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Abstract—Transactional memory is currently a hot research
topic, having attracted the focus of both academic researchers
and development groups at companies. Indeed, the concept
of transactional memory has recently attracted much interest
for multicore systems as it eases programming and avoids
the problems of lock-based methods. However, up to now, the
scheduling of real-time transactions within software transactional
memories has not been studied. To address this issue, we present
in this paper a real-time software transactional memory, namely
RT-STM. We focus on the scheduling of concurrent soft real-time
transactions. In particular, we explore a new heuristic for conflict
resolution that reduces the number of deadline violations when
scheduling soft real-time transactions. After having discussed the
scalability of various classical STMs under a real-time operating
system, we present experimental results that show that RT-STM
can improve the performance of transactional memory-based
applications on multicore platforms.

I. INTRODUCTION

With the advent of multicore systems, the transactional

memory (TM) concept has attracted much interest from both

academy [1], [2] and industry [3] as it eases programming

and avoids the problems of lock-based methods. By supporting

the ACI (Atomicity, Consistency and Isolation) properties of

transactions, TM relieves the programmer from dealing with

locks to access resources. More important, it avoids the severe

problems of lock-based methods such as deadlock situations.

While lock-based methods systematically block all accesses to

shared resources, transactional memory allows several trans-

actions to access resources in parallel. A transaction is either

aborted when a conflict is detected, or committed in case

of successful completion. Conflicts are handled with non-

blocking synchronization which offers a stronger guarantee

of forward progress.

There are three kinds of implementations for transactional

memory: hardware-based (HTM) [1], [4], software-based ones,

denoted as software transactional memories (STM) [2], [5],

[6], [7] and hybrid schemes (HyTM) that combine both

hardware and software supports [8], [9]. HTM researchers

mainly focus on the implementation with less attention to

performance. On the contrary, STM researchers take care about

performance issues on TM, and several policies [10], [11] have

been proposed to manage conflicts between transactions.

There is an early attempt towards hard real-time for HTM

[12]. However, up to now, no real-time transaction model has

been specially defined for STM. While real-time scheduling

of transactions has been widely studied in real-time databases,

the issue has not yet been addressed for TM. Most of existing

solutions for real-time scheduling consider either tasks in

multiprocessor systems or transactions in database systems,

but not both together. Therefore, we have turned our attention

towards the design of a real-time STM in which we have

formalized the introduction of a real-time model. We have

implemented a new real-time scheduler of transactions for

resolving conflicts between concurrent soft real-time trans-

actions. The transaction model combines concepts found for

the management of real-time transactions in databases and

real-time tasks on multiprocessors. The main characteristic of

this model is that it considers deadlines for transactions. This

deadline is used by the scheduler either to abort or to help a

transaction to complete.

To the best of our knowledge, this paper is the first to

introduce real-time scheduling of transactions into STM. The

rest of the paper is organized as follows. Section II discusses

related work. Section III introduces the models of both tasks

and transactions and presents the various STMs used in our

experiments. Section IV presents our real-time transaction

model and its implementation within transactional memory.

Section V gives an experimental analysis of STMs under

several real-time scheduling policies of tasks and shows the

advantages of our solution. Finally, Section VI draws the main

conclusions and discusses future works.

II. RELATED WORK

Brandenburg et al. [13] compare wait-free and lock-free

algorithms with spin-based and suspension-based synchroniza-

tion mechanisms. They conducte experiments1 using the real-

time operating system LITMUSRT . The four approaches are

compared on the basis of both schedulability and tardiness

bounds, by evaluating their respective overheads with respect

to job release, scheduling and context-switching. One of the

major conclusions of this work is that non-blocking algorithms

are generally preferable for small, simple shared objects.

Among non-blocking approaches, the authors conclude that

wait-free algorithms are preferable to lock-free algorithms.

Regarding scheduling policies, they show that, unlike parti-

tioned EDF, the global EDF policy does not scale for lock-free

algorithms when the access to shared objects occurs at high

frequency.

1The hardware platform used was a four 32-bit Intel Xeon(TM) processors
running at 2.7 GHz
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The wait-free algorithms are primarily of interest in hard real-

time transactions [14]. However, implementing a wait-free-

based STM is very difficult since fair access to memory is

usually not guaranteed.

Riegel et al. [15] deal with time-based transactional memory

that uses time to reason about the consistency of the data

accessed by transactions and the order in which transactions

commit. Usually, implementations like [16], [17] rely upon

shared counters which can quickly become bottlenecks as the

number of concurrent threads grows.

Riegel et al. [15] show how a time base can affect transac-

tional memory performance. They rely on experiments2 which

compare the use of a shared integer counter with that of a

MMTimer which is a real-time clock with an interface similar

to the High Precision Event Timer widely available in x86 ma-

chines. Their main observation is that this enhanced hardware

support can ensure a much better clock synchronization than

mechanisms that require communication via shared memory.

As part of their work, the authors introduce the Real-Time Lazy

Snapshot Algorithm (LSA-RT) which is a timestamp-based

algorithm using a real-time clock. Moreover it uses a helper

mechanism to help committing transactions to complete.

However, the timestamp mechanism is not suitable for real-

time transactions. Indeed, the timestamp represents the arrival

time of a transaction but does not provide any information

about its time constraint. In addition, the conflict resolution is

performed according to the evaluation of the timestamp-based

age of the transactions and yet, in a real-time context, a recent

transaction may be of higher priority than an older one.

Yoo et al. [18] describe a scheduler for transactional mem-

ory. The authors compare their adaptive transaction scheduler

to the traditional Contention Manager (CM). In CM-based

STMs [19], [11], the transaction that encounters a conflict,

consults its CM. When the CM retries the denied object, it

typically employs an exponentially backoff scheme with a

retry interval expanding exponentially to a maximum limit

until success. Thus, a CM can decide to abort a certain

transaction, but does not deal with when to resume an aborted

transaction. In contrast, the scheduler presented by the authors,

specially deals with when to resume the aborted transaction

which is an important notion in a real-time context. However,

the authors do not deal with any real-time constraints in their

paper.

III. THEORETICAL BACKGROUND

A. Real-Time Task Model

We consider the scheduling of a sporadic task system τ on

m ≥ 1 processors. For each task τi ∈ τ we associate a set of

jobs J = {j1, j2, ..., jn}. Task τi is characterized by a set of

parameters ri, Ci, Pi which respectively represent the task

release, its execution requirement in the worst-case, and its

period of activation. At time ri + (k − 1)Pi and for k ≥ 1, a

kth job is released, receives Ci units of processor time and

should complete by its relative deadline Di. The weight (or

processor utilization) for a task τi on processor m is defined

2using a 16-processor partition of an SGI Altix 3700 and a ccNUMA
machine with Itanium II processors

by ui,m= Ci/Pi. We assume that at any time, a processor

executes at most one job, and a job is executed at most on

one processor.

Scheduling of tasks. On multiprocessor systems, two

alternative paradigms for scheduling collections of tasks

are considered: partitioned and global scheduling. For the

partitioned approach, the tasks are statically assigned to

processors and are always executed on a single processor.

Each processor has its own scheduling queue of tasks which

is independent of other processors and the migration of

jobs or tasks on other processors is not allowed. Feasibility

analysis under the partitioned paradigm which is comparable

to a bin-packing problem, is NP-Hard. Indeed it consists

in placing k objects with different sizes in m boxes which

respectively represent the tasks and the processors in our case.

First-Fit and Best-Fit algorithms and their variants [20] are

usually used to assign tasks to processors with an appropriate

condition in accordance with the schedulability analysis. In

contrast, under the global scheduling approach, inter-processor

migrations are allowed. A single queue and only one policy

are applied to tasks. A known result for uniprocessors is

that the scheduling algorithm Earliest Deadline First (EDF)

is optimal [21]. Unfortunately, EDF is not optimal on

multiprocessors either under the partitioned or the global

approaches [22], called respectively P-EDF and G-EDF.

Another class of scheduling algorithms, which differs from

the previous ones, gathers the Pfair algorithms (namely PD

and PD2) [23]. These are based on the idea of proportionate

fairness and ensure that each task is executed with uniform

rate. Tasks are broken into quantum-length subtasks and

time is subdivided into a sequence of subintervals of equal

lengths called windows. A subtask must execute within the

associated window and migration is allowed for each subtask.

With respect to feasibility, the authors in [23] proved that

a periodic task set with ri = 0 has a Pfair schedule on m
processors iff:

∑

τi∈τ

Ci

Pi

≤ m (1)

In order to make our experimental evaluation, as complete as

possible, we select one algorithm in each class of scheduling

(i.e. P-EDF, G-EDF and PD2). Although the PD2 algorithm is

used to schedule hard real-time tasks on multiprocessors, we

choose to include it in our study so as to cover all kinds of

real-time applications.

B. Transaction Model in RT-DBMS

In Real-Time DataBases Management Systems (RT-

DBMS), real-time transactions are characterized by several

parameters on the basis of which scheduling decisions

are made. These parameters are summarized hereafter. We

consider a transaction system T . Each transaction Tj ∈ T
is characterized by a set of parameters rj , Wj , Dj which

respectively represent the transaction starting time, the

worst-case execution time of Tj (i.e. the delay separating
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the start time of Tj and its end time − considering equally

both committed or aborted transactions − and the relative

deadline of the transaction. Transaction Tj meets its deadline

iff Wj ∈ [rj , rj + Dj)

Scheduling of transactions. Like real-time tasks, real-

time transactions are classified according to the criticity

of their deadlines: hard, soft or firm. The hard3 class is

rarely considered. Most studies assume the scheduling of

transactions either in soft4 or firm5classes.

The scheduler of transactions in database systems embeds a

concurrency control protocol, which is in charge of resolving

the conflicts between transactions when they occur, in order

to maintain the database consistency. In real-time database

systems, not only database consistency should be satisfied, but

transactions must also meet their deadlines [24]. Real-time

concurrency control can be either pessimistic or optimistic.

Pessimistic protocols are lock-based and systematically restrict

all accesses to shared resources. For optimistic protocols, the

detection and resolution of conflicts can happen after their

occurrence. Intuitively, it seems that optimistic protocols have

better performance. However, this is not easy to verify since

their performance depends on several parameters [25].

To our knowledge, no real-time concurrency control policies

are specially designed for software transactional memories.

Furthermore, the real-time concurrency controls used in real-

time database systems (see [26] for survey) are not suited for

multiprocessors [27].

C. Transaction Model in STM

If we refer to the transaction model defined above for

real-time databases, most of the existing STMs support only

non real-time transactions (i.e. transactions without deadlines)

defined as follows:

Tj = (rj , Wj) (2)

Current STM implementations usually use these parameters

to set up the priority of transactions. This priority is used

to resolve conflicts between transactions when they occur.

Typically, policies like those implemented by the Timestamp

or Polite contention managers use respectively the arrival time

rj of the transaction and the number n of retries (bounded

by
∑

n Wj,n units of time), to make their decisions [10].

D. STM implementations

1) Fraser’s STM: FSTM [28] is a dynamic lock-free object

based STM. It has been implemented as a C library. FSTM

employs a recursive helping and an enforced global total order

for transactions to ensure that despite contention, at least one

transaction is making progress. The object is the basic unit

of concurrency. Each object is pointed by an object header

which contains the current version of the object (see Fig.

3System cannot tolerate the missing of deadlines.
4The system could accept the transaction even if it misses its deadline.
5Missing the deadline causes to abort the transaction.

1.). The object header is pointed by an object handle which

keeps the old and new references to the object. In case of a

successful commit, the object header is updated with the new

data block object. The transaction descriptor embodies both

read-only and read-write lists. When a transaction accesses an

object, the procedure is similar for both read-only and read-

write accesses. The data structures described above are thus

created according to the type of access. A shadow copy of the

object is also created in the case of a read-write access and

remains private until the transaction commits.

The commit phase is divided into three phases. The first

phase is the acquire phase. The transaction attempts to acquire

ownership of all objects on its read-write list in a canonical

order. The transaction that attempts to acquire ownership of

the object, performs a CAS (Compare And Swap) operation

on the object header, to replace the pointer to the object by a

pointer to its transaction descriptor. If the content of the object

header points to a more recent object, the transaction will then

abort. However, if the object is owned by another transaction

then the obstruction is helped to completion. The second phase

is the read phase. It checks whether each read-only object

has not been updated since it was opened. If all objects are

successfully acquired or checked then the transaction will

attempt to commit successfully. In the last phase, all acquired

objects are released and if the transaction commits then all old

objects are replaced by their corresponding shadow copy (i.e.

the new object).

In FSTM, the recursive helping is not systematically

performed by a transaction during the attempt to commit.

Only the transaction that is in the first (namely write phase) or

in the second commit phase (namely read phase) can invoke

the recursive helping. Moreover, the following conditions

must be fulfilled:

• Let a transaction T1 be in its write phase and attempting

to acquire ownership of the object O. If O is owned by

another transaction T2 then T1 will help T2.

• Let both transactions T1 and T2 be in their read phase,

and ≺ be a well-founded total order6 on incomplete

transactions. T1 will abort T2 iff T1 ≺ T2. Otherwise T1

will help T2.

Note that a transaction in its read phase will never help a

transaction in its write phase. Furthermore, imposing T1 ≺
T2 guarantees that every cycle will be broken (i.e. a situation

in which all transactions are in their read phase and try to

read an object that is currently owned by the next transaction

in the in-order queue).

2) Ennals’ STM: Ennals’ STM [5] is a lock-free-based

STM. Unlike FSTM, each object is stored in place and

there is no indirection to access the object. Each transaction

maintains separate read and write descriptors for the opened

objects, for reading and writing respectively. To write an

6The relation ≺ is concretely implemented as ordering of the transaction
descriptors.
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Fig. 1. Fraser’s STM data structures

object, the transaction must first obtain an exclusive lock on

the object so as to be able to create a working copy of the

object. This lock is released only at commit or abort time. To

read from an object, the transaction waits until the object’s

handle has a version number. Therefore, Ennals’ STM uses a

revocable two-phase locking scheme [29] for writings and an

optimistic concurrency control for reads.

3) DSTM: Herlihy et al. propose the Dynamic STM [19].

The DSTM is a an obstruction-free-based STM which im-

plements the weakest natural non-blocking progress guaran-

tee. That is to say, at any point, a single process executed

in isolation (i.e. with all obstructing processes suspended)

for a bounded number of steps will complete its operation.

In DSTM the transaction references an object through a

TMObject structure that consists of a pointer to one and

only one Locator. The Locator contains the reference to the

descriptor of the transaction that created it. The old and the

new version of the object are also contained in the Locator.

The transaction descriptor has a read set to store all the

objects accessed by the transaction. To acquire an accessed

object, a new private locator is created with a cloned object.

If the commit completes successfully, the read set is validated

and the TMObject structure will be atomically updated with

the new locator. In case of conflict, the DSTM does not set

constraints on the selection of the transaction that should abort.

Instead, it provides a general interface that allows a contention

manager to implement a wide variety of policies [10].

IV. REAL-TIME STM

A. Real-time Transaction Model for STM

The classical model used so far to describe a transaction

within STMs (see Equation 2) is not suitable for the real-time

context. Indeed, in order to make scheduling decisions when

conflicts occur between real-rime transactions, we need at

least another parameter depicting the real-time constraints.

Thus, based on both the transaction model found in RT-

DBMS and that of real-time tasks, we consider a real-time

transaction system T on m ≥ 1 processors. Each transaction

Tj ∈ T is characterized by a set of parameters rj , Wj , Dj

which respectively represent the transaction starting time, the

worst case execution time of Tj between rj and the commit7

time, and the relative deadline of the transaction. We define

also the parameter |Dj | = rj + Dj which is the absolute

deadline of the transaction Tj . The processor utilization for a

transaction Tj on processor m is defined by uj,m. Therefore,

a real-time transaction in STM is defined as:

Tj = (rj , Wj , Dj) (3)

Transaction Tj meets its deadline iff Wj ≤ Dj

B. RT-STM Description

Our Real-Time Software Transaction Memory (RT-STM) is

an enhancement of Fraser’s STM to take into consideration

real-time transactions based on the model previously intro-

duced. First, let us argue about the reasons why we chose

Fraser’s STM for our implementation. Considering our real-

time transaction model, the challenge was to improve the total

number of transactions that meet their deadlines. For that

purpose, we opted for an optimistic protocol for resolving

conflicts, because we believe that one of the basic ideas of

transactional memories is to avoid the systematic blocking

inherent to pessimistic protocols. Moreover, for soft real-time

applications, we aim to avoid the situations in which a low-

priority transaction blocks a higher-priority one. In that sense,

the helping mechanism between transactions is an important

notion in a real-time context. Indeed, a transaction with a

low priority can help a transaction with higher priority. With

respect to progress guarantees, lock-free-based algorithms

seem more suitable for our purposes since they ensure that

at least one transaction will make progress. For the reasons

exposed above, Fraser’s STM appears to be the best candidate

for supporting soft real-time transactions.

C. Real-time Scheduling Rules

Hereafter are presented the scheduling rules that apply when

conflicts occur between concurrent soft real-time transactions

in RT-STM:

• Let a transaction T1 be in its write phase and attempting

to acquire ownership of the object O. If O is owned by

another transaction T2 and |D1| > |D2| then T1 will

help T2.

• Let both transactions T1 and T2 be in their read phase. T1

will abort T2 iff |D1| ≤ |D2|. Otherwise, T1 will help T2.

These rules consist in a modification of the conditions of

helping found in FSTM. The condition that ≺ is a well-

founded total order defined for FSTM [28] is also fulfilled

here since |Dj | are chronologically ordered.

By imposing these conditions, transactions will be dynamically

scheduled according to their deadlines, and only the transac-

tions which have a higher-priority (i.e close to their deadlines)

7In this study, we focus only on transactions that meet their deadlines.
Transactions rollback times will be considered in future work.
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will be helped. Note that these modifications concern only the

commit procedure in its read and write phases. In fact, unlike

real-time database systems in which the ACI properties are

usually relaxed to serve the real-time constraints of transac-

tions, in our case, data are just as important as the deadlines of

transactions. The read and write procedure objects still remain

unchanged.

D. Implementation details

Intuitively, to ensure that transactions will meet their dead-

lines in RT-STM, the underlying operating system (OS) has

also to be considered since transactions are executed within

threads. Then, the OS must provide real-time constraints to

transactions. That is why we used the real-time operating

system (RTOS) named LITMUSRT 8 [30]. Designed to run

on top of a symmetric multiprocessor (SMP) architecture,

it implements all the real-time task scheduling algorithms

described in section III A. LITMUSRT is based on the

Linux operating system (kernel version 2.6.24). The proposed

schedulers are implemented as plugin components that can

be selected from Linux user-space. In order to manipulate

both tasks and synchronization mechanisms from Linux user-

space, system calls are gathered within a C library. For all

these reasons, LITMUSRT becomes an excellent (perhaps the

only) candidate to study the behavior of our RT-STM on

multiprocessor systems, under a panel of advanced real-time

scheduling policies.

We have modified Fraser’s STM and then integrated it into the

LITMUSRT library, as described below.

1) FSTM Modifications: On one hand, we have added a

scheduling information into the transaction context in order

to support soft real-time transactions. These informations are

grouped together within a structure called RTSched and result

from our real-time transaction model. At initialisation time,

Dj is given as an input parameter for the transaction and

RTSched is initialised with both the current tick value of the

processor rj and |Dj |. (see Algorithm 1).

Algorithm 1 Init Real-Time Transaction Tj

Require: Dj

Tj .RTSchedj .rj ⇐ ReadProcessorT icks()
Tj .RTSchedj .|Dj | ⇐ RTSched.rj + Dj

On the other hand, we have implemented the real-time

scheduling rules presented in Section IV C. within the recur-

sive commit function (for readibility, the algorithm that follows

the given rules is not presented here).

2) Integration into LITMUSRT library: Under LITMUSRT ,

a real-time task is initially created as a standard linux thread

(using the standard pthread library) before being effectively

started. Then, it initialises the real-time environment and

specifies the real-time parameters of the task, namely Ci and

Pi. Thereby, the thread sporadically releases its jobs by calling

the job function every Pi units of time.

8http://www.cs.unc.edu/∼anderson/litmus-rt

To summarize, FSTM and the LITMUSRT library have been

combined by creating real-time threads within FSTM. We

performed this integration so as to support both non real-

time threads and real-time tasks. Our experiments under the

resulting STM, namely RT-STM which rely on this hybrid

scheme, are described in the next section.

V. EXPERIMENTAL EVALUATION

We present here the experiments we performed to evaluate

our RT-STM in terms of deadline guarantees for transactions.

Firstly, we describe the hardware and software configurations

we use for our experimental evaluation, as well as the STM

benchmarks we consider. Secondly, we report comparative

results allowing us to select the best STM among FSTM,

DSTM and Ennals’ STM, under Linux and LITMUSRT

operating systems. Then, we study the scalability of STMs

under different real-time task scheduling policies. Finally, we

evaluate our RT-STM proposal with respect to the best STM

for our purpose.

Hardware context. The hardware platform used in

our experiments is a two 32-bit multicore Intel Core(TM)2

Duo T7500 processors running at 2.20GHz with 4MB L2

cache, and 3.5GB of main memory. During all experiments,

the multicore option has been enabled, and the cpu frequency

for each core has been fixed at 2194MHz.

Software context. We have compiled the LITMUSRT

kernel for the above hardware platform and used it on top

of an Ubuntu 8.04 hardy Linux distribution. The system has

never been overloaded during the experiments neither under

Linux (i.e only the test application has been launched), nor

under LITMUSRT .

Real-time task parameters. For each real-time task,

we fixed Ci = 20ms and m = 2; the parameter Pi being

determined according to Equation 1. Thus, in all cases, we

consider processors under heavy loads. The impact of the

variation of these parameters is not considered in this paper,

and we defer its consideration for future work.

STM benchmark. The experiments performed by Fraser

[28] for the performance evaluation of STMs are about 10

seconds of duration. Fraser considers that this duration is

pretty sufficient to stabilize the data into the cache, since

after 10 seconds the same values are repeated. During

the 10s of test, the evaluated STM performs a series of

three operations: readings, writings and deletes over the

shared objects organized as red-black trees or skip lists. The

proportion of each operation performed is given as an input

parameter of the benchmark. Fraser also considers that 75%
of reads and 25% of writes and deletes well reflect a real

situation.

For our experiments we used only red-black trees. Each

experimental test lasts 10 seconds and operations are

composed of 75% of reads and 25% of writes and deletes.

Shared resources are highly contended, with 24 maximum
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keys for red-black trees. Note that we have slightly modified

this benchmark in order both to adapt it to the real-time

context and to make our measurements.

Unlike classical STMs in which performance evaluation

usually uses the average number of transactions per success

and per time duration, we use other parameters for our

evaluation. These are described below.

Worst-case execution time jitters. We define the worst-case

execution time of the set T by WCET = max {Wj}. In our

case, WCET jitters are computed as the difference between

max {WCET} and min {WCET} for 10 experiments.

Indeed, after 10 experiments, we note that the value of the

WCET jitters remains in the range delimited by its previous

min and max values.

In order to extract the Wj value, we have modified the

different STMs. In fact, at commit time, we recover the

current processor ticks by calling the assembly instruction

rdtsc. The Wj of the transaction is thus obtained by

subtracting the rj parameter to the successful commit time.

However, this method to get the ticks value at user-level

is technically aberrant. Indeed, if transaction Tj starts on

one core and migrates on other core where it commits, then

the execution of the transaction becomes invalid since the

clockticks of the cores are not synchronized.

We have proposed an alternative solution (see Algorithm

2) which consists in adding the core identity to the context

of the transaction. This is done by calling the assembly

instruction cpuid9. Secondly, we make sure that the CPUID

is corresponding to the rdtsc (see line 6) as the instructions

are not atomically executed.

If task migration occurs more than 2 times during the test

then we stop the retries (line 7). According to the state in

which we perform the test, either we abort the program at

start time of transaction (line 9) or consider the test as a bad

one at commit time (line 11). At the end of the experiment,

if the number of transactions that have experimeted bad

test is up to 1% of the total number transactions, then the

experiment is manually restarted.

Note that we have measured the time duration of Algorithm

2. which is 0.5µs. Thus, the worst case execution path of

this algorithm is 2µs (i.e, 2 × 0.5 at the starting time of the

transaction, plus 2 × 0.5 at the commit time). Therefore, Wj

has a precision within the interval [1, 2]µs.

A. STMs’ scalability under Linux and LITMUSRT

In this experiment, we intent to show how the underlying

operating system can impact on the variation of the Wj

parameters, namely the WCET jitters. To cover the three main

categories of STM, we have compared the Fraser’s STM with

the lock-based STM due to Ennals and with the obstruction-

free-based STM due to Herlihy et al.

1) Experiment results: Under Linux. Fig. 2. shows that

Ennals’ STM does not scale. Ennals’ STM suffers from

frequent transaction collisions, and the transaction can wait for

a long time before having access to the concurrent resources.

9The id assigned by the APIC is at the 25-bit in our case

Algorithm 2 Wj measurement

1: init RetryCPU ⇐ 2
2: Tj .coreID ⇐ CPUID()
3: repeat

4: RetryCPU ⇐ RetryCPU − 1
5: Tj .RTSchedj .rj ⇐ ReadProcessorT icks()
6: until Tj .coreID = CPUID() Or RetryCPU = 0
7: if RetryCPU = 0 then

8: if state = TransactionStarting then

9: Abort()
10: else

11: BadTest ⇐ BadTest + 1
12: end if

13: end if

This is due to two reasons. Firstly, the transaction is blocked

during the commit time when its resources are owned by an-

other transaction. Secondly, Ennals’s STM places a restriction

on the number of transactions which cannot exceed the number

of cores at any time. This restriction is made in order to fully

use all the cores [5]. This result about Ennals’ STM confirms

the results obtained in [16] in which Ennals’s algorithm also

performs badly. Therefore, Ennals’ STM has not been taken

into consideration for the rest of the experiments.

Under LITMUSRT . Fig. 3. shows that both FSTM and

DSTM behave better under a real-time operating system. As

expected, the WCET jitters are more important under Linux

due to preemption times caused by the interference of other

applications. Under LITMUSRT , on the contrary, the threads

that execute our test have the greatest priority, and cannot be

preempted by any Linux process.

B. STMs’ scalability under RT task scheduling policies

As both FSTM and DSTM scale better under a real-time

environment, the rest of experiments is thus conducted only

with real-time task scheduling policies in order to determinate

for which policy the STMs scale better.

1) Experiment results: Under Pfair. Fig. 4. and 5. show

that both for the FSTM and DSTM, the Pfair policy produces

the worse performance. This result can be explained by the fact

that the Pfair scheduling policy is more complex than EDF-

based approaches, thus involving more important scheduling

overheads.

Under G-EDF. Unlike FSTM, the DSTM scales pretty well

under this policy while the number of threads does not exceed

8. In this case, the high jitters observed under FSTM are

caused by the extra bookkeeping information. The data in

the stack are then more important in FSTM. Consequently,

the migration cost with G-EDF is more important and causes

more overheads in FSTM than in DSTM. Nevertheless, beyond

8 threads, unlike DSTM, FSTM keeps its scalability and the

WCET jitters are relatively deadened.

Under P-EDF. FSTM outperforms DSTM and P-EDF is

revealed as the best policy. Indeed, there are no migrations cost

and the overheads observed are lesser. Furthermore, the result
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obtained here presents some similarities to the experiments

conducted by Branderburg et al (see section II) and also

confirms that lock-free algorithms scale well under P-EDF

than G-EDF.

Therefore, the rest of the experiments are conducted only

under FSTM with the P-EDF scheduling policy.

C. Evaluation of our RT-STM

We now present, the comparison between RT-STM and a

modified version of FSTM (to consider only transactions’

deadlines), under P-EDF policy. We have studied the impact

of both the number of threads and the variation of the

deadline window length of soft real-time transactions, upon

the system performance.

Deadline guarantee ratio. This parameter measures

the number of transactions that successfully meet their

deadlines at commit time over the total number of launched

transactions. The deadline guarantee parameter has been

integrated to both FSTM and RT-STM in order to perform

the comparison. First, to take into consideration the deadlines

of transactions, we integrated Algorithm 1 into FSTM.

Afterwards, we modified the successful commit parts of the

commit function in both FSTM and RT-STM. After being

ensured that the transaction is running on its start-core (see

Algorithm 2), the current processor ticks are compared to |Dj |
in order to verify whether the transaction has met its deadline

or not. If this is the case, the number of transactions that meet

their deadlines is then incremented atomically using the CAS

instruction. In a similar way, the total number of transactions is

atomically incremented at the startup time of each transaction.

The deadline window factor. Like in [25], for each

transaction, a specific deadline is randomly (rnd) generated

as follow :

Dj = rnd[0, k × base) (4)

where k represents the deadline window factor. The value of

base is fixed at 548 and is a processors frequency multiple.

1) Experiments results: FSTM vs RT-STM. Fig. 6. shows

the absolute deadline guarantee ratio measured under FSTM

and RT-STM. We observe that RT-STM outperforms FSTM.

The outperformance ratio is constant and independent of the

number of threads used.

Unlike in real-time databases in which transactions are usu-

ally large, in STMs the number of transactions is relatively

more important, and Wj parameter is smaller since data are

only memory-resident. Therefore, a small difference of the

performance ratio between STMs involves a great number of

transactions. For instance, the improvement of RT-STM over

FSTM is about 105 of transactions that meet their deadlines

during the 10 seconds of the test execution. The outperfor-

mance ratio remains constant even when increasing the test

duration, but the total number of transactions increases. Thus,

on the basis of the number of transactions, the outperformance

of RT-STM will be more and more important, when increasing

the test duration.

RT-STM benefits. Fig. 7. shows the relative deadline guar-

antee ratio of our RT-STM with respect to that of FSTM

under varying deadline window lengths. When the generated

deadlines are lesser than 548 processor ticks (i.e, k ∈ [0, 1))
transactions miss their deadlines both in FSTM and RT-STM

since the deadline interval is very small. On the contrary,

for k ∈ [64, 128] we see that all the deadlines are met

for the two STMs since the real-time constraints are easier

to satisfy in this case. However, note that for k ∈ [2, 4]
the outperformance of our RT-STM is maximal. In fact, this

maximum ratio corresponds to the situation in which the

deadline guarantee ratio is equal to 50% both in FSTM and

RT-STM. Furthermore, the maximum performance obtained in

our RT-STM is essentially due to the first rule set for resolving

conflicts (see Section IV). Indeed, the second rule of RT-STM

rarely occurs and is defined only to prevent the read cycles.
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VI. CONCLUSION

While real-time scheduling of transactions are widely stud-

ied in a real-time databases, the issue has not yet been

addressed for transactional memories. Motivated by this ob-

servation, we introduced a real-time transaction model into

software transactional memory and defined a new real-time

scheduler of transactions based on the evaluation of deadlines.

To our knowledge, such study has not been attempted before.
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The main conclusions of our study can be summarized as

follows: (i) Using the LITMUSRT RTOS, the execution time

of transactions has less jitters than under classical (i.e. non

real-time) OS, both for FSTM and DSTM; (ii) Using P-EDF,

both FSTM and DSTM scale better than under other real-time

policies, namely G-EDF and Pfair; (iii) Using P-EDF, FSTM

outperforms DSTM in terms of execution time jitters; (iv)

Using P-EDF, our contribution outperforms FSTM in terms

of the number of transactions that meet their deadlines.

For future work, there are many possible directions. First,

in our experiments we assumed a garbage collector (GC)

provided by the FSTM implementation. We believe that a GC

has a great influence on the execution time of the transactions.

One optimization could be dedicated to the design of a

specific real-time task for GC. Second, in our experiments, we

arbitrarily fixed the parameters of the real-time tasks. It would

be interesting to evaluate the impact of the processor load.

Finally, we would like to formalize the interaction between

the real-time scheduler of tasks and that of transactions.
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