
HAL Id: hal-00422595
https://hal.science/hal-00422595

Preprint submitted on 7 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of XFEM within the Arlequin framework for
the simulation of crack propagation

Hachmi Ben Dhia, Olivier Jamond

To cite this version:
Hachmi Ben Dhia, Olivier Jamond. On the use of XFEM within the Arlequin framework for the
simulation of crack propagation. 2009. �hal-00422595�

https://hal.science/hal-00422595
https://hal.archives-ouvertes.fr


On the use of XFEM within the Arlequin
Framework for the Simulation of Crack

Propagation

Hachmi Ben Dhia, Olivier Jamond

Ecole Centrale Paris, MSS-MAT, UMR 8579 CNRS, 92295 Chatenay Malabry
Cedex France

Abstract

The Arlequin method is a generic numerical method that allows, by local super-
position and coupling of models, to address multimodel and multiscale mechanical
problems. In particular, this method has already been used to super-impose cracked
patches on sound structures, reducing this way the global simulation ressources a
classical finite element approach would have required.
In this paper, one of the key features of the Extended-Finite Element Method,
namely the Heaviside enrichment function, is used within the Arlequin framework
to further reduce the costs of crack propagation simulations. The main goal of the
paper is to describe the proposed methodology and to assess its performance through
numerical experiments.
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1 Introduction

Generation of classical regular finite element meshes that are capable of prop-
erly representing material discontinuities or accurately simulating the propa-
gation of cracks in complex structures with high strain and stress localization
is a tedious and time consuming endeavor. This explains the search over the
last two decades for flexible numerical methodologies in order to efficiently
tackle this difficult issue. Among others, methods that have been proposed are
the so-called meshless methods, see e.g. [30,5], the partition-of-unity method
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(PUM) [28,2] and its well-known instances, namely the generalized finite el-
ement method (GFEM) (e.g. [4]) and the extended finite element method
(XFEM), see e.g. [6,29,20]). In these methods, somewhat reminiscent of the
Treftz approach, the finite element space associated with a given coarse mesh
is enriched by analytical or semi-analytical functions based on a priori knowl-
edge of the unknown solution. In the XFEM approach, for example, one uses
level set functions and asymptotic local modal functions around the cracks.
XFEM/GFEM methods are particularly relevant and effective whenever the
local behavior of the solution is known.
Another class of approaches is given by the s-method, which is in many ways
similar to the Fast Adaptive Composite-grid (FAC) method [27]. This ap-
proach can be considered as a genuine finite element method in which the
coarse finite element space is locally enriched by fine scale basis functions as-
sociated with a fine mesh. Although effective in many regards, the method
may suffer from redundancy. Moreover, the resulting problem in the s-method
is solved globally. An approach similar to the s-method is one that involves the
use of local meshes (also called patches), but whose resulting system of equa-
tions is solved by a relaxed Chimera algorithm [23,24] (see also the Schwarz
algorithm (see e.g [37])).
Our ultimate goal being the simulation of physically-based damage, localisa-
tions and crack propagation, we propose a novel and alternative approach,
experienced in this paper on basic tests. The approach is based on the mul-
timodel and multiscale Arlequin framework [8,10,33,11,12,16]. The method
essentially consists in superimposing a fine scale model (in a patch) to a large
scale model combined together using a partition of energy. The construction
of the resulting coupled model allows for great flexibility; indeed, one may
independently refine the mesh or use different constitutive laws, governing
equations, or geometries within the patch. For instance, the Arlequin frame-
work has been recently employed for successfully coupling atomistic models
with continuum models [38,15,3,32].
The idea of using the Arlequin framework for the simulation of crack propaga-
tion, fatigue, or damage phenomena in a structure, has already been advanced
a few years ago [34,13,35]. In order to expose our motivation and put in ev-
idence our new numerical achievements, we report here some of our earlier
results. In the first example (from [34]), we considered a solid composed of
two materials, one soft (rubber) and one hard (steel). The structure was sub-
mitted to a cyclic loading on the top surface, to symmetry conditions along the
bottom surface, while the other two boundaries were kept free. Figure 1 shows
the evolution of damage as well as nucleation and propagation of macroscopic
cracks whenever damage exceeded a prescribed threshold.
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(a) (b) (c)

Fig. 1. Propagation of damage and creation of a crack within the Arlequin framework
(three selected snapshots)

The fine scale phenomena near the crack tip were taken into account using an
Arlequin patch which was free to move and grow according to the evolution
of the crack tip. In this case, the simulation was still relatively simple due
to the fact that the direction of propagation was a priori known to be the
straight bi-material interface. The second example, taken from [35], illustrates
the crack propagation in a linearly elastic structure as shown in Figure 2.

(a) (b)

(c)

Fig. 2. Propagation of a crack for the double-cantilever elastic beam (three selected
snapshots)

The patch consisted of a very fine mesh at the tip and was progressively
adapted following the evolution of the crack. We note that the underlying
coarse mesh was kept unchanged during the whole process. Data for this test
case (referred to as the double cantilever beam test) was taken from Belytschko
and Black [6]. The obvious drawback of the method was that the number of
finite elements along the lips of the crack was far from being optimal, which
unnecessarily increased the cost of the computation. Moreover, the treatment
of more than one crack would quickly become an intricate issue.
In this work, we propose to circumvent the aforementioned issues by intro-
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ducing Heaviside enrichment functions, as in XFEM, within our Arlequin
framework, with the objective of further reducing computational costs and
enhancing the flexibility of crack propagation simulations in this framework.
In particular, we will show that the combined approach allows us to consider
smaller patches to capture the local features near the tip since Heaviside func-
tions are used to enrich the coarse model. The main goal of the present paper
is to describe the proposed methodology and to assess its performance through
numerical experiments.

The paper is organized as follows. Following the introduction, we provide in
Section 2 the continuous formulation of the crack problem in a linearly elas-
tic structure. In Section 3, we recall the main features of the extended finite
element method. We then show in Section 4 how enrichment functions a la
XFEM can be incorporated into our Arlequin framework. In particular, we
describe the continuous Arlequin formulation for the crack problem in Sub-
section 4.1. The discrete counterpart is given in Subsection 4.2 and practical
aspects related to numerical integration are detailed in Subsection 4.3. Nu-
merical results in order to assess the performance of our approach are then
presented in Section 5. We use to that effect two examples, one dealing with
the simulation of a kinked crack and the double-cantilever beam test case.
In these two examples, the patch is strictly contained in the interior of the
global domain (no intersection between the boundary of the patch and the
global domain boundary). A third numerical example shows the feasibility of
the simulation of the propagation of a crack from a side of a square plate to
the opposite one. This example shows, in particular, how the patch is adapted
easily when it hurts the boundary of the global domain. The paper closes with
concluding remarks and some ongoing works in Section 6.

2 Formulation of a cracked elastic body problem

Let us consider a linear elastic cracked solid, occupying the closure of a
bounded domain Ω0. For the sake of clarity, we will consider the bidimen-
sional case. The boundary of the solid is partitioned into Γu, Γg, Γ+ and Γ−,
where Γu is the part where the solid is clamped and Γg is the part on which an
applied density of loads g is given. The other two parts of the boundary Γ+

and Γ− define the faces of the crack whose tip is denoted by o (see figure 3).
It is assumed that the crack is closed in the undeformed configuration of the
solid. Thus, from a geometrical point of view, we have Γ+ ≡ Γ− ≡ Γ. But free
boundary conditions are applied on Γ+ and Γ− in the remainder of the article.
That is to mean that no unilateral contact loads are considered between the
faces of the crack. Moreover, for the sake of conciseness, we neglect external
body forces.
The classical weak form of the linearized primal elastic problem reads:
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Ω0

Γ
o

Γu

Γ+

Γ−

Fig. 3. problem of a cracked linear elastic solid

find u ∈ V 0; ∀v ∈ V 0

a(u, v) = l(v) (1)

where:

V 0 =
{
v ∈ H1(Ω0); v = 0 on Γu

}
(2)

a(u, v) =
∫

Ω0

σ(u) : ε(v) dx (3)

l(v) =
∫

Γg

g · v dγ (4)

with σ and ε standing for the stress and linearized strain tensors, the stess
tensor being related to ε(u) = ∇s(u) by the Hooke’s law:

σij(u) = Rijklεkl(u) inΩ0 (5)

where the Einstein’s convention of summation on repeated indices is used and
where the elasticity tensor R is assumed to verify:

Rijkl = Rjikl = Rklij (symmetry) (6)

∃c0; Rijklτijτkl ≥ c0τijτij, ∀τij = τji (coercivity) (7)

Rijkl ∈ L∞(Ω0) (regularity) (8)

For a classical conforming finite element approximation of this problem, the
mesh has to match the crack. But since the latter may propagate into the
solid without necessarily fiting the existing mesh edges, one has to gener-
ate repetively new meshes compatible with the evolution of the crack in or-
der to achieve an accurate numerical approximation of the problem solution.
This procedure is clearly unflexible and costly. The Extended Finite Element
Method is one of the most efficient methods that has been designed to address
this issue. Since the XFEM is partly used in our approach, its main features
are recalled in the next section where some notations are introduced.
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3 XFEM discretisation

The XFEM discretization of the problem (1)-(5) consits in constructing a
finite dimensional subspace of V0 by enrichment of a classical finite element
subspace of

V Γ
0 =

{
v ∈ H1(ΩΓ

0 ); v = 0 in Γu

}
(9)

where ΩΓ
0 = Ω0 ∪ Γ denotes the uncracked domain.

This is done as follows. Let Th be a mesh of the uncracked solid whose edges do
not necessarily match Γ. Let (ϕ1, ϕ2, ...,ϕn) denote a basis spanning a classical
Lagrange finite element space V Γ

0h, associated to Th (see e.g. [19,39,25]) and
assumed to be a subspace of V Γ

0 . The compact support of a shape function
ϕi is denoted by ωi and its interior by

◦
ωi. The set of indices k such that

o ∈ ωk is denoted by Ks (Ks = {7, 8, 9, 10} in the scalar case depicted by
figure 4). The set of indices k such that k /∈ Ks and

◦
ωk ∩ Γ )= ∅ is denoted

by Kd (Kd = {1, 2, 3, 4, 5, 6} in figure 4). The union of ωk, k ∈ Kd, defines
a domain we denote by Ωd. The latter is divided by the crack Γ into two
domains, denoted by Ω+

d and Ω−
d . A precise definition of the domain Ω+

d (and
thus of Ω−

d ) relies on the signed distance function: by defining at each point
p ∈ Γ a classical positively oriented frame (τ p, νp) where τ p and νp refer to
unit tangent and normal vectors to the crack at point p (see figure 5), one
can associate to each point x ∈ Ωd (one of) its nearest point(s) x∗ on Γ (as in
contact mechanics, e.g. [14]). The domain Ω+

d is then defined by: (see figure
5)

Ω+
d = {x ∈ Ωd ; (x − x∗).νx∗ ≥ 0} (10)

The XFEM finite dimensional space is then defined by:

zone enriched with Heaviside function

zone enriched with singular modes

ϕ1 ϕ2 ϕ3 ϕ7 ϕ8

ϕ4 ϕ5 ϕ6 ϕ9 ϕ10

Γ
o

ϕ12ϕ11 ϕ...

Fig. 4. XFEM discretization

V 0h = span
{
(ϕi)i=1,n, (Hϕj)j∈Kd, (Fkϕl)k=1,4; l∈Ks

}
(11)
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ϕ1 ϕ2 ϕ3 ϕ7 ϕ8

ϕ4 ϕ5 ϕ6 ϕ9 ϕ10

r

Ω+
d

Ω−
d

op

τ p
νp θ

Fig. 5. local frame

where H refers to the sign-like field, defined by:

H(x) =





+1 in Ω+

d

−1 elsewhere
(12)

and where the functions Fj are given by:(see e.g.[6,29,20,26,18], for details and
more general considerations)

{Fj(r, θ), j = 1, 4} =

{
√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
sin θ,

√
r cos

θ

2
sin θ

}

(13)
with (r, θ) referring to the polar coordinates in the local frame (o, τ o, νo) (see
figure 5). Observe here that the enriched XFEM solution is defined by:

uh0 =
∑

i=1,n

uiφi +
∑

j∈Kd

ajHφj +
∑

k=1,4

∑

l∈Ks

bk
l Fkφl (14)

where (ui)i=1,n, (aj)j∈Kd
and (bk

l )k=1,4; l∈Ks are the unknown degrees of free-
dom.

To summarize, for the simulation of a cracked solid, XFEM is based on a
double enrichment of classical finite element spaces by:

• a localized sign-like field that reproduces the material discontinuity due to
the crack;

• localized asymptotic modes in the near crack tip zone.

The first enrichment could be considered as universal. In the contrary, for
general mechanical problems, the asymptotic knowledge of the behaviour of
the solution in critical zones is unfortunately unavailable and one has to resort
to numerical approximations in these zones. For the numerical treatment of
these general problems, we suggest here to use only the first enrichment within
the Arlequin framework.
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4 Use of XFEM within the Arlequin framework

In this section, by using the Arlequin framework, a local model is super-
imposed to the global one in the neighbourhood of the crack tip (see figure
6). The two models are combined together using a partition of energy and a
coupling operator, leading to a continuous Arlequin formulation of the prob-
lem, detailed in Subsection 4.1.
A first key (modeling) feature of this continuous formulation is that it al-

Γ o
Ω1

Ω0

Fig. 6. Arlequin domains

lows us, by means of different approximations of the super-imposed models,
to elaborate multimodel (and also multiscale) discrete formulations. The one
elaborated in Subsection 4.2 uses: (see figure 7)

• the XFEM to enrich a coarse global finite element approximation of the
global model;

• a fine finite element space for the approximation of the local model. (Observe
here that discrete models such as atomistic ones can also be used locally
instead of the continuum elasticity model [38,15,3,32], but these topics are
not considered in this paper).

Fig. 7. Examples of meshes for the two arlequin models
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A second key (computational) feature of the Arlequin formulation is related to
its substructuring character which allows for the use of domain decomposition-
like solvers (see e.g. [21,17]).

4.1 Continuous Arlequin Formulation

Let Ω1 be a (copy of a) non-zero measured given regular subdomain of Ω0,
located in the near crack tip zone. We assume for clarity that Ω1 is strictly
embedded in Ω0 (see figure 6). This subdomain is partitioned into two regular
non overlapping domains Ωc and Ωf such that (see figure 8):

o ∈ Ωf (15)

∂Ω1 ⊂ ∂Ωc (16)

meas(Ωi) > 0, i = c, f (17)

Ω0

Γ

Ω1

Ωf

Ωc

Fig. 8. Arlequin domains

The domains Ωc and Ωf are the models coupling and free zones. In the former,
the models are coupled; so that they have to be quite similar. In the latter,
the models are super-imposed but free from each other; so that they can
potentially be very different.
A Lagrangian Arlequin formulation of our problem, using an energy scalar
product as coupling operator, reads as following: (see e.g. [10,11,16])

Find (u0, u1, Φ) ∈ V 0 × V 1 × M ; (18)

∀v0 ∈ V 0, a0(u0, v0) + c(Φ, v0) = l0(v0) (19)

∀v1 ∈ V 1, a1(u1, v1) − c(Φ, v1) = 0 (20)

∀Ψ ∈ M , c(Ψ, u0 − u1) = 0 (21)

where V 0 is defined by (2) and where V 1 = H1(Ω1) and the mediator space
M = H1(Ωc). Furthermore, for i = 0, 1, the weighted internal and external
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virtual works are defined by:

∀ui, vi ∈ V i, ai(ui, vi) =
∫

Ωi

αi σ(ui) : ε(vi) dx (22)

∀v0 ∈ V 0, l0(v0) =
∫

Γn

g.v0 dγ (23)

The internal energy weight parameter functions (αi), i = 0, 1, are defined in
th whole domain Ω0 and satisfy: ([12,16])

αi ∈ [0, 1] in Ω0 (24)

α0 + α1 = 1 in Ω0 (25)

α0 = 1 in Ω0\Ω1 (26)

∃α0 > 0; αi ≥ α0 in Ωf (27)

The coupling operator c is defined by:

∀(ψ , v) ∈ M × V 1 , c(ψ, v) =
∫

Ωc

κ0 {ψ · v} + κ1 {ε(ψ) : ε(v)} dx (28)

The positive parameters κ0 and κ1 are chosen such that the two terms defining
c are homogeneous. In the numerical section, we have taken, as in [11], κ0 = 1
and κ1 = l2c , where lc refers to the thickness of the coupling zone Ωc.
Before closing this subsection, let us here recall two mathematical results
concerning the Arlequin problem, defined above:

• Stability: the mixed Arlequin problem, defined by (19)-(28), has been ana-
lyzed mathematically and proved to be well-posed in [16] and previously in
[9], but under more stringent conditions on the αi (not allowing for regular
αi).

• Relevance of the Arlequin formulation: if one modifies, for Ω0, the part of
the crack contained in Ωf , without modifying the same part of the crack
for the local domain Ω1, then, under some appropriate hypotheses on the
data [16]; mainly when, the restriction to Ωf of α1 is a constant that goes
to 1, the solution of the problem (19)-(28) converges to the solution of the
(mono-)model problem, defined in Section 2. This result, proved in [16] and
assessed by previously published numerical tests (e.g. [10,11,16]), is used in
the sequel for a flexible construction of the discrete Arlequin problems.

4.2 Discretisation of the Arlequin problem using XFEM

To solve efficiently the Arlequin problem defined in the previous subsection,
we suggest the following scheme: let T 0

h be a mesh of the unfractured domain
ΩΓ

0 . Let T 1
h be a mesh of Ω1, significantly finer than T 0

h , especially in the very
near crack tip zone. Let Ωs

o denote the set of elements of T 0
h containing the
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crack tip o. Let Γ0 denote the part of the crack Γ exterior to Ωs
o. Finally, let

B0 = (ϕ0i, i = 1, n0) be a classical vector-valued finite element basis associated
to the mesh T 0

h and denote by V r
0h the finite element space spanned by B0.

Referring to XFEM recalled in Section 3, the coarse space V r
0h is enriched as

following:
let Kd

0 be the set of indices k such that
◦
ωk ∩Γ0 )= ∅ (recall that

◦
ωk stands for

the interior of the support of the basis function ϕ0k). Let Ωd denote the union
of these supports and define Ω+

d as in (10). The space V r
0h is enriched by the

space V d
0h = span {Hϕ0j , j ∈ Kd

0} where H is the sign field, defined by (12).
The following finite dimensional space:

V 0h = V r
0h + V d

0h = span{(ϕ0i)i=1,n0, (Hϕ0j)j∈Kd
0
} (29)

is then taken as an approximation of V 0.
Now, based on the fine mesh T 1

h of the cracked subdomain Ω1, a classical finite
element subspace of V 1, denoted V 1h, is constructed. The discrete mediator
space, denoted Mh, is taken as the restriction of V 1h to the coupling zone Ωc

(though other choices are possible, as reported in [11,16]). Finally, when using
low order finite elements to generate the coarse spaces V 0h, we assume that:

Ωs
o ⊂ Ωf (30)

The condition (30) is a kind of relaxation of the condition (15). It takes into
account the finite scale introduced by the coarse discretization and means that
the free zone Ωf has at least to contain the coarse elements that contain the
singular crack tip. Its optimality in the discrete finite element framework as a
low bound for the size of Ωf is assessed in the numerical Section (see also [17]
for other investigations on this topic).
With these finite dimensional spaces, our discrete enriched finite element ap-
proximation of the problem defined by (19)-(28), using XFEM, reads as fol-
lows.

Find(ur
0h, u

d
0h, u1h, φh) ∈ V r

0h × V d
0h × V 1h × M h;

∀(vr
0h, v

d
0h, v1h, ψh) ∈ V r

0h × V d
0h × V 1h × M h

a0(u
r
0h, v

r
0h) + ad

0(u
d
0h, v

r
0h) + c(φh, v

r
0h) = l0(v

r
0h) (31)

ad
0(u

r
0h, v

d
0h) + a0(u

d
0h, v

d
0h) + cd(φh, v

d
0h) = l0(v

d
0h) (32)

a1(u1h, v1h) − c(φh, v1h) = 0 (33)

c(ψh, u
r
0h − u1h) + cd(ψh, u

d
0h) = 0 (34)
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where:

ad
0(u

r
0h, v

d
0h) =

∫

Ω0∩Ω+
d

α0 σ(ur
0h) : ε(vd

0h) dx +
∫

Ω0∩Ω−
d

α0 σ(ur
0h) : ε(vd

0h) dx

(35)

cd(ψh, u
d
0h) =

∫

Ωc∩Ω+
d

{
κ0ψh · ud

0h) + κ1ε(ψh) : ε(ud
0h))

}
dx (36)

+
∫

Ωc∩Ω−
d

{
κ0ψh · ud

0h) + κ1ε(ψh) : ε(ud
0h))

}
dx

As a matter of fact, one can observe that, unless the crack tip o belongs to
the boundary ∂Ωd, the space V 0h is not a subspace of V 0. Indeed, assume
that the crack tip o /∈ ∂Ωd (see figure 9). Under this hypothesis, the set Ωs

o is
necessarily composed of only one element of T 0

h . Consider now the subset of
basis functions Hϕ0k such that Ωs

o is included in the support ωk of ϕ0k. These
functions are clearly discontinuous, not only on the part of the crack contained
in Ωs

o, but also on its fictive straight extension along the tangent vector τ o

from the crack tip o till the point o′ where the extension crosses the boundary
of Ωs

o (see figure 9). Thus, the discrete problem, defined by (31)-(33), is a non-
conforming approximation of the continuous problem (19)-(28). However, and
this is one of the main features of the Arlequin method recalled at the end of
the previous subsection, this non-conformity is with no significant impact on
the solution when the Arlequin parameters are chosen appropriately: in the
considered scenario, with a sufficienly large free zone, one has simply to take
the weight parameter α1 constant and approximately equal to one in Ωf to
stress the patch model and compute a good Arlequin solution.

o

o′

Ωs
o

Fig. 9. Element containing the crack tip
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4.3 Some computational aspects

The discrete problem (31)-(34) is equivalent to the following linear mixed
system: 



Krr
0 Krd

0 0 Cr
0

Krd
0

(
Kdd

0 0 Cd
0

0 0 K1 C1

Cr
0
( Cd

0
(

C(
1 0









U r
0

U d
0

U 1

Φ





=





F r
0

F d
0

F 1

0





(37)

The stiffness matrix Krd
0 involves terms that require specific numerical in-

tegration, when compared to the ones developed for the standard Arlequin
formulation, given in [11] and for the XFEM, given in [29]. Indeed, the generic
terms of Krd

0 read:
(Krd

0 )ij = ad
0(ϕ0i, ϕ

d
0j) (38)

where ϕ0i is an element of the basis of V r
0h and where ϕd

0j is an element of

the basis of V d
0h.

These terms are classically evaluated by summing elements contributions.
However, one may have particular situations where coarse elements are crossed
by the coupling zone boundary and the crack. For each of these particular el-
ements, one has to create an integration mesh that fits both the parts of the
coupling zone boundary and the crack, contained in this element, as shown
in figure 10, in order to use classical quatrature formulae in this integration
mesh.
Before giving some numerical results, let us observe that system 37 is similar
to systems derived by domain decomposition methods. It can then be solved
by Krylov solvers. Very recently, the FETI method [21] has been adapted to
the solution of such systems [17] and proved to be very efficient. This efficiency
is due in particular to the fact that thanks to the energy coupling operator
involved by the Arlequin formulation, it is possible de derive “natural” local
pre-conditioners (see [17], for details).

5 Numerical results

Three tests are considered in this Section to assess the methodology developed
in this paper. For the three of them, we have taken α0 = 0 in the coupling
zone and α0 = 10−3, in the free zone.
The first involves a 2D-structure with a kinked crack; the kink being very
close to the crak tip. Our results are compared to the ones obtained with a
classical globally refined finite element model. The propagation of a crack in
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Ki

Ki

Γ Ωf
Ωc

Γ

∂Ωc

Ki

Fig. 10. Mesh subdivision for the integration issue

an elastic beam is studied as a second test and our results are compared to
those obtained in [6]. The third result shows the capability of the method to
propagate a crack from a side to the opposite one of a square plate. Let us
observe here that for all of the tests, there is no compatibility requirement
between the coarse and fine meshes.

5.1 A kinked crack

10

10
0.25

5

5

Ω

Γ

Fig. 11. kinked crack problem
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We consider a homogeneous and isotropic cracked elastic plate in plane strain
conditions. The dimensions of the plate (in meters) are given in figure 11. The
Young’s modulus is equal to 2 105MPa and the coefficient of Poisson is equal
to 0.3. The plate is clamped on its lower edge. A given normal displacement is
prescribed on the upper edge. The two other edges are free. A straight crack
is deviated sharply with a relatively small increment as shown by figure 11.
This situation may represent the deviations of a crack during its propagation
with small and unknown increments. For the numerical simulation of this test,
the two interacting singularities have to be considered, either by introducing
the appropiate singular modes by XFEM, for instance, or, as done here, by
refining sufficiently the local domain mesh around the two singular points.
For comparison purpose, we have first computed a classical globally refined
monomodel finite element solution. The mesh size in the near crack tip is taken
equal to about 0.02m in the very near crack tip zone. The deformed mesh is
shown in figure 12.
Three cases are computed with our methodology.

Fig. 12. Classical globally refined monomodel finite element solution

In the first, a uniform quadrangular 9× 9 elements fixed mesh is used for the
global domain. The edges of this mesh do not match the crack. The patch is
a disk of radius r = 1.2m, centered at the crack tip. The coarse element, of
diameter Hc = 1.73m, containing the two hot points (the kink and the crack
tip) is included in the free zone. The thickness of the coupling zone is taken
equal to r/8 and the mesh size of the patch in the very near crack tip zone is
of about 0.02m.
The deformed meshes are given in the left part of figure 13. A zoom of the
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critical zone is shown in the right part of this figure. The red lines represent the
position of the deformed faces of the crack in the global model. One can observe
that while the coarse deformed crack does fit the fine crack in the coupling
zone, the two surfaces do not match in the free zone. But, as mentioned at
the end of Subsection 4.2, this is with no impact on the Arlequin solution,
dominated by the fine local solution in this zone thanks to the fact that the
fine model is stressed in this zone by choosing its weight parameter α1 nearly
equal to 1.
Figure 14 shows the Von Mises stresses at the Gauss quadrature points of the
patch and one can notice that the two singularities are captured (up to the
precision of the used numerical models: no h-adaptivity is herein carried out).

Fig. 13. deformed meshes of the substrate and the patch

Fig. 14. interaction between the sigularities on the patch mesh
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Fig. 15. Evolution of the error on chosen mechanical quantities of interest with the
increase of the radius of the free zone and with a fixed ratio of patch radius vs. free
zone radius
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Fig. 16. nodes of interest

The similarity of the reference solution given in figure 12 with the one shown
in figure 13 is clear.
For further comparison, stress intensity factors KI and KII and energy re-
lease rates G are computed for the considered reference monomodel and for
Arlequin-XFEM models with patches having radii varying from 0.2m to 3m,
with 0.125 ratio between the thickness of the coupling zone and the radius
of the patches. The right part of figure 15 shows a reasonable decrease, fol-
lowed by a stabilisation of the error with the increase of the ratio between
the the radius of the free zone, denoted by Rf , and the coarse mesh size, de-

noted by Hc. Notice that the relative error is already less than 5% when Rf

Hc

is greater than 0.8 and of order 1% when this ratio is of order 1. The left part
of figure 15 shows the same tendancy for local relative displacement errors

e1 = (uy(o)−uref
y (o))

uref
y (o)

× 100 and e2 = (uy(k)−uref
y (k))

uref
y (k)

× 100, at the two critical

points o and k, shown in figure 16. One can also notice significant errors when
the radius of the free zone is too small with respect to Hc. In figure 17, we
show the deformed meshes for such an inappropriate choice of the free zone
dimension. These results are to be linked to hypothesis (30).

In a second case, the same procedure has been used by changing only the coarse
mesh size: a 19× 19 coarse structured mesh is used instead of the 9× 9 mesh.
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Fig. 17. Deformed meshes for inappropriate choice of the free zone dimension

In this case, the diameter of the coarse elements is Hc = 0.74m. The obtained
results are shown in figure 18. A remarkable feature is the similarity of the
profile of error between the two considered numerical models. For instance, for
both models, the error in terms of stress intensity factors and energy release
rate, is of order 1% when the ratio Rf

Hc
is of order 1.
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Fig. 18. Evolution of the error on chosen mechanical quantities of interest with the
increase of the radius of the free zone and with a fixed ratio of patch radius vs. free
zone radius

In a third case, the uniform quadrangular 19× 19 elements fixed mesh is used
for the global domain, as in the second case. But in this third case, the patch
is a disk of a fixed radius r = 1.5m, centered at the crack tip. It is meshed
finely as in the first test. We have considered various thiknesses of the coupling
zone which induce various radii Rf for the free zones, while keeping fixed the
patch mesh. The same comparisons in terms of the same quantities of interest
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as for the first and second tests are reported in figure 19.
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Fig. 19. Evolution of the error on chosen mechanical quantities of interest with the
increase of the radius of the free zone and fixed patch radius

One can observe the same tendancy, with more regular decrease of the errors
with the increase of Rf

Hc
. This can be explained by the fact that in the con-

sidered case, the fine local mesh is kept fixed, while it is not in the first and
second ones.

5.2 The double-cantilever beam test

The test studied in [6] and shown in the introduction of the present paper is
analyzed here by our new methodology. It consists in a rectangular L× h 2D
homegeneous and isotropic elastic structure in plane stress conditions, with
L = 0.3m and h = 0.1m. The Young modulus is equal to 2 105MPa and the
Poisson coefficient is equal to 0.3. The structure contains an initial straight
crack of lenght a = 0.1m, aligned with the x axis. A small increment of
0.002m with an angle θ of 5.71o is added to the initial crack and the structure
is submitted to a symmetric pointwise opening loading P = 877N , as shown in
figure 20. We study the quasi-static growth of the crack. The used procedure
is the following: the stress intensity factors using the domain form of the
interaction integrals are computed. With these quantities, the propagation’s
angle, corresponding to the maximum orthoradial stress σθθ is evaluated and
the crack is advanced 0.002m in this direction.
Figure 21 shows the propagation of the crack which is qualitatively similar to
the one obtained in [6]. Figure 22 shows zooms of the crack tip zone at the last
step of the propagation. The deformed meshes are given by the left part of
the figure and the Von Mises stresses in the quadrature points of the patch’s
mesh by the right part.
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Fig. 20. Geometry of the double cantilever beam test
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Fig. 21. Deformed meshes of the substrate and the patch
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Fig. 22. Zoom of the near crack tip zone

5.3 From a side-to-another propagation of a crack in a square plate

In this last test, we consider a square homegeneous and isotropic elastic plate in
plane strain conditions, with an initial relatively small crack. The dimensions
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of the plate are given in figure 23. The Young modulus is equal to 2 105MPa
and the Poisson coefficient is equal to 0.3. The initial straight crack of lenght
0.1m is aligned with the x axis. The plate is clamped on its lower edge and
submitted to opening loads on its upper edge. The reminder of the boundary
is free. A coarse and fixed uniform 9X9 bilinear finite element space is used for
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5

0.1

Ω

Γ

Fig. 23. mode1 propagation problem

the approximation of the coarse Arlequin solution. When completely included
in the global domain, the radius of the considered (whole) patch is equal to
1.5m and the thickness of the coupling zone is equal to 0.2m. The mesh size
of the patch, in the near crack tip zone, is taken equal to 0.01m.
The patch geometry is adapted whenever it touches the boundary of the plate.
This is simply realized by considering the restriction of the whole patch to the
global domain. Observe then that the coupling zone is no more the crown sati-
fying the condition (16), but the portion of the crown, satisfying the following
adapted condition:

∂Ω1 ∩ Ω0 ⊂ ∂Ωc (39)

The same procedure as the one used in the previous subsection is used for the
quasi-static propagation of the crack. Four snapshots of the deformed meshes
during the propagation of the crack are represented in figure 24. A zoom of
the crack tip zone in the first opening step is given in figure 25. This test could
possibly be delicate to achieve with classical enrichment methods.

6 Conclusion

A new methodology using the Heaviside enrichment key feature of the exten-
dend finite element method within the Arlequin framework has been developed
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Fig. 24. Deformed meshes of the substrate and the patch

in this paper for flexible simulations of kinked cracks and the propagation of
cracks. When compared to our previous works (e.g. [11]), the new methodol-
ogy reduces significantly the global computational costs since a small cracked
patch is used in the working zone; the part of the crack located outside of the
critical zones being taken into account by means of a Heaviside function.
For the propagation of a crack, the patch, finely meshed, is attached to the
crack tip and moves with it over the underlying global domain, approximated
by a fixed coarse finite element enriched by a Heaviside function.
This methodology is assessed in this paper by some simple but relevant mecani-
cal tests. A kinked crack is calculated by following two different scenarii. For
both of these scenarii, reasonable low errors, in terms of quantities of interst,
are reached when the size of the free zone is of the same order than the size of
the coarse elements containing the singularities. The potential of the method-
ology to propagate cracks with significantly enhanced flexibility is shown by
firstly investigating a double cantilever test without using a priori knowledge
of the local singular modes. Our results are shown to compare qualitatively
well with the ones given by Belytschko and Black [6]. Secondly, a final feasi-
bility test is carried out to show the capapility of the method to propagate a
crack from a side to another of a structure by adaptig the patch geometry.
The extension of this methodology to the simulation of the propagation of
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Fig. 25. zoom on the initial crack at the beginning of the propagation

cracks, while taking into account more complex physics in the working zones,
is an ongoing work.
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