
ν )bm = R(θPMNS)†(MνM

†
ν )(νe,νµ)R(θPMNS)

=




m2

νe

m2
νµ



 +
ACC

2




1

1



 + ACC Tx(2θPMNS). (50)

12This is in agreement with (18) and (20) which show thattan 2ξd has no pole whenmd = ms.
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After kinetic terms have been cast back to their canonical form, one has to re-diagonalize, according to
the procedure explained in subsection 2.3, the expression (50) sandwiched betweenV†ν andVν as given
by the equivalent of (14) for the neutrino sector. SinceACC = O(g2), when transforming the parts pro-
portional to it, we can neglect inVu all terms∝ t±, which amounts to takingVν ≈ R(ων). So doing,
to the expression forV†νMνM

†
νVν equivalent to (16) for the neutrino sector, one finds that onemust add

R(ωu)†



ACC

2




1

1



 + ACC Tx(2θPMNS)



R(ωu) ≡ ACC



1
2




1

1



 + Tx
(
2(θPMNS + ωu)

)



.

The pole oftan 2ξd occurs now for
m2

νe
c2ων

+m2
νµ

s2
ων

1+t+
− m2

νe
s2
ων

+m2
νµ

c2ων

1+t−
+ ACC cos 2(θPMNS + ων) = 0,

which can be approximated to(m2
νe
−m2

νµ
) cos 2ων−(m2

νe
+m2

νµ
) t+−t−

2 +ACC cos 2(θPMNS+ων) = 0.
For |mνe −mνµ | ≪ |me −mµ|, ων ≈ −θPMNS (see subsection 2.2) and the pole equation becomes

(m2
νe
−m2

νµ
) cos 2ων − (m2

νe
+ m2

νµ
)
t+ − t−

2
+ ACC = 0. (51)

It differs from the one in vacuum (20) by the termACC , and we also recall that the relation at the classical
MSW resonance writes [19][18](m2

νe
−m2

νµ
) cos(2θPMNS) + ACC = 0. Looking at the magnitude of

the different contributions shows that 1-loop effects are negligible in matter and no not modify the MSW
resonance. Indeed, the orders of magnitudes roughly match,between(m2

νe
− m2

νµ
) which is known to

beO(10−5eV 2 andACC , which, as we mentioned at the end of subsection 2.3.1, can vary between10−4

to 10−6 eV 2, depending whether one considers the sun or the earth. This is, roughly speaking, why
the MSW resonance can happen even for “small values of the mixing angle”cos 2ων cos 2θPMNS ∼ 1.
By contrast, the term in the middle of (51), coming from 1-loop corrections, is much smaller since,

considering that(m2
νe

+ m2
νµ

) ≈ 1 eV 2, t+−t−
2 ≈ g2

16π2

m2
µ,m2

τ

m2
W

≈ 2 10−9.

7 Summary and prospects

We have paid in this study special attention to 1-loop transitions between fermions. They spoil the diag-
onality of kinetic terms which must be first cast back into their canonical form before the mass matrix is
suitably re-diagonalized and orthogonal 1-loop mass eigenstates suitably determined.

A first property that we encountered is that, for non-degenerate systems, bare mass states and 1-loop mass
states are non-unitarily related.

A second property is that the 1-loop mixing matrixC(p2) occurring in charged currents (Cabibbo, PMNS
. . . ) stays unitary atO(g2), whatever be the common scalep2 at which all its entries are evaluated.

The third point concerns the 1-loop value of the “Cabibbo” angle (or its equivalent for leptons). We have
shown that it exhibits a pole when, inside the two generations of fermions that are considered, one pair is
close to degeneracy (we have been concerned with the case when the other pair of fermions is far from
degeneracy). The pole condition stands as a relation between the classicalθc, the masses of the four
fermions and that of theW . It appears furthermore as a stability condition since, then, the(d, s) mixing
angle at 1-loop is the closest to its classical value. As far as the(u, c) mixing angle is concerned, it also
stays extremely close to its classical value. At resonance,the renormalization ofθc appears thus to be
not only very small but “minimal”, and the resonance condition,de facto, a condition between the 1-loop
Cabibbo angle, which is close to maximal, and the set of masses. We have also shown that, then, the 1-
loop masses get the closest to each other. A new characterization of maximal mixing thus appears, a nice
aspect of which is that it connects large mixingin charged currents, as observed, to the quasi-degeneracy
of one of the two doublets (the widespread belief postulatesinstead the alignment of mass and flavor
states for the largely split fermions to establish the same connection). The final statement stays however
weak: “For two fermions close to degeneracy and the second pair far from it, there exists a resonance
at which both the 1-loop “Cabibbo angle” and∆m2/m2 get the closest to classical; the former is then
close to maximal(±π/4) and the second minimal”. This seems suited to the(νµ, ντ , µ, τ) system, but
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we have, at the moment, no other criterion why a specific quartet is at resonance and not the others. We
have indeed seen that, for all values of known fermion masses, the pole condition (23) corresponds to a
large mixing angle. So, ifθ23 is large, one has also to explain why, for example, the Cabibbo angle is
not 13. The resonant phenomenon that we presented in this work is accordingly, at the moment, just one
among a series of mechanisms that can participate to the building of large mixing angles (see for example
[13] [14] [8]). They are eventually supplemented with symmetry considerations [8] [21], which is not the
case here (with the sole exception of gauge invariance).

Another standard property that we encountered is that the mixing among quasi-degenerate fermions is
highly unstable. We witnessed this at 1-loop by evolving a pair of fermions from exact degeneracy, to
approximate degeneracy: the renormalization(ω + ξ) of the corresponding mixing angle undergoes large
variations and so does the one of the Cabibbo angle. So, even if, as we noticed, real systems are in a
regime where renormalization turns out finally to be small (and even minimal), one should not forget
that this comes from a cancellation between the two anglesξ andω which are “non-perturbatively” close
to θc and eventually large. So, it may happen that the results thatwe obtained inaccurately describe
the physics of quasi-degenerate fermions and that an appropriate treatment requires techniques that go
beyond perturbation theory. That the resonance at 1-loop seems to correspond to some “quasi-classical”
configuration could be a sign in this direction.

A last issue should be evoked before concluding this work. The 1-loop effective Lagrangian was made
diagonal in the basisdmL(p2, . . .), smL(p2, . . .), in which pµ stands for the common 4-momentum ofd
ands (see Fig. 1). This means that there exist no more non-diagonal transitions between them and that
dmL(p2, . . .) andsmL(p2, . . .) are, by definition, orthogonal at 1-loop. However, as soon asa mass split-
ting exists betweend ands, both cannot be simultaneously on mass-shell and the physical fermions (28),
which belong to two different sets of orthogonal states, arethemselves expected to be non-orthogonal. So,
unless subtle cancellations take place, non-diagonal transitions are likely to occur between them at this
order, which is akin to saying that the 1-loop Lagrangian is itself no longer diagonal when re-expressed
in terms of them. The existence and relevance of these transitions should be scrutinized, together with the
opportunity to introduce counterterms [22][16][11] to cancel them (see Appendix A). At the same time,
unlike C(p2) in (41), which is defined for an overall globalp2, the “on mass-shell” Cabibbo matrix is
expected to exhibit some slight non-unitarity. This contrasts with the work [7] in which it is conjectured
to be unitary14 and where, seemingly, the basis of orthogonal states has been chosen to be that of phys-
ical d ands. Ours and the approach in [7] are thusa priori slightly nonequivalent and making a closer
connection between the two requires rewriting our results in terms of physical fermions together with
performing a complete treatment and re-diagonalization ofthe kinetic terms in [7]. One has in particular
to face the issues of the hermiticity of the 1-loop Lagrangian (which was assumed in [7] for the mass
terms and that we achieved in (40) for the whole Lagrangian),and that of theSU(2)L structure of its
gauge currents (which we confirmed in (47)). This matter is currently under investigation.

Acknowledgments: It is a pleasure to thank M.I. Vysotsky for comments and advice.

13A solution has been proposed in [8] in which, in the quark sector, (d, s) and(u, c) mixing angles largely cancel each other
while, in the lepton sector, the opposite occurs.

14see also footnote 9: unitarity is conjectured in [7] but in a basis that is likely to be non-orthogonal at 1-loop.
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A Canceling transitions between non-degenerate physical states

The 1-loop quadratic effective Lagrangian (kinetic and mass terms), that we made diagonal (see section
2) in the basis(dmL(p2, . . .), smL(p2, . . .)) of 1-loop mass eigenstates, can be generically rewritten, in
the basis of physical eigenstates

L1−loop =
(

dphys
mL sphys

mL

)

/p




g1(p

2) g2(p
2)

g3(p
2) g4(p

2)








dphys

mL

sphys
mL



 +
(

dphys
mR sphys

mR

)

/p I




dphys

mR

sphys
mR





−
(

dphys
mL sphys

mL

)




ρ1(p

2) ρ2(p
2)

ρ3(p
2) ρ4(p

2)








dphys

mR

sphys
mR





−
(

dphys
mR sphys

mR

)




σ1(p

2) σ2(p
2)

σ3(p
2) σ4(p

2)








dphys

mL

sphys
mL



 + . . . (52)

Indeed, combined with (19) which relates bare mass states to1-loop mass eigenstates, (28) entails that
the coefficients of the linear relation between the latter and physical states are functions of(p2, . . .).
Hermiticity requires the (supposedly real and presumablyO(g2)) quantitiesg2, g3, σ2, σ3, ρ2, ρ3 to satisfy
the relationsg3 = g2, ρ2 = σ3, ρ3 = σ2. Furthermore, since right-handed fermions are not concerned by
1-loop transitions,(1 + γ5)dphys

m = (1 + γ5)d0
m and(1 + γ5)sphys

m = (1 + γ5)s0
m.

As seen on (52), non-diagonal,p2-dependent transitions spring again, now between physicalstates, which
can be traced back to their non-degeneracy. Though more detailed investigations are needed, the resulting
“oscillations”, likee− ↔ µ−, look embarrassing. They can however be canceled by introducing specific
counterterms, as we now show. The procedure is similar to theone used in [22]. Canceling, for example,
(on mass-shells)→ (on mass-shelld) transitions can be done by adding to (52) four kinetic and mass-like
counterterms, concerning both chiralities of fermions:

−Ad dphys
m /p(1−γ5)sphys

m −Bd dphys
m (1−γ5)sphys

m −Ed dphys
m /p(1+γ5)sphys

m −Dd dphys
m (1+γ5)sphys

m . (53)

Sincesphys
m is on mass-shell, one gets the condition (we call respectively µs andµd the 1-loop physical

masses ofs andd, that is, the square roots of the values ofp2 solutions ofp2 = µ2
s(p

2) andp2 = µ2
d(p

2)
(see subsection 2.3.2))

g2(µ
2
s) dphys

m (1 + γ5)µs sphys
m − ρ2(µ

2
s) dphys

m (1 + γ5)sphys
m − σ2(µ

2
s) dphys

m (1− γ5)sphys
m

= Ad dphys
m (1 + γ5)µss

phys
m + Bd dphys

m (1− γ5)sphys
m + Ed dphys

m (1− γ5)µss
phys
m + Dd dphys

m (1 + γ5)sphys
m ,
(54)

and sincedphys
m is also on mass-shell,

g2(µ
2
d) dphys

m (1− γ5)µd sphys
m − ρ2(µ

2
d) dphys

m (1 + γ5)sphys
m − σ2(µ

2
d) dphys

m (1− γ5)sphys
m

= Ad dphys
m (1− γ5)µds

phys
m + Bd dphys

m (1− γ5)sphys
m + Ed dphys

m (1 + γ5)µds
phys
m + Dd dphys

m (1 + γ5)sphys
m .
(55)

Equating the terms with identical chiralities in (54) and (55) yields the four equations

µs g2(µ
2
s)− ρ2(µ

2
s) = µsAd + Dd,

−σ2(µ
2
s) = µsEd + Bd,

µd g2(µ
2
d)− σ2(µ

2
d) = µdAd + Bd,

−ρ2(µ
2
d) = µdEd + Dd, (56)
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which have theO(g2) solutions

Ad =
µ2

s g2(µ
2
s)− µ2

d g2(µ
2
d) + µs

(
ρ2(µ

2
d)− ρ2(µ

2
s)

)
− µd

(
σ2(µ

2
s)− σ2(µ

2
d)

)

µ2
s − µ2

d

,

Ed =
µdµs

(
g2(µ

2
s)− g2(µ

2
d)

)
+ µd

(
ρ2(µ

2
d)− ρ2(µ

2
s)

)
− µs

(
σ2(µ

2
s)− σ2(µ

2
d)

)

µ2
s − µ2

d

,

Bd = −σ2(µ
2
s)− µsEd,

Dd = −ρ2(µ
2
d)− µdEd. (57)

Likewise, four counterterms̃Ad, Ẽd, B̃d, D̃d can get rid of the on mass-shelldphys
m → sphys

m transitions.
Hermiticity (see above) constrains them to satisfyÃd = Ad, Ẽd = Ed, B̃d = Dd, D̃d = Bd. Similar
additions can be done in the(u, c) sector.

The bare Lagrangian to which theseO(g2) counterterms have been added is suitable for a perturbative
expansion. It can, as before, be performed in the bare mass basis, in which the counterterms can be re-
expressed with the help of (28); it has the advantage that theSU(2)L generators are simply expressed by
(37). TheO(g2) effective Lagrangian that is, then, obtained after adding 1-loop transitions like we did in
subsection 2.1 includes now:
* O(g2) kinetic-like diagonal and non-diagonal terms for left-handed fermions which are eitherp2-
dependent (the same as in subsection 2.1), orp2-independent (counterterms);
* O(g2) kinetic-like non-diagonal and diagonal15 counterterms for right-handed fermions which do not
depend onp2;
* O(g2) non-diagonal and diagonal mass counterterms which do not depend onp2, and which spoil the
diagonality of the mass matrix at this order.
Kinetic (left and right) and mass terms can be diagonalized.A bi-unitary transformation is now in general
necessary for the latter, which leads todiag(µ̃d(p

2), µ̃s(p
2)). This procedure defines left(d̃mL(p2), s̃mL(p2))

and right(d̃mR(p2), s̃mR(p2)) mass eigenstates, which, since they diagonalize the whole 1-loop quadratic
Lagrangian, are by definition orthogonal at this order. Theyare expected to differ from the ones obtained
in section 2. So do the effective masses; one expectsµ̃d(p

2) 6= µd(p
2), µ̃s(p

2) 6= µs(p
2), which leads

to distinguish mass-shells with and without counterterms.Since the latter have been shaped to cancel
non-diagonal transitions betweendmL(p2 = µ2

d(p
2)) andsmL(p2 = µ2

s(p
2)) at 1-loop, this Lagrangian

is also expected to describe orthogonal two such states. Thus, these should be unitarily related with any
set(d̃mL(p2), s̃mL(p2)) (which is orthogonal by construction).

The appropriateSU(2)L structure of gauge currents is generated by replacing each derivative acting on
a left-handed fermion by the correspondingSU(2)L covariant derivative. The difference with subsection
4.1 is again that the kinetic-like left-handed counterterms must now be included in the procedure. Left-
handed charged gauge currents then exhibit a Cabibbo matrixat 1-loop which slightly differs from that
given in subsection 4.2. It is expected to be unitary when theLagrangian is expressed in the orthogonal
basisdmL(p2 = µ2

d(p
2)) andsmL(p2 = µ2

s(p
2)).

By modifying the theory in particular on mass-shell, the introduction of counterterms could only ensure
orthogonality of states which are no longer physical in their presence. And, because of this discrepancy
between physical states with and without the counterterms,non-diagonal transitions are still likely to exist
betweend̃mL(p2 = µ̃2

d(p
2)) ands̃mL(p2 = µ̃2

s(p
2)) (on mass-shell (with counterterms) states). The hope

is that they are of orderg>2, but this should be carefully checked.

15In the basis of physical states, the kinetic-like right-handed counterterms are only non-diagonal but diagonal ones can be
generated when going to the bare mass basis.
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