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Abstract

We prove the following very surprising result: there exist a1-counter Büchi
automatonA and a2-tape Büchi automatonB such that :
(1) There is a modelV1 of ZFC in which theω-languageL(A) and the in-
finitary rational relationL(B) areΠ

0
2-sets, and

(2) There is a modelV2 of ZFC in which theω-languageL(A) and the in-
finitary rational relationL(B) are analytic but non Borel sets.
This shows that amazingly the topological complexity of anω-language ac-
cepted by a1-counter Büchi automaton or of an infinitary rational relation
accepted by a2-tape Büchi automaton is not determined by the axiomatic
systemZFC.
We show that a similar result holds for the class of languagesof infinite pic-
tures which are recognized by Büchi tiling systems.
We infer from the proof of the above results an improvement ofthe lower
bound of some decision problems recently studied in [Fin09b, Fin09a].

Keywords: Infinite words;ω-languages;1-counter automaton;2-tape automaton; two-
dimensional words; tiling systems; Cantor topology; topological complexity; Borel sets;
largest effective coanalytic set; models of set theory; independence from the axiomatic
systemZFC.

1 Introduction

Acceptance of infinite words by finite automata was firstly considered in the
sixties by Büchi in order to study the decidability of the monadic second or-
der theory of one successor over the integers [Büc62]. The class of regularω-
languages has been intensively studied and many applications have been found,
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see [Tho90, Sta97, PP04] for many results and references. Many extensions of
regularω-languages have been investigated as the classes ofω-languages accepted
by 1-counter automata, pushdown automata,2-tape automata, Petri nets, Turing
machines, see [Tho90, EH93, Sta97, Fin08a] for a survey of this work.

A way to study the complexity of languages of infinite words accepted by finite
machines is to study their topological complexity and firstly to locate them with
regard to the Borel and the projective hierarchies. This work was analysed in
[Sta86, Sta87, Tho90, Sim92, EH93, LT94, Sta97]. It is well known that everyω-
language accepted by a deterministic Büchi automaton is aΠ

0
2-set. This implies

that anyω-language accepted by a deterministic Muller automaton is aboolean
combination ofΠ0

2-sets hence a∆0
3-set. But then it follows from Mc Naughton’s

Theorem, that all regularω-languages, which are accepted by deterministic Muller
automata, are also∆0

3-sets. The Borel hierarchy of regularω-languages is then
determined. Moreover Landweber proved that one can effectively determine the
Borel complexity of a regularω-language accepted by a given Muller or Büchi
automaton, see [Lan69, Tho90, Sta97, PP04].

In recent papers [Fin06a, Fin08b] we have proved the following very surprising
results. From the topological point of view,1-counter Büchi automata and2-tape
Büchi automata have the same accepting power as Turing machines equipped with
a Büchi acceptance condition. In particular, for every nonnull recursive ordinal
α, there exist someΣ0

α-complete and someΠ0
α-complete1-counterω-languages

(respectively, infinitary rational relations). And the supremum of the set of Borel
ranks of1-counterω-languages (respectively, infinitary rational relations)is an
ordinalγ1

2 which is strictly greater than the first non recursive ordinal ωCK
1 . More-

over we have proved that there is no general algorithm to determine in an effective
way the topological complexity of a given1-counterω-language (respectively, in-
finitary rational relation). Topological properties of1-counterω-languages (re-
spectively, infinitary rational relations) are actually highly undecidable: for any
countable ordinalα, “determine whether a given1-counterω-language (respec-
tively, infinitary rational relation) is in the Borel classΣ0

α (respectively,Π0
α)” is a

Π1
2-hard problem, [Fin09b].

We prove here an even more amazing result which shows that SetTheory is ac-
tually very important in the study of infinite computations.Recall that the usual
axiomatic systemZFC is Zermelo-Fraenkel systemZF plus the axiom of choice
AC. We prove that there exist a1-counter Büchi automatonA and a2-tape Büchi
automatonB such that :
(1) There is a modelV1 of ZFC in which theω-languageL(A) and the infinitary
rational relationL(B) areΠ

0
2-sets, and
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(2) There is a modelV2 of ZFC in which theω-languageL(A) and the infinitary
rational relationL(B) are analytic but non Borel sets.
This shows that amazingly the topological complexity of anω-language accepted
by a1-counter Büchi automaton or of an infinitary rational relation accepted by a
2-tape Büchi automaton is not determined by the axiomatic systemZFC.
We show that a similar result holds for the class of languagesof infinite pictures
which are recognized by Büchi tiling systems, recently studied by Altenbernd,
Thomas and Wöhrle in [ATW03], see also [Fin04, Fin09a].

In order to prove these results, we consider the largest thin(i.e., without perfect
subset) effective coanalytic subset of the Cantor space2ω. The existence of this
largest thinΠ1

1-setC1 was proven by Kechris in [Kec75] and independently by
Guaspari and Sacks in [Gua73, Sac76]. By considering the cardinal of this setC1

in different models of set theory, we show that its topological complexity depends
on the actual model ofZFC. Then we use some constructions from recent papers
[Fin06a, Fin06b, Fin09a] to infer our new results about1-counter or2-tape Büchi
automata and Büchi tiling systems. From the proof of the above results and from
Shoenfield’s Absoluteness Theorem we get an improvement of the lower bound
of some decision problems recently studied in [Fin09b, Fin09a]. We show that
the problem to determine whether anω-language accepted by a given real time1-
counter Büchi automaton (respectively, an infinitary rational relation accepted by
a given2-tape Büchi automaton) is in the Borel classΣ

0
α (respectively,Π0

α), for
a countable ordinalα > 2 (respectively,α ≥ 2), is not in the classΠ1

2. A similar
result holds for languages of infinite pictures accepted by Büchi tiling systems.

The paper is organized as follows. In Section 2 we recall definitions of counter
automata,2-tape automata, and tiling systems. We recall basic notionsof topology
in Section 3. Results on the largest effective coanalytic set are stated in Section 4.
We prove our main results in Section 5.

Notice that as the results presented in this paper might be ofinterest to both set
theorists and theoretical computer scientists, we shall recall in detail in Section 2
some notions of automata theory which are well known to computer scientists but
not to set theorists. In a similar way we give in Sections 3 and4 a presentation
of some results of set theory which are well known to set theorists but not to
computer scientists.
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2 Automata

We assume now the reader to be familiar with the theory of formal ω-languages
[Tho90, Sta97]. We shall follow usual notations of formal language theory.
WhenΣ is a finite alphabet, anon-empty finite wordoverΣ is any sequencex =
a1 . . . ak, whereai ∈ Σ for i = 1, . . . , k , andk is an integer≥ 1. Thelengthof x
is k, denoted by|x|. Theempty wordhas no letter and is denoted byλ; its length
is 0. Σ⋆ is theset of finite words(including the empty word) overΣ.
Thefirst infinite ordinalis ω. An ω-word overΣ is anω -sequencea1 . . . an . . .,
where for all integersi ≥ 1, ai ∈ Σ. Whenσ is anω-word overΣ, we writeσ =
σ(1)σ(2) . . . σ(n) . . ., where for alli, σ(i) ∈ Σ, andσ[n] = σ(1)σ(2) . . . σ(n) for
all n ≥ 1 andσ[0] = λ.
The usual concatenation product of two finite wordsu andv is denotedu.v (and
sometimes justuv). This product is extended to the product of a finite wordu and
anω-wordv: the infinite wordu.v is then theω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and(u.v)(k) = v(k − |u|) if k > |u|.
Theset ofω-wordsover the alphabetΣ is denoted byΣω. An ω-languageover an
alphabetΣ is a subset ofΣω. The complement (inΣω) of anω-languageV ⊆ Σω

is Σω − V , denotedV −.
For a finitary languageV ⊆ Σ⋆, theω-power ofV is theω-language

V ω = {u1 . . . un . . . ∈ Σω | ∀i ≥ 1 ui ∈ V }

Abstract models of finite machines reading finite or infinite words have been con-
sidered in automata theory, calculability and complexity theories. The simplest
model of machine used for recognizability of languages of (finite or infinite) words
is the model of finite state machine. One can consider that such a machineM has
a semi infinite tape divided into cells. This tape contains atthe beginning the input
word written from left to right, each letter being containedin a cell; in the case
of a finite input word, the remaining cells contain a special blank symbol. The
machine has a reading (only) head, placed at the beginning onthe first cell. It
has also a finite control, consisting of a finite setK of states and a current state.
There is a special stateq0 called the initial state and a setF ⊆ K of final states.
The reading of a word begins in stateq0; then the machine reads successively the
letters from left to right, changing the current state according to the transition re-
lation which has a finite description. The finite wordx is accepted byM if the
reading ofx ends in a final state. An infinite wordσ is accepted byM if some
final state occurs infinitely often during the reading ofσ. We now give a formal
definition of a finite state machine.

Definition 2.1 A finite state machine (FSM) is a quadrupleM = (K,Σ, δ, q0),
whereK is a finite set of states,Σ is a finite input alphabet,q0 ∈ K is the initial
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state andδ is a mapping fromK × Σ into 2K .
Letx = a1a2 . . . an be a finite word overΣ. A sequence of statesr = q1q2 . . . qnqn+1

is called a run ofM onx iff:
1) q1 = q0 is the initial state, and
2) for eachi ≥ 1, qi+1 ∈ δ(qi, ai).
Letσ = a1a2 . . . an . . . be anω-word overΣ. A sequence of statesr = q1q2 . . . qn . . .
is called an (infinite) run ofM onσ iff:
1) q1 = q0 is the initial state, and
2) for eachi ≥ 1, qi+1 ∈ δ(qi, ai).
For every (infinite) runr = q1q2 . . . qn . . . of M, In(r) is the set of states entered
infinitely often byM during the runr.

Definition 2.2 An automaton is a 5-tupleM = (K,Σ, δ, q0, F ) whereM′ =
(K,Σ, δ, q0) is a finite state machine andF ⊆ K is the set of final states. The
language accepted byM is the set of finite wordsx such that there is a run ofM
onx ending in a final state.

Definition 2.3 A Büchi automaton is a 5-tupleM = (K,Σ, δ, q0, F ) whereM′ =
(K,Σ, δ, q0) is a finite state machine andF ⊆ K is the set of final states. Theω-
language accepted byM is

L(M) = {σ ∈ Σω | there exists a runr of M onσ such thatIn(r) ∩ F 6= ∅}.

Recall that a language (respectively,ω-language) is said to be regular iff it is
accepted by an automaton (respectively, Büchi automaton). An ω-languageL
is regular iff it belongs to theω-Kleene closure of the class of finitary regular
languages, i.e. iff there exist some regular languagesUi, Vi, for i ∈ [1, n], such
thatL =

⋃n

i=1 Ui.V
ω
i .

Notice that a finite state machine has only a bounded memory containing the
current state of the machine. More complicated machines have been considered
which can store some unbounded contents. In particular a counter machine has a
finite set of counters, each of which containing a non-negative integer. The ma-
chine can test whether the content of a given counter is zero or not. And transitions
depend on the letter read by the machine, the current state ofthe finite control, and
the tests about the values of the counters. Each transition leads to another state,
and values of the counters can be increased by1 or decreased by1, providing
that these values always remain non-negatives. Notice thatin this model someλ-
transitions are allowed. During these transitions the reading head of the machine
does not move to the right, i.e. the machine does not read any more letter.

We now recall the formal definition ofk-counter machine andk-counter Büchi
automata which will be useful in the sequel.
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Definition 2.4 Letk be an integer≥ 1. Ak-counter machine is a 4-tupleM=(K,Σ,
∆, q0), whereK is a finite set of states,Σ is a finite input alphabet,q0 ∈ K
is the initial state, and∆ ⊆ K × (Σ ∪ {λ}) × {0, 1}k × K × {0, 1,−1}k is
the transition relation. Thek-counter machineM is said to be real time iff:
∆ ⊆ K × Σ × {0, 1}k ×K × {0, 1,−1}k, i.e. iff there are noλ-transitions.
If the machineM is in stateq andci ∈ N is the content of theith counterCi then
the configuration (or global state) ofM is the(k + 1)-tuple(q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and(c1, . . . , ck) ∈ N
k such thatcj = 0 for j ∈ E ⊆

{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈ ∆ where

ij = 0 for j ∈ E andij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)

Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ and im = 0 for somem ∈ {1, . . . , k}, then
jm = 0 or jm = 1 (but jm may not be equal to−1).

Let σ = a1a2 . . . an . . . be anω-word overΣ. An ω-sequence of configura-
tions r = (qi, c

i
1, . . . c

i
k)i≥1 is called a run ofM on σ, starting in configuration

(p, c1, . . . , ck), iff:

(1) (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for eachi ≥ 1, there existsbi ∈ Σ ∪ {λ} such thatbi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) and such that eithera1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The runr is said to be complete whena1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run,In(r) is the set of all states entered infinitely often during the
run r.
A complete runr ofM onσ, starting in configuration(q0, 0, . . . , 0), will be simply
called “a run ofM onσ”.

Definition 2.5 A Büchi k-counter automaton is a 5-tupleM=(K,Σ,∆, q0, F ),
whereM′=(K,Σ,∆, q0) is ak-counter machine andF ⊆ K is the set of accept-
ing states. Theω-language accepted byM is

L(M)= {σ ∈ Σω | there exists a run r ofM onσ such thatIn(r) ∩ F 6= ∅}

The class ofω-languages accepted by Büchik-counter automata will be denoted
BCL(k)ω. The class ofω-languages accepted byreal timeBüchi k-counter au-
tomata will be denotedr -BCL(k)ω.
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Remark that the1-counter automata introduced above are equivalent to the push-
down automata whose stack alphabet is in the form{Z0, A} whereZ0 is the bot-
tom symbol which always remains at the bottom of the stack andappears only
there andA is another stack symbol, see [ABB96].
The classBCL(1)ω is a strict subclass of the classCFLω of context freeω-
languages accepted by Büchi pushdown automata. Notice that an ω-language
L is in the classBCL(1)ω (respectively,CFLω) iff it belongs to theω-Kleene
closure of the class of finitary languages accepted by1-counter automata (re-
spectively, pushdown automata), i.e. iff there exist some1-counter (respectively,
context-free) languagesUi, Vi, for i ∈ [1, n], such thatL =

⋃n

i=1 Ui.V
ω
i , see

[Sta97, Fin06a, Fin08a].

We shall consider also the notion of acceptance of binary relations over infinite
words by2-tape Büchi automata, firstly considered by Gire and Nivat in [Gir81,
GN84]. A 2-tape automaton is an automaton having two tapes and two reading
heads, one for each tape, which can move asynchronously, anda finite control as
in the case of a (1-tape) automaton. The automaton reads a pair of (infinite) words
(u, v) whereu is on the first tape andv is on the second tape. Such automata
can also be considered for the reading of pairs of finite wordsbut we shall only
need here the case of infinite words. We now recall the formal definition of2-tape
Büchi automata and of infinitary rational relations.

Definition 2.6 A 2-tape B̈uchi automaton is a6-tupleT = (K,Σ1,Σ2,∆, q0, F ),
whereK is a finite set of states,Σ1 andΣ2 are finite alphabets,∆ is a finite subset
ofK×Σ⋆

1×Σ⋆
2×K called the set of transitions,q0 is the initial state, andF ⊆ K

is the set of accepting states.
A computationC of the 2-tape B̈uchi automatonT is an infinite sequence of tran-
sitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final stateqf ∈ F and
infinitely many integersi ≥ 0 such thatqi = qf .
The input word of the computation isu = u1.u2.u3 . . .
The output word of the computation isv = v1.v2.v3 . . .
Then the input and the output words may be finite or infinite.
The infinitary rational relationL(T ) ⊆ Σω

1 × Σω
2 accepted by the 2-tape Büchi

automatonT is the set of couples(u, v) ∈ Σω
1 × Σω

2 such thatu and v are the
input and the output words of some successful computationC of T .

Remark 2.7 An infinitary rational relationL(T ) ⊆ Σω
1 × Σω

2 may be seen as an
ω-language over the product alphabetΣ1 × Σ2.
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In the sequel, we will also consider the notion of recognizable language of infinite
pictures. We recall first some basic definitions about languages of infinite two-
dimensional words, i.e., languages of infinite pictures.

Let Σ be a finite alphabet and# be a letter not inΣ and letΣ̂ = Σ ∪ {#}.
An ω-picture overΣ is a functionp fromω×ω into Σ̂ such thatp(i, 0) = p(0, i) =
# for all i ≥ 0 andp(i, j) ∈ Σ for i, j > 0. For each integerj ≥ 1, thejth row
of theω-picturep is the infinite wordp(1, j).p(2, j).p(3, j) . . . overΣ and thejth

column ofp is the infinite wordp(j, 1).p(j, 2).p(j, 3) . . . overΣ.
The set ofω-pictures overΣ is denoted byΣω,ω. An ω-picture languageL is a
subset ofΣω,ω.

In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance
of languages of infinite two-dimensional words (infinite pictures) by finite tiling
systems, with the usual acceptance conditions, such as the Büchi and Muller ones,
firstly used for infinite words. They showed that Büchi and Muller acceptance
conditions lead to the same class of recognizable languagesof infinite pictures.
So we shall only recall the notion of Büchi recognizable languages of infinite
pictures, see [ATW03, Fin04, Fin09a] for more details.

A tiling system is a tupleA=(Q,Σ,∆), whereQ is a finite set of states,Σ is a
finite alphabet,∆ ⊆ (Σ̂ ×Q)4 is a finite set of tiles.
A Büchi tiling system is a pair(A,F ) whereA=(Q,Σ,∆) is a tiling system and
F ⊆ Q is the set of accepting states.

Tiles are denoted by

(

(a3, q3) (a4, q4)
(a1, q1) (a2, q2)

)

with ai ∈ Σ̂ andqi ∈ Q,

and in general, over an alphabetΓ, by

(

b3 b4
b1 b2

)

with bi ∈ Γ.

A combination of tiles is defined by:
(

b3 b4
b1 b2

)

◦

(

b′3 b′4
b′1 b′2

)

=

(

(b3, b
′
3) (b4, b

′
4)

(b1, b
′
1) (b2, b

′
2)

)

Definition 2.8 Let A=(Q,Σ,∆) be a tiling system, andF ⊆ Q be the set of
accepting states.
A run of the tiling systemA=(Q,Σ,∆) over anω-picturep ∈ Σω,ω is a mapping
ρ from ω × ω into Q such that for all(i, j) ∈ ω × ω with p(i, j) = ai,j and
ρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.
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Theω-picture languageL((A,F )) Büchi-recognized by(A,F ) is the set ofω-
picturesp ∈ Σω,ω such that there is some runρ of A on p and ρ(v) ∈ F for
infinitely manyv ∈ ω2.

An interesting variation of the above defined reognizability condition for infinite
pictures uses the diagonal of anω-picture. The diagonal of anω-picturep is the
set of verticesDi(p) = {(i, i) | i ∈ ω}.

Theω-picture language Büchi-recognized by(A,F ) on the diagonalis the set of
ω-picturesp ∈ Σω,ω such that there is some runρ of A on p andρ(v) ∈ F for
infinitely manyv ∈ Di(p).

The following result was stated in [ATW03].

Theorem 2.9 An ω-picture languageL ⊆ Σω,ω is Büchi-recognized by a tiling
system if and only if it is B̈uchi-recognized on the diagonal by a tiling system.

We can state some links with classical notions of tiling of the (quarter of the)
plane, see for instance [BJ08].

We denoteΓ = Σ̂×Q whereΣ is the alphabet of pictures andQ is the set of states
of a tiling systemA=(Q,Σ,∆). We consider configurations which are elements
of Γω×ω. One can imagine that each cell of the quarter of the plane contains a
letter of the alphabetΓ.
Let ∆ ⊆ (Σ̂ × Q)4 = Γ4 be a finite set of tiles. We denote its complement by
∆− = Γ4 − ∆. A tiling of the (quarter of the) plane with∆− as set of forbidden
patterns is simply a configurationc ∈ Γω×ω such that for all integersi, j ∈ ω:

(

c(i, j + 1) c(i+ 1, j + 1)
c(i, j) c(i+ 1, j)

)

∈ ∆.

Then theω-picture languageL ⊆ Σω,ω which is Büchi-recognizedon the diagonal
by the tiling system(A,F ) is simply the set ofω-picturesp ∈ Σω,ω which are
projections of configurationsc ∈ Γω×ω which are tilings of the (quarter of the)
plane with∆− as set of forbidden patterns such that for infinitely manyi ∈ ω the
second component ofc(i, i) is inF .

3 Topology

We assume the reader to be familiar with basic notions of topology which may be
found in [Mos80, LT94, Kec95, Sta97, PP04]. There is a natural metric on the set
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Σω of infinite words over a finite alphabetΣ containing at least two letters which
is called theprefix metricand defined as follows. Foru, v ∈ Σω andu 6= v let
δ(u, v) = 2−lpref(u,v) wherelpref(u,v) is the first integern such that the(n + 1)st

letter ofu is different from the(n+1)st letter ofv. This metric induces onΣω the
usual Cantor topology for whichopen subsetsof Σω are in the formW.Σω, where
W ⊆ Σ⋆. A setL ⊆ Σω is aclosed setiff its complementΣω − L is an open set.
Define now theBorel Hierarchyof subsets ofΣω:

Definition 3.1 For a non-null countable ordinalα, the classesΣ0
α andΠ

0
α of the

Borel Hierarchy on the topological spaceΣω are defined as follows:
Σ

0
1 is the class of open subsets ofΣω, Π0

1 is the class of closed subsets ofΣω,
and for any countable ordinalα ≥ 2:
Σ

0
α is the class of countable unions of subsets ofΣω in

⋃

γ<α Π
0
γ.

Π
0
α is the class of countable intersections of subsets ofΣω in

⋃

γ<α Σ
0
γ.

Recall some basic results about these classes. The Borel classes are closed un-
der finite intersections and unions, and continuous preimages. Moreover,Σ0

ξ is
closed under countable unions, andΠ

0
ξ under countable intersections. As usual

the ambiguous class∆0
ξ is the classΣ0

ξ ∩Π
0
ξ.

The class ofBorel setsis ∆
1
1 :=

⋃

ξ<ω1
Σ

0
ξ =

⋃

ξ<ω1
Π

0
ξ, whereω1 is the first

uncountable ordinal. The class of Borel sets is the closure of the class of open
sets under countable union and countable intersection. It is also the closure of the
class of open sets under countable union (respectively, intersection) and comple-
mentation.

TheBorel hierarchy is as follows:

Σ
0
1 =open Σ

0
2 . . . Σ

0
ω . . .

∆
0
1 =clopen ∆

0
2 ∆

0
ω ∆

1
1

Π
0
1 =closed Π

0
2 . . . Π

0
ω . . .

This picture means that any class is contained in every classto the right of it, and
the inclusion is strict in any of the spacesΣω.
For a countable ordinalα, a subset ofΣω is a Borel set ofrankα iff it is in Σ

0
α∪Π

0
α

but not in
⋃

γ<α(Σ0
γ ∪ Π

0
γ).

There are also some subsets ofΣω which are not Borel. Indeed there exists an-
other hierarchy beyond the Borel hierarchy, which is calledthe projective hier-
archy and which is obtained from the Borel hierarchy by successive applications
of operations of projection and complementation. The first level of the projective
hierarchy is formed by the class ofanalytic setsand the class ofco-analytic sets
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which are complements of analytic sets. In particular the class of Borel subsets
of Σω is strictly included into the classΣ1

1 of analytic setswhich are obtained by
projection of Borel sets.

Definition 3.2 A subsetA of Σω is in the classΣ1
1 of analytic sets iff there exists

another finite setY and a Borel subsetB of (Σ×Y )ω such thatx ∈ A↔ ∃y ∈ Y ω

such that(x, y) ∈ B, where(x, y) is the infinite word over the alphabetΣ × Y
such that(x, y)(i) = (x(i), y(i)) for each integeri ≥ 1.

Remark 3.3 In the above definition we could takeB in the classΠ0
2. Moreover

analytic subsets ofΣω are the projections ofΠ0
1-subsets ofΣω × ωω, whereωω is

the Baire space, [Mos80].

By Suslin’s Theorem it holds that a subsetA of Σω is Borel iff it is analyticand
coanalytic, i.e.∆1

1 = Π
1
1 ∩ Σ

1
1. A setA which is analytic but not coanalytic, or

equivalently analytic but not Borel, is called atrue analytic set.

We now define completeness with regard to reduction by continuous functions.
For a countable ordinalα ≥ 1, a setF ⊆ Σω is said to be aΣ0

α (respectively,
Π

0
α, Σ1

1)-complete setiff for any setE ⊆ Y ω (with Y a finite alphabet):E ∈ Σ
0
α

(respectively,E ∈ Π
0
α, E ∈ Σ

1
1) iff there exists a continuous functionf : Y ω →

Σω such thatE = f−1(F ).
Recall that a setX ⊆ Σω is aΣ

0
α (respectivelyΠ0

α)-complete subset ofΣω iff it is
in Σ

0
α but not inΠ

0

α (respectively inΠ0
α but not inΣ

0
α), [Kec95].Σ0

n (respectively
Π

0
n)-complete sets, withn an integer≥ 1, are thoroughly characterized in [Sta86].

In particular, the singletons of2ω areΠ
0
1-complete subsets of2ω. Theω-language

R = (0⋆.1)ω is a well known example ofΠ0
2-complete subset of{0, 1}ω. It is the

set ofω-words over{0, 1} having infinitely many occurrences of the letter1. Its
complement{0, 1}ω − (0⋆.1)ω is aΣ

0
2-complete subset of{0, 1}ω.

We recall now the definition of the arithmetical hierarchy ofω-languages which
form the effective analogue to the hierarchy of Borel sets offinite ranks.
LetX be a finite alphabet. Anω-languageL ⊆ Xω belongs to the classΣn if and
only if there exists a recursive relationRL ⊆ (N)n−1 ×X⋆ such that

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

whereQi is one of the quantifiers∀ or ∃ (not necessarily in an alternating order).
An ω-languageL ⊆ Xω belongs to the classΠn if and only if its complement
Xω − L belongs to the classΣn. The inclusion relations that hold between the
classesΣn and Πn are the same as for the corresponding classes of the Borel
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hierarchy. The classesΣn andΠn are included in the respective classesΣ
0

n
and

Σ
0

n
of the Borel hierarchy, and cardinality arguments suffice toshow that these

inclusions are strict.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the sec-
ond Π-class) lead beyond the arithmetical hierarchy, to the analytical hierarchy
of ω-languages. The first class of this hierarchy is the (lightface) classΣ1

1 of ef-
fective analytic setswhich are obtained by projection of arithmetical sets. An
ω-languageL ⊆ Xω belongs to the classΣ1

1 if and only if there exists a recursive
relationRL ⊆ N × {0, 1}⋆ ×X⋆ such that:

L = {σ ∈ Xω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}

Then anω-languageL ⊆ Xω is in the classΣ1
1 iff it is the projection of anω-

language over the alphabetX × {0, 1} which is in the classΠ2. The (lightface)
classΠ1

1 of effective co-analytic setsis simply the class of complements of effec-
tive analytic sets. We denote as usual∆1

1 = Σ1
1 ∩ Π1

1.
Recall that anω-languageL ⊆ Xω is in the classΣ1

1 iff it is accepted by a non de-
terministic Turing machine (readingω-words) with a Büchi or Muller acceptance
condition [CG78, Sta97].

4 The largest thin effective coanalytic set

We now recall some basic notions of set theory which will be useful in the sequel,
and which are exposed in any textbook on set theory, like [Jec02].

The usual axiomatic systemZFC is Zermelo-Fraenkel systemZF plus the axiom
of choiceAC. A model (V, ∈) of the axiomatic systemZFC is a collectionV of
sets, equipped with the membership relation∈, where “x ∈ y” means that the set
x is an element of the sety, which satisfies the axioms ofZFC. We shall often say
“ the modelV” instead of “the model (V, ∈)”.

The axioms ofZFC express some natural facts that we consider to hold in the
universe of sets. For instance a natural fact is that two setsx andy are equal iff
they have the same elements. This is expressed by the sentence:

∀x∀y [ x = y ↔ ∀z(z ∈ x↔ z ∈ y) ]

The above sentence is theAxiom of Extensionality.
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Another natural axiom is thePairing Axiomwhich states that for all setsx andy
there exists a setz = {x, y} whose elements arex andy:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w ∈ x ∨ w ∈ y)))]

Similarly thePowerset Axiomstates the existence of the set of subsets of a setx.

The Separation Schema is in fact an infinite set of axioms. Foreach first-order
formulaϕ, with free variablez, in the language of set theory with the equality
symbol and the binary symbol∈, the following axiom states the existence of the
sety = {z ∈ x | ϕ(z)} of elements of a setx which satisfyϕ.

∀x[∃y(∀z(z ∈ y ↔ (z ∈ x ∧ ϕ(z))))]

The other axioms ofZFC are the Union Axiom, the Replacement Schema, the
Infinity Axiom, the Foundation Axiom, and the Axiom of Choice. We refer the
reader to any textbook on set theory, like [Jec02], for an exposition of these ax-
ioms.

We recall that the infinite cardinals are usually denoted byℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .
The cardinalℵα is also denoted byωα, as usual when it is considered as an ordinal.

The continuum hypothesisCH says that the first uncountable cardinalℵ1 is equal
to 2ℵ0 which is the cardinal of the continuum. Gödel and Cohen haveproved that
the continuum hypothesisCH is independent from the axiomatic systemZFC.
This means that there is some models ofZFC + CH and also some models of
ZFC + ¬ CH, where¬ CH denotes the negation of the continuum hypothesis,
[Jec02].

Let ON be the class of all ordinals. Recall that an ordinalα is said to be a
successor ordinal iff there exists an ordinalβ such thatα = β + 1; otherwise the
ordinalα is said to be a limit ordinal and in that caseα = sup{β ∈ ON | β < α}.

The classL of constructible setsin a modelV of ZF is defined by

L =
⋃

α∈ON

L(α)

where the setsL(α) are constructed by induction as follows:

1. L(0) = ∅

2. L(α) =
⋃

β<α L(β), for α a limit ordinal, and
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3. L(α + 1) is the set of subsets ofL(α) which are definable from a finite
number of elements ofL(α) by a first-order formula relativized toL(α).

If V is a model ofZF andL is the class ofconstructible setsof V, then the class
L forms a model ofZFC + CH . Notice that the axiom (V=L ) means “every set is
constructible” and that it is consistent withZFC.

Consider now a modelV of the axiomatic systemZFC and the class of con-
structible setsL ⊆ V which forms another model ofZFC. It is known that the
ordinals ofL are also the ordinals ofV. But the cardinals inV may be different
from the cardinals inL .

In the sequel we shall consider in particular the first uncountable cardinal inL ;
it is denotedℵL

1 . It is in fact an ordinal ofV which is denotedωL

1 . It is known
that this ordinal satisfies the inequalityωL

1 ≤ ω1. In a modelV of the axiomatic
systemZFC + V=L the equalityωL

1 = ω1 holds. But in some other models of
ZFC the inequality may be strict and thenωL

1 < ω1. This is explained in [Jec02,
page 202]: one can start from a modelV of ZFC + V=L and construct by forcing
a generic extensionV[G] in which the cardinalsω andω1 are collapsed; in this
extension the inequalityωL

1 < ω1 holds.

We now recall the notion of perfect set.

Definition 4.1 Let P ⊆ Σω, whereΣ is a finite alphabet having at least two
letters. The setP is said to be a perfect subset ofΣω if and only if :
(1) P is a non-empty closed set, and
(2) for everyx ∈ P and every open setU containingx there is an elementy ∈
P ∩ U such thatx 6= y.

So a perfect subset ofΣω is a non-empty closed set which has no isolated points. It
is well known that a perfect subset ofΣω has cardinality2ℵ0 , i.e. the cardinality of
the continuum, see [Mos80, page 66]. We recall now the definition of theperfect
set propertyand some known results for Borel or analytic sets.

Definition 4.2 A classΓ of subsets ofΣω has the perfect set property iff each set
X ∈ Γ is either countable or contains a perfect subset.

Theorem 4.3 (see [Mos80, Kec95])The class of analytic subsets ofΣω has the
perfect set property. In particular, the continuum hypothesis is satisfied for ana-
lytic sets: every analytic set is either countable or has cardinality 2ℵ0.
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On the other hand, “the perfect set property for the class of (effective) coanalytic
subsets ofΣω” is actually independent from the axiomatic systemZFC. This fact
follows easily, as we shall see below, from a result about thelargest thin effective
coanalytic set.

We first recall the notion of thin subset ofΣω.

Definition 4.4 A setX ⊆ Σω is said to be thin iff it contains no perfect subset.

The important following result was proved by Kechris [Kec75] and independently
by Guaspari [Gua73] and Sacks [Sac76].

Theorem 4.5 (see [Mos80] page 247)Let Σ be a finite alphabet having at least
two letters. There exists a thinΠ1

1-setC1(Σ
ω) ⊆ Σω which contains every thin,

Π1
1-subset ofΣω. It is called the largest thinΠ1

1-set inΣω.

Notice that the existence of the largest thinΠ1
1-set inΣω is proved from the ax-

iomatic systemZFC, i.e. Zermelo-Fraenkel systemZF plus the axiom of choice
AC, and even if we replace the axiom of choice by a weaker versioncalled the
axiom of dependent choiceDC.

An important fact is that the cardinality of the largest thinΠ1
1-set inΣω may de-

pend on the model ofZFC.

We can now state Kechris’s result on the cardinality of the largest thinΠ1
1-set,

proved independently by Guaspari and Sacks, see also [Kan97, page 171].

Theorem 4.6 (ZFC) The cardinal of the largest thinΠ1
1-set inΣω is equal to the

cardinal ofωL

1 .

Notice that this means that in a given modelV of ZFC the cardinal of the largest
thin Π1

1-set inΣω is equal to the cardinalin V of the ordinalωL

1 which plays the
role of the cardinalℵ1 in the inner modelL of constructible sets ofV.

Notice that there exists also a largest thinΠ1
1-set in the Baire spaceωω. By

[Mos80, Exercize 4F.7, page 251] the cardinal of the largestthin Π1
1-set in the

Baire space is equal to the cardinal of the largest thinΠ1
1-set in any Cantor setΣω

whereΣ is finite and has at least two elements.

We can now easily state the following result.

Corollary 4.7 The perfect set property for the class of effective coanalytic subsets
of Σω is independent from the axiomatic systemZFC.Indeed it holds that :
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1. (ZFC + V=L ). The class of effective coanalytic subsets ofΣω does not have
the perfect set property.

2. (ZFC + ωL

1 < ω1). The class of effective coanalytic subsets ofΣω has the
perfect set property.

Proof. (1). Assume first thatV is a model of the axiomatic systemZFC + V=L .
In this model the cardinal of the largest thinΠ1

1-set inΣω is equal toωL

1 = ω1.
ThusC1(Σ

ω) is not countable but it contains no perfect subset, hence theclass of
effective coanalytic subsets ofΣω does not have the perfect set property.

(2). Assume now thatV is a model of the axiomatic systemZFC + ωL

1 < ω1.
In this model the largest thinΠ1

1-set in Σω is countable. Thus every effective
coanalytic subset ofΣω is either thin and countable or contains a perfect subset,
hence the class of effective coanalytic subsets ofΣω has the perfect set property.

�

Notice that, by [Kan97, Theorem 14.10, page 184 and Theorem 11.6, page 136],
the perfect set property for the class of all (boldface)Π

1
1-subsets ofΣω is equicon-

sistent with the existence of aninaccessible cardinal, which is alarge cardinal.
The axiom “there exists an inaccessible cardinal” is a “large cardinal axiom”; its
consistency can not be proved inZFC. Thus the consistency of the perfect set
property for the class ofΠ1

1-subsets ofΣω can not be proved inZFC. We refer the
reader to [Kan97] for an exposition of these results, which will not be necessary
in this paper.

Notice that if in a modelV of ZFC the class ofΠ1
1-subsets ofΣω has not the

perfect property, then we cannot infer from this property that the continuum hy-
pothesis is satisfied forΠ1

1-subsets ofΣω. However every coanalytic set is the
union ofℵ1 Borel sets, and this implies that every coanalytic set is either count-
able, or of cardinalityℵ1, or of cardinality2ℵ0 , see [Jec02, Corollary 25.16, page
488].

We can now state the following results which will be useful inthe sequel.

Corollary 4.8 (ZFC + V=L ) The largest thinΠ1
1-set inΣω is not a Borel set.

Proof. In the modelL , the cardinal of the largest thinΠ1
1-set inΣω is equal to the

cardinal ofωL

1 . Moreover the continuum hypothesis is satisfied thus2ℵ
L

0 = ωL

1 .
Thus the largest thinΠ1

1-set inΣω has the cardinality of the continuum. But it has
no perfect subset and the class of Borel sets has the perfect set property. Thus the
largest thinΠ1

1-set inΣω can not be a Borel set. �
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Corollary 4.9 (ZFC + ωL

1 < ω1) The largest thinΠ1
1-set in Σω is countable,

hence aΣ0
2-set.

Proof. Let V be a model of (ZFC + ωL

1 < ω1). In this modelω1 is the first
uncountable ordinal. ThusωL

1 < ω1 implies thatωL

1 is a countable ordinal inV.
Its cardinal isℵ0 and it is also the cardinal of the largest thinΠ1

1-set inΣω. Thus
the setC1(Σ

ω) is countable. But for everyx ∈ Σω the singleton{x} is a closed
subset ofΣω. Thus the largest thinΠ1

1-set inΣω is a countable union of closed
sets, i.e. aΣ0

2-subset ofΣω. �

5 Complexity of infinite computations

There are several characterizations of the largest thinΠ1
1-set inΣω, see [Kec75,

Mos80]. Moschovakis gave in [Mos80, page 248] aΠ1
1-formulaφ defining the set

C1(Σ
ω). Notice that all subformulas of this formula are themselvesgiven previ-

ously in the book [Mos80].

From now on we shall simply denote byC1 the largest thinΠ1
1-set in{0, 1}ω = 2ω.

This setC1 is a Π1
1-set defined by aΠ1

1-formulaφ. Thus its complementC−
1 =

2ω − C1 is aΣ1
1-set defined by theΣ1

1-formulaψ = ¬φ.

Recall that one can construct, from theΣ1
1-formulaψ definingC−

1 , a Büchi Turing
machineT accepting theω-languageC−

1 , see [Sta97]. We can then construct
from the Büchi Turing machineT , using a classical construction (see for instance
[HMU01]), a 2-counter Büchi automatonA1 accepting the sameω-language.

We are now going to recall some constructions which were usedin a previous
paper [Fin06a] to study topological properties of context-freeω-languages, and
which will be useful in the sequel.

Let Σ = {0, 1}, E be a new letter not inΣ, S be an integer≥ 1, andθS : Σω →
(Σ ∪ {E})ω be the function defined, for allx ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .

We proved in [Fin06a] that ifL ⊆ Σω is anω-language in the classBCL(2)ω and
k = cardinal(Σ)+2, S = (3k)3, then one can construct effectively, from a Büchi
2-counter automatonA1 acceptingL, a real time Büchi8-counter automatonA2

such thatL(A2) = θS(L).
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We used also in [Fin06a] another coding which we now recall. LetK = 2 × 3 ×
5 × 7 × 11 × 13 × 17 × 19 = 9699690 be the product of the eight first prime
numbers. LetΓ be a finite alphabet; here we shall setΓ = Σ ∪ {E}. An ω-word
x ∈ Γω is coded by theω-word

hK(x) = A.CK .x(1).B.CK2

.A.CK2

.x(2).B.CK3

.A.CK3

.x(3).B . . . B.CKn

.A.CKn

.x(n).B . . .

over the alphabetΓ1 = Γ ∪ {A,B,C}, whereA,B,C are new letters not in
Γ. We proved in [Fin06a] that, from a real time Büchi8-counter automatonA2

acceptingL(A2) ⊆ Γω, one can effectively construct a Büchi1-counter automaton
A3 accepting theω-languagehK(L(A2))∪hK(Γω)−.

Consider now the mappingφK : (Γ∪{A,B,C})ω → (Γ∪{A,B,C, F})ω which
is simply defined by: for allx ∈ (Γ ∪ {A,B,C})ω,

φK(x) = FK−1.x(1).FK−1.x(2) . . . FK−1.x(n).FK−1.x(n + 1).FK−1 . . .

Then theω-languageφK(L(A3)) = φK(hK(L(A2))∪hK(Γω)−) is accepted by
a real time Büchi1-counter automatonA4 which can be effectively constructed
from the real time Büchi8-counter automatonA2, [Fin06a].

We can now use these previous constructions to obtain our first main result.

From now on we consider that we have obtained, from a Büchi Turing machine
T accepting theω-languageC−

1 ⊆ Σω = 2ω, a 2-counter Büchi automatonA1

accepting the sameω-language, and then a real time Büchi8-counter automaton
A2 accepting theω-languageL(A2) = θS(C−

1 ), whereS = (3 × 4)3 = (12)3.
Next, following the above construction, we have a Büchi1-counter automatonA3

accepting theω-languagehK(L(A2))∪hK(Γω)−, and a real time Büchi1-counter
automatonA4 accepting theω-languageφK(L(A3)). In the sequel we shall denote
simplyA4 by A.

Theorem 5.1 LetA be the real-time1-counter B̈uchi automaton constructed above.
The topological complexity of theω-languageL(A) is not determined by the ax-
iomatic systemZFC. Indeed it holds that :

1. (ZFC + V=L ). Theω-languageL(A) is a true analytic set.

2. (ZFC + ωL

1 < ω1). Theω-languageL(A) is aΠ
0
2-set.

Proof. (1). Assume first thatV is a model of the axiomatic systemZFC + V=L .
In the modelV, by Corollary 4.8 the largest thinΠ1

1-setC1 is not a Borel set. Thus
theω-languageC−

1 = L(A1) is not a Borel set because the class of Borel subsets
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of 2ω is closed under complementation. Theω-languageL(A2) = θS(C−
1 ) cannot

be a Borel set. Indeed the functionθS is continuous and ifL(A2) was Borel then
theω-languageC−

1 = θ−1
S (L(A2)) would be Borel too as the inverse image of a

Borel set by a continuous function. Next we can see that theω-languageL(A3) =
hK(L(A2))∪hK(Γω)− is not Borel. Indeed the functionhK is also continuous and
if L(A3) was Borel then theω-languageL(A2) = h−1

K (L(A3)) would be Borel
too as the inverse image of a Borel set by a continuous function. Finally we can
see that theω-languageL(A) = φK(L(A3)) is not Borel. Otherwise, the function
φK being continuous, theω-languageL(A3) = φ−1

K (L(A)) would be Borel too as
the inverse image of a Borel set by a continuous function. Thus theω-language
L(A) is an analytic but non Borel set.

Assume now thatV is a model of (ZFC + ωL

1 < ω1). In the modelV, by Corollary
4.9, the largest thinΠ1

1-setC1 is aΣ
0
2-set. Thus its complementC−

1 = L(A1) is
a Π

0
2-set. It is then proved in [Fin06a] that theω-languagesL(A2) = θS(C−

1 ),
L(A3) = hK(L(A2))∪hK(Γω)−, and finallyL(A) = φK(L(A3)), are alsoΠ0

2-
sets. �

We can now improve a recent result from [Fin09b]. It is very natural to ask
whether one can effectively determine the topological complexity of anω-language
accepted by a given real-time1-counter Büchi automaton (respectively, Büchi
pushdown automaton). We had previously shown that this is not possible: For
any countable ordinalα, it is undecidable whether anω-language accepted by
a given Büchi pushdown automaton is aΣ

0

α-set (respectively, aΠ0

α-set, a Borel
set), [Fin03]. Moreover we have recently proved in [Fin09b]that these decision
problems are actuallyΠ1

2-hard. Notice that hereΠ1
2 is a class of the analyti-

cal hierarchy on subsets ofN. The notions of analytical hierarchy and of com-
plete sets for classes of this hierarchy may be found for instance in the textbooks
[Rog67, Odi89, Odi99].
A real-time1-counter Büchi automatonC has a finite description to which can be
associated, in an effective way, a unique natural number called the index ofC. We
have then a Gödel numbering of real-time1-counter Büchi automata. From now
on, we shall denote, as in [Fin09b],Cz the real time Büchi1-counter automaton of
indexz (reading words overΩ = {0, 1, A,B, C,E, F}). The above cited result
can be now formally stated as follows.

Theorem 5.2 ([Fin09b]) Letα be a countable ordinal. Then

1. {z ∈ N | L(Cz) is in the Borel classΣ0
α} is Π1

2-hard.

2. {z ∈ N | L(Cz) is in the Borel classΠ0
α} is Π1

2-hard.
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3. {z ∈ N | L(Cz) is a Borel set} is Π1
2-hard.

This implies in particular that these decison problems are not in the classΣ1
2, but

they still could have beenΠ1
2-complete. We are going now to prove that this is not

the case.

Theorem 5.3 Letα be a countable ordinal. Then

1. Forα > 2, {z ∈ N | L(Cz) is in the Borel classΣ0
α} is not aΠ1

2-set.

2. Forα ≥ 2, {z ∈ N | L(Cz) is in the Borel classΠ0
α} is not aΠ1

2-set.

3. {z ∈ N | L(Cz) is a Borel set} is not aΠ1
2-set.

Proof. We first prove item (1). LetA be the real-time1-counter Büchi automaton
cited in Theorem 5.1 and letz0 be its index so thatA = Cz0 .

Assume now thatV is a model of (ZFC + ωL

1 < ω1). In the modelV, by Theorem
5.1, theω-languageL(A) is a Π

0
2-set, hence also aΣ0

α-set for any countable
ordinal α > 2. Thus, forα > 2, the integerz0 belongs to the set{z ∈ N |
L(Cz) is in the Borel classΣ0

α}.

But, by Theorem 5.1, in the inner modelL ⊆ V, theω-languageL(A) is an
analytic but non Borel set so the integerz0 does not belong to the set{z ∈ N |
L(Cz) is in the Borel classΣ0

α}.

On the other hand, Shoenfield’s Absoluteness Theorem implies that everyΣ1
2-set

(respectively,Π1
2-set) is absolute for all inner models of (ZF + DC), where (DC)

is the weak version of the axiom of choice called the axiom of dependent choice
which holds in particular in the inner modelL, see [Jec02, page 490].
In particular, if the set{z ∈ N | L(Cz) is in the Borel classΣ0

α} was aΠ1
2-

set, then it could not be a different subset ofN in the modelsV and L con-
sidered above. Therefore, for any countable ordinalα > 2, the set{z ∈ N |
L(Cz) is in the Borel classΣ0

α} is not aΠ1
2-set.

Items (2) and (3) follow similarly from Theorem 5.1 and from Shoenfield’s Abso-
luteness Theorem. �

In order to prove similar results for infinitary rational relations accepted by2-
tape Büchi automata, we shall use a construction from [Fin06b]. We proved in
[Fin06b] that infinitary rational relations have the same topological complexity as
ω-languages accepted by Büchi Turing machines. We used a simulation of the
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behaviour of real time1-counter automata by2-tape Büchi automata. We recall
now a coding which was used in [Fin06b].

We first define a coding of anω-word over the finite alphabetΩ = {0, 1, A,B, C,E, F}
by anω-word over the alphabetΩ′ = Ω ∪ {D}, whereD is an additionnal letter
not inΩ. Forx ∈ Ωω theω-wordh(x) is defined by :

h(x) = D.0.x(1).D.02.x(2).D.03.x(3).D . . .D.0n.x(n).D.0n+1.x(n + 1).D . . .

It is easy to see that the mappingh from Ωω into (Ω ∪ {D})ω is continuous and
injective.

Let nowα be theω-word over the alphabetΩ′ which is simply defined by:

α = D.0.D.02.D.03.D.04.D . . .D.0n.D.0n+1.D . . .

The following results were proved in [Fin06b].

Lemma 5.4 ([Fin06b]) Let Ω be a finite alphabet such that0 ∈ Ω, α be theω-
word overΩ ∪ {D} defined as above, andL ⊆ Ωω be inr -BCL(1)ω. Then there
exists an infinitary rational relationR1 ⊆ (Ω ∪ {D})ω × (Ω ∪ {D})ω such that:

∀x ∈ Ωω (x ∈ L) iff ((h(x), α) ∈ R1)

Lemma 5.5 ([Fin06b]) The setR2 = (Ω∪{D})ω×(Ω∪{D})ω−(h(Ωω)×{α})
is an infinitary rational relation.

Considering the unionR1 ∪R2 of the two infinitary rational relations obtained in
the two above lemmas we get the following result.

Proposition 5.6 ([Fin06b]) Let L ⊆ Ωω be in r -BCL(1)ω and L = h(L) ∪
(h(Ωω))−. Then

R = L × {α}
⋃

(Ω′)ω × ((Ω′)ω − {α})

is an infinitary rational relation. Moreover one can construct effectively, from a
real time1-counter B̈uchi automatonA acceptingL, a 2-tape B̈uchi automatonB
accepting the infinitary relationR.

Let nowA be the real time1-counter Büchi automaton constructed above and
cited in Theorem 5.1 andB be the2-tape Büchi automaton which can be con-
structed fromA by the above Proposition 5.6. We can now state our second main
result.
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Theorem 5.7 The topological complexity of the infinitary rational relation L(B)
is not determined by the axiomatic systemZFC. Indeed it holds that :

1. (ZFC + V=L ). The relationL(B) is a true analytic set.

2. (ZFC + ωL

1 < ω1). The relationL(B) is aΠ
0
2-set.

Proof. (1). Assume first thatV is a model of the axiomatic systemZFC + V=L .
In the modelV, by Corollary 4.8 the largest thinΠ1

1-setC1 is not a Borel set and
by Theorem 5.1 theω-languageL(A) is a true analytic set.
On the other hand the functionh is continuous. Thus the functiong from Ωω into
(Ω∪ {D})ω × (Ω∪ {D})ω defined byg(x) = (h(x), α) is also continuous. If the
relationL(B) was a Borel set then theω-languageL(A) = g−1(L(B)) would be
also a Borel set as the inverse image of a Borel set by a continuous function. Thus
the relationL(B) is not a Borel set.

Assume now thatV is a model of (ZFC + ωL

1 < ω1). In the modelV, by Corollary
4.9, the largest thinΠ1

1-setC1 is aΣ
0
2-set and by Theorem 5.1 theω-languageL(A)

is aΠ
0
2-set. It is easy to prove thatL = h(L(A))∪ (h(Ωω))− is also aΠ0

2-set (this
is due to the fact thath is an homeomorphism betweenΩω and its imageh(Ωω)
which is a closed subset of(Ω ∪ {D})ω, see [Fin06b]). Then one can easily
see that the setL × {α} is also aΠ0

2-set. But the set(Ω′)ω × ((Ω′)ω − {α})
is an open henceΠ0

2-subset of(Ω ∪ {D})ω × (Ω ∪ {D})ω. Thus the relation
R = L×{α}

⋃

(Ω′)ω×((Ω′)ω−{α}) is aΠ
0
2-subset of(Ω∪{D})ω×(Ω∪{D})ω.

�

From now on we shall denoteTz the 2-tape Büchi automaton of indexz. Then
we recall the following recent result which shows that topological properties of
infinitary rational relations are highly undecidable.

Theorem 5.8 ( [Fin09b]) Letα be a non null countable ordinal. Then

1. {z ∈ N | L(Tz) is in the Borel classΣ0
α} is Π1

2-hard.

2. {z ∈ N | L(Tz) is in the Borel classΠ0
α} is Π1

2-hard.

3. {z ∈ N | L(Tz) is a Borel set} is Π1
2-hard.

We can now state that these decision problems are not in the classΠ1
2.

Theorem 5.9 Letα be a countable ordinal. Then

1. Forα > 2, {z ∈ N | L(Tz) is in the Borel classΣ0
α} is not aΠ1

2-set.
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2. Forα ≥ 2, {z ∈ N | L(Tz) is in the Borel classΠ0
α} is not aΠ1

2-set.

3. {z ∈ N | L(Tz) is a Borel set} is not aΠ1
2-set.

Proof. We can reason as in the proof of Theorem 5.3 (in the case ofω-languages
of 1-counter Büchi automata). We use Shoenfield’s Absoluteness Theorem and
Theorem 5.7 instead of Theorem 5.1. �

We consider now Büchi recognizable languages of infinite pictures. We shall use
in the sequel a result proved in [Fin04, Fin09a] which we now recall.

For σ ∈ Σω = {0, 1}ω we denoteσ0 theω-picture whose first row is theω-word
σ and whose other rows are labelled with the letter0. For anω-languageL ⊆
Σω = {0, 1}ω we denoteL0 the language of infinite pictures{σ0 | σ ∈ L}.

Lemma 5.10 ([Fin04]) If L ⊆ Σω is accepted by some Turing machine with a
Büchi acceptance condition, thenL0 is Büchi recognizable by a finite tiling system.

Recall that forΓ a finite alphabet having at least two letters, the setΓω×ω of
functions fromω × ω into Γ is usually equipped with the product topology of the
discrete topology onΓ. This topology may be defined by the following distance
d. Let x andy in Γω×ω such thatx 6= y, then

d(x, y) =
1

2n
where

n = min{p ≥ 0 | ∃(i, j) x(i, j) 6= y(i, j) andi+ j = p}.

Then the topological spaceΓω×ω is homeomorphic to the topological spaceΓω,
equipped with the Cantor topology.
The setΣω,ω of ω-pictures overΣ, viewed as a topological subspace ofΣ̂ω×ω, is
easily seen to be homeomorphic to the topological spaceΣω×ω, via the mapping
ϕ : Σω,ω → Σω×ω defined byϕ(p)(i, j) = p(i + 1, j + 1) for all p ∈ Σω,ω and
i, j ∈ ω.

Let now T be a Büchi Turing machine accepting theω-languageC−
1 . Using

Lemma 5.10 we can construct a Büchi tiling systemS accepting theω-picture lan-
guage(C−

1 )0. We consider now the topological complexity of this setL(S) ⊆ Σω,ω

It is then easy to see that ifL ⊆ Σω = {0, 1}ω is a Π
0
2-subset ofΣω then the

ω-picture languageL0 is aΠ
0
2-subset ofΣω,ω. And if L ⊆ Σω = {0, 1}ω is not

Borel then theω-picture languageL0 is also not Borel. Then Corollaries 4.8 and
4.9 imply the following result.
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Theorem 5.11 The topological complexity of theω-picture languageL(S) is not
determined by the axiomatic systemZFC. Indeed it holds that :

1. (ZFC + V=L ). Theω-picture languageL(S) is a true analytic set.

2. (ZFC + ωL

1 < ω1). Theω-picture languageL(S) is aΠ
0
2-set.

We have recently proved that the topological complexity ofω-picture languages
accepted by Büchi tiling systems is highly undecidable. Below the Büchi tiling
system of indexz is denoted bySz.

Theorem 5.12 ( [Fin09a]) Letα be a non null countable ordinal. Then

1. {z ∈ N | L(Sz) is in the Borel classΣ0
α} is Π1

2-hard.

2. {z ∈ N | L(Sz) is in the Borel classΠ0
α} is Π1

2-hard.

3. {z ∈ N | L(Sz) is a Borel set} is Π1
2-hard.

As in the case ofω-languages of1-counter automata or of2-tape automata, we
can now infer the following result from Shoenfield’s Absoluteness Theorem and
Theorem 5.11.

Theorem 5.13 Letα be a countable ordinal. Then

1. Forα > 2, {z ∈ N | L(Sz) is in the Borel classΣ0
α} is not aΠ1

2-set.

2. Forα ≥ 2, {z ∈ N | L(Sz) is in the Borel classΠ0
α} is not aΠ1

2-set.

3. {z ∈ N | L(Sz) is a Borel set} is not aΠ1
2-set.

6 Concluding remarks

We obtained very surprising results which show that the topological complexity
of anω-language accepted by a1-counter Büchi automaton, of an infinitary ra-
tional relation accepted by a2-tape Büchi automaton, or of a Büchi recognizable
language of infinite pictures, is not determined by the axiomatic systemZFC.

We have inferred from the proof of the above results and from Shoenfield’s Abso-
luteness Theorem an improvement of the lower bound of some decision problems
recently studied in [Fin09b, Fin09a].

Recall that, by [Fin09b, Remark 3.25], ifα is an ordinal smaller than the Church-
Kleene ordinalωCK

1 , which is the first non-recursive ordinal, then{z ∈ N |
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L(Cz) is in the Borel classΣ0
α} (respectively,{z ∈ N | L(Cz) is in the Borel class

Π
0
α}) is aΣ1

3-set. We now know that forα > 2 (respectively,α ≥ 2), it is actually
in the classΣ1

3\(Σ1
2∪Π1

2) but the question is still open whether these problems are
Σ1

3-complete. The exact complexity of being in the Borel classΣ
0
α (respectively,

Π
0
α), for a countable ordinalα, remains an open problem forω-languages of real

time1-counter automata (respectively, pushdown automata,2-tape automata). and
for Büchi recognizable languages of infinite pictures.
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infinite pictures and their acceptance conditions. InProceedings of the
6th International Conference Developments in Language Theory, DLT
2002, volume 2450 ofLecture Notes in Computer Science, pages 297–
306. Springer, 2003.

[BJ08] A. Ballier and E. Jeandel. Tilings and model theory. In Proceedings of
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