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Abstract: We present a new modular traffic signs reognition system, successfully
applied to both American and European speed limitigns. Our sign detection step is
based only on shape-detection (rectangles or cirgle This enables it to work on
grayscale images, contrary to most European competitors, wkh eases robustness to
illumination conditions (notably night operation). Speed sign candidates are classified
(or rejected) by segmenting potential digits insidehem (which is rather original and
has several advantages), and then applying a neuraligit recognition. The global
detection rate is ~90% for both (standard) U.S. andE.U. speed signs, with a
misclassification rate <1%, and no validated fals@larm in >150 minutes of video. The
system processes in real-time ~20 frames/s on arslard high-end laptop.

INTRODUCTION AND RELATED WORKS

Automatic traffic signs detection and recognitiofFSR) is a key module for new driving
assistance smart functions, as it is a requirenf@nthe necessary level of traffic scene
understanding. For example a robust visual read-tifBR system is a pre-requisite for
developing a system for reminding the driver wisathe current speed limit. Some of the
traffic sign information may sometime be extracfemm the GPS navigation data, but it is
neither always complete nor up-to-date. Moreovemgdorary speed-limits for road works, as
well as variable speed-limits, are by definitiont mzluded in pre-defined digital cartographic
data. Therefore a visual real-time TSR systemnsadatory complement to GPS systems for
designing advanced driving assistance systems.

A TSR system usually involves two main steps: ed®n of potential traffic signs in the

image, based on the common shape/color designugfhsdraffic signs; 2/ classification of

the selected regions of interest (ROI) for idemtifythe exact type of sign, or rejecting the
ROI. As noted by Bahiman et al. in [1], the majprif recently published TSR approaches
make use of color information (see e.g. [2], [3][4]), which makes the detection step easier.
In contrast with that, the TSR system presentethé present paper works on grayscale
images, which puts less constraint on the requsestsor, and may help meet global costs



requirements. Grayscale-based detection also ireproobustness for operation in dark or
night condition, as noted and advocated in [5] f]d Finally, TSR system are generally
developed for only one particular country regulatievhile one of the originality of our
system is to be modular enough to be easily adaptedry different traffic signs designs: we
present here promising results for detection antbgeition of both American (U.S.)
rectangular speed limit signs, and European (Ecictylar signs.

MODULAR SYSTEM ARCHITECTURE

ARCHITECTURE OVERVIEW

The system presented here is implemented usin§ MAPS software for real-time multi-
sensor applications prototyping, distributed byempora Kttp://www.intempora.coi and
already adopted by many French car manufacturerthéodevelopment of on-vehicle real-
time applications. We take full advantage of theimsic modularity offered by the graphical
programming paradigm 6fMAPS, by using separate modules for the main ssoesteps
of TSR:

* detection of potential traffic signs
* recognition
* tracking and validation

The modularity of our system allows to easily adapo different types of speed-limit signs
(e.g. U.S. vs E.U. speed-limit signs), or even cata of other kind of traffic sign.
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Figure 1: Global modular architecture (left) andtd# of the Sign_Recognition block
for the E.U. case (right).

SIGN CANDIDATE DETECTION

As already mentioned we wanted our system to openatn on grayscale videos, notably for
easing night-time operation. Therefore, our detectnodules are based on shape-detection,
as for instance in [6], but more general:

* a circular Hough-transform specially adapted amedufor the application to European
Union (E.U.) speed-limits signs, which are circular

 a specially-designed rectangle-detection (coveyed pending patent application) based
on edge detection for United States (U.S.) spead-tigns, which are rectangular.

The aim of the detection stage is to miss as favsaeught signs as possible. It is in particular
essential to be able to detect efficiently evethm case of low luminosity and/or contrast of
the sign contour on the background. False detectrihis stage are not a problem, as they
will be efficiently filtered by the recognition §ige because most of the detected non-sign
rectangles or circles do not even contain a sidgieé candidate (see detail on recognition
step below).



SIGN RECOGNITION

The current version of the recognition part itseffurther subdivided in more modules, one of
them trying to segment characters inside the palespeed-limit signs, and another one
applying a neural-network optical digit recogniti@DR). Doing the sign recognition by
extracting and recognizing digits inside the sigmome of the originality of our approach (to
our knowledge, only [4] have proposed somethinghm same spirit, while most currently
published works or developed systems for speed-bign recognition have chosen to do a
global recognition of the whole signs). This chowas primarily motivated by the great
variability of the exact text content (and evenmaize) of U.S. speed-limit signs, as shown
on figure 2.
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Figure 2. lllustration of some of the many typetJd@. speed-limit signs, which makes it
complicated for global sign recognition approaches.

This design choice (using digit extraction and gggtion instead of global sign recognition)
proves to be an advantage also in Europe, where #re actually some differences in global
aspect of the same sign among different countaied, even inside a single country such as
France for instance (see figure 3). Even thoughpresently train a specific neural network
for speed sign digits recognition (see below), malfipan-European system could probably
work with a “universal” digit recognition moduld)drefore not requiring the previous collect
of all European variants of each sign.

Figure 3. lllustration of the variability of globalspect of the same speed-limit sign digits,
both across different E.U. countries and everdi&si given country: on top German signs
(left of each pair) compared to their French equévd,
and on bottom two variants of the French 90 sp&ead-bign.

Naturally, as our system recognizes the sign basethe digits inside, we must have an
efficient and robust character segmentation algoritWe also needed it to be intrinsically
insensitive to orientation variations, because sigre sometimes not perfectly vertically set,
but rather slightly tilted. The segmentation usea iconnected-component labeling applied
after a binarization obtained by adaptive thresinglcn the circular or rectangular area, as
illustrated on figure 4.



epzeo| [
LAMIT Wl

5 ges

“je)

Figure 4. lllustration of the character segmentatigrocedure in a rectangle (U.S. case,
top line), and in a circle (E.U. case, bottom )inthe searched area (left) is first binarized
by adaptive thresholding (middle), then connedenhponent labeling is applied

for finding potential digits (right).

The neural network ODR module is a multi-layer pgptocon (MLP) with 10 output (1 for
each digit value) trained on specially built datd®of digits extracted from relevant speed-
limit signs in videos recorded from on-vehicle camd-or example, our current E.U. digits
database, constantly enriched with new examplesa®d from video recorded in different
European countries, currently contains a total 062 digits examples and 2789 negative
(non-digits) examples.

Note that for the U.S. case, another MLP classifieslso used to analyze the region above
the digits in order to verify that the sign is adty a standard speed-limit, and not for instance
a “truck speed” sign.

Depending on all the outputs of the neural netwOEXR module, a confidence measure is
computed and assigned to the detected and recagspeed-limit signs. This confidence is
further increased if the same sign is again defeatel identified at nearly the same image
location in subsequent video frames. The recogrspeed-limit sign is finally validated if its
confidence gets over a validation threshold, tylhrodetermined so that validation occurs if
the sign is identified with reasonable confidenneableast 2 or 3 nearly successive frames.

EXPERIMENTS AND RESULTS

We evaluate only the global system performanceydiyg video recordings independent from
those used for extracting digits for training owural ODR module, and counting the
percentage of signs correctly detected and validékefore they are passed. Preliminary
evaluation of the U.S system showed a global systamect detection rate (SCDR) of ~90%.

The system currently recognizes the most freque8t Epeed limit signs, i.e. those for which
“SPEED LIMIT" is written just above the speed limit value (gs@mples on left of figure 2).
This is illustrated on figures 4 and 5 which showvrect detection and recognition of two
different flavors of these kinds of speed-limitrsg

Other kinds of U.S. speed-limit signs such as tlarseght of figure 2 are not recognized by
the current version, but thanks to our modular easlly parameterized architecture, it should
be rather easy to modify it in order to take intmwaunt different variants such as the one
where ‘REDUCED SPEED is written instead of $PEED LIMIT’, or the small ones with only
“M.P.H.” written below.



1S ] !
078 000 099 07§

Figure 5: Speed limit sign detection on U.S. roealsé of most common type of sign)
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Figure 6: Detection and recognition of another \aani of U.S. speed limit sign,
with exactly the same system.

A more thorough evaluation has been done for thé Bystem, using ~150 minutes of
recordings on French roads and streets, underusadaytime illumination conditions, and



containing 281 speed limit signs covering 12 déferlimit values (10, 20, 30, 40, 45, 50, 60,
70, 80, 90, 110, 130). The global system corretgai®n rate (SCDR) is ~89%, as shown on

table 1.

Total Signs detected and | Missed signs Signs detected and validated, but
number of validated with (not validated) misclassified
speed signs correct type
281 250 29 2

Table 1. First global quantitative evaluation ofrepean speed limit sign detection
(conducted on French videos).

Most of the 11% non-correct-detections are justsedssigns (sometimes because of not
contrasted enough edges of the sign, and mosteotitie because of noise or occlusion
impeding digit segmentation). The misclassificatiate (signs for which a wrong speed value
has been validated) is below 1%. And, most impdistanot a singlevalidatedfalse alarm
has been noticed in the 150 minutes of daytimerdaeg: all spurious signs are efficiently
filtered by our tracking and validation module. Blahat these 150 minutes of analyzed
recording are not consecutive, but selected arauondients when speed limit signs are
visible, and cover various illumination conditioasd types of roads and environment. Also,
several experimental real-time on-road tests abaarexperimental car have been conducted,
for a total of many driving hours, and were quaésfactory.

Figure 7: Speed limit sign detection on E.U. street
this example also illustrates the interest of alsletection the case of temporary roadwork



The above results were quantified only on Frendteas, but evaluations in other E.U.
countries are currently under way, with very prangsresults (see figure 8 with an example
in Germany).

Figure 8. Correct recognition of a German speedilisign illustrating promising results
for pan-European speed-limit recognition.

CONCLUSIONS AND PERPECTIVES

We have presented a robust and effective visuadspmit signs detection and recognition
system, with 2 variants of the same global archarecworking respectively for U.S. and E.U.
signs, both with ~90% global correct sign detectiai@. The system requires only grayscale
videos, and is able to process 640x480 videos2@Hz in real-time on a standard 2.13GHz
dual core laptop. It has a remarkably low falsenalaate (less than 1 spurious sign in 150
minutes of operation).

Evaluation of the performances of our system ahtnégnd in tunnels is currently in progress,
and encouraging. Some still ongoing work is focgsam eliminating the remaining ~1%
misclassifications, and lowering the current ~10%samate, by adding a complementary sign
recognition scheme.

Also, a parallel work already done in another cenhtf’] for extracting cartographic
information from GPS navigation maps, has beennelee for extracting also speed limit
information. We have thus begun to develop a fraarkvior fusion of the output of visually-
detected speed limits with GPS cartographic speeit data. Preliminary experiments show
quite promising results for a final system that Idoduake into account those two
complementary sources. Such a system would pracddarate speed limit information even
when a sign was visually occulted by another vehiend inversely take into account
detection of temporary (e.g. roadwork-related) dpémit not included in cartographic
information.
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