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The Complexity of Infinite Computations
In Models of Set Theory

Olivier Finkel
Equipe de Logique Ma#matique
CNRS et Universi Paris 7, France.
finkel@logique.jussieu.fr

Abstract

We prove the following very surprising result: there exidteounter Biichi
automaton4 and a2-tape Buchi automatoff such that :

(1) There is a model; of ZFC in which thew-languageL(.4) and the in-
finitary rational relationZ.(B) areIIy-sets, and

(2) There is a model, of ZFC in which thew-languagel(.A) and the in-
finitary rational relation () are analytic but non Borel sets.

This shows that amazingly the topological complexity of.alanguage ac-
cepted by al-counter Biichi automaton or of an infinitary rational rielat
accepted by &-tape Biichi automaton is not determined by the axiomatic
systemZFC.

We show that a similar result holds for the class of languag&¥inite pic-
tures which are recognized by Buchi tiling systems.

We infer from the proof of the above results an improvemertheflower

bound of some decision problems recently studiedl in [FinBRt09&].

Keywords: Infinite words;w-languages;l-counter automator-tape automaton; two-
dimensional words; tiling systems; Cantor topology; togiatal complexity; Borel sets;
largest effective coanalytic set; models of set theorygpmhdence from the axiomatic
systemZFC.

1 Introduction

Acceptance of infinite words by finite automata was firstly sidared in the
sixties by Biuchi in order to study the decidability of the madic second or-
der theory of one successor over the integers [Buc62]. Tdss of regulatw-

languages has been intensively studied and many apphesatiave been found,
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see [Tho90[ Sta®T, PR04] for many results and referencesy kbtensions of
regularw-languages have been investigated as the classetanijuages accepted
by 1-counter automata, pushdown automatdéape automata, Petri nets, Turing

machines, se¢ [ThoPD, EH93, SthP7, Fih08a] for a surveyisftbrk.

A way to study the complexity of languages of infinite wordseguted by finite
machines is to study their topological complexity and fyr$tl locate them with
regard to the Borel and the projective hierarchies. Thiskweas analysed in
[Bta86[Stad71, Thopp, Sim92, ER93, LT94, Sta97]. It is wethkn that every-
language accepted by a deterministic Biichi automatoril§-aet. This implies
that anyw-language accepted by a deterministic Muller automatonbeaean
combination oflI3-sets hence A$-set. But then it follows from Mc Naughton'’s
Theorem, that all regular-languages, which are accepted by deterministic Muller
automata, are alsAJ-sets. The Borel hierarchy of regularlanguages is then
determined. Moreover Landweber proved that one can effdgtdetermine the
Borel complexity of a regulaw-language accepted by a given Muller or Biichi

automaton, sed [CanpP, Tha90, S1a@7, PP04].

In recent paperq [FInOpg, FINQ8b] we have proved the folgwiery surprising
results. From the topological point of vielxcounter Biichi automata arxdtape

Buchi automata have the same accepting power as Turinginesobquipped with
a Buchi acceptance condition. In particular, for every natl recursive ordinal
a, there exist som&?-complete and somH? -completel-counterw-languages
(respectively, infinitary rational relations). And the saimum of the set of Borel
ranks of1-counterw-languages (respectively, infinitary rational relatiorsspn
ordinal~: which is strictly greater than the first non recursive ortling. More-
over we have proved that there is no general algorithm taghéne in an effective
way the topological complexity of a givencounterv-language (respectively, in-
finitary rational relation). Topological properties dbfcounterw-languages (re-
spectively, infinitary rational relations) are actuallghly undecidable: for any
countable ordinat, “determine whether a givehrcounterw-language (respec-
tively, infinitary rational relation) is in the Borel clads (respectivelyIT®)” is a
[13-hard problem,[[FIn0%b].

We prove here an even more amazing result which shows thatteetry is ac-

tually very important in the study of infinite computatioriRecall that the usual
axiomatic systenZFC is Zermelo-Fraenkel systedf plus the axiom of choice
AC. We prove that there existlacounter Biichi automatad and a2-tape Bichi

automatorns such that :

(1) There is a modél; of ZFC in which thew-languagel.(.4) and the infinitary

rational relationZ.(B) areIl3-sets, and
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(2) There is a modél, of ZFC in which thew-languagel (A) and the infinitary
rational relationZ(5) are analytic but non Borel sets.

This shows that amazingly the topological complexity of.alanguage accepted
by al-counter Buchi automaton or of an infinitary rational relataccepted by a
2-tape Buchi automaton is not determined by the axiomastesyZFC.

We show that a similar result holds for the class of languadésfinite pictures
which are recognized by Bichi tiling systems, recentlydigd by Altenbernd,

Thomas and Wohrle irf J[ATW0Q3], see algo [FinQ4, Firj09a].

In order to prove these results, we consider the largest(ilen without perfect
subset) effective coanalytic subset of the Cantor spédcelhe existence of this
largest thinll}-setC; was proven by Kechris iMJKec5] and independently by
Guaspari and Sacks if [GuaT3, S4c76]. By considering ttinedrof this seC,

in different models of set theory, we show that its topolag@mplexity depends
on the actual model aFC. Then we use some constructions from recent papers
[Fin064,[Fin06b[ Fin0%a] to infer our new results abbabunter or-tape Biichi
automata and Buchi tiling systems. From the proof of thevalvesults and from
Shoenfield’s Absoluteness Theorem we get an improvemeiheolotver bound

of some decision problems recently studied[in TFInd9b, B&j0 We show that
the problem to determine whether @danguage accepted by a given real titre
counter Biichi automaton (respectively, an infinitaryaadl relation accepted by
a given2-tape Buchi automaton) is in the Borel clas$ (respectivelyI1?), for

a countable ordinal > 2 (respectivelyp > 2), is not in the clas$l}. A similar
result holds for languages of infinite pictures accepted bghBtiling systems.

The paper is organized as follows. In Section 2 we recall digfirs of counter
automata2-tape automata, and tiling systems. We recall basic notibtopology
in Section 3. Results on the largest effective coanalytiasestated in Section 4.
We prove our main results in Section 5.

Notice that as the results presented in this paper might beterest to both set
theorists and theoretical computer scientists, we shedilren detail in Section 2
some notions of automata theory which are well known to caenscientists but
not to set theorists. In a similar way we give in Sections 3 4rsdpresentation
of some results of set theory which are well known to set tise&obut not to
computer scientists.



2 Automata

We assume now the reader to be familiar with the theory of &tnlanguages
[Tho90,[Stag7]. We shall follow usual notations of formaldaage theory.
WhenY is a finite alphabet, aon-empty finite wordver is any sequence =
ay ...ag, Wherea; € X fori=1,..., k,andk is an integee> 1. Thelengthof x
is k, denoted byz|. Theempty worchas no letter and is denoted Byits length
is 0. X* is theset of finite wordgincluding the empty word) over.

Thefirst infinite ordinalis w. An w-word overY is anw -sequence; ...a, .. .,
where for all integers > 1, a; € X. Wheno is anw-word overy, we writeo =
o(1)o(2)...0(n)...,whereforalli, (i) € ¥, ando[n| = o(1)o(2)...o(n) for
alln > 1ando[0] = A

The usual concatenation product of two finite wordandwv is denoted:.v (and
sometimes jusitv). This product is extended to the product of a finite worhd
anw-word v: the infinite wordu.v is then thev-word such that:

(uv)(k) = u(k)if k < |u|, and(u.v)(k) = v(k — |ul) if & > |ul.

Theset of w-wordsover the alphabet is denoted by-“. An w-languageover an
alphabet: is a subset oE“. The complement (iXx*) of anw-language/ C ¢
isX¥ —V, denoted/ .

For a finitary languag&® C X*, thew-power ofV' is thew-language

Ve=Auy...up...€e ¥ |Vi>1 u €V}

Abstract models of finite machines reading finite or infiniteres have been con-
sidered in automata theory, calculability and complexitgaries. The simplest
model of machine used for recognizability of languages oftéior infinite) words

is the model of finite state machine. One can consider th&tgweachineM has

a semi infinite tape divided into cells. This tape containthatbeginning the input
word written from left to right, each letter being containada cell; in the case
of a finite input word, the remaining cells contain a speclahk symbol. The
machine has a reading (only) head, placed at the beginnirteofirst cell. It
has also a finite control, consisting of a finite $&f states and a current state.
There is a special statg called the initial state and a st C K of final states.
The reading of a word begins in stagg then the machine reads successively the
letters from left to right, changing the current state adeay to the transition re-
lation which has a finite description. The finite words accepted by\ if the
reading ofr ends in a final state. An infinite worg is accepted by if some
final state occurs infinitely often during the readingrofWe now give a formal
definition of a finite state machine.

Definition 2.1 A finite state machine (FSM) is a quadruplé = (K, 3,0, q),
whereK is a finite set of stateg; is a finite input alphabety, € K is the initial
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state and’ is a mapping fromk x X into 2.

Letx = aqa5 ... a, be afinite word oveE. A sequence of states= ¢1qs . . . ¢,qni1
is called a run ofM on z iff:

1) ¢1 = q is the initial state, and

2) foreachi > 1, ;1 € 0(q;, a;).

Leto = ajas .. .a,...beanw-word over:. A sequence of states= ¢1q2 ... ¢, . ..
is called an (infinite) run of\ ono iff:

1) ¢1 = q is the initial state, and

2) foreachi > 1, ;1 € 0(q;, a;).

For every (infinite) run = ¢1q2 . . . g, . . . of M, In(r) is the set of states entered
infinitely often byM during the runr.

Definition 2.2 An automaton is a 5-tuple1 = (K, X, 0, qo, F') where M’ =
(K,X,9,q) is a finite state machine anfl C K is the set of final states. The
language accepted by is the set of finite words such that there is a run of1
onz ending in a final state.

Definition 2.3 A Blichi automatonis a 5-tupl&1 = (K, X%, 6, qo, F') whereM' =
(K, %, 0,q) is afinite state machine anl C K is the set of final states. The
language accepted byt is

L(M) = {c € ¥ | there exists a rum of M ono such thatin(r) N F # 0}.

Recall that a language (respectivelylanguage) is said to be regular iff it is
accepted by an automaton (respectively, Buchi automatém) w-languageL

is regular iff it belongs to thes-Kleene closure of the class of finitary regular
languages, i.e. iff there exist some regular langudges;, for i € [1,n], such
thatL = (J, U;.V~.

Notice that a finite state machine has only a bounded memantaicong the
current state of the machine. More complicated machines haen considered
which can store some unbounded contents. In particular atepmachine has a
finite set of counters, each of which containing a non-nggatiteger. The ma-
chine can test whether the content of a given counter is zarotoAnd transitions
depend on the letter read by the machine, the current stéte &ihite control, and
the tests about the values of the counters. Each transéams|to another state,
and values of the counters can be increased by decreased by, providing
that these values always remain non-negatives. Noticerthiais model some -
transitions are allowed. During these transitions theirgpdead of the machine
does not move to the right, i.e. the machine does not read ang Ietter.

We now recall the formal definition of-counter machine ané-counter Biichi
automata which will be useful in the sequel.
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Definition 2.4 Letk be anintegep> 1. Ak-counter machine is a 4-tuplet=(K, %,
A, qo), where K is a finite set of states; is a finite input alphabetg, € K
is the initial state, and\ C K x (X U {A\}) x {0,1}* x K x {0,1,—1}* is
the transition relation. The:-counter machineM is said to be real time iff:
ACK x¥x{0,1}* x K x {0,1,—1}*, i.e. iff there are no\-transitions.

If the machineM is in stateg andc; € N is the content of thé” counterC; then
the configuration (or global state) 0¥1 is the(k + 1)-tuple(q, ¢4, . . ., k).

Fora € SU{\}, ¢,¢ € Kand(cy,...,c;) € Nt suchthate; = 0forj € E C
{1,...,k} and¢; > 0for j ¢ E,if (¢,a,%1,...,%, ¢ J1,.-.,Jk) € A where
i; =0forj € Eandi; = 1forj ¢ E, then we write:

a:<q7017"'7ck) = M (qlvcl+j17"'7ck+jk)

Thus we see that the transition relation must satisfy:
if (¢,a,i1,...,ik,q,j1,---,Jk) € A andi,, = 0for somem € {1,...,k}, then
jm = 0o0r j,, = 1 (butj,, may not be equal te-1).

Letoc = aas...a,... be anw-word overY. An w-sequence of configura-
tionsr = (g;,c},...c})>1 is called a run ofM on o, starting in configuration

(p,cay ..y ep), iffs
(l) (QMC%? . Cllc) = (pv Ciy - 'ack’)

(2) for eachi > 1, there exist$; € X U {A} such that; (qi, ... b))
(Giy1, i, ... ci1) and such that eitherayay . . .a, ... = biby. .. b, . ..
or biby...b,...Iisafinite prefix of ajas...a, ...

The runr is said to be complete whehas ... a, ... =biby...b, ...

For every such runin(r) is the set of all states entered infinitely often during the
runr.

A complete rum of M ong, starting in configuratioriq, 0, . .., 0), will be simply
called “a run of M ono”.

Definition 2.5 A Buchi k-counter automaton is a 5-tupl&1=(K, >, A, g, F),
where M'=(K, ¥, A, qy) is ak-counter machine and’ C K is the set of accept-
ing states. The-language accepted byt is

L(M)={o € ¢ | there exists arunr oM ono such thafin(r) N F # 0}

The class ofv-languages accepted by Biudhicounter automata will be denoted
BCL(k),. The class ofv-languages accepted Iyal timeBuchi k-counter au-
tomata will be denoted-BCL(k),,.



Remark that thé-counter automata introduced above are equivalent to thle-pu
down automata whose stack alphabet is in the fé#n A} whereZ, is the bot-
tom symbol which always remains at the bottom of the stackapykars only
there andA is another stack symbol, sde JABB96].

The classBCL(1),, is a strict subclass of the cla§3FL, of context freew-
languages accepted by Bichi pushdown automata. Notiteatha-language
L is in the clasBBCL(1),, (respectivelyCFL,) iff it belongs to thew-Kleene
closure of the class of finitary languages accepted {opunter automata (re-
spectively, pushdown automata), i.e. iff there exist sdreeunter (respectively,
context-free) languages;, V;, for i € [1,n], such thatL = (J;_, U;.V¥, see

[Eta97 [Fin084, FIn0Bal.

We shall consider also the notion of acceptance of binaatiogls over infinite
words by2-tape Biichi automata, firstly considered by Gire and Nind3ir871,
GN84]. A 2-tape automaton is an automaton having two tapes and twingead
heads, one for each tape, which can move asynchronouslyg fanite control as

in the case of al(tape) automaton. The automaton reads a pair of (infinitejisvo
(u,v) wherew is on the first tape and is on the second tape. Such automata
can also be considered for the reading of pairs of finite wbrdsve shall only
need here the case of infinite words. We now recall the formehidion of 2-tape
Bichi automata and of infinitary rational relations.

Definition 2.6 A 2-tape Bichi automaton is &-tuple7 = (K, 3,3, A, qo, F),
whereK is a finite set of stateg;; and>:, are finite alphabets)\ is a finite subset
of K x 331 x 35 x K called the set of transitiong, is the initial state, and” C K

is the set of accepting states.

A computatiorC of the 2-tape Bchi automator? is an infinite sequence of tran-
sitions

(q07 U, V1, q1)7 (q17 Uz, V2, q2)7 s (Qi—la Uyg, Vg, Qi)v (Qm Ui+1, Vit1, qi-‘rl)v cee

The computation is said to be successful iff there existsahdtateq, € £ and
infinitely many integers > 0 such thaty; = ¢;.

The input word of the computationis= wuy.us.us . ..

The output word of the computatiomis= v;.v5.v03.. ..

Then the input and the output words may be finite or infinite.

The infinitary rational relationL(7) C ¢ x X% accepted by the 2-tapeiiBhi
automaton7 is the set of coupletu,v) € X¢ x 3§ such thatu andv are the
input and the output words of some successful comput&tairy .

Remark 2.7 An infinitary rational relationL(7) C Xy x ¥§ may be seen as an
w-language over the product alphab®et x X,.
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In the sequel, we will also consider the notion of recogniez#édmguage of infinite
pictures. We recall first some basic definitions about laggeaof infinite two-
dimensional words, i.e., languages of infinite pictures.

Let X be a finite alphabet ang be a letter not irt and let:. = X U {#}.

An w-picture over is a functionp fromw x w into 3 such thap(i, 0) = p(0, i) =
# for all i > 0 andp(i,j) € X for4,;j > 0. For each integejf > 1, the j'* row
of thew-picturep is the infinite wordp(1, 7).p(2, j).p(3,7) . .. overX and the;"
column ofp is the infinite wordp(j, 1).p(7,2).p(4,3) . . . over..

The set ofw-pictures overr is denoted by““. An w-picture languagd. is a
subset ob¥v.

In a recent paper, Altenbernd, Thomas and Wohrle have deresd acceptance
of languages of infinite two-dimensional words (infinitetpi@s) by finite tiling
systems, with the usual acceptance conditions, such aditte &1d Muller ones,
firstly used for infinite words. They showed that Biichi andllgluacceptance
conditions lead to the same class of recognizable languaigesinite pictures.
So we shall only recall the notion of Biichi recognizableglaages of infinite

pictures, sedJATW03, FinD4, FinQ9a] for more details.

A tiling system is a tupled=(Q, X, A), where( is a finite set of states, is a
finite alphabetA C (3 x Q)* is a finite set of tiles.

A Biuchi tiling system is a paif.A,F') whereA=(Q, X%, A) is a tiling system and
F C (@ is the set of accepting states.

Tiles are denoted b( 233’ Z‘"’% EZ‘*’ Z‘*% ) with ¢, € ¥ andg; € Q,
1,41 25 42

and in general, over an alphaligtby < 23 24

1 2

) with b; € T.
A combination of tiles is defined by:

(oo ) e (oot )= Com )

Definition 2.8 Let A=(Q, >, A) be a tiling system, and’” C (@ be the set of
accepting states.

A run of the tiling systeml=(Q, ¥, A) over anw-picturep € ¥ is a mapping
p fromw x w into @ such that for all(i, j) € w x w with p(i,j) = a;; and

p(i,7) = ¢; ; we have

Q5541 Qi1,5+1 o Qij+1  Git1,5+1 c A
a; j Q41,5 qi,j qi+1,5

8
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The w-picture languageL((.A,F')) Buchi-recognized by.A,F') is the set ofv-
picturesp € X such that there is some rynof A onp and p(v) € F for
infinitely manyy € w?.

An interesting variation of the above defined reognizapdindition for infinite
pictures uses the diagonal of anpicture. The diagonal of an-picturep is the
set of verticeDi(p) = {(i,1) | i € w}.

Thew-picture language Buchi-recognized fy, /') on the diagonals the set of
w-picturesp € ¥ such that there is some ryunof A onp andp(v) € F for
infinitely manyv € Di(p).

The following result was stated ih JATWD3].

Theorem 2.9 An w-picture languagel. C >“* is Bichi-recognized by a tiling
system if and only if it is Bchi-recognized on the diagonal by a tiling system.

We can state some links with classical notions of tiling o tflquarter of the)
plane, see for instancg JBJ08].

We denotd” = 3. x Q whereY. is the alphabet of pictures adglis the set of states
of a tiling systemA=(Q, 3, A). We consider configurations which are elements
of I'*¥, One can imagine that each cell of the quarter of the plantatma
letter of the alphabdt.

Let A C (X x Q)* = I' be a finite set of tiles. We denote its complement by
A~ =T — A. Atiling of the (quarter of the) plane with~ as set of forbidden
patterns is simply a configuratiene ['“* such that for all integers j € w:

cli,j+1) cli+1,7+1)
( c(i, §) c(i+1,7) )GA'

Then thev-picture languagé C > which is Buchi-recognizedn the diagonal
by the tiling system(A,F’) is simply the set ofu-picturesp € ¥« which are
projections of configurations € I'“*“ which are tilings of the (quarter of the)
plane withA~ as set of forbidden patterns such that for infinitely maryw the
second component ofi, i) is in F.

3 Topology

We assume the reader to be familiar with basic notions oflemyovhich may be

found in [MosS8DJ/ LTI} Kec9g, Stao[7, PP04]. There is a natugedric on the set
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Y of infinite words over a finite alphab&t containing at least two letters which
is called theprefix metricand defined as follows. Far,v € ¥“ andu # v let
S(u,v) = 27 lpretuw) wherel,,.ei(u,v) IS the first integen such that thgn + 1)*
letter ofu is different from the(n + 1) letter ofv. This metric induces oR“ the
usual Cantor topology for whichpen subsetsf X are in the formiV.X*, where
W C ¥*. AsetL C ¥ is aclosed seiff its complement:® — L is an open set.
Define now theBorel Hierarchyof subsets of«:

Definition 3.1 For a non-null countable ordinak, the classeXx® andIT? of the
Borel Hierarchy on the topological spaé¢#’ are defined as follows:

3% is the class of open subsetsif, ITY is the class of closed subsetsuf,
and for any countable ordinal > 2:

%) is the class of countable unions of subsetsoin . _, IT.

<«

IT), is the class of countable intersections of subse®s-ah | J, _, X9.

<«
Recall some basic results about these classes. The Bosskslare closed un-
der finite intersections and unions, and continuous predmag/loreoverzg is
closed under countable unions, aH(g under countable intersections. As usual
the ambiguous clasA? is the class2) N TT.

The class oBorel setsis Aj := .., Z¢ = U,.,, IT{, wherew, is the first
uncountable ordinal. The class of Borel sets is the clostitheoclass of open
sets under countable union and countable intersectiosialso the closure of the
class of open sets under countable union (respectiversattion) and comple-
mentation.

TheBorel hierarchy is as follows:

3% =open 9 . 30

AY=clopen A A° Al
I1? =closed 119 o I

This picture means that any class is contained in every thetbe right of it, and
the inclusion is strict in any of the spaces.

For a countable ordinal, a subset oE* is a Borel set ofank« iffitis in 3% UTI
but notinlJ, _, (%9 U TIY).

There are also some subsets>tf which are not Borel. Indeed there exists an-
other hierarchy beyond the Borel hierarchy, which is catlesl projective hier-
archy and which is obtained from the Borel hierarchy by sssive applications
of operations of projection and complementation. The fegel of the projective
hierarchy is formed by the class ahalytic setsand the class ofo-analytic sets
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which are complements of analytic sets. In particular tles<lof Borel subsets
of ¢ is strictly included into the class! of analytic setsvhich are obtained by
projection of Borel sets.

Definition 3.2 A subsetd of ©¢ is in the classE! of analytic sets iff there exists
another finite seY” and a Borel subseB of (¥ xY)“ suchthatr € A — Jy € Y
such that(z,y) € B, where(z,y) is the infinite word over the alphab&t x Y
such that(z, y)(i) = (x(4), y(7)) for each integet > 1.

Remark 3.3 In the above definition we could tak&in the classIT). Moreover
analytic subsets of“ are the projections ofI-subsets oE* x w*, wherew” is

the Baire space[[Mos80].

By Suslin’s Theorem it holds that a subsebf > is Borel iff it is analyticand
coanalytic, i.e.A] = II{ N X{. A setA which is analytic but not coanalytic, or
equivalently analytic but not Borel, is calledrae analytic set

We now define completeness with regard to reduction by coatia functions.
For a countable ordinal > 1, a setF’ C X¥ is said to be &° (respectively,
I1°, 331)-complete seiff for any setE C Y (with Y a finite alphabet)E € 3°
(respectivelyt € TI°, E € 1) iff there exists a continuous functiogh: Y« —
Y@ such thatt! = f~1(F).

Recall that a sek C ¥ is aX? (respectivelf1°)-complete subset o« iff it is

in 39 but not inIT? (respectively if1° but notinX?), [Kec93]. ¢ (respectively
I1%)-complete sets, with an integet> 1, are thoroughly characterized [n[Sth86].

In particular, the singletons @f areIT?-complete subsets af. Thew-language
R = (0*.1)~ is a well known example dfIS-complete subset df0, 1}. It is the

set ofw-words over{0, 1} having infinitely many occurrences of the letterlts

complemen{0, 1}* — (0*.1)~ is aXy-complete subset dfo, 1}*.

We recall now the definition of the arithmetical hierarchywefanguages which
form the effective analogue to the hierarchy of Borel setfsnitie ranks.

Let X be afinite alphabet. An-languagel C X belongs to the class,, if and
only if there exists a recursive relatidty, C (N)"~! x X* such that

L={ce X |3a1...Qnan, (a1,...,an_1,0la,+1]) € R}

where(); is one of the quantifierg or 3 (not necessarily in an alternating order).
An w-language L. C X“ belongs to the clasH,, if and only if its complement

X“ — L belongs to the class,. The inclusion relations that hold between the
classesr,, andlIl, are the same as for the corresponding classes of the Borel
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hierarchy. The classes, andIl,, are included in the respective clas$¢% and
39 of the Borel hierarchy, and cardinality arguments sufficatiow that these
inclusions are strict.

As in the case of the Borel hierarchy, projections of arittioaé sets (of the sec-
ond I1-class) lead beyond the arithmetical hierarchy, to theydical hierarchy

of w-languages. The first class of this hierarchy is the (liglgfaclass:! of ef-
fective analytic setsvhich are obtained by projection of arithmetical sets. An
w-languageL C X* belongs to the class] if and only if there exists a recursive
relationR;, C N x {0,1}* x X* such that:

L={oce X |3r(r € {0,1}* AVnIm((n,7[m],o[m]) € R.))}

Then anw-language L C X¥ is in the class:} iff it is the projection of anw-
language over the alphah&t x {0, 1} which is in the class$l,. The (lightface)
classll! of effective co-analytic sets simply the class of complements of effec-
tive analytic sets. We denote as usidl= 1 N II1.

Recall that an-languageL C X isin the clas&’] iff it is accepted by a non de-
terministic Turing machine (reading-words) with a Biichi or Muller acceptance

condition [CG7B[Sta%7].

4 The largest thin effective coanalytic set

We now recall some basic notions of set theory which will befuisn the sequel,
and which are exposed in any textbook on set theory, [ikéilec

The usual axiomatic systeArC is Zermelo-Fraenkel systedf plus the axiom
of choiceAC. A model , €) of the axiomatic systerdFC is a collectionV of
sets, equipped with the membership relatgmwhere = € y” means that the set
x is an element of the sgt which satisfies the axioms @FC. We shall often say
“the modelV” instead of “the modelV, €)".

The axioms ofZFC express some natural facts that we consider to hold in the
universe of sets. For instance a natural fact is that twossatsdy are equal iff
they have the same elements. This is expressed by the sentenc

VaVy [x =y < Vz(z €x — 2z € y) |

The above sentence is tA&iom of Extensionality
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Another natural axiom is thBairing Axiomwhich states that for all setsandy
there exists a set= {z, y} whose elements areandy:

Vavy [ Iz(Vw(w € 2 « (w € 2V w € 9)))]

Similarly thePowerset Axionstates the existence of the set of subsets of a.set

The Separation Schema is in fact an infinite set of axioms.eRoh first-order
formula ¢, with free variablez, in the language of set theory with the equality
symbol and the binary symbael, the following axiom states the existence of the
sety = {z € x| p(z)} of elements of a set which satisfygp.

Ve[Fy(Vz(z € y = (2 € 2 A 9(2))))]

The other axioms oEZFC are the Union Axiom, the Replacement Schema, the
Infinity Axiom, the Foundation Axiom, and the Axiom of Choic®Ve refer the
reader to any textbook on set theory, like JJ¢c02], for arositjpn of these ax-
ioms.

We recall that the infinite cardinals are usually denote®fy, N,, ... N, ...
The cardinak,, is also denoted by,,, as usual when itis considered as an ordinal.

The continuum hypothes{SH says that the first uncountable cardiialis equal

to 2% which is the cardinal of the continuum. Godel and Cohen Ipageed that
the continuum hypothesiSH is independent from the axiomatic systetiRC.
This means that there is some modelsZ6C + CH and also some models of
ZFC + - CH, where— CH denotes the negation of the continuum hypothesis,

[JecOp].

Let ON be the class of all ordinals. Recall that an ordinais said to be a
successor ordinal iff there exists an ordigaduch thatw = 3 + 1; otherwise the
ordinal« is said to be a limit ordinal and in that case= sup{ € ON | § < «a}.

The clasd. of constructible seté a modelV of ZF is defined by

L= [J L)

aceON

where the setk(«) are constructed by induction as follows:
1. L(0)=0
2. L(a) = Us, L(B), for o a limit ordinal, and
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3. L(a + 1) is the set of subsets df(«) which are definable from a finite
number of elements di(«) by a first-order formula relativized th(«).

If V is a model ofZF andL is the class otonstructible setsf V, then the class
L forms a model oZFC + CH. Notice that the axiom\{=L ) means “every set is
constructible” and that it is consistent wifliC.

Consider now a modeV of the axiomatic syster@FC and the class of con-
structible setd. C V which forms another model &FC. It is known that the
ordinals ofL are also the ordinals of. But the cardinals iV may be different
from the cardinals ir..

In the sequel we shall consider in particular the first untalie cardinal in_;

it is denoted®l. It is in fact an ordinal ofv which is denotedv}. It is known
that this ordinal satisfies the inequality < w;. In a modelV of the axiomatic
systemZFC + V=L the equalityw] = w; holds. But in some other models of
ZFC the inequality may be strict and thert < w;. This is explained in[[Jecp2,
page 202]: one can start from a modebf ZFC + V=L and construct by forcing
a generic extensiod[G] in which the cardinalsy andw, are collapsed; in this
extension the inequality® < w, holds.

We now recall the notion of perfect set.

Definition 4.1 Let P C ¥¥, whereX is a finite alphabet having at least two
letters. The seP is said to be a perfect subset®f if and only if :

(1) P is a non-empty closed set, and

(2) for everyr € P and every open séf containingzx there is an elemenj €

P N U such thate # y.

So a perfect subset @ is a non-empty closed set which has no isolated points. It
is well known that a perfect subset©f has cardinalit2®, i.e. the cardinality of
the continuum, se¢ [MosBO, page 66]. We recall now the defindf theperfect

set propertyand some known results for Borel or analytic sets.

Definition 4.2 A classI' of subsets of“ has the perfect set property iff each set
X € T'is either countable or contains a perfect subset.

Theorem 4.3 (seg[[Mos80, KecB5]The class of analytic subsets Bf has the
perfect set property. In particular, the continuum hypaikes satisfied for ana-
lytic sets: every analytic set is either countable or haslazality 2™.
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On the other hand, “the perfect set property for the classfédégtive) coanalytic
subsets of“” is actually independent from the axiomatic systérC. This fact
follows easily, as we shall see below, from a result aboutatgest thin effective
coanalytic set.

We first recall the notion of thin subset bf’.
Definition 4.4 A setX C >“ is said to be thin iff it contains no perfect subset.

The important following result was proved by Kechfis [Kdt@bd independently
by Guaspari[GuaT3] and Sacks[S3c76].

Theorem 4.5 (see[[Mos80] page 24M)et X be a finite alphabet having at least
two letters. There exists a thiri;-setC;(X¥) C 3¢ which contains every thin,
I1}-subset of~. Itis called the largest thidll-set inX«.

Notice that the existence of the largest tiiilk+set inX* is proved from the ax-
iomatic systenZFC, i.e. Zermelo-Fraenkel systeft plus the axiom of choice
AC, and even if we replace the axiom of choice by a weaker versatied the
axiom of dependent choidaC.

An important fact is that the cardinality of the largest thitrset inX* may de-
pend on the model &FC.

We can now state Kechris's result on the cardinality of thgdat thinII;-set,
proved independently by Guaspari and Sacks, see[also [Kaag& 171].

Theorem 4.6 (ZFC) The cardinal of the largest thifil-set inX* is equal to the
cardinal ofw].

Notice that this means that in a given moldebf ZFC the cardinal of the largest
thin I1}-set inX* is equal to the cardinah V of the ordinalw} which plays the
role of the cardinaR; in the inner model of constructible sets of.

Notice that there exists also a largest thifh-set in the Baire space“. By

[Mos80, Exercize 4F.7, page 251] the cardinal of the largestII}-set in the
Baire space is equal to the cardinal of the largestHiset in any Cantor sét

wherel: is finite and has at least two elements.

We can now easily state the following result.

Corollary 4.7 The perfect set property for the class of effective coaitadyiosets
of ¥ is independent from the axiomatic systBRC.Indeed it holds that :
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1. (ZFC + V=L). The class of effective coanalytic subsets‘ofloes not have
the perfect set property.

2. (ZFC + wl < w;). The class of effective coanalytic subsetEofhas the
perfect set property.

Proof. (1). Assume first thaV is a model of the axiomatic systefAkC + V=L.
In this model the cardinal of the largest tHi}-set in:« is equal tow} = w;.
ThusC, (X¢) is not countable but it contains no perfect subset, henceldiss of
effective coanalytic subsets bf does not have the perfect set property.

(2). Assume now tha¥ is a model of the axiomatic systeAFC + wl < w;.
In this model the largest thifil}-set in X is countable. Thus every effective
coanalytic subset of“ is either thin and countable or contains a perfect subset,
hence the class of effective coanalytic subsets‘ohas the perfect set property.

O

Notice that, by[[Kang97, Theorem 14.10, page 184 and Theotef page 136],
the perfect set property for the class of all (boldfadg}subsets ok~ is equicon-
sistent with the existence of anaccessible cardinalwhich is alarge cardinal
The axiom “there exists an inaccessible cardinal” is a #acgrdinal axiom”; its
consistency can not be proved Z-C. Thus the consistency of the perfect set
property for the class dfl}-subsets of“ can not be proved igFC. We refer the
reader to[[Kan37] for an exposition of these results, whidhwot be necessary
in this paper.

Notice that if in a modeV of ZFC the class off1}-subsets of2~ has not the
perfect property, then we cannot infer from this properst tihne continuum hy-
pothesis is satisfied fdfl}-subsets of2*. However every coanalytic set is the
union of X; Borel sets, and this implies that every coanalytic set iseeitount-
able, or of cardinality;, or of cardinality2™, see [Jec02, Corollary 25.16, page
488].

We can now state the following results which will be usefulhia sequel.
Corollary 4.8 (ZFC + V=L) The largest thifl;-set in: is not a Borel set.

Proof. In the modeL, the cardinal of the largest thii{-set in:* is equal to the
cardinal ofw™. Moreover the continuum hypothesis is satisfied thiis= w™.
Thus the largest thifil}-set inX~ has the cardinality of the continuum. But it has
no perfect subset and the class of Borel sets has the peetqutoperty. Thus the
largest thinll}-set in3* can not be a Borel set. O]
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Corollary 4.9 (ZFC + w} < w;) The largest thinlli-set inX* is countable,
hence a%)-set.

Proof. LetV be a model of ZFC + wl' < w;). In this modelw, is the first
uncountable ordinal. Thusl < w, implies thatw} is a countable ordinal iN.
Its cardinal isX, and it is also the cardinal of the largest thi-set in¥~. Thus
the setC, (X“) is countable. But for every € X“ the singleton{z} is a closed
subset of2. Thus the largest thifil}-set in:* is a countable union of closed
sets, i.e. &9-subset of~. O

5 Complexity of infinite computations

There are several characterizations of the largestlihiset inX, see [Kec7b,

Mos80]. Moschovakis gave ifi [MoS80, page 248]aformula¢ defining the set
C1(X¥). Notice that all subformulas of this formula are themsely®en previ-

ously in the book[[Mos80].
From now on we shall simply denote By the largest thidl}-set in{0, 1}~ = 2.

This setC; is aTll;-set defined by al;-formula¢. Thus its complement; =
2¢ — (C, is a¥l-set defined by th&!-formulay = —é.

Recall that one can construct, from th&formula definingC; , a Biichi Turing
machine7 accepting thes-languageC; , see [Stag7]. We can then construct
from the Biichi Turing machin@, using a classical construction (see for instance
[HMUOT]), a 2-counter Biichi automatad; accepting the same-language.

We are now going to recall some constructions which were usedprevious
paper [FinO6a] to study topological properties of contiege w-languages, and
which will be useful in the sequel.

Let¥ = {0,1}, E be a new letter not ik, S be an integep 1, andfs : ¥ —
(X U{FE})“ be the function defined, for all € >, by:

Os(x) = z(1).E5 2(2).E% 2(3).E% z(4) .. .x(n). B a(n+ 1).E5" ...

We proved in[[Fin0@a] that if. C >* is anw-language in the cladl8CL(2),, and

k = cardinal(X)+2, S = (3k)3, then one can construct effectively, from a Buichi
2-counter automatom; acceptingl, a real time BlichB-counter automatonl,
such thatL(A;) = 0s(L).
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We used also if[FinOba] another coding which we now recat Az = 2 x 3 x
5x 7 x 11 x 13 x 17 x 19 = 9699690 be the product of the eight first prime
numbers. Lel" be a finite alphabet; here we shall $et= X U { E'}. An w-word

x € I'Y is coded by thev-word

hi(z) = A.CK 2(1).B.C*° A.CK" 2(2).B.CY° A.CK 2(3).B...B.CK" . ACK" 2(n).B...

over the alphabel'y = I' U {A, B,C}, where A, B, C' are new letters not in
I". We proved in[Fin0@a] that, from a real time Buchtounter automatom,
accepting.(Ay) C I'?, one can effectively construct a Budhtounter automaton
As accepting thes-languagéhx (L(As))Uhg (I)".

Consider now the mapping, : (I'U{A, B,C})* — (TU{A, B,C, F'})¥ which
is simply defined by: for alk € (I'U {A, B,C}),

¢K<JJ) = FK_I..T(l).FK_l.JJ(Q) .. .FK_l,x(n)_FK—llx(n + 1).FK_1 o

Then thew-languagepx (L(As)) = ¢k (hix(L(A2))Uhk(I'¥)7) is accepted by
a real time Buchil-counter automatoml, which can be effectively constructed
from the real time Buchs-counter automatow,, [FIN0G4].

We can now use these previous constructions to obtain otinfam result.

From now on we consider that we have obtained, from a Buchingunachine
T accepting thev-languageC; C »¥ = 2¥, a2-counter Bichi automatos
accepting the same-language, and then a real time Bu&htounter automaton
A, accepting thev-languageL(A;) = 0s(C; ), whereS = (3 x 4)* = (12)3,
Next, following the above construction, we have a Blickbunter automatou;
accepting thes-languagéx (L(Az))Uhk (I'Y)~, and a real time Buchi-counter
automaton4, accepting the-language)x (L(.A3)). In the sequel we shall denote
simply A, by A.

Theorem 5.1 Let.A be the real-timé-counter Bichi automaton constructed above.
The topological complexity of the-languageL(.A) is not determined by the ax-
iomatic systenZFC. Indeed it holds that :

1. ZFC +V=L). Thew-languagel(.A) is a true analytic set.
2. ZFC + wl < w). Thew-languageL(A) is aIl}-set.

Proof. (1). Assume first thaV/ is a model of the axiomatic systef#C + V=L.
In the modeV, by Corollary{4.B the largest thirii-setC, is not a Borel set. Thus
thew-language’, = L(.A,) is not a Borel set because the class of Borel subsets
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of 2¢ is closed under complementation. Thdéanguage.(.A;) = 05(C; ) cannot
be a Borel set. Indeed the functiép is continuous and if.(A;) was Borel then
thew-languagel; = 65" (L(Az)) would be Borel too as the inverse image of a
Borel set by a continuous function. Next we can see thatttenguage. (A;) =
hx(L(As))Uhk (')~ is not Borel. Indeed the functidry is also continuous and
if L(A3) was Borel then the-languagel(A;) = h'(L(As3)) would be Borel
too as the inverse image of a Borel set by a continuous fumctially we can
see that the-languagel(A) = ¢k (L(As3)) is not Borel. Otherwise, the function
¢ being continuous, the-languagédl.(A3) = ¢ (L(.A)) would be Borel too as
the inverse image of a Borel set by a continuous function.sTthew-language
L(.A) is an analytic but non Borel set.

Assume now tha¥ is a model of ZFC + w < w;). In the modeV, by Corollary
A9, the largest thifl}-setC, is a X3-set. Thus its complemelt = L(A,) is
aII)-set. It is then proved ifJFin0Opa] that thelanguaged.(As) = 0s(C;),
L(A3) = hg(L(As))Uhg(I*)~, and finally L(A) = ¢x(L(As3)), are alsolll-
sets. U

We can now improve a recent result from JFINP9b]. It is veryunal to ask
whether one can effectively determine the topological demify of anw-language
accepted by a given real-timiecounter Buchi automaton (respectively, Buchi
pushdown automaton). We had previously shown that this igassible: For
any countable ordinak, it is undecidable whether an-language accepted by
a given Buchi pushdown automaton i$34-set (respectively, &1°-set, a Borel
set), [Fin0OB]. Moreover we have recently proved[in [FiOgidt these decision
problems are actuallyIi-hard. Notice that herél} is a class of the analyti-
cal hierarchy on subsets 8f. The notions of analytical hierarchy and of com-
plete sets for classes of this hierarchy may be found foants in the textbooks
[Rog67,[Odi8P[Odig9].

A real-timel-counter Biichi automatof has a finite description to which can be
associated, in an effective way, a unique natural numbésctie index of’. We
have then a Godel numbering of real-timeounter Biichi automata. From now
on, we shall denote, as ip [FInQ96], the real time Biichi-counter automaton of
index z (reading words ovef2 = {0,1, A, B,C, E, F'}). The above cited result
can be now formally stated as follows.

Theorem 5.2 ([Fin09b]) Let« be a countable ordinal. Then
1. {z € N| L(C.) is in the Borel clas£? } is I1.-hard.

2. {z e N| L(C,) isin the Borel clas41?} is ITi-hard.
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3. {z e N| L(C,) is a Borel set} is [T}-hard.

This implies in particular that these decison problems atémthe class2i, but
they still could have beeH.-complete. We are going now to prove that this is not
the case.

Theorem 5.3 Leta be a countable ordinal. Then
1. Fora > 2,{z € N| L(C.) isin the Borel clas&? } is not all}-set.
2. Fora > 2,{z € N| L(C,) isin the Borel clas4I’} is not all}-set.

3. {z e N| L(C,) is a Borel set} is not all}-set.

Proof. We first prove item (1). Le#d be the real-timé-counter Biichi automaton
cited in Theorenf 5]1 and let be its index so thatl = C.,.

Assume now tha¥ is a model of ZFC + wl* < w;). In the modeV, by Theorem
b1, thew-languageL(.A) is a IT}-set, hence also X?-set for any countable
ordinal & > 2. Thus, fora > 2, the integerz, belongs to the sefz € N |
L(C,) is in the Borel clas&? }.

But, by Theoren{ 5]1, in the inner modkl C V, the w-languageL(.A) is an
analytic but non Borel set so the integgrdoes not belong to the s¢t € N |
L(C,) is in the Borel class>? }.

On the other hand, Shoenfield’s Absoluteness Theorem imhlat every:i-set
(respectively]Ti-set) is absolute for all inner models of (ZF + DC), where (DC)
is the weak version of the axiom of choice called the axiomegahdent choice
which holds in particular in the inner mode| see [Jec(2, page 490].

In particular, if the set{> € N | L(C,)isinthe Borel clas&®} was all}-
set, then it could not be a different subsetMfin the modelsV and L con-
sidered above. Therefore, for any countable ordinat 2, the set{z € N |
L(C,) is in the Borel clas&? } is not all}-set.

Items (2) and (3) follow similarly from Theoren 5.1 and fromd&nfield’s Abso-
luteness Theorem. O

In order to prove similar results for infinitary rational agbns accepted bg-

tape Bichi automata, we shall use a construction fjom BHhOWe proved in
[FIN0BR] that infinitary rational relations have the samediogical complexity as
w-languages accepted by Buchi Turing machines. We used aation of the
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behaviour of real timé-counter automata b¥-tape Biichi automata. We recall
now a coding which was used ip JFinQ6b].

We first define a coding of an-word over the finite alphabét = {0, 1, A, B,C, E, '}
by anw-word over the alphabét’ = Q U {D}, whereD is an additionnal letter
not inQ2. Forz € Q thew-word h(x) is defined by :

h(z) = D.0.x(1).D.0%.2(2).D.0° 2(3).D ... D.0".x(n).D.0" ™ z(n +1).D ...

It is easy to see that the mappihdgrom Q“ into (2 U {D})“ is continuous and
injective.

Let nowa be thew-word over the alphabét’ which is simply defined by:
a=D.0.D.0>.D.0°>.D.0*.D...D.0".D.0""".D...
The following results were proved if JFInQ6b].

Lemma 5.4 ([Fin06B]) Let Q2 be a finite alphabet such thate 2, a be thew-
word overQ U { D} defined as above, and C Q“ be inr-BCL(1),,. Then there
exists an infinitary rational relatiom?, C (Q U {D})¥ x (QU {D})“ such that:

Ve e Q¥ (z e L)iff (h(z),a) € Ry)

Lemma 5.5 ([Fin06B]) The setRy, = (QU{D})* x (QU{D})* —(h(Q¥) x{a})
is an infinitary rational relation.

Considering the unio®; U R, of the two infinitary rational relations obtained in
the two above lemmas we get the following result.

Proposition 5.6 ([FIn06R]) Let L C O~ be inr-BCL(1),, and £L = h(L) U
(h(2¢))~. Then

R=Lx{a} [J (@) x (@) ~{a})

is an infinitary rational relation. Moreover one can congttieffectively, from a
real timel-counter Bichi automaton4 acceptingL, a 2-tape Bichi automatori3
accepting the infinitary relatiork.

Let now A be the real timel-counter Biichi automaton constructed above and
cited in Theorenj 5]1 an## be the2-tape Buichi automaton which can be con-
structed fromA by the above Propositidn 5.6. We can now state our second main
result.
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Theorem 5.7 The topological complexity of the infinitary rational relat L(15)
is not determined by the axiomatic systéRC. Indeed it holds that :

1. ZFC +V=L). The relationL(B) is a true analytic set.

2. ZFC + wl < w). TherelationL(B) is aIl}-set.

Proof. (1). Assume first thaV is a model of the axiomatic systefkC + V=L.
In the modelV, by Corollary[4B the largest thifii-setC; is not a Borel set and
by Theoren{ 5]1 the-languagel.(.A) is a true analytic set.

On the other hand the functidnis continuous. Thus the functignfrom Q< into
(QU{D})* x (QU{D})¥ defined byy(x) = (h(z), ) is also continuous. If the
relation L(B) was a Borel set then the-languagel.(A) = ¢g~*(L(B)) would be
also a Borel set as the inverse image of a Borel set by a cantgifuinction. Thus
the relationZ(B) is not a Borel set.

Assume now tha¥ is a model of ZFC + wl < w;). In the modeV, by Corollary
A9, the largest thifil}-setC; is aX3-set and by Theore®.1 thelanguagel(.A)
is all)-set. Itis easy to prove th&t= h(L(A)) U (h(92¥))" is also all)-set (this
is due to the fact that is an homeomorphism betweé€}y and its image:(Q2*)
which is a closed subset ¢f2 U {D})~, see [Fin08b]). Then one can easily
see that the sef x {a} is also all)-set. But the set®)* x (V) — {a})
is an open henc&l)-subset of(Q U {D})* x (Q U {D})“. Thus the relation
R=Lx{a} J ()x(()*—{a})isalld-subset of QU{ D})* x (QU{D})~.

O

From now on we shall denot€ the 2-tape Biichi automaton of index Then
we recall the following recent result which shows that taggotal properties of
infinitary rational relations are highly undecidable.

Theorem 5.8 ( [Fin09B]) Let o be a non null countable ordinal. Then
1. {z € N| L(T,) is in the Borel clas&? } is I1}-hard.
2. {z e N| L(T,) isin the Borel clas41} is IT}-hard.
3. {z e N| L(T,) is a Borel set} is [T}-hard.

We can now state that these decision problems are not indslE}.

Theorem 5.9 Leta be a countable ordinal. Then

1. Fora > 2,{z € N| L(T,) isin the Borel clas&’ } is not all}-set.
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2. Fora > 2,{z € N| L(7,) is in the Borel clas41’ } is not all}-set.

3. {z e N| L(T,) is a Borel set} is not all}-set.

Proof. We can reason as in the proof of Theorgnj 5.3 (in the caselafguages
of 1-counter Buchi automata). We use Shoenfield’s Absoluteifiégorem and
Theoren{5]7 instead of Theordm]5.1. O

We consider now Buichi recognizable languages of infinittypes. We shall use
in the sequel a result proved jn [FM@4, Fin09a] which we neeatl.

Foro € ¥¥ = {0,1}* we denoter’ thew-picture whose first row is the-word
o and whose other rows are labelled with the lettefFor anw-language L C
¥ = {0, 1}* we denotel” the language of infinite picturds® | o € L}.

Lemma 5.10 ([FIn04]) If L C ¥+ is accepted by some Turing machine with a
Buichi acceptance condition, théH is Biichi recognizable by a finite tiling system.

Recall that forl" a finite alphabet having at least two letters, the [setv of
functions fromw x w into I" is usually equipped with the product topology of the
discrete topology oir. This topology may be defined by the following distance
d. Letz andy in ['“*¥ such that: # y, then

1
d(z,y) = o where

n=min{p = 0[3(i,j) =(i,7) # y(i,j) andi + j = p}.
Then the topological spadé’* is homeomorphic to the topological space,
equipped with the Cantor topology.
The setz“« of w-pictures ovels, viewed as a topological subspaceds <, is
easily seen to be homeomorphic to the topological space’, via the mapping
@+ XY — ¥xv defined byp(p)(i,j) = p(i + 1,5 + 1) for all p € ¥ and
1,] € w.

Let now 7 be a Buchi Turing machine accepting thelanguageC,. Using
Lemm4g5.1IP we can construct a Buchi tiling syst8mccepting thes-picture lan-
guage(C; ). We consider now the topological complexity of this 66F) C ¥«

It is then easy to see that if C ¥¥ = {0,1}* is aII}-subset of:* then the
w-picture languagd® is aII}-subset of>w«. And if L C X+ = {0,1}* is not
Borel then theu-picture languagé’ is also not Borel. Then Corollari¢s ¥#.8 and
B9 imply the following result.
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Theorem 5.11 The topological complexity of the-picture languagéd.(S) is not
determined by the axiomatic syst&mC. Indeed it holds that :

1. ZFC +V=L). Thew-picture languagd.(S) is a true analytic set.
2. (ZFC + wl < w;). Thew-picture languagd.(S) is aIlj-set.

We have recently proved that the topological complexitywesicture languages
accepted by Buchi tiling systems is highly undecidablelo®ehe Biichi tiling
system of index is denoted bys..

Theorem 5.12 ( [FinO9R]) Let« be a non null countable ordinal. Then
1. {z € N| L(S.) is in the Borel clas&? } is T13-hard.
2. {z e N| L(S,) is in the Borel clasd1’ } is T13-hard.
3. {z e N| L(S,) is a Borel set is IT}-hard.

As in the case ofvo-languages ofl -counter automata or df-tape automata, we
can now infer the following result from Shoenfield’s Abs@néss Theorem and
Theoren{5.111.

Theorem 5.13 Leta be a countable ordinal. Then
1. Fora > 2,{z € N| L(S,) is in the Borel clas&’ } is not all.-set.
2. Fora >2,{z € N| L(S,) isin the Borel clas41?} is not all}-set.

3. {z e N| L(S.) is a Borel set} is not all}-set.

6 Concluding remarks

We obtained very surprising results which show that the lgioal complexity

of anw-language accepted bylacounter Biichi automaton, of an infinitary ra-
tional relation accepted byZtape Biichi automaton, or of a Biichi recognizable
language of infinite pictures, is not determined by the axitosystenZFC.

We have inferred from the proof of the above results and frowegfield’s Abso-
luteness Theorem an improvement of the lower bound of sorriside problems

recently studied in[JFin0%1p, Find9a].

Recall that, by[[Fin09b, Remark 3.25],dfis an ordinal smaller than the Church-
Kleene ordinalw{¥, which is the first non-recursive ordinal, thgn € N |
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L(C,) is in the Borel clas&?} (respectively{z € N | L(C,) is in the Borel class
I1°}) is axi-set. We now know that far > 2 (respectivelyp > 2), it is actually

in the class2! \ (33 UILY) but the question is still open whether these problems are
Y:1-complete. The exact complexity of being in the Borel cla§s(respectively,
I1°), for a countable ordinal, remains an open problem ferlanguages of real
time 1-counter automata (respectively, pushdown automatapye automata). and
for Buichi recognizable languages of infinite pictures.
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