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Our aim is to provide some convergence theorems for the Choquet integral with respect to various notions of convergence. For instance, the dominated convergence theorem for almost uniform convergence is related to autocontinuous set functions. Autocontinuity can also be related to convergence in measure, strict convergence or mean convergence. Whereas the monotone convergence theorem for almost uniform convergence is related to monotone autocontinuity, a weaker version than autocontinuity.

Introduction

Convergence theorem for sequences of measurable functions play a central role in classical measure theory. Convergence in mean or in measure for instance are traditionally related to the sigma-additivity of a measure, a continuity condition. Generalizations of classical measure theory can be pursued in the direction of non-additive set functions such as fuzzy measures. A key property of additivity is null additivity (Pap [START_REF] Pap | Null-additive set functions[END_REF]), whereas sigma-additivity can be associated to strong continuity. An intermediate notion introduced by Wang [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF] is the one of autocontinuity. Autocontinuity guarantees null-additivity and contains some regularity conditions related to continuity but does not necessarily entail strong continuity. Wang's article explores the validity of classical convergence theorem for sequences of measurable functions in term of their fuzzy integrals. A similar approach is pursued with respect to non-additive integration in term of Choquet integrals, a generalization of the standard Lebesgue integral ( [START_REF] Wang | Convergence theorems for sequences of Choquet integrals[END_REF]). Classical theorems such as the monotone or the dominated convergence theorem are established therein. Our aim is to identify which properties a set function might possess when we consider different types of convergence: -convergence in measure (µ), almost everywhere convergence (a.e.), almost uniform (a.u.) convergence or convergence in mean (m), and different modes of convergence: -monotone, dominated. As it turns out, dominated convergence theorems with a.u. convergence are unsurprisingly related to autocontinuity. Still, autocontinuity can also be characterized through µ convergence, m convergence and in a more direct way through strict convergence. Whereas dominated convergence theorems with a.e. convergence are related to strong continuity. As for the monotone convergence theorems with a.u. convergence, they are related to a weaker version of autocontinuity, namely: autocontinuity from below or above. These properties trace back to [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF]. Next section introduces the relevant material for our study. In section 3 we present various types of convergence theorems whether we consider a.u., a.e. or µ convergence. Section 4 restates our results by duality. Finally, we illustrate through examples that autocontinuity, order continuity and monotone autocontinuity are independent properties.

Preliminaries

Let (Ω, A) be a measurable space and µ a set function, µ : A → IR. From now on we will assume that µ(∅) = 0. µ is monotone if for all A, B ∈ A, µ(A) ≤ µ(B) whenever A ⊂ B. We define the conjugate set function µ by µ(A) = µ(Ω)µ(A c ). A sequence {f n } n of finite-valued measurable functions converges almost everywhere to f if there is a set E with µ(E) = 0 such that the sequence {f n 1l E c } n converges to f 1l E c . The sequence {f n } n converges almost uniformly to f if for all ǫ > 0 there is a set E ǫ with µ(E ǫ ) < ǫ such that the sequence {f n 1l E c ǫ } n converges uniformly to f 1l E c ǫ . We shall write as usual f n a.e.

-→ f and f n a.u.

-→ f respectively, and ↓, ↑ if the convergence is monotonically non-increasing, non-decreasing.

Let f be a measurable bounded function and µ a monotone set function. The Choquet integral of f ( [START_REF] Choquet | Théorie des capacités[END_REF]) with respect to µ is given by

f dµ = ∞ 0 µ({f ≥ t}) dt + 0 -∞ µ({f ≥ t}) -µ(Ω) dt
In the integrand, the large inequalities may be replaced by strict ones since µ is monotone. The computation with respect to the conjugate set function is given by f dµ = --f dµ. We will focus our study to bounded measurable functions, a set large enough to deal with usual applications where the existence of the Choquet integral is always guaranteed. We denote by B ∞ (Ω) (B ∞ (Ω) + ) the set of (non-negative) bounded and measurable functions defined on Ω.

Two functions f, g are said to be comonotonic or compatible if for all ω, ω ′ ∈ Ω, f (ω) > f (ω ′ ) ⇒ g(ω) ≥ g(ω ′ ) ( [START_REF] Denneberg | Non-additive measure and integral[END_REF][START_REF] Murofushi | An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure[END_REF][START_REF] Schmeidler | Integral representation without additivity[END_REF]). In that case, f + g dµ = f dµ + g dµ.

Let us recall three properties that link continuity condition of a set function to the convergence of a sequence of functions and their Choquet integrals.

Property 2.1 Let µ be a set function. Then, µ is monotone if and only if for all

{f n } n ∪ {f } ⊂ B ∞ (Ω) if f n ↓ u. (↑ u. )f then 1 f n dµ ↓ (↑) f dµ.
In order to extend Property 2.1 to everywhere convergence some further continuity conditions on the set function are introduced.

µ is said to be order continuous if µ(A n ) ↓ 0 whenever A n ↓ ∅. µ is be continuous from above if for all A n ↓ A then µ(A n ) ↓ µ(A)
. By definition a continuous from above set function is monotone (take A 1 = A, A n = B for n ≥ 2) and order continuous. µ is said to be continuous from below if for all

A n ↑ A then µ(A n ) ↑ µ(A).
Property 2.2 Let µ be a set function. Then, µ is monotone and order continuous if and only if for all

{f n } n ⊂ B ∞ (Ω), α ∈ IR if f n ↓ e. α.1l Ω then f n dµ ↓ αµ(Ω).
Property 2.3 Let µ be a monotone set function. Then, µ is monotone continuous from above (below) if and only if for all

{f n } n ∪ {f } ⊂ B ∞ (Ω) if f n ↓ e.
(↑ e. )f then f n dµ ↓ (↑) f dµ.

Our aim is to extend Properties 2.1 and 2.3 to a.u. and a.e. convergence. To deal with these types of convergence we must recall some facts about nulladditivity.

A set E is said to be null if for all F, µ(E ∪ F ) = µ(F ). µ is said to be null-additive if µ(E ∪ F ) = µ(F ) for all F whenever µ(E) = 0, or equivalently µ(F ) = µ(F \ E) for all F whenever µ(E) = 0. This way a set function µ is null-additive if and only if for all E, E is null as soon as µ(E) = 0. The following proposition characterizes null-additivity in terms of Choquet integrals ( [START_REF] Pap | Null-additive set functions[END_REF][START_REF] Murofushi | A Theory of Fuzzy Measures: Representations, the Choquet Integral, and Null Sets[END_REF]), Proposition 2.1 Let µ be a monotone set function. Then,

µ is null-additive ⇐⇒ if µ(E) = 0 then for all f ∈ B ∞ (Ω) + , f dµ = f 1l E c dµ ⇐⇒ if µ(E) = 0 then for all f, g ∈ B ∞ (Ω) + , f 1l E c = g1l E c ⇒ f dµ = gdµ.
1 (if). We can observe that the Choquet integral is always defined for indicator functions, 1l C dµ = µ(C) for all C ∈ A. Thus A ⊂ B ⇐⇒ 1l A ≤ 1l B ⇒ µ(A) ≤ µ(B), so µ is monotone.

Proof: For the first equivalence, (⇐) is straightforward with

f = 1l F + 1l E with E ∩ F = ∅. (⇒) Let t > 0. Then, {f ≥ t} = {f ≥ t} ∩ E + {f ≥ t} ∩ E c = {f 1l E ≥ t} + {f 1l E c ≥ t}.
Now since µ(E) = 0 we have also have µ({f 1l E ≥ t}) = 0 for all t > 0. And this gives by null-additivity,

µ({f 1l E c ≥ t}) = µ({f ≥ t})
and we conclude by integrating on [0, ∞), f dµ = f 1l E c dµ. For the second equivalence, (⇐) is straightforward with g = f 1l E c . For (⇒) we have,

f dµ = f 1l E c dµ = g1l E c dµ = gdµ. ⊓ ⊔
The relationship between order continuity, null-additivity is thoroughly studied in [START_REF] Asahina | Relationship among continuity conditions and null-additivity conditions in non-additive measure theory[END_REF] among other properties such as strong order continuity, exhaustivity or null-continuity.

3 Convergence theorems

Almost everywhere convergence

We will now focus on Property 2.3 and extend it to monotone a.e. convergence.

µ is said to be strongly continuous from above if for all E, F n such that µ(E) = 0 and

F n ↓ F with F n ∩ E = ∅ then µ(E ∪ F n ) ↓ µ(F ).
In particular µ is strongly order continuous i.e., for all A n ↓ A with µ(A) = 0 then µ(A n ) ↓ 0 (let F n = A n \ A and E = A). By definition a strongly continuous from above set function is monotone (take E = ∅, F 1 = A, F n = B for n ≥ 2). Proposition 3.1 Let µ be a set function. Then, µ is strongly continuous from above ⇐⇒ µ is continuous from above and null-additive.

Proof: (⇒) From the definition of strong continuity from above with E = ∅ we obtain continuity from above. With F n = F we obtain null-additivity. (⇐) Let E, F n be such that µ(E) = 0 and

F n ↓ F with F n ∩ E = ∅. We have µ(E ∪ F n ) ↓ µ(E ∪ F ) by continuity and µ(E ∪ F ) = µ(F ) by null-additivity. ⊓ ⊔ Theorem 3.1 Let µ be a set function. Then, µ is strongly continuous from above ⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n ↓ a.e. f ⇒ f n dµ ↓ f dµ Proof: Monotonicity is immediate. (⇐) Let µ(E) = 0 and F n ↓ F with F n ∩ E = ∅. Then 1l E∪Fn ↓ a.e. 1l F , thus µ(E ∪ F n ) ↓ µ(F ).
(⇒) Since µ is finite, by constant additivity it suffices to prove the statement for

f n , f ∈ B + ∞ (Ω). Let f n ↓ a.e.
f . There exists E with µ(E) = 0 such thatf n 1l E c ↓ e. f 1l E c . By the monotone convergence theorem for continuous from above set functions (see e.g. [START_REF] Rébillé | Sequentially continuous non-monotonic Choquet integrals[END_REF]) we have

f n 1l E c dµ ↓ f 1l E c dµ. Since µ(E) = 0 null-additivity entails gdµ = g1l E c dµ for g = f n , f . We get f n dµ ↓ f dµ. ⊓ ⊔
A way to construct strongly continuous from above set functions is to take: µ = f oP with P a (non-atomic) σ-additive probability and f :

[0, 1] -→ [0, 1], non-decreasing, f right-continuous with f (p) > 0 for p > 0.
Analogously we can provide some theorem with continuity from below. µ is said to be strongly continuous from below if for all E, F n such that µ(F ) = 0 and

F n ↓ F with F n ⊂ E then µ(E \ F n ) ↑ µ(E).
Proposition 3.2 Let µ be a set function. µ is strongly continuous from below ⇐⇒ µ is continuous from below and null-additive.

Proof: (⇒) To prove continuity from above, let A

n ↑ A. Set E = A, F n = A \ A n . We get A \ A n ↓ ∅ thus µ(A n ) = µ(E \ F n ) ↑ µ(E) = µ(A). For F n = F we get null-additivity. (⇐) Let E, F n be such that µ(F ) = 0 and F n ↓ F with F n ⊂ E. We have µ(E \ F n ) ↑ µ(E \ F ) by continuity and µ(E \ F ) = µ(F ) by null-additivity. ⊓ ⊔ Theorem 3.2 Let µ be a set function. Then, µ is strongly continuous from below ⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n ↑ a.e. f ⇒ f n dµ ↑ f dµ Proof: Monotonicity is immediate. (⇐) Let µ(F ) = 0 and F n ↓ F with F n ⊂ E. Then 1l E\Fn ↑ a.e. 1l E , thus µ(E\F n ) ↑ µ(E).
(⇒) Since µ is finite, by constant additivity it suffices to prove the statement for

f n , f ∈ B + ∞ (Ω). Let f n ↑ a.e. f . There exists E with µ(E) = 0 such thatf n 1l E c ↑ e. f 1l E c
. By the monotone convergence theorem for continuous from below set functions (see e.g. [START_REF] Rébillé | Sequentially continuous non-monotonic Choquet integrals[END_REF]) we have

f n 1l E c dµ ↑ f 1l E c dµ. Since µ(E) = 0 null-additivity entails gdµ = g1l E c dµ for g = f n , f . We get f n dµ ↑ f dµ. ⊓ ⊔
A combination of the previous theorems provides a Lebesgue's dominated convergence theorem. 

g n = sup k:k≥n f k 1l N c , h n = inf k:k≥n f k 1l N c ,
we have g n ↓ a.e. f 1l N c , h n ↑ a.e. f 1l N c , applying Theorem 3.1, 3.2 gives us the conclusion. (⇐). We only check that µ is monotone. Take

f n = f = 1l A and g = 1l B with A ⊂ B. Then, µ(A) = f dµ ≤ g dµ = µ(B). ⊓ ⊔
Remark 1 Since we deal with bounded measurable functions the condition of domination [∀n, |f n | ≤ g] can be restated as

∃M > 0 / ∀n, |f n | ≤ M.1l Ω .

Almost uniform convergence

We will now extend Property 2.1 to monotone a.u. convergence. This type of convergence is related to the notion of autocontinuity which originates in Wang's 1984 founding article ( [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF]). As it will turn out, autocontinuity is related to a.u. convergence in the same manner than strong continuity is related to a.e. convergence.

Definition 3.1 µ is autocontinuous from above if for all E, F n , E ∩ F n = ∅, µ(F n ) -→ 0 ⇒ µ(E ∪ F n ) -→ µ(E). µ is autocontinuous from below if for all E, F n , F n ⊂ E, µ(F n ) -→ 0 ⇒ µ(E \ F n ) -→ µ(E).

Monotone autocontinuity from above

For our purpose we investigate a monotone version of autocontinuity one can guess already in Theorem 1 and 2 in [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF] (see also [START_REF] Takahashi | Conditions for convergence theorems in non-additive measure theory[END_REF]) and which is weaker than autocontinuity (see section 5),

Definition 3.2 µ is monotone autocontinuous from above if for all E, F n ↓, E ∩ F n = ∅, µ(F n ) ↓ 0 ⇒ µ(E ∪ F n ) ↓ µ(E).
By definition a monotone autocontinuous from above set function is monotone (take E = B, F 1 = A \ B, F n = ∅ for n ≥ 2) and null-additive (take F n = F and µ(F ) = 0).

We use the terminology of monotone autocontinuity from above, since we require that the sequence of F n 's must be non-increasing. This is a weaker version of strong continuity from above, for instance take µ additive but not σ-additive.

The relation between monotone autocontinuity from above and strong continuity from above can be made more precise (see also Proposition 5 in [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF], Theorem 5.8 in [START_REF] Wang | Fuzzy Measure Theory[END_REF], Theorem 3.2 in [START_REF] Pap | σ-null-additive set functions[END_REF]), Proposition 3.3 Let µ be a set function. Then, µ is monotone autocontinuous from above and order continuous ⇐⇒ µ is strongly continuous from above.

Proof:

(⇒). Let E, F n ↓ F with E ∩ F n = ∅ and µ(E) = 0. Since F n \ F ↓ ∅ we have µ(F n \ F ) ↓ 0 by order continuity. Monotone autoconti- nuity from above entails µ(F n ) = µ(F n \ F ∪ F ) ↓ µ(F ). Now by null-additivity, µ(E ∪ F n ) = µ(F n ) for all n, thus µ(E ∪ F n ) ↓ µ(F ). (⇐).
To obtain order continuity take E = F = ∅ and F n ↓ ∅.

To obtain monotone autocontinuity from above take E,

F n ↓, E ∩ F n = ∅, with µ(F n ) ↓ 0. Put F = ∩ n F n .
We have µ(F ) = 0 and so by continuity from above and null-additivity we get µ(E

∪ F n ) ↓ µ(E ∪ F ) = µ(E). ⊓ ⊔
We may state now Property 2.1 for monotone a.u. convergence.

Theorem 3.4 Let µ be a set function.

Then µ is monotone autocontinuous from above ⇐⇒

∀f n , f ∈ B ∞ (Ω), f n ↓ a.u. f ⇒ f n dµ ↓ f dµ Proof: Monotonicity is immediate. (⇐) Let E, F n ↓, µ(F n ) ↓ 0 and ǫ > 0. There exists N ǫ such that µ(F Nǫ ) < ǫ.
We have also for n ≥ N ǫ ,

1l E∪Fn\F Nǫ = 1l E\F Nǫ = 1l E∪F \F Nǫ so 1l E∪Fn ↓ a.u. 1l E and by hypothesis µ(E ∪ F n ) = 1l E∪Fn dµ ↓ 1l E dµ = µ(E).
(⇒) Let f n ↓ a.u. f . Without loss of generality we may assume that 0 ≤ f n ≤ 1 and that there exists a non-increasing sequence

E m ⊃ E m+1 with µ(E m ) < 1 m such that f n 1l E c m ↓ u f 1l E c m .
Let ǫ > 0 and m a positive integer. We have,

f n dµ ≤ f n 1l E c m + 1l Em dµ ≤ f 1l E c m + 1l Em + ǫ1l Ω dµ for n large enough since f n 1l E c m + 1l Em ↓ u f 1l E c m + 1l Em . So, lim n f n dµ ≤ f 1l E c m + 1l Em + ǫ1l Ω dµ
The right hand side gives,

f 1l E c m + 1l Em + ǫ1l Ω dµ = 1 0 µ({f 1l E c m + 1l Em > t}) dt + ǫµ(Ω) = 1 0 µ({f > t} ∩ E c m ∪ E m ) dt + ǫµ(Ω) = 1 0 µ({f > t} ∪ E m ) dt + ǫµ(Ω) and since µ({f > t} ∪ E m ) ↓ µ({f > t}) for all t ∈ (0, 1) and µ({f > t} ∪ E 1 ) ≤ µ(Ω) the monotone convergence theorem concludes that lim n f n dµ ≤ f dµ + ǫµ(Ω).

⊓ ⊔

Analogously we can provide a theorem with continuity from below.

Monotone autocontinuity from below

Definition 3.3 µ is monotone autocontinuous from below if for all E, F n ↓, F n ⊂ E, µ(F n ) ↓ 0 ⇒ µ(E \ F n ) ↑ µ(E).
The relation between monotone autocontinuity from below and strong continuity from below can be made more precise (see Proposition 5 in [START_REF] Wang | The autocontinuity of set function and the fuzzy integral[END_REF], Theorem 3.3 in [START_REF] Pap | σ-null-additive set functions[END_REF]), Proposition 3.4 Let µ be a set function. If µ is strongly continuous from below then µ is monotone autocontinuous from below. The converse holds if µ is order continuous.

Proof: Let F n ↓ F , F n ⊂ E with µ(F n ) ↓ 0. Hence µ(F ) = 0, thus µ(E \ F n ) ↑ µ(E).
For the converse. Let F n ↓ F , F n ⊂ E with µ(F ) = 0. By order continuity we have µ(F n \ F ) ↓ 0. And monotone autocontinuity from below entails µ((

E \ F ) \ (F n \ F )) ↑ µ(E \ F ) = µ(E), by null-additivity. ⊓ ⊔
We can note that the converse can hold if we do not assume order continuity.

Example 1 ([14]) Let P be a non-atomic σ-additive probability and consider the distortion function f defined by f (p) = 1 for p ∈ (0, 1], f (0) = 0. Let µ = f oP . We have

f dµ = ess P supf = inf{M : M ∈ IR such that P ({f > M }) = 0}.
This set function is strongly continuous from below, monotone autocontinuous from above, but is not order continuous.

Theorem 3.5 Let µ be a set function. Then, µ is monotone autocontinuous from below ⇐⇒

∀f n , f ∈ B ∞ (Ω), f n ↑ a.u. f ⇒ f n dµ ↑ f dµ Proof: Monotonicity is immediate. (⇐) Let E, F n ↓, µ(F n ) ↓ 0 and ǫ > 0.
There exists N ǫ such that µ(F Nǫ ) < ǫ.

We have also for n ≥ N ǫ , 1l (⇒) Let f n ↑ a.u. f . Without loss of generality we may assume that 0 ≤ f n ≤ 1 and that there exists a non-increasing sequence

E m ⊃ E m+1 with µ(E m ) < 1 m such that f n 1l E c m ↑ u f 1l E c m .
Assume there exists c > 0 such that c ≤ f 1 (ω) for all ω ∈ Ω. Let ǫ ∈ (0, c) and m a positive integer. We have,

f n dµ ≥ f n 1l E c m dµ ≥ f 1l E c m -ǫ1l E c m dµ for n large enough since f n 1l E c m ↑ u f 1l E c m . So, lim n f n dµ ≥ f 1l E c m -ǫ1l E c m dµ.
The right hand side gives,

f 1l E c m -ǫ1l E c m dµ = f 1l E c m dµ -ǫµ(E c m ), by comonotonicity ≥ f 1l E c m dµ -ǫµ(Ω) = 1 0 µ({f > t} \ E m ) dt -ǫµ(Ω)
and since µ({f > t} \ E m ) ↑ µ({f > t}) for all t ∈ (0, 1) the monotone convergence theorem concludes that lim n f n dµ ≥ f dµǫµ(Ω).

Now if inf f 1 = 0. Set ĝ = 1 2 (g + 1l Ω ) for g = f, f n .
We have 1 2 1l Ω ≤ fn ≤ 1l Ω and fn ↑ a.u. f . So lim n fn dµ ↑ f dµ and by comonotonic additivity we get lim n f n dµ ↑ f dµ. ⊓ ⊔

Monotone autocontinuity

A combination of the previous theorems gives us a Lebesgue's type dominated convergence theorem without sequential continuity.

Theorem 3.6 Let µ be a set function. Then, µ is monotone autocontinuous

⇐⇒ ∀f n , f, g ∈ B ∞ (Ω), |f n | ≤ g, f n a.u. -→ f ⇒ f n dµ → f dµ, f dµ ≤ gdµ Proof:
The same as in the classical case. Consider the bounded measurable functions

g n = sup k:k≥n f k , h n = inf k:k≥n f k .
We can check that g n , h n are ↓ a.u. , ↑ a.u. f and -g ≤ h n ≤ g n ≤ g. Since f n a.u.

-→ f there are

E m ⊃ E m+1 with µ(E m ) < 1 m such that f n 1l E c m u.
-→ f 1l E c m . Let p be a positive integer. There exists N p such that for all n ≥ N p and for all ω ∈ E c m , We can state a sufficient condition for an Egoroff's theorem ( [START_REF] Li | A further investigation for Egoroff's theorem with respect to monotone set functions[END_REF][START_REF] Murofushi | Conditions for Egoroff's theorem in non-additive measure theory[END_REF], see also [START_REF] Li | Order continuous of monotone set function and convergence of measurable functions sequence[END_REF] for a Lebesgue's Theorem). 

f (ω) -ǫ ≤ f n (ω) ≤ f (ω) + ǫ thus f (ω) -ǫ ≤ h Np (ω) ≤ g Np (ω) ≤ f (ω) + ǫ. So h Np ↑ a.u. f , g Np ↓ a.u. f and h n ↑ a.u. f , g n ↓ a.u. f follow. ⊓ ⊔ Remark 2 

Convergence in measure

A sequence {f n } n of bounded functions is said to converge strictly in measure to f denoted by

f n s-µ -→ f if lim n µ({|f n -f | > 0}) = 0.
The sµ convergence is stronger than convergence in measure which is defined as follows

f n µ -→ f if ∀ǫ > 0, lim n µ({|f n -f | ≥ ǫ}) = 0
Similarly convergence in measure is stronger than mean-convergence (see Theorem 2 in [START_REF] Wang | Convergence theorems for sequences of Choquet integrals[END_REF]), i.e.,

f n m -→ f if lim n |f n -f | µ = 0.
If we assume that the domination condition holds i.e.

|f n |, |f | ≤ g, ∈ B ∞ (Ω, A) then f n µ -→ f ⇒ f n m -→ f and a fortiori f n s-µ -→ f ⇒ f n m
-→ f . These sµ, m, µ convergences fully characterize autocontinuity. In particular, the equivalence (i) ⇐⇒ (ii) with sµ convergence can be an alternative to Theorem 3.6 with a.u. convergence. Theorem 3.7 Let µ be a monotone set function. The following assertions are equivalent, (i) µ is autocontinuous,

(ii) ∀f n , f, g ∈ B ∞ (Ω), |f n |, |f | ≤ g, f n s-µ -→ f ⇒ f n dµ -→ f dµ, (iii) ∀f n , f, g ∈ B ∞ (Ω), |f n |, |f | ≤ g, f n µ -→ f ⇒ f n dµ -→ f dµ, (iv) ∀f n , f, g ∈ B ∞ (Ω), |f n |, |f | ≤ g, f n m -→ f ⇒ f n dµ -→ f dµ.
The equivalence of (i), (iii) is a restatement of Theorem 6 and 7 in [START_REF] Wang | Convergence theorems for sequences of Choquet integrals[END_REF] where the condition of equiintegrability is dropped and the local uniform autocontinuity or the continuity conditions become too strong. Other formulations can be found as Theorem 3.5 in [START_REF] Dug | Convergence of Choquet Integral[END_REF] and as Theorem 3.3 in [START_REF] Murofushi | Conditions for Egoroff's theorem in non-additive measure theory[END_REF].

Proof: (ii) ⇒ (i). Let E, F n , E ∩ F n = ∅ and set f n = 1l E∪Fn , f = 1l E , g = 1l Ω . Assume µ(F n ) ↓ 0. That is, µ({|f n -f | > 0}) ↓ 0. We get µ(E∪F n ) = f n dµ -→ f dµ = µ(E). Similarly, let E, F n , F n ⊂ E with µ(F n ) ↓ 0 and set f n = 1l E\Fn , f = 1l E , g = 1l Ω . (iii) ⇒ (i), (iv) ⇒ (i). Same as (ii) ⇒ (i). (i) ⇒ (ii).
Since µ is assumed to be autocontinuous we can assume that |f n |, |f | ≤ g. By constant additivity we only consider the case where f n , f ≥ 0. Let t ∈ [0, M ] where M = sup g. We have,

{f n ≥ t} ⊂ {f ≥ t} ∪ {|f n -f | > 0} thus µ({f n ≥ t}) ≤ µ({f ≥ t} ∪ {|f n -f | > 0}) ≤ µ(Ω)
and by integration,

f n dµ ≤ [0,M ] µ({f ≥ t} ∪ {|f n -f | > 0}) dλ(t).
Now since µ is autocontinuous from above we also have

µ({f ≥ t} ∪ {|f n -f | > 0}) -→ µ({f ≥ t}),
thus by the dominated convergence theorem we get

lim f n dµ ≤ [0,M ] µ({f ≥ t}) dλ(t) = f dµ. Similarly, since {f ≥ t} \ {|f n -f | > 0} ⊂ {f n ≥ t} thus µ({f ≥ t} \ {|f n -f | > 0}) ≤ µ({f n ≥ t}) ≤ µ(Ω)
and by integration,

[0,M ] µ({f ≥ t} \ {|f n -f | > 0}) dλ(t) ≤ f n dµ.
Now since µ is autocontinuous from below we also have

µ({f ≥ t} \ {|f n -f | > 0}) -→ µ({f ≥ t}),
thus by the dominated convergence theorem we get

f dµ = [0,M ] µ({f ≥ t}) dλ(t) ≤ lim f n dµ.
Since ǫ is arbitrary, we obtain f dµ = lim n f n dµ.

(i) ⇒ (iii). The proof is adapted from [START_REF] Wang | Convergence theorems for sequences of Choquet integrals[END_REF]. Since µ is assumed to be autocontinuous we can assume that |f n |, |f | ≤ g. By constant additivity we only consider the case where f n , f ≥ 0. Let t ∈ [0, M ] where M = sup g and ǫ > 0. We have,

{f n ≥ t + ǫ} ⊂ {f ≥ t} ∪ {|f n -f | ≥ ǫ} thus µ({f n ≥ t + ǫ}) ≤ µ({f ≥ t} ∪ {|f n -f | ≥ ǫ}) ≤ µ(Ω)
and by integration,

f n dµ-ǫµ(Ω) ≤ [ǫ,M ] µ({f n ≥ t})dλ(t) ≤ [0,M ] µ({f ≥ t}∪{|f n -f | ≥ ǫ}) dλ(t).
Now since µ is autocontinuous from above we also have

µ({f ≥ t} ∪ {|f n -f | ≥ ǫ}) -→ µ({f ≥ t}),
thus by the dominated convergence theorem we get

lim f n dµ -ǫµ(Ω) ≤ [0,M ] µ({f ≥ t}) dλ(t) = f dµ. Similarly, since {f ≥ t} \ {|f n -f | ≥ ǫ} ⊂ {f n ≥ t -ǫ} thus µ({f ≥ t} \ {|f n -f | ≥ ǫ}) ≤ µ({f n ≥ t -ǫ}) ≤ µ(Ω)
and by integration,

[0,M ] µ({f ≥ t} \ {|f n -f | ≥ ǫ}) dλ(t) ≤ ǫµ(Ω) + [ǫ,M ] µ({f ≥ t} \ {|f n -f | ≥ ǫ}) dλ(t) ≤ ǫµ(Ω) + [ǫ,M ] µ({f n ≥ t -ǫ}) dλ(t) ≤ ǫµ(Ω) + [0,M ] µ({f n ≥ t}) dλ(t) = ǫµ(Ω) + f n dµ
Now since µ is autocontinuous from below we also have

µ({f ≥ t} \ {|f n -f | ≥ ǫ}) -→ µ({f ≥ t}),
thus by the dominated convergence theorem we get

f dµ = [0,M ] µ({f ≥ t}) dλ(t) ≤ lim f n dµ + ǫµ(Ω).
Since ǫ is arbitrary, we obtain f dµ = lim n f n dµ.

(iii) ⇒ (iv). Using Markov's inequality it holds, for all ǫ > 0,

ǫ.µ({|f n -f | ≥ ǫ}) ≤ |f n -f | dµ -→ 0.
We add a direct proof of (iv) ⇒ (iii). Let sup g = T < ∞. Then, for all t ∈ [0, T ],

µ({|f n -f | ≥ t}) ≤ µ({|f n | ≥ t/2} ∪ {|f | ≥ t/2}) ≤ µ({g ≥ t/2}) and T 0 µ({g ≥ t/2}) dt = 2 g dµ < ∞. Assume f n µ -→ f , then by the dominated convergence theorem applied to the decumulative function µ({|f n -f | ≥ (.)}) on [0, T ] it comes |f n -f | dµ = T 0 µ({|f n -f | ≥ t}) dt -→ 0 that is, f n m -→ f . ⊓ ⊔ Remark 3
The domination condition in Theorem 3.7 can be stated to hold almost everywhere (see Remark 2).

We may extract from the proof the following theorems, where sµ convergence can either be replaced by µ or m convergence, Theorem 3.9 Let µ be a monotone set function. Then, µ is autocontinuous from below ⇐⇒

∀f n , f, g ∈ B ∞ (Ω), [ |f n |, |f | ≤ g ] a.e., f n s-µ -→ f ⇒ f dµ ≤ lim f n dµ.
Strict convergence in measure is neither weaker nor stronger than a.e. convergence, a.u. convergence or m convergence. The domination condition is necessary to prove that µ convergence implies m convergence.

Example 2 Let µ be the Lebesgue measure on Ω = [0, 1) endowed with its Borel σ-algebra. Define the following sequences,

f n = 1 n 1l [0,1) , g n = 1l [ p 2 m , p+1 2 
m ) for n = 1 + . . . + 2 m-1 + p, p = 0, . . . , 2 m -1,

h n = n1l (0, 1 n ) . Then, f n a.u. -→ 1l ∅ and f n s-µ → 1l ∅ g n s-µ -→ 1l ∅ and g n a.u. → 1l ∅ , g n a.e. → 1l ∅ h n s-µ -→ 1l ∅ and h n m → 1l ∅ .

Dual Results

Our previous results dealing with a.e. and a.u. convergence can be translated with pseudo convergence. A sequence {f n } n is said to pseudo everywhere converge to f if there is a set E with µ(E) = µ(Ω) such that {f n 1l E } n converges to f 1l E (see [START_REF] Wang | Asymptotic structural characteristics of fuzzy measure and their applications[END_REF]). Similarly, {f n } n is said to pseudo converge uniformly to f if for all ǫ > 0 there is a set E ǫ with µ(E ǫ ) > µ(Ω)ǫ such that {f n 1l Eǫ } n converges uniformly to f 1l Eǫ . Otherwise stated pseudo-convergence with respect to µ is convergence with respect to µ. For this reason we introduce the converse definition of the various continuity definition related to the conjugate set functions. A set function µ is said to be, pseudo strongly continuous from above if for all G,

H n ↑ H, H n ⊃ G, with µ(H) = µ(Ω) then µ(G ∪ H c n ) ↓ µ(G), pseudo strongly continuous from below if for all G, H n ↑ H, G ∪ H n = Ω, with µ(H) = µ(Ω) then µ(G ∩ H n ) ↑ µ(G), pseudo monotone autocontinuous from above if for all G, H n ↑, H n ⊃ G, µ(H n ) ↑ µ(Ω) then µ(G ∪ H c n ) ↓ µ(G), pseudo monotone autocontinuous from below if for all G, H n ↑, G ∪ H n = Ω, µ(H n ) ↑ µ(Ω) then µ(G ∩ H n ) ↑ µ(G).
These definitions are simply restating that µ is respectively strongly continuous from below, strongly continuous from above, monotone autocontinuous from below and monotone autocontinuous from above. We can now formulate the pseudo-convergence theorems. 

ess P inff = sup{M : M ∈ IR such that P ({f > M }) = 1},
is continuous with respect to pseudo almost uniform convergence but not with respect to pseudo almost everywhere convergence.

Counterexamples

We shall present four examples of set functions which clarify the relationship between autocontinuity from above (below), monotone autocontinuity from above (below) and order continuity (see also [START_REF] Asahina | Relationship among continuity conditions and null-additivity conditions in non-additive measure theory[END_REF][START_REF] Takahashi | Conditions for convergence theorems in non-additive measure theory[END_REF][START_REF] Wang | On the null-additivity and the autocontinuity of a fuzzy measure[END_REF]). Examples 4 and 5 show that monotone autocontinuity and order continuity are independent properties. Example 5 show that monotone autocontinuity from above (below) is weaker than autocontinuity from above (below) even under order continuity. Examples 6 and 7 show that monotone autocontinuity from above and from below are independent even under order continuity. These examples are given on IN = {1, 2, 3, . . .} the set of positive integers. On IN, order continuity can be characterized2 in a simple way by the necessary condition lim 1/(4n) , if A = {n} for some n

1 2 min A , if |A| > 1 0 , if A = ∅.
Then, µ is neiher monotone autocontinuous from above nor from below but µ is order continuous. so µ is order continuous but µ is not monotone autocontinuous from above since

µ({1} ∪ [n, ∞)) = 1 -→ 1/2 = µ({1})
In order to prove monotone autocontinuity from below we shall prove the even stronger statement that µ is strongly continuous from below. By Proposition 3.2, it suffices to prove that µ is null-additive and continuous from below. Since µ(A) > 0, whenever A = ∅, µ is null-additive. Let us prove now that µ is continuous from below. Let {A n } n be an increasing sequence to A. We may assume that A is infinite. Put α = min A. Since {A n } n is increasing to A and α ∈ A thus there exists some n(A) such that α ∈ A n(A) , hence min A n(A) ≤ α.

But A n ⊂ A, so min A n ≥ α. 

µ(A) =      1/ min A , if |A| = ∞ 1/(2 min A) , if |A| < ∞ 0 , if A = ∅.
Then, µ is monotone autocontinuous from above and order continuous but is not monotone autocontinuous from below and is not autocontinuous from above.

Proof: Let n > 1. We have, µ([n, ∞)) = 1/n -→ 0 so µ is order continuous. But µ is not monotone autocontinuous from below since 

Theorem 3 . 3

 33 Let µ be a set function. Then µ is strongly continuous from below and above ⇐⇒ ∀f n , f, g ∈ B ∞ (Ω), |f n | ≤ g a.e., f n a.e. -→ f ⇒ f n dµ → f dµ, f dµ ≤ gdµ Proof: (⇒). We have µ({|f n | > g}) = 0 for all n. Thus by null-additivity µ(∪ n i=1 {|f i | > g}) = 0, and continuity from below entails µ(∪ n {|f n | > g}) = 0. Let N = ∪ n {|f n | > g}. Consider the bounded measurable functions

  E\Fn)\F Nǫ = 1l E\F Nǫ so 1l E\Fn ↑ a.u. 1l E and by hypothesis µ(E \ F n ) = 1l E\Fn dµ ↑ 1l E dµ = µ(E).

  The domination condition in Theorem 3.6 can be stated in a more general manner as, [ ∀n, |f n | ≤ g ] almost everywhere, i.e., µ(∪ n {|f n | > g}) = 0. If µ is σ-null-additive the domination condition reduces to for all n, [ |f n | ≤ g ] almost everywhere, i.e., ∀n, µ({|f n | > g}) = 0.

Corollary 3 . 1

 31 Let µ be a monotone autocontinuous set function. Then, µ is order continuous⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n a.e. -→ f ⇒ f n a.u.-→ f Proof: (⇒) From Propositions 3.3, 3.4 and Corollary 6.4 in[START_REF] Wang | Fuzzy Measure Theory[END_REF]. (⇐) Since µ is monotone autocontinuous, for any sequence {f n } n with f n a.e.-→ f and |f n |, |f | ≤ |g| we have f n dµ → f dµ, hence the sufficient part in Theorem 3.3 entails order continuity.⊓ ⊔

Theorem 3 . 8

 38 Let µ be a monotone set function. Then, µ is autocontinuous from above ⇐⇒∀f n , f, g ∈ B ∞ (Ω), [ |f n |, |f | ≤ g ] a.e., f n s-µ -→ f ⇒ lim f n dµ ≤ f dµ.

Corollary 4 . 1

 41 Let µ be a set function. Then, µ is pseudo strongly continuous from above ⇐⇒∀f n , f ∈ B ∞ (Ω), f n ↓ p.a.e. f ⇒ f n dµ ↓ f dµ Corollary 4.2 Let µ be a set function. Then, µ is pseudo strongly continuous from below ⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n ↑ p.a.e. f ⇒ f n dµ ↑ f dµCorollary 4.3 Let µ be a set function. Then, µ is pseudo monotone autocontinuous from above ⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n ↓ p.a.u. f ⇒ f n dµ ↓ f dµ Corollary 4.4 Let µ be a set function. Then, µ is pseudo monotone autocontinuous from below ⇐⇒ ∀f n , f ∈ B ∞ (Ω), f n ↑ p.a.u. f ⇒ f n dµ ↑ f dµ Proof: The proofs rely on the duality formula, i.e., f dµ = --f dµ, the fact that f n ↓ p.a. f ⇐⇒ -f n ↑ p.a. -f and that pseudo almost convergence with respect to µ is equivalent to almost convergence with respect to µ. ⊓ ⊔ Example 3 ([14]) The essential infimum functional, defined as

Example 4

 4 Let Ω = IN and A = 2 I N . Define,

ForExample 7

 7 n = α we obtain, min A n(A) = α. It follows that for n ≥ n(A), α = min A n(A) ≥ min A n ≥ α thus µ(A n ) = µ(A). ⊓ ⊔ Let Ω = IN and A = 2 I N . Define,

µ([ 1

 1 , n]) = 1/2 -→ 1 = µ(IN).And µ is not autocontinuous from above, sinceµ({1} ∪ [n, ∞)) = 1 -→ 1/2 = µ({1}). Let us prove that µ is monotone autocontinuous from above. Let E, F n ⊂ IN with F n ↓, µ(F n ) ↓ 0 and F n ⊂ E. Since F n is decreasing, each F n is infinite. As µ(F n ) ↓ 0, we have min F n ↑ ∞, thus F n ↓ ∅. Put e = min E. Since F n ↓ ∅ there exists n E such that for n ≥ n E , F n ∩ [1, e] = ∅,thus min F n > e. So we have for n ≥ n E , min E ∪ F n = min{min E, min F n } = e thus µ(E ∪ F n ) = µ(E). ⊓ ⊔

Indeed, let A n ↓ ∅. Then, min A n ↑ ∞. Thus, µ(A n ) ≤ µ([min A n , ∞)) ↓ 0.

Proof: Let n > 1. We have, µ([n, ∞)) = 1/(2n) -→ 0 so µ is order continuous. But,

so µ is not monotone autocontinuous from above and not monotone autocontinuous from below.

⊓ ⊔

Example 5 Let Ω = IN and A = 2 I N . Define,

Then, µ is monotone autocontinuous from above and below but µ is not order continuous and is neither autocontinuous from above nor from below.

Proof: µ is not order continuous since for all n, µ([n, ∞)) = 1/2.

We check now that µ is monotone autocontinuous from above and below. Let {F n } n be a decreasing sequence. Since each must F n is infinite, it holds for all n, µ(F n ) ≥ 1/2. Hence µ(F n ) -→ 0, thus µ is monotone autocontinuous. However, µ is not autocontinuous from above neither from below. Let n > 1.

We have,

Then, µ is not monotone autocontinuous from above but is monotone autocontinuous from below and order continuous.

Proof: Let n > 1. We have, µ([n, ∞)) = 1/n -→ 0