
HAL Id: hal-00422598
https://hal.science/hal-00422598

Submitted on 7 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Transactional Memory: Worst Case Execution
Time Analysis

Toufik Sarni, Audrey Queudet, Patrick Valduriez

To cite this version:
Toufik Sarni, Audrey Queudet, Patrick Valduriez. Software Transactional Memory: Worst Case Exe-
cution Time Analysis. International Conference on Real-Time and Network Systems, Oct 2009, Paris,
France. pp.107-114. �hal-00422598�

https://hal.science/hal-00422598
https://hal.archives-ouvertes.fr


Software Transactional Memory: Worst Case Execution Time Analysis

Toufik Sarni and Audrey Queudet

LINA - University of Nantes

France

FirstName.LastName@univ-nantes.fr

Patrick Valduriez

LINA and INRIA

Nantes - France

Patrick.Valduriez@inria.fr

Abstract

While real-time applications are becoming more and

more concurrent and complex, the drive toward multicore

systems raises new challenges related to the paralleliza-

tion of such performance-critical applications. Transac-

tional memory is an attractive concept for expressing par-

allelism for programming multicore systems as it avoids

the problems of lock-based methods and eases program-

ming. However, it has not yet been exploited for real-time

systems. In this paper, we propose the first real-time di-

rected case study of software transactional memory. In

particular, our goal is to identify the origin of the varia-

tion of the worst-case execution times (WCET) of trans-

actions in memory. Based on a real implementation, we

show through various experiments that for soft real-time,

transactions rollback times are not the main cause of ex-

ecution times variation. A good memory allocator must

also be provided in order to suitably bound the WCETs of

transactions into software transactional memory.

1 Introduction

With the advent of multicore systems, the transactional

memory (TM) concept has attracted much interest from

both academy [1, 2] and industry [3] as it eases program-

ming and avoids the problems of lock-based methods. By

supporting the ACI (Atomicity, Consistency and Isola-

tion) properties of transactions, TM relieves the program-

mer from dealing with locks to access resources. More

important, it avoids the severe problems of lock-based

methods such as deadlock situations and priority inver-

sions. While lock-based methods systematically block

all accesses to shared resources, transactional memory al-

lows several transactions to access resources in parallel. A

transaction is either aborted when a conflict is detected, or

committed in case of successful completion. Conflicts are

handled with non-blocking synchronization which offers

a stronger guarantee of forward progress.

There are three kinds of implementations for transac-

tional memory: hardware-based memory (HTM) [1, 4],

software-based memory, denoted as software transac-

tional memories (STM) [2, 5, 6, 7] and hybrid schemes

(HyTM) that combine both hardware and software sup-

ports [8, 9]. HTM researchers mainly focus on implemen-

tation with less attention to performance. On the contrary,

STM researchers take care about performance issues on

TM, and several policies [10, 11] have been proposed to

manage conflicts between transactions.

While software transactional memories are widely

studied for numerous and various purposes, they have not

yet been studied for real-time systems. However, we be-

lieve that the advantages of transactional memory can also

be brought to real-time systems. Thus, we propose to

study how to adapt it to soft real-time systems. For this

purpose, we aim to identify which parts of STM cause

WCET variations. It is often claimed that transaction roll-

back times are the main cause of unpredictability in exe-

cution times. However, the recent STMs are usually dy-

namic memory based. We show in this paper that STM

memory allocators require more consideration than roll-

back times in order to bound the execution time of trans-

actions. Furthermore, we show that transaction rollback

times also depend on the time latencies of the underlying

operating system. This is why we focused on selecting the

best task scheduling policy minimizing the rollback times.

To the best of our knowledge, this paper is the first to

study the WCET variation of STM based on a real imple-

mentation. The rest of the paper is organized as follows.

Section II discusses related work. Section III introduces

the real-time scheduling of both tasks and transactions and

presents the STM used in our experiments. Section IV

presents both the issues identified for adapting STM to sat-

isfy real-time constraints and their implementation. Sec-

tion V gives an experimental analysis under several real-

time scheduling policies of tasks and shows the impact of

memory allocator on the STM. Finally, Section VI draws

the main conclusions and discusses future work.

2 Related Work

Schoeberl et al. [12] propose a real-time HTM which

uses the late conflict detection (i.e the conflict between

transactions is detected on a commit). The transaction

is either rollbacked on a conflict or aborted on con-

text switch. The number of retries of the transaction is

bounded and integrated into the WCET analysis. This



bound assumes one atomic region per thread period and

allows having hard real-time constraints. However, we are

interested by soft real-time STM, and the HTM presented

by the authors assume that all critical sections resources

need to be known.

Brandenburg et al. [13] compare wait-free and lock-

free algorithms with spin-based and suspension-based

synchronization mechanisms. They conduct experiments1

using the real-time operating system LITMUSRT . The

four approaches are compared on the basis of both schedu-

lability and tardiness bounds, by evaluating their respec-

tive overheads with respect to job release, scheduling

and context-switching. One of the major conclusions of

this work is that non-blocking algorithms are generally

preferable for small, simple shared objects. Among non-

blocking approaches, the authors conclude that wait-free

algorithms are preferable to lock-free algorithms. Regard-

ing scheduling policies, they show that, unlike partitioned-

EDF (P-EDF), global-EDF (G-EDF) policy does not scale

for lock-free algorithms when the access to shared objects

occurs at high frequency.

The wait-free algorithms are primarily of interest in hard

real-time transactions [14]. However, implementing a

wait-free-based STM is very difficult since fair access to

memory is usually not guaranteed.

Riegel et al. [15] deal with time-based transactional

memory that uses time to reason about the consistency

of the data accessed by transactions and the order in

which transactions commit. Usually, implementations like

[16, 17] rely upon shared counters which can quickly be-

come bottlenecks as the number of concurrent threads

grows.

Riegel et al. [15] show how a time base can affect trans-

actional memory performance. They rely on experiments2

which compare the use of a shared integer counter with

that of a MMTimer which is a real-time clock with an in-

terface similar to the High Precision Event Timer widely

available in x86 machines. Their main observation is that

this enhanced hardware support can ensure a much better

clock synchronization than mechanisms that require com-

munication via shared memory. As part of their work, the

authors introduce the Real-Time Lazy Snapshot Algorithm

(LSA-RT) which is a timestamp-based algorithm using a

real-time clock. Moreover it uses a helper mechanism

to help committing transactions to complete. However,

the authors consider only throughput, and not WCET of

transactions. Furthermore, they consider the time-based

STM performance without tacking into consideration the

impact of the operating system in which their STM is per-

formed.

Yoo et al. [18] describe a scheduler for transactional

memory. The authors compare their adaptive transaction

scheduler to the traditional Contention Manager (CM). In

1The hardware platform used was a four 32-bit Intel Xeon(TM) pro-

cessors running at 2.7 GHz
2using a 16-processor partition of an SGI Altix 3700 and a ccNUMA

machine with Itanium II processors

CM-based STMs [19, 11], the transaction that encounters

a conflict, consults its CM. When the CM retries the de-

nied object, it typically employs an exponentially backoff

scheme with a retry interval expanding exponentially to a

maximum limit until success. Thus, a CM can decide to

abort a certain transaction, but does not deal with when to

resume an aborted transaction. In contrast, the scheduler

presented by the authors, specially deals with when to re-

sume the aborted transaction which is an important notion

in a real-time context. However, the authors do not deal

with any real-time constraints in their paper.

3 Theoretical Background

3.1 Real-Time Task Model

We consider the scheduling of a sporadic task system

τ on m ≥ 1 processors. For each task τi ∈ τ we associate

a set of jobs J = {j1, j2, ..., jn}. Task τi is characterized

by a set of parameters ri, Ci, Pi which respectively

represent the task release, its execution requirement in

the worst-case, and its minimal period of activation. At

time ri + (k − 1)Pi and for k ≥ 1, a kth job is released,

receives Ci units of processor time and should complete

by its absolute deadline di = ri + kPi. The weight (or

processor utilization) for a task τi on processor m is

defined by ui,m= Ci/Pi. We assume that at any time, a

processor executes at most one job, and a job is executed

at most on one processor.

Scheduling of tasks. On multiprocessor systems,

two alternative paradigms for scheduling collections of

tasks are considered: partitioned and global scheduling.

In the partitioned approach, the tasks are statically

assigned to processors and are always executed on a

single processor. Each processor has its own scheduling

queue of tasks which is independent of other processors

and the migration of jobs or tasks on other processors is

not allowed. Feasibility analysis under the partitioned

paradigm which is comparable to a bin-packing problem,

is NP-Hard. Indeed it consists in placing k objects with

different sizes in m boxes which respectively represent

the tasks and the processors in our case. First-Fit and

Best-Fit algorithms and their variants [20] are usually

used to assign tasks to processors with an appropriate

condition in accordance with the schedulability analy-

sis. In contrast, under the global scheduling approach,

inter-processor migrations are allowed. A single queue

and only one policy are applied to tasks. A known result

for uniprocessors is that the scheduling algorithm Earliest

Deadline First (EDF) is optimal [21]. Unfortunately,

EDF is not optimal on multiprocessors either under the

partitioned or the global approaches [22] , called respec-

tively P-EDF and G-EDF. Another class of scheduling

algorithms, which differs from the previous ones, gathers

the Pfair algorithms (namely PD and PD2) [23]. These

are based on the idea of proportionate fairness and

ensure that each task is executed with uniform rate.

2



Tasks are broken into quantum-length subtasks and time

is subdivided into a sequence of subintervals of equal

lengths called windows. A subtask must execute within

the associated window and migration is allowed for each

subtask. With respect to feasibility, the authors in [23]

proved that a periodic task set with ri = 0 has a Pfair

schedule on m processors iff:

∑

τi∈τ

Ci

Pi

≤ m (1)

In order to make our experimental evaluation, as com-

plete as possible, we select one algorithm in each class

of scheduling (i.e. P-EDF, G-EDF and PD2). Although

the PD2 algorithm is used to schedule hard real-time tasks

on multiprocessors, we choose to include it in our study

so as to cover all kinds of real-time applications.

3.2 Real-Time Transactions

Like real-time tasks, real-time transactions are classi-

fied according to the criticity of their deadlines: hard, soft

or firm. The hard3 class is rarely considered. Most studies

assume the scheduling of transactions either in soft4 or

firm5classes.

Scheduling of transactions. The scheduler of transac-

tions in database systems embeds a concurrency control

protocol, which is in charge of resolving the conflicts

between transactions when they occur, in order to main-

tain database consistency. In real-time database systems,

not only database consistency should be satisfied, but

transactions must also meet their deadlines [24]. To our

knowledge, no real-time concurrency control policies are

specially designed for software transactional memories.

3.3 Fraser’s STM

FSTM [25] is a dynamic lock-free object based STM.

It has been implemented as a C library. FSTM employs

a recursive helping and an enforced global total order for

transactions to ensure that despite contention, at least one

process is making progress. The object is the basic unit of

concurrency. Each object is pointed by an object header

which contains the current version of the object (see Fig.

1.). The object header is pointed by an object handle

which keeps the old and new references to the object. In

case of a successful commit, the object header is updated

with the new data block object. The transaction descrip-

tor embodies both read-only and read-write lists. When a

transaction accesses an object, the procedure is similar for

both read-only and read-write accesses. The data struc-

tures described above are thus created according to the

type of access. A shadow copy of the object is also cre-

ated in the case of a read-write access and remains private

until the transaction commits.

3System cannot tolerate the missing of deadlines.
4The transaction could be accepted even if it misses its deadline.
5Missing the deadline causes to abort the transaction.

object ref

old data

new data

next handle

Transaction Descriptor Object Handle 

Object 

Shadow

copy

Object Header 

status

read-only list

read-write list

Fig. 1. Fraser’s STM data structures

The commit phase is divided into three phases. The first

phase is the acquire phase. The transaction attempts to

acquire ownership of all objects on its read-write list in

a canonical order. The transaction that attempts to ac-

quire ownership of the object, performs a CAS (Compare

And Swap) operation on the object header, to replace the

pointer to the object by a pointer to its transaction descrip-

tor. If the content of the object header points to a more

recent object, the transaction will then abort. However,

if the object is owned by another transaction then the ob-

struction is helped to completion. The second phase is

the read phase. It checks whether each read-only object

has not been updated since it was opened. If all objects

are successfully acquired or checked then the transaction

attempts to commit successfully. In the last phase, all

acquired objects are released and if the transaction com-

mits then each old object is replaced by its corresponding

shadow copy (i.e. the new object).

4 Introducing Real-Time into STM

We aim to implement a real-time STM with soft

constraints by minimizing the execution time jitter of

transactions. In order to make STM suitable for soft

real-time, not only the rollback times should be taken into

consideration, but also both the scheduler of transactions

and that of the operating system. Therefore, we propose

to analyze which parts of STM cause execution time

variations. Static memory approaches as proposed in

the first implementation of STM [2] could be a good

candidate to bound the execution time of transactions, but

only basic real-time applications are involved in this case.

It therefore contradicts the transactional memory concept

which is rather intented for complex applications. In our

study, we are interested in taking into consideration the

dynamic allocation of memory since most of the recent

STM implementations integrate a garbage collector.

However, the dynamic allocation of memory in real-time

context, is usually avoided because considered as an

unbounded part. To summarize, we have to face orthog-

3



onal constraints while considering complex real-time

applications using dynamic memory-based STMs.

As a solution, we choose to enhance Fraser’s STM

because its scheduler is based on the recursive helping

between transactions. The helping mechanism appears

more suitable for soft real-time. Indeed, a transaction with

a low priority can help a transaction with higher priority

and then at least one transaction will make progress.

Moreover, FSTM dynamically creates and deletes objects

in memory. Other implementations of STM like DSTM

[19] are not considered here. Indeed, DSTM is an

obstruction-free based implementation which provides

the weakest guarantee to make progress. Consequently, it

is not suitable for real-time systems.

4.1 Implementation

Intuitively, the underlying operating system (OS) has

to be considered since transactions are executed within

threads. That is why we use a real-time operating system

(RTOS) named LITMUSRT 6 [26]. Designed to run on

top of a symmetric multiprocessor (SMP) architecture, it

implements all the real-time task scheduling algorithms

described in Section 3.1. LITMUSRT is based on the

Linux operating system (kernel version 2.6.24). The pro-

posed schedulers are implemented as plugin components

that can be selected from Linux user-space. In order to

manipulate both tasks and synchronization mechanisms

from Linux user-space, system calls are gathered within

a C library. For all these reasons, LITMUSRT becomes

an excellent (perhaps the only) candidate to study the

behavior of FSTM on multiprocessor systems, under a

panel of advanced real-time scheduling policies.

We use the TLSF (Two-Level Segregate Fit)7 [27]

memory allocator to show the impact of object’s alloca-

tion within our WCET analysis. TLSF is based on an

algorithm that has a constant cost Θ(1). It solves then the

problem of the worst case bound, thus maintaining the

efficiency of the allocation and deallocation operations.

Therefore, TLSF allows the reasonable use of dynamic

memory in real-time applications.

4.1.1 Integration into LITMUSRT library

Under LITMUSRT , a real-time task is initially created as a

standard linux thread (using the standard pthread library)

before being effectively started. Then, it initializes the

real-time environment and specifies the real-time param-

eters of the task, namely Ci and Pi. Thereby, the thread

sporadically releases its jobs by calling the job function

every Pi units of time.

To summarize, FSTM and the LITMUSRT library have

been combined by creating real-time threads within

6http://www.cs.unc.edu/∼anderson/litmus-rt
7http://rtportal.upv.es/rtmalloc/

FSTM. We performed this integration so as to support

both non real-time threads and real-time tasks.

4.1.2 Integration of TLSF library

TLSF is a C library. We integrated it into FSTM by replac-

ing all the allocation and deallocation functions by those

provided by TLSF. The memory pool which is used by

TLSF is created at initialization time by the classical mal-

loc function. Note that the TLSF’s initialization is done

before the creation of real-time threads.

5 Experimental Evaluation

5.1 Evaluation Context

We present here the experiments we performed to

evaluate FSTM with respect to WCETs. Firstly, we

describe the hardware and software configurations we

use for our experimental evaluation, as well as the STM

benchmarks we consider. Secondly, we report compara-

tive results allowing us to select the best scheduling policy

among Linux and LITMUSRT operating systems. Finally,

we study the dynamic memory allocator impact on FSTM.

Hardware context. The hardware platform used in

our experiments is a two 32-bit multicore Intel Core(TM)2

Duo T7500 processors running at 2.20GHz with 4MB L2

cache, and 3.5GB of main memory. During all experi-

ments, the multicore option has been enabled, and the cpu

frequency for each core has been fixed at 2194MHz.

Software context. We have compiled the LITMUSRT

kernel for the above hardware platform and used it on top

of an Ubuntu 8.04 hardy Linux distribution. The system

has never been overloaded during the experiments nei-

ther under Linux (i.e only the test application has been

launched), nor under LITMUSRT .

Real-time task parameters. For each real-time task,

we fixed Ci = 20ms and m = 2; the parameter Pi being

determined according to Equation 1. Thus, in all cases,

we consider processors under heavy loads. The impact of

the variation of these parameters is not considered in this

paper, and we defer its consideration for future work.

STM benchmark. The experiments performed by

Fraser [25] for the performance evaluation of STMs are

about 10 seconds of duration. Fraser considers that this

duration is pretty sufficient to stabilize the data into the

cache, since after 10 seconds the same values are repeated.

During the 10s of test, the evaluated STM performs a se-

ries of three operations: readings, writings and deletes

over the shared objects organized as red-black trees or skip

lists. The proportion of each operation performed is given

as an input parameter of the benchmark. Fraser thinks that

75% of reads and 25% of writes and deletes well reflect a

real situation.

For our experiments we used only red-black trees. Each

experimental test lasts 10 seconds and operations are com-

posed of 75% of reads namely lookup and 25% of writes

4



and deletes namely update and delete respectively. Shared

resources are highly contended, with 24 maximum keys

for red-black trees. Note that we have slightly modified

this benchmark in order both to adapt it to the real-time

context and to make our measurements.

Unlike classical STMs in which performance evaluation

usually uses the average number of transactions per suc-

cess and per time duration, we use other parameters for

our real-time evaluation. These are described below.

5.2 Performance Metrics

Transaction WCET jitter. We measure the execution

time of the three operations usually performed by a trans-

action (i.e. lookup, update and remove). The transaction

WCET for each operation corresponds to a mean value

and is obtained over all launched threads for a test of 10

seconds duration. This test is repeated 10 times. The jit-

ter is then the variation of the WCET observed between

each test. To perform these measurements, we recover the

current processor ticks by calling the assembly instruction

rdtsc. Each operation time is obtained by subtracting the

processor ticks value at the end of operation to that at its

start time. However, this method to get the ticks value at

user-level does not work. Indeed, if a transaction starts on

one core and migrates to another core, then the execution

of the transaction becomes invalid since the clockticks of

the cores are not synchronized.

We have proposed an alternative solution (see Algorithm

1) which consists in adding the core identity to the context

of the thread. This is done by calling the assembly instruc-

tion cpuid8. Secondly, we make sure that the CPUID is

corresponding to the rdtsc (see line 6) as the instructions

are not atomically executed.

If task migration occurs more than 2 times during the test

then we stop the retries (line 7). According to the state in

which we perform the test, either we abort the program at

start time of transaction operation (line 9) or consider the

test as a bad one at the end of operation (line 11). At the

end of the experiment, if the number of transactions that

have experimented bad test is up to 1% of the total number

transactions, then the experiment is manually restarted.

Note that we have measured the time duration of Algo-

rithm 1. which is 0.5µs. Thus, the worst case execution

path of this algorithm is 2µs (i.e, 2 × 0.5 at the starting

time of the transaction operation, plus 2 × 0.5 at the end

of the operation). Therefore, the WCET has a precision

within the interval [1, 2]µs.

Time variation factor. As the experiment that gives

the WCET of transactions is repeated 10 times, we obtain

10 values of WCET for each one of the three operations of

the transactions. For each operation value, we compute its

mean x and its standard deviation σ. Let the time variation

factor V = x
σ

. The variation facor V is then a ratio which

provides information on the variation degree of the WCET

of transactions over 10 experiments.

Rollback time ratio. This parameter is measured once

8The id assigned by the APIC is at the 25-bit in our case

Algorithm 1 Transaction operation measurement

1: init RetryCPU ⇐ 2
2: Tj .coreID ⇐ CPUID()
3: repeat

4: RetryCPU ⇐ RetryCPU − 1
5: Tj .RTSchedj .rj ⇐ ReadProcessorT icks()
6: until Tj .coreID = CPUID() Or RetryCPU = 0
7: if RetryCPU = 0 then

8: if state = TransactionStarting then

9: Abort()
10: else

11: BadTest ⇐ BadTest + 1
12: end if

13: end if

and the experiment is not repeated (i.e 10 seconds of du-

ration only). We define for each thread, the rollback-time

ratio rolli of its transactions. For each operation Oi of

the transaction, the parameter rolli is defined as follows:

rolli =

∑
n

RollbackT ime(Oi)∑
n

Duration(Oi)
. The global rollback-time

R we consider for our experiments is then:

R =

∑N
rolli

N
(2)

where N is the number of threads.

5.3 Results

5.3.1 OS’s impact

In this experiment, we intent to show how the underly-

ing operating system can impact on the rollback times of

transactions. Results are presented in Figures 2, 3 and 4.

Note that the average number of transactions is around of

7 × 106 for each case.

We can see that the parameter R is constant and less

than 0.25% for the three policies, namely Linux, G-EDF,

and PD2. This value can be practically ignored since

in each policy it still remains constant for an increasing

number of threads.

We observe that for the Pfair policy (see Fig. 3), R
is reduced. This is because Pfair does not scale due

to its important migration cost. Indeed, the migration

cost increases the effective duration time of the thread

and thereby that of transactions. Transaction rollbacks

rarely occur and then are less likely to be impacted by

the migrations. In fact, the values used for computing

R − not presented here for readability − show that the

rollback time is not reduced, but only the duration of

transactions is increased. The same phenomenon can

be slightly observed with G-EDF (see Fig. 4) since the

G-EDF ratio of migrations is usually lesser than that of

Pfair.

On the contrary, Fig. 5 shows that R is almost null.

In this case, the duration of transactions is relatively

reduced thanks to the minimal preemption and overheads

induced by P-EDF. These overheads, mainly caused

5



by task migrations, are avoided under P-EDF. More

important, the preemption time per task is reduced since

a task is only preempted by those of its own queue. Thus

minimizing rollback times.

Therefore, this experiment shows that under FSTM,

rollback times do not make up the major part of the

transaction duration. In addition, according to their weak

impact, rollback times can be ignored when doing the

WCET analysis for soft real-time constraints. Further-

more, for the reasons mentioned above, we choose the

P-EDF policy for the rest of our experiments.

2 4 8 16

0,00

0,05

0,10

0,15

0,20

0,25

Rollback on lookup

Rollback on update

Rollback on remove

Threads

T
im

e 
ra

tio
 (

%
)

Fig. 2. Rollbacks under Linux

2 4 8 16

0,00

0,05

0,10

0,15

0,20

0,25

Rollback on lookup

Rollback on update

Rollback on remove

Threads

T
im

e
 r

a
ti

o
 (

%
)

Fig. 3. Rollbacks under PD2

2 4 8 16

0,00

0,05

0,10

0,15

0,20

0,25

Rollback on lookup

Rollback on update

Rollback on remove

Threads

T
im

e
 r

a
ti

o
 (

%
)

Fig. 4. Rollbacks under G-EDF

2 4 8 16 24

0,00

0,05

0,10

0,15

0,20

0,25

Rollback on lookup

Rollback on update

Rollback on remove

Threads

T
im

e
 r

a
ti

o
 (

%
)

Fig. 5. Rollbacks under P-EDF

5.3.2 Dynamic memory allocator’s impact

Since rollbacks do not impact significantly on the du-

ration of transactions, we attempt here to show which part

has really a detrimental effect, considering the P-EDF pol-

icy (selected from the previous experiment). We compare

the results obtained using the classical memory allocator

malloc with that of TLSF, on the basis of the V parameter

defined above.

Fig. 6. shows that the duration of transactions has an

important jitter for the three operations. Although P-EDF

is used, FSTM suffers from important time latencies that

characterize the execution environment at each program

launch. FSTM uses a garbage collector that we have

configured to be in minimal mode. Indeed, the normal

mode often causes the program to abort due to a chunk

imposed not only to deaden the cost allocation but also to

increase the per-cacheline pointer density. However, we

noticed that this mode of garbage collector configuration

impacts on the total memory used by FSTM, but not on

the V parameter.

The real reason of this variation is demonstrated on Fig.

7 and Fig. 8. When TLSF is used instead of the classical

memory allocator malloc, the WCET of transactions

is bounded with almost the same value. Indeed, the

maximum variation that is reached using malloc is around

160% versus 8% when using TLSF.

This shows that FSTM could satisfy soft real-time con-

straints provided a bounded memory access is performed

(i.e. using a constant-time dynamic memory allocator like

TLSF).

6 Conclusion

We believe that the advantages of transactional mem-

ory can also be brought to real-time systems. Thus, we

studied the possibility of introducing soft real-time into

STMs by analyzing the WCET of transactions. To our

knowledge, such study has not been attempted before.

The main results of our study are summarized hereafter:

(i) P-EDF reduces the rollback times of transactions; (ii)

For soft real-time constraints, the rollback times could be

ignored within FSTM when doing the WCET analysis;

6



2 4 8 16

0

50

100

150

lookup

update

remove

Threads

V
a

ri
a

ti
o

n
 f

a
c

to
r 

(%
)

Fig. 6. WCET jitter using classical malloc (P-EDF)

2 4 8 16

0

2

4

6

8

10

lookup

update

remove

Threads

V
a

ri
a

ti
o

n
 f

a
c

to
r 

(%
)

Fig. 8. Zoom on Fig. 7

(iii) FSTM could greatly satisfy soft real-time constraints

provided memory accesses are bounded.

Now that we have bounded time in STM, many directions

are then possible for future work. First, in this study we

only dealt with the duration of transactions. It would be

interesting to study the impact of STM on the number

of deadline violations when scheduling real-time transac-

tions. Secondly, in our experiments, we arbitrarily fixed

the parameters of the real-time tasks. It would be also in-

teresting to evaluate the impact of the processor load. Fi-

nally, we would like to formalize the interaction between

the real-time scheduler of tasks and that of transactions.

References

[1] M. Herlihy and J. E. B. Moss, “Transactional mem-

ory: Architectural support for lock-free data struc-

tures,” in proc. the 20th Annual International Sym-

posium on Computer Architecture, May 1993, pp.

289–300.

[2] N. Shavit and D. Touitou, “Software transactional

memory,” in proc. the 12th Annual ACM Symposium

on Principles of Distributed Computing (PODC),

1995, pp. 204–213.

[3] M. Tremblay and S. Chaudhry, “A third-generation

65nm 16-core 32-thread plus 32-scout-thread cmt

2 4 8 16

0

50

100

150

lookup

update

remove

Threads

V
a

ri
a

ti
o

n
 f

a
c

to
r 

(%
)

Fig. 7. WCET jitter using TLSF (P-EDF)

sparc r processor,” IEEE International Solid-State

Circuits Conference, Feb. 2008.

[4] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie, “Unbounded transactional

memory.” in HPCA. IEEE Computer Society, 2005,

pp. 316–327.

[5] R. Ennals, “Softawre transactional memory should

not be obstruction-free,” Intel Research Cambridge,

Tech. Rep., 2006.

[6] K. Fraser and T. Harris, “Concurrent programming

without locks.” ACM Trans. Comput. Syst., vol. 25,

no. 2, 2007.

[7] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.

Minh, and B. Hertzberg, “Mcrt-stm: a high per-

formance software transactional memory system for

a multi-core runtime.” in PPOPP, J. Torrellas and

S. Chatterjee, Eds. ACM, 2006, pp. 187–197.

[8] S. Kumar, M. Chu, C. J. Hughes, P. Kundu,

and A. Nguyen, “Hybrid transactional memory.” in

PPOPP, J. Torrellas and S. Chatterjee, Eds. ACM,

2006, pp. 209–220.

[9] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,

M. Moir, and D. Nussbaum, “Hybrid transactional

memory.” in ASPLOS, J. P. Shen and M. Martonosi,

Eds. ACM, 2006, pp. 336–346.

[10] W. N. Scherer III and M. L. Scott, “Contention man-

agement in dynamic software transactional mem-

ory,” in proc. the ACM PODC Workshop on Con-

currency and Synchronization in Java Programs, St.

John’s, NL, Canada, Jul 2004.

[11] W. N. S. III and M. L. Scott, “Advanced con-

tention management for dynamic software trans-

actional memory.” in PODC, M. K. Aguilera and

J. Aspnes, Eds. ACM, 2005, pp. 240–248.

[12] M. Schoeberl, B. Thomsen, and L. L. Tomsen, “To-

wards transactional memory for real-time systems,”

7



Technische Universität Wien, Institut für Technische

Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Aus-

tria, Research Report 19/2009, 2009.

[13] B. B. Brandenburg, J. M. Calandrino, A. Block,

H. Leontyev, and J. H. Anderson, “Real-time syn-

chronization on multiprocessors: To block or not

to block, to suspend or spin?” in IEEE Real-Time

and Embedded Technology and Applications Sympo-

sium. IEEE Computer Society, 2008, pp. 342–353.

[14] J. H. Anderson, R. Jain, and S. Ramamurthy, “Im-

plementing hard real-time transactions on multipro-

cessors,” in RTDB, 1997, pp. 247–260.

[15] T. Riegel, C. Fetzer, and P. Felber, “Time-based

transactional memory with scalable time bases,” in

SPAA ’07: Proceedings of the nineteenth annual

ACM symposium on Parallel algorithms and archi-

tectures. New York, NY, USA: ACM, 2007, pp.

221–228.

[16] D. Dice, O. Shalev, and N. Shavit, “Transactional

locking ii.” in DISC, ser. Lecture Notes in Computer

Science, S. Dolev, Ed., vol. 4167. Springer, 2006,

pp. 194–208.

[17] M. F. Spear, V. J. Marathe, W. N. S. III, and M. L.

Scott, “Conflict detection and validation strategies

for software transactional memory.” in DISC, ser.

Lecture Notes in Computer Science, S. Dolev, Ed.,

vol. 4167. Springer, 2006, pp. 179–193.

[18] R. M. Yoo and H.-H. S. Lee, “Adaptive transac-

tion scheduling for transactional memory systems.”

in SPAA, F. M. auf der Heide and N. Shavit, Eds.

ACM, 2008, pp. 169–178.

[19] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III,

“Software transactional memory for dynamic-sized

data structures.” in PODC, 2003, pp. 92–101.

[20] D. Johnson, “Fast algorithms for bin packing,” Jour-

nal of Computer ans Systems Science, vol. 8, no. 3,

pp. 272–314, 1974.

[21] C. L. Liu and J. W. Layland, “Scheduling algorithms

for multiprogramming in a hard-real-time environ-

ment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

[22] S. Dhall and C. Liu, “On a real-time scheduling

problem,” Operations Research, vol. 26, no. 1, pp.

127–140, 1978.

[23] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.

Varvel, “Proportionate progress: A notion of fair-

ness in resource allocation,” Algorithmica, vol. 15,

pp. 600–625, 1996.

[24] R. K. Abbott and H. Garcia-Molina, “Scheduling

real-time transactions: a performance evaluation,” in

VLDB, 1988, pp. 1–12.

[25] K. Fraser, “Practical lock freedom,” Ph.D. disserta-

tion, Cambridge University Computer Laboratory,

2003, also available as Technical Report UCAM-

CL-TR-579.

[26] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi,

and J. H. Anderson, “Litmus rt : A testbed for em-

pirically comparing real-time multiprocessor sched-

ulers.” in RTSS. IEEE Computer Society, 2006, pp.

111–126.

[27] M. Masmano, I. Ripoll, A. Crespo, and J. Real,

“Tlsf: A new dynamic memory allocator for real-

time systems,” in ECRTS, 2004, pp. 79–86.

8


