N

N

Periodic solutions of non-linear Schrodinger equations:
A para-differential approach
Jean-Marc Delort

» To cite this version:

Jean-Marc Delort. Periodic solutions of non-linear Schrédinger equations: A para-differential ap-
proach. 2009. hal-00422523v1

HAL Id: hal-00422523
https://hal.science/hal-00422523v1

Preprint submitted on 7 Oct 2009 (v1), last revised 14 Feb 2011 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00422523v1
https://hal.archives-ouvertes.fr

Periodic solutions of non-linear Schrodinger equations:
A para-differential approach

J.-M. Delort
Université Paris 13, Institut Galilée,
CNRS, UMR 7539, Laboratoire Analyse Géométrie et Applications
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Abstract

This paper is devoted to the construction of periodic solutions of non-linear Schrédinger
equations on the torus, for a large set of frequencies. Usual proofs of such results rely on
the use of Nash-Moser methods. Our approach avoids this, exploiting the possibility of
reducing, through para-differential conjugation, the equation under study to an equivalent
form for which periodic solutions may be constructed by a classical iteration scheme.

0 Introduction

This paper is devoted to the existence of families of periodic solutions of Hamiltonian non-linear
Schrédinger equations on the torus T¢. Our goal is to show that such results may be proved
without using Nash-Moser methods, replacing them by a technically simpler conjugation idea.

We consider equations of type

. oF
(—i0y — A+ p)u = e?(wt, x,u,u,€) + ef (wt, )
U
where t € R, € T%, F is a smooth function, vanishing at order 3 at (u,u) = 0, f is a smooth
function on R x T¢, 27-periodic in time, w a frequency parameter, p a real parameter and € > 0
a small number. One wants to show that for € small and w in a Cantor set whose complement
has small measure, the equation has time periodic solutions.

Let us recall known results for that type of problems. The first periodic solutions for non-linear
wave or Schrodinger equations have been constructed by Kuksin [19] and Wayne [22]: they were
working in one space dimension, with x staying in a compact interval, and imposing on the
extremities of this interval convenient boundary conditions. Later on, Craig and Wayne [13, 14]
treated the same problem for time-periodic solutions defined on R x S'. Periodic solutions of
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non-linear wave equations in higher space dimensions (on R x T%, d > 2) have been obtained by
Bourgain [7]. These results concern non-linearities which are analytic. More recently, some work
has been devoted to the same problem when the non-linearity is a smooth function: Berti and
Bolle [4] have proved in this setting existence of time-periodic solutions for the non-linear wave
equation on R x T?. Very recently, Berti and Procesi [5] have studied the same problem, for wave
or Schrodinger equations, on a homogeneous space. We refer also to the books of Craig [12] and
of Kuksin [20] for more references.

The proofs of all above results rely on the use of the Nash-Moser theorem, to overcome unavoid-
able losses of derivatives coming from the small divisors appearing when inverting the linear
part of the equation. Our goal here is to show that one may construct periodic solutions of
non-linear Schrédinger equations (for large sets of frequencies), using just a standard iterative
scheme instead of the quadratic scheme of the Nash-Moser method. This allows us to give a less
technical proof of existence of periodic solutions. The basic idea is inspired by our work [15]
concerning linear Schrédinger equations with smooth time dependent potential. It is shown in
that paper that a linear equation of type (i0; — A+V (¢, x))u = 0 may be reduced by conjugation
to an equation of type (i0; — A+ Vp)v = R(v)v, where R is a smoothing operator and Vp a block
diagonal operator of order zero. We aim at applying a similar method when the linear potential
V' is replaced by a non-linear one, so that, in the reduced equation, the block-diagonal operator
Vb depends on v itself, and R sends essentially H® to H>*~¢ (where a is a fixed constant, and H*
the Sobolev scale). It is pretty clear that such a reduced equation will be solvable by a standard
iterative scheme, even if the inversion of i9; — A + Vp loses derivatives because of small divisors,
since such losses are recovered by the smoothing properties of R in the right hand side.

Before describing the different sections of the paper, let us give some more references and add
some comments. There are actually a few results concerning existence of periodic solutions which
do not appeal to Nash-Moser theorem. Bambusi and Paleari [1, 2] constructed such solutions
without making use of Nash-Moser or KAM methods, but only for a family of frequency pa-
rameters of measure zero (instead of a set of parameters whose complement has small measure).
Recently, Gentile and Procesi [17] found, for analytic non-linearities, an alternative approach to
Nash-Moser using expansions in terms of Lindsted series.

Let us also mention that we restrict in this paper to one of the may variants that may be
considered when constructing periodic solutions. Most of the known results we cited so far
concern the case of periodic solutions of the non-linear equation, whose frequency is close to the
frequency of a periodic solution of the linear equation obtained for e = 0. The problem may
be written, using a Liapounov-Schmidt decomposition, as a coupling between a non-resonant
equation (the (P) equation) and a resonant one (the (Q) equation). In most works, the resonant
equation is a finite dimensional equation, while (P) is infinite dimensional. One uses Nash-Moser
to solve (P), getting a solution depending on finitely many parameters. Plugging this solution in
(@), one gets for these finitely many parameters an equation in closed form, that may be solved
using implicit functions-like theorems. Actually, Berti-Bolle [3] have shown that such a strategy
may be also adapted to the case when (@) is completely resonant i.e. is infinite dimensional.

Since our objective here is to show that one may avoid the use of Nash-Moser theorems, we
limited ourselves to the forced oscillations equation written at the beginning of the introduction,
which corresponds to a (P) equation for which there is no associated (@) equation. Note that



Berti and Bolle have studied similar forced oscillations for the wave equation in [4]. Let
us mention that our method could be adapted to recover as well known results for resonant
periodic Schrodinger equations. In the same way, since the results of [15] concern the Schrodinger
equation not only on T¢, but also on the sphere or on some surfaces of revolution, one could get
the analogous of the main theorem of this paper in this setting.

Let us describe the organization of the paper.
The first section states the main theorem and introduces several notations.

The second section is devoted to the para-linearization of the equation. After defining convenient
classes of para-differential operators, we perform a first reduction, localizing the unknown of the
problem close to the characteristic variety of the linear Schréodinger operator. This is done using
the standard implicit function theorem. Next, we para-linearize the equation, reducing it to

(—iwdy — A+ V)v=R(v)v+ef

where V' is a para-differential operator of order zero, depending on v, and R(v) is a smoothing
operator (Actually, we shall have to consider a system in (v, v) instead of a scalar equation).

The third section is the heart of the paper. We construct a para-differential conjugation of the
preceding equation to transform it into

(—iwd — A+ Vp(w))w = R(w)w + €f

where R(w) is still a smoothing operator, and Vp is block diagonal relatively to an orthogonal
decomposition of L?(T%) in a sum of finite dimensional subspaces introduced by Bourgain in [10].

The fourth section is devoted to the construction of the solution to the block diagonal equation
by a standard iteration scheme. We first show that on each block —iwd; — A+ Vp(w) is invertible
for w outside a convenient small subset. This is done by the usual argument, exploiting that the
w-derivative of the eigenvalues of —iwd; — A is large. In order that the set of excluded parameters
remain small, we have to allow small divisors when inverting —iwd; — A + Vp(w). As the right
hands side of the equation involves a smoothing operator R(w), we may compensate the losses
of derivatives coming from such small divisors, and construct a sequence of approximations of
the solution.

Let us conclude this introduction with a few words concerning the limitations of our method.
First, it does not seem that it could be adapted to find periodic solutions of non-linear wave equa-
tions, as the construction of section 3 relies on a specific separation property for the eigenvalues
of —A on T¢. Second, one cannot expect our method to be useful for constructing quasi-periodic
solutions. Remind that such solutions have been obtained for the equation set on an interval by
Kuksin [19], Wayne [20], Kuksin and Poschel [21]. The case of solutions on S! has been treated
by Bourgain [7]. In higher dimensions, Bourgain constructed such periodic solutions on T? [9].
The case of general T? has been treated by Bourgain [11] and by Eliasson and Kuksin [16]. Since
KAM or Nash-Moser methods are necessary to prove the existence of quasi-periodic solutions
even for finite dimensional problems, there is no hope to avoid them for infinite dimensional
ones.



1 Periodic solutions of semi-linear Schrodinger equations

1.1 Statement of the main theorem

Let T¢ (d > 1) be the standard torus, S! the unit circle. Consider a C* function

F:(t,z,u,u,e) —— F(t,x,u,u,c)

1.1.1
(LL1.1) RxT¢ x C% x [0,1] = R

which is 27-periodic in ¢, and satisfies aﬁyﬂF(t, x,0,0,€) =0 for |a] < 2. We study the equation
OF _
(1.1.2) (Dt—A—&—u)u:eF(wt,m,u, u,€) + ef (wt, )
U

where A is the Laplace operator on T¢, D, = %%, e€[0,1], p € R, w € RY, f is a smooth
function on R x T¢, 27-periodic in ¢, with values in C, and where we look for 2f—periodic solutions
of the above equation when ¢ is small. Changing ¢ to t/w, we have to find solutions on S' x T¢
to the equivalent equation

OF
(1.1.3) (WD — A+ p)u = €55

for small enough ¢ and for w outside a subset of small measure. To fix ideas, we shall take w
inside a fixed compact sub-interval of |0, +o0], say w € [1,2].

(t,z,u,u,€) + ef(t,x)

Let us define the Sobolev space in which we shall look for solutions. If u € D'(S! x T%), we set
for (j,n) € Z x 74
1 o
w(j,n) = —7 e M Iy (¢ x) dtde,
(27‘(‘)7 St xTd
and define when s € R, H5(S! x T4 C) to be the space of those u € D'(S! x T¢) such that

(1.1.4) lull%, ST 57 (1 + 1]+ [nP)¥|al, n) 2 < +oc.
JE€EZ nezd

We shall use similar notations H*(S! x T%; C2), H5(S! x T% R2) for C? or R2-valued functions.
Let us state our main theorem.

Theorem 1.1.1 Let p € R—Z_. There are so > 0, > 0 and for any s > so, any qo > 0, there
are constants &y €]0,1], B > 0 and for any f € H*T¢(S* x T4; C) with [ fll7zs4c < o, there is a
subset O C [1,2]x]0, 1] such that:

e For any 6 €]0,5], any € € [0,5?]
(1.1.5) meas{w € [1,2]; (w,€) € O} < B.

e For any 6 €]0,80], any € € [0,6%], any w € [1,2] such that (w,€) & O, equation (1.1.3) has a
solution u € H*(S' x T C) satisfying ull7. < Bes™ 1.



Remark: As mentioned in the introduction, this theorem is a version, for Schrédinger equations,
of theorem 1.1 of Berti-Bolle [4], which concerns wave equations. Our point will be to give a
proof that does not make appeal to Nash-Moser methods.

1.2 Spaces of functions and notations

For n € Z¢, u € D'(T?), we denote by II,, the spectral projector

~ € —in-T dx ¢
(1.2.1) IT,u = u(n)W = /Td e u(x) (@) (2m) 02

When u(t,z) is in D'(S* x T?), we use the same notation, considering ¢ as a parameter. We
shall make use of the following result due to Bourgain ([10] lemma 8.1; see also for the proof
lemma 19.10 in [11]).

Lemma 1.2.1 (Bourgain) For any f E]O’Tlo[ there are p €]0,6[, 6 > 0 and a partition
()aca of Z such that

(1.2.2) Ya € A,Vn € Qu, V0’ € Qu, In— /| +||n]2 = |0/[*| < 0 + |n|?
o Va,o! € Aa # o/ ,¥n € Qu,Vn' € Qu, In— 0| + ||n|? = [n/°] > |n|*.

For each o € A, we choose some n(«) € Q,. There is a constant ©y > 0 such that, if we denote
for n € Z% by (n) = (1 + |n[*)¥/2,

(1.23) 65 (n(a)) < (n) < Oy(n(a))

for any o € A, any n € Q. It also follows from (1.2.2) that, for some uniform constant ©; > 0,
(1.2.4) #Qq < O1(n(e))??.

For any o € A, we set

(1.2.5) I, = Y I,

(SIS
We define a closed subspace H*(S! x T% C) of H*(S! x T%;C) by

HAS! x T4 C) = () {u € H(S! x T4 C);Vn € Q, V) with |j] > Ko(n(a))?
(1.2.6) acA
or |j| < Ky (n(a))?, a(j,n) = 0},

where Ky = Ko(u) will be chosen later on.

In other words, non vanishing modes (j,n) of an element u of H*(S' x T¢;C) have to satisfy
Ky Hn(a))? < |j] < Ko(n(e))? if n € Q4. This shows that the restriction to H* of the H-norm
given by (1.1.4) is equivalent to the square root of

(1.2.7) o> (mFlagn

JEZ ne7d



and to the square root of

(1.2.8) Z <n(a)>25|’ﬁau\‘%2(sl xT,C)"
acA

We use similar notations for spaces H*(S' x T%; C2), H*(S! x T4 R?),...

2 Para-linearization of the equation

The goal of this section is to rewrite (1.1.3) as a para-differential equation in the sense of Bony [6],
on spaces of form (1.2.6). We first define the classes of operators we shall use.

2.1 Spaces of operators

We fix from now on some real number oy > g +1. If s € R,q > 0, we denote by By(H*) the
open ball with center 0, radius ¢ in H*(S! x T%; C), H5(S! x T¢; C?),...

Definition 2.1.1 Let m € R,q > 0,N € Nyo € R0 > 09+ 2N +d+ 1. One denotes by
U™(N,0,q) the space of maps U — a(U) defined on the open ball of center 0, radius q in
H (S x T9; C?), with values in the space of linear maps from C>®(S' x T?; C) to D'(S* x T%; C),
such that, for any n,n’ € 74, U — M,a(U)IL,y is smooth with values in L(H°(S' x T?;C)) and
satisfies for any M € N withd+1 < M < o0 — 09— 2N, any U € By(H?), any j € N, any
Wi,...,W; € H°(S! x T4 C?), any n,n’ € Z,

(2.1.1)
Hnn(aga(U) (Wi, .. W)Ly

I\m n—M
pimy S COA Il 1D =0 g

J
X H||Wg||Hao+2N+M.
=1

Remarks: e In (2.1.1), the decay (n — n’ >_M reflects the available z-smoothness of the symbol
of a pseudo-differential or para-differential operator. This smoothness is controlled by the upper
bound ¢ — 0y — 2N that we assume for M. The cut-off [n — n’| < -(|n| + |n’|) means that we
are considering para-differential operators. The integer N measures some loss of smoothness,
relatively to the index o, that will appear in some expansions of operators.

e The above definition implies that if a € ¥"*(N, o, ¢), then 0¢[a(U)] belongs to V(N + 1,0, q).
Actually, 9;a(U) = dya(U) - 0,U, so (2.1.1) allows us to estimate

L (0% (B a(U)]) - (Wi, .., W)Ly || £ 40
from ||0yU || yoo+2n+m nglHW[”H00+2N+JM, and by definition (1.2.6) of H?,

||(9tUHHUO+2N+M < K0||UHHUO+2(N+1)+M < KOHUHHU



if we assume M <o —2(N + 1) — oy.

The definition implies boundedness properties for the operators.

Lemma 2.1.2 Let o,m, N, q be as in the definition. Assume that o > og+2N +d+1. Then for
any U € By(H?), for any s € R, a(U) is a bounded operator from H*(S* x T4 C) to HS~™(S! x
T%,C). Moreover, U — a(U) is a smooth map from By(H7) to the space L(H*, H*™™), and for
any j € N, there is C > 0, such that for any U € By(H°), any Wi, ..., W; € H°(S! x T¢;C)

] J
(212) ||6]UG(U) . (Wl, ey Wj)”ﬁ(Hs,Hs—m) S C H||W(HHUO+2N+d+1.
(=1

Proof: One has just to apply (2.1.1) with M = d+1 and use that by (1.2.7), ||v||3,s is equivalent
t0 Ypezet (1) |72 O

Let us define as well a class of smoothing operators.

Definition 2.1.3 Letc e R, Ne N, v e N, withoc >o9+2N +d+1, ¢q>0,r € Ry. One
denotes by R, (N,o0,q) the space of smooth maps U — R(U) defined on By(H?), with values
in L(H*(S! x T C), H*+" (ST x T C)) for any s > o¢ + v, such that there is for any j, any
s > oo+ v, a constant C > 0 with

] J
(2.13) 104 RW) - (Wh, .-, W)l e ey < C TLIWeloe
/=1

for any U € By(H?), Wh,...,W; € H°.

Remark: Lemma 2.1.2 shows that if r > 0, 0 > 09 + 2N +d+ 1, ¥7"(N, 0, q) is contained in
Ry(N,0,q).

Proposition 2.1.4 (i) Let 0 > 09 +2N +d+ 1, a € V"(N,0,q). Then a* € ¥"(N,0,q).

(ii) Let mi,mg € R. Assume o0 > o9 + 2N +d+ 1+ (m1 + ma). Denote

(2.1.4) r=oc—o09g—2N —(d+1) — (m1 +ma) > 0.

If a € ¥"™(N,0,q) and b € V"2(N,0,q), there are c € W™ ™2(N o,q) and R € Ry(N,o,q)
such that

(2.1.5) a(U) o b(U) = c(U) + R(U).



Proof: (i) follows immediately from the definition.

(ii) We define
c(U) =3 > Mafa(U) o b(U)w Ly, i< 1 (fp)-

To check that (2.1.1) is satisfied by ¢ when j = 0 we bound

e (U)ol 2200y < D 1M @(U) k]| 240 [ Tkb(U) L[| 210)
k

for n,n’ with |n —n'| < 55(|n| + [n/]). Applying (2.1.1) to a,b with d+ 1 < M < 0 — 09 — 2N,
we get the bound

C(1+ |n| + |[n/[)™rFm2 Z (n— k)™M (k — n’>_M < C(1+ |n| + |0/t (n — n'>_M.
k

One estimates 87;¢(U) in the same way.
The remainder R(U) = a(U) o b(U) — ¢(U) will satisfy by definition of ¢

T RO [l 200y < T @(O) | 200 (O o | £340) Ly (e
k

so will be bounded using (2.1.1) for a,b by

mi+m -M -M
CA+ |nf + /™5™ =)™ (k= 1) ™ Ly« gy Lo < ()
p

XLl (k)
for any M between d + 1 and o — gp — 2N. Since on the summation, either |n — k| > 1|n — /|
or [n' — k| > 3|n—n/|, and [n — n/| < 3(|n| + |n/]), we get the bound

T ROU) | 2oy < C(L+ [nl + 0/ )™ 527D

for any M between d+1 and 0 —09—2N. Reasoning as in the proof of lemma 2.1.2, we obtain that
R(U) sends H* to H**" for any s and r given by (2.1.4). The estimates of 8, R(U) - (W1, ..., W;)
are obtained in the same way. O

In the rest of this paper, we shall use several variants of the above classes. We shall denote
by Vg(N,0,q) (resp. R} g(N,0,q)) the subspaces of ¥™(N,o,q) (resp. R;(N,0,q)) made of
those operators a(U) (resp. R(U)) sending real valued functions to real valued functions, i.e.

satisfying a(U) = a(U) (resp. R(U) = R(U)). We denote by

(N, 0,q) @ Ma(R), R,(N,0,q) @ Ma(R)

the space of 2 x 2 matrices with entries in V™ (N, 0, q), R, (N, o, q) respectively. We use similar
notations for the class Vg'(N, 0, q), R} (NN, 0,q). Finally, we shall consider operators a(U,w, €),
R(U,w,¢€) depending on (w,¢) staying in a bounded domain of R2. We shall say that these
operators are C! in (w,€) if (w,€) — Mya(U,w, )L,y (resp. (w,€) — R(U,w,€)) is C! in (w,e)
with values in £(H?) (resp. £(H®, H™)) and if (2.1.1) (resp. (2.1.3)) is satisfied also by d,,a, d.a
(resp. O,R,0.R).



2.2 Equivalent formulation of the equation

The goal of this subsection is to reduce equation (1.1.3) to an equivalent equation for a new
unknown belonging to the space H*® defined by (1.2.6) instead of H*. Remind that we fixed
some og > % + 1.

For o € R, we consider the space H7(S! x T4 R?) ¢ H(S! x T% R?) and denote by F7(S' x
T: R?) the orthogonal complement of the first space in the second one.

Definition 2.2.1 Let o > 0¢. Denote by H{, HS any of the preceding spaces. Let X be an open
subset of HS, k € Z. One denotes by ®>F(X, HS ™) the space of C® maps G : X — HJ ¥,
such that for any s > o, G(u) € H;fk if ue X N'H; and such that:

e For any s > o, and u € X N'H;, the linear map DG (u) € LIHS, HS ™) extends as an element
of LIHS ,HS ~*) for any o' € [—s,s]. Moreover, v — DG(v) is smooth from X N'H5 to the
preceding space.

e For any s > o, any u € X N'H5, the bilinear map D>*G(u) € Lo(HS x HT; HS ) eatends as
an element of Lo(HT" X HTQ;HQUS%) for any triple {o1,092,03} = {0, —0', max (09, 0’)} with
o’ € [0,s]. Moreover, v — D?*G(v) is smooth from X N'H; to the preceding space.

Let us give an example of an element of ®°9(H?, H7). Consider F : S! x T¢ x R2 — R? a
smooth function satisfying F'(¢,2,0) = 0,09, F (t,2,0) = 0. Then, by lemma A.1 of the appendix,
for o > g +1, u e HO(S! x T%R?), F(-,u) € H7(S' x T% R2) and by corollary A.2, u — F(-,u)
is smooth. If we define G(u) = F(-,u), then DG(u) - h = 0, F(-,u)h which, by lemma A.3,
extends as a linear map from H?' to itself for any o’ € [—s,s], when u € H® and s > g + 1.
In the same way, D2G(u) - (h1,he) = O2F(-,u) - (h1, ha) extends from H' x H> to H % for
01,02,03 as in the statement of the definition, by lemma A.3.

Definition 2.2.2 Let o > 0o, X an open subset of HY, k € Z. One denotes by C>*(X;R) the
space of C' functions ® : X — R, such that for any s > o, anyu € X N'H;, V®(u) € H; % and
u — V®(u) belongs to >k (X, HI™F).

If F : S'xT4xR? — R is a smooth function, with F(t,z,0) = 0,8, F(t,z,0) = 0,02F (t,,0) = 0,
and if ®(u) = [qi,pa F(t, 2, u(t, 2)) dtdz, VO(u) = 0,F(-,u) € H® if u € H*, s > 2+ 1, (see
lemma A.1) and the example following definition 2.2.1 shows that ® € C°0(H?,R) (¢ > o).

Remark: In the sequel we shall have to consider elements G(u,w,€), ®(u,w,€) of the preced-
ing spaces depending on the real parameter (w,e). We shall say that G,® are C' in (w,e)
if the conditions of definition 2.2.1 (resp. definition 2.2.2) are satisfied by G, d,,G,0.G (resp.
$,0,3,0.).

Lemma 2.2.3 Let 0 > 0g, k € N, X an open subset of H7, G € ®~F( X, H*), Y an open
subset of HS* containing G(X), ® € C¥#(Y,R). Then ® o G € C*(X,R).



Proof: The assumption on G implies that for v € X N'H5, s > o and for ¢’ with |¢/| < s
(2.2.1) DG(v) € LIH] ,H ) c L(H ,HS).

Moreover since V® € &k (Y, HS), for v € X NH;, G(v) € Y NHTF so that VO(G(v)) € H
and for any o with [0”] < s+ k, (D(V®))(G(v)) is in L(HS",HS ~*). In particular, for any o’
with o] < s

(2.2.2) D(V®)(G(v)) € L(HS TF HT).

We deduce from (2.2.1) that V(®oG)(v) = DG (v)-(V®)(G(v)) belongs to H; when v € X NH;.
Let us check that V(® o G) belongs to ®*0(X, H]). If u € X N'Hj (s > o) and h € H{ with
o' € [—s,s], we write

D[V(® 0 G)(v)] - h = 'DG(v) - ((DV®)(G(v)) - DG(v) - h)

).
(2.2.3) +(D('DG)(v) - h) - VO(G(v)).

By (2.2.1), (2.2.2) the first term in the right hand side belongs to H¢ . To check that the last
term in (2.2.3) belongs to the same space, we integrate it against h’ € H;? . We get

(2.2.4) / (D(DG)(v) - h) - VO(G(0))]H dide = / (V®)(G(v)) DG (v) - (h, H') dtda.
By definition 2.2.1,
DQG(’U) . (h, h/) c H2— max(co,0’)+k C HQ_ max(ao,o’)‘

Since V®(G(v)) € H C H;nax(ao’al), this shows that the right hand side of (2.2.4) defines a
continuous linear form in b’ € H7 .

We study now D?[V(® o G)(v)] - (h1, he) with (hi,hy) € H]' x H{?. To prove that D*[V(® o
G)(v)] - (h1, ha) belongs to H; “*, we compute for hy € HT?

D? / V(® o G)(v)hs dtdr = D? / [(V®)(G(v))][DG(v) - ha] dtdz.
We get the following contributions (up to symmetries) for the action on (hy, ho) € HJ* x HY?
/[(V@)(G(v))][D?’G(U) - (h1, ha, h3)] didz
s [ ID(V@YG)) - mIID*C() - (he. )] did
B / (DV®)(G(v)) - D*G(v) - (hn, ho)][DC(v) - hs) dtda

/ (D?V®)(G(v)) - (DG(v) - hi, DG(v) - ho)][DG(v) - hs] dtdz.

On the first line in (2.2.5), we may assume for instance hy € 'Hff,, ho € HIU/, hs € Hrlnax(go’g/).
Since u — D?G(u) is C' on X N Hllnax(ao’g) with values in Lo(HJ x HIU/;HQ_ max(20,0 Hk),
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the second factor in the integrand belongs to Hy max(co,0')+k

VO(G(v)) € H5 C H;nax(ao’al) for s >0’ >0and s > o.

, so may be integrated against

On the second line of (2.2.5), D2G(v) - (h2, h3) € Hy°* ™. On the other hand D((V®)(G(v))) -
hi € H3' by (2.2.1), (2.2.2), which allows one to integrate the product of the two factors.

On the third line of (2.2.5), DG(v) - hs € H3**. The other factor is given by the action of
(DV®)(G(v)) on D2G(v) - (hy, hy) € Hy73* | whence again the wanted duality in the integral,
using (2.2.2).

Finally, on the last line of (2.2.5), we integrate DG(v) - hs € Hg3+k against the action of
(D2V®)(G(v)) on a couple belonging to H3' ™ x HJ2TF < HJ' x HS2. Since this vector is in
Hy 73~k by definition of C°*(Y,R), we get the conclusion. O

Let us write an equivalent form of equation (1.1.3) using the above classes of functions. Since
the Hamiltonian F' in (1.1.2) is real-valued, we may write (1.1.3) as a 2 x 2-system

F
(WD — A+ p)u=ef(t,x) + eg—,(t,m,u,ﬂ,e)
(2.2.6) ) a;‘
(—wDy — A+ p)u=ef(t,x) + ea(t, X, U, U, €).

We identify u = v1 + dvy (vesp. f = fi +if2) to v = [4}] (resp. [ = [fl]). If we set

P
o 8F/(9U1
VF(v) = laF/avzl d
. A— 1% —w@t
(2.2.7) L, = wd, A N] ,
(2.2.6) is equivalent to
(2.2.8) Lyv=—ef —V,F(t,z,v).

Define for v € H3(S! x T%; R?)

1
(2.2.9) B1 (v, fw,€) = = / (Lov)vdids + ¢ / (b, 2)o(t, z) dida
2 JsixTd StxTd
and
(2.2.10) By (v, €) = / F(t, 2, 0(t,z), ) didz.
S1xTd

Then V& (v) = Lyv +ef so @1 € C‘X’f(ﬁ" x H?,R) if ¢ > 0, since by definition of H7 (S x
Td;RQL L, is bounded from H® to H°2. By the example following definition 2.2.2, ®5 €
C>(H R) (o > 0g). Moreover equation (2.2.8) may be written

(2.2.11) Vo ®1(v, fyw, €) + ePa(v, €)] = 0.
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Using the notation introduced at the beginning of this subsection, we decompose any v €
HE (St x T4 R?) as v = v’ 4+ v on the decomposition

HE(S' x T4 R?) = HE(S' x T4 R?) @ F5(S! x T4 R?).

We denote for ¢ > 0 by By(H?®), By(H?®), B4(F?) the ball of center 0 and radius ¢ in these spaces.
By (1.2.6), if v € F5(S' x T% R2), (j,n) € Zx Qs C Zx Z% and 6(j,n) # 0, then |j| > Ko(n(a))?
or 7] < KyH{n(a))?. Moreover, since € R —Z_, ||n|> + u| > c(p)(n(a))? when n € Q,, for
some constant c(u) > 0. If we fix Ky large enough, and use that w stays in [1,2], we conclude
that the eigenvalues of L, satisfy the bounds

wji + [nl* + p| = (] + (n(@))?), j € Z,n € U, a € A

This shows that the restriction of L, to 7512 is an invertible operator from F*+2 to F* (uniformly
in w e [1,2).

Let us reduce (2.2.11) to an equation on the space H*(S! x T%; R?).

Proposition 2.2.4 Let 0 > 09,q > 0, f' € By(H?). There are v, €]0,1] and

o An element (v, f") — a(v', f",w,€) of OV (W, R) where W, = By (H(S' x T4 R?)) x
By(Fo (St x T4 R?)), with C dependence in (w,€) € [1,2] x [0,70],

o An element (v, f") — G(V', f",w,€) of ®"2(W,, Fo2), with C* dependence in (w,€), such
that, for any given subset A C [1,2] x [0,70] the following two conditions are equivalent

(i) The function v = (v',G(V', " w,€)) satisfies for any (w,€) € A
(2.2.12) L,v+ef + eVyPa(v,e) =0,
where f = f'+ f",

(ii) The function v’ satisfies for any (w,e) € A

(2.2.13) Lov +ef + eVytba(V', f7 w,e) = 0.

Proof: Let us write (2.2.12) as the following system

Lov +ef + eV ®a(v', 0", €) =0

2.2.14
( ) Lv" + ef” + eV ®a(v',0" €) = 0.

We look for a solution of the second equation under the form v” = —eL;'f” + ew”. The new
unknown w” satisfies

(2:2.15) w" = =L,V @ (v, =L ' + ewe).

Let go > 0 be such that for any (v',h) € By(H?) x By(F?), any € € [0,1], any w € [1,2],
LYV i ®2(V by €)|| got2 < go/2. The fixed point theorem with parameters shows that there
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is 70 €]0,1] such that for any (v, f”) € Wy, any ¢ € [0,7], equation (2.2.15) has a unique
solution w” € By, (F712). We denote this solution by G(v/, f”,w,€). This is a smooth function
of (v/, f"") € W,, with C! dependence in (w,€). If moreover (v/, f") € H* for some s > o, it
follows from (2.2.15) that w” € F**2 (using that L' gains two derivatives in the F* scale). Let
us show that G belongs to ®>~2(W,, F°+2). By definition of G

Dy GV, ”,w,e):—Lgl(Id—eM”(v’ cw, ) LoD TIM (W 7w, €)

2.2.16

( ) Df”G(’U/, ”7(41, 6) == EL;I(Id — EM//(’U/ , W, E)L ) lMl/( f LW, G)L[ZI
with

(2.2.17) M, f",w,€) = (DyVyr®a)(v), €L " + €Ge)

M”(UI, f”, w, 6) = —(DUI/VUII‘I)Q)(U/, —eLglf” + 6G, 6).

Since @3 € C0(W,,R), when (v/, ") € W, N H® for some s > o, M" (v, f",w,€) (resp.
M'(v, f",w,€)) extends as an element of L(F7,F°') (resp. L(H" ,F)) for any ¢’ € [—s, s].
We choose 7o small enough so that for e € [0,70], €| M" (v, f”,w, €)L; || z(#7 F7) is smaller than
1/2. Let us check that G satisfies the first condition in definition 2.1.1. We may write the first
equation in (2.2.16) as

(2.2.18)
2N—1

Dy G, f" Z LY (eM" LY M — L e LYY N Ad—eM” LY~ (eM” LN M

and a similar formula for Dg»G. If N is chosen large enough relatively to s, and ¢’ € [—s, s],
(eM"L;Y)YNM' sends H®' to F, over which (Id — eM”L;')~" is bounded. Consequently, the
last contribution in (2.2.18) is in F5*2 C F 7'+2 The sum in the right hand side being bounded
from H? to Fo 12 for any o’ € [—s, 5], we get the same property for D,G. We argue in the same
way for D¢»G. To check the second condition in definition 2.1.1, we compute from (2.2.16), for
(h1,h2) € H' x H?

D2GW, f" w,€) - (h1,ho) = =L *(Ad — eM"L;Y) 1 [(Dy M’ - hy) - ho)
L

SHad —eM" LY N eDy ML - hy)(Ad — eM” LY M - hy.
If {o1,09,03} = {0/, —0’, max(0yp, 0’)}, the assumption on ® implies that D, M’ (resp. D, M")
sends H! x H?2 (resp. H! x F°2) to F~93. Using expansions as in (2.2.18), we conclude that
if (h1,h2) € H' x H2, D2G(V, ", w,€) - (h1,h2) € F~9%2. One studies in the same way
Dy DG, D]%//G. Since smoothness of DG, D?G in (v/, f") € Wqﬂﬁs, as well as C'' dependence
in (w,€) are clear, we conclude that G € ®°~2(W,, F712).

Let us obtain the equivalent form (2.2.13) of equation (2.2.12) or (2.2.11). By (2.2.9), (2.2.10)
1
O (v, 0" w, €) + ePo(v', 0", €) = 3 /(va/)v/ dtdx + e/f/v/ dtdx

1
—1—2 /(va )v”dtdx—i—e/f” "dtdz + ePo(v', 0" €).
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We plug in this expression the solution of the second equation in (2.2.14), namely we set v/ =
—eL;Nf" + GV, f",w,€). We get after simplification the function

1
U, f" w,e) = 3 /(va’)v’ dtdz + e/f/v’ dtdx

2
_% /(L(_Zlf”)f” didz + 61/)2(1)/, //7 w, 6)
where
(2.2.19) bal, ") = 5 / G(LoG) dtde + B(v), LS f" + ¢G, €).

Note that the integral in (2.2.19) is the composition of the function defined on F7 by w” —
[ w" (L,w") dtdz, which is an element of C°2(F° R), with the map

W, f") = G, [ w,e)
7_70 N j:~0—i—2
which is an element of ®>~2(W,, F°+2). By lemma 2.2.3, we conclude that 1» € C°0(W,, R).

Since G is defined as the critical point (up to an affine change of variables) of v/ — (®; +
e®9) (v, 0", w,€), and since ¥ is the corresponding critical value, we see that v’ solves the first
equation (2.2.14) if and only of V, U (v/, f” ;w,€) = 0. This gives equation (2.2.13). O

We finish this subsection with a lemma that will be useful in the sequel. Let X be an open
subset of H70(S! x T4 R?), ¢ an element of C>°?(X;R). For v € X NH™, wy,ws € HT>®, we
set

(2.2.20) L(v;wy, ws) = D% (v) - (wy, ws).

This is a continuous bilinear form in (wy,ws) € H® x H°, by the definition of C>*?(X;R). By
Riesz theorem, we write it

L(v;wy,we) = / (W (v)wr)ws dtdx
StxTd

for some symmetric H%-bounded operator W (v). Since definition 2.2.2 implies that v — D% (v)

is a smooth map on X with values in the space of continuous bilinear forms on H° x H°, we

know that v — W (v) is smooth with values in £(H°, H°). Consequently, we may write for

j=1,...,d

L(v; 0z w1, wa) + L(v; wi, Op;wa) = —/ (0, W (v)) w1 )wo dtdx

St xTd
= —(0pL)(v; w1, w2) - (Oz,;v)

(2.2.21)

for any v € X NHT>, wy, wy € HT™.

We denote by C[Xq; a € N% the space of polynomials in indeterminates X, indexed by elements
of N, If Xk1... X% is a monomial, its weight will be defined as ki|on|+- -+ k¢lag|. The weight
of any polynomial is then defined in the natural way.
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Lemma 2.2.5 For any N € N, any £ € N, there is a polynomial Q% € C[Xa; € N9, of weight
less or equal to N, and for any q > 0 a constant C' > 0 such that, for any v € By(H)NHT>®*NX,
any hi, ..., he in HT>®, any n,n’ € 74

T O5W (v) - (R, ., he) T || £ 00y <
(2.2.22) ¢

_N o
C(n —n) > 3o (18I0 )a) TT Ierllygoo -
No+-++Ng=N =1

Proof: Since II,, = II_,,, we may write for any wy,ws € HT>

(nj —nj}) /(HnW(v)Hn/wl)wg dtdz = (n; — n’;) L(v; Tpwy, TT_pws)

= 1[L(v; Og; Iy wy, T1_pwa) + L(v; Iyrwy, O 1 pw2)]
= —i(avL)(U; Hn/wl,H_nwg) . (8xj11)
by (2.2.21). Iterating the computation, we get for
(n — n,>N’/(HnW(U)Hn/UJ1)w2 dtdm’
an estimate in terms of quantities
(L) (0 Ty, T wg) - (9%, ., %)
with |ai| + -+ |ap| < N. By the properties of L, this is bounded from above by
P
Cllrws || 2 [T pwa| g2 [T 19 vll3e0

p'=1

when v stays in a fixed H?°-ball. This implies (2.2.22) for £ = 0. The proof for general ¢ is
similar, up to notations. O

2.3 Reduction to a para-differential equation

Proposition 2.2.4 allowed us to reduce equation (2.2.6) (or its equivalent formulation (2.2.8)) to
(2.2.13), which is an equation for an unknown belonging to the space H°(S! x T¢;R?). Since
f = f"+ f"” will be fixed, we no longer write the f” dependence in the function 1y defined in
proposition 2.2.4. Moreover, since, in the rest of the paper, we will study only the equivalent
formulation (2.2.13) of our initial problem, we drop the primes i.e. we study

(2.3.1) Lov+ef + eVytha(v,w,e) =0

where v € By(H (St x T4 R?)), f € H(SH x T4 R?), by is in C°0(B,(H?),R) for some
o € [oo,s], ¢ > 0 and for € € [0,7], with 7o €]0, 1] small enough. We shall use the equivalent
norms (1.2.7) and (1.2.8) on the spaces we consider.

Our objective in this subsection is to rewrite the non-linearity in (2.3.1) using para-differential
operators.
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Proposition 2.3.1 Let ¢ >0, 0 > 09 +d+ 1 be given. Denote
(2.3.2) r=oc—oy—d—1.

There is an element V € ¥(0,0,q9) ® Ma(R), symmetric, and an element Re Ror(0,0,9) @
M (R), with C' dependence in (w,€), such that, for any v € By,(H?), any € € [0,70], w € [1,2]

(2.3.3) Voo (v,w, €) = V(v,w, €)v + R(v,w, €)v.

We introduce some notations for the proof. For p € N, v € HO(S' x T4 R?), we set

Apv = Z IL,v, p>1, Agv = v
nezd
2P—1<|n|<2P
(2.3.4) p—1
Spv = Z Apyv = Z v, p>1, Sov =0.
p'=0 nezs
|n|<2P—1

We consider also the frequency cut-offs defined for n,n’ € Z¢ by

(2.3.5) S(n,n’) = > IL,yr.

[n”’|<2(1+min(|n],[n']))

Lemma 2.3.2 Let 0 > oo +d+ 1, ¢ > 0. There is a map (v,w,e) — W(v,w,¢€) defined for
v € By(H?), € € [0,7%)], w € [1,2], with values in the space of bounded symmetric operators on
HO(ST x T4 R?), which is C*® in v and has C' dependence in (w,€), such that for any (v,w, €)

(2.3.6) Yo (v, w, €) = / [W (v, w, €)v]v dtdz

StxTd
and such that the following estimate holds: There are for (¢, N) € N x N polynomials Q% €
C[Xqa;a € N], of weight less or equal to N, and there is for any M € N, any ¢ € N, a constant
C, depending only on £,q, M, such that for any v € B4(H?), any € € [0,70], any w € [1,2], any
(QO,al) € NQ} ap+ay < 17 any (h’la . '?h’ﬁ) € (HJ)Z} any ’I’Z,TLI € Zd

1,080 08 DSW (v,w,€) + (ha, ..., he) || £ 200
(2.3.7) Y ¢

<C{n—n')" > QN (10%S(n,nYllreo)a) [T IS (a0 Ve |lyoos
No+--+Ne=M =1

Proof: We do not write w, e which play the role of parameters. Since 12 vanishes at order 3 at
v =0, and S,v — v in H? when p — 400, we write

+oo +o0o 1
wQ(U) = Z (w2(SP1+1v) - w2(splv>) = Z /O (an)(Splv + TIAmU) dry - Amv'
p1=0 p1=0
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Repeating the process, we get

+oo +oo

1,1
Po(v) = Z Z /0 /0 (82¢2)(Qp1,p2(7'1772)v) dra - (Ap, (Spy + 118, )v, Ay v) d7y

p1=0p2=0

where Qp, , (11,72) = [17-1(Sp, + 7¢A,,). By the discussion before lemma 2.2.5, there is a
symmetric operator W (v) satisfying (2.2.22), such that

0242 (v) - (w1, ws) = / (W (v)un]ws dtda.

We set
1 1 1 .
W) =5 S [ [ A0 W (@ (117200 Ay (S + 71850 iy
(2.3.8) N
+ 5 ZZ/O /0 Am (Spl + TlAPl)[W(QPLPQ (71>T2>U)Ap1] dridry.
p1 p2

This is a symmetric operator. We apply (2.2.22) to W. Because of the cut-offs in the argument
of W in (2.3.8), we may write IL, W (v)IL,, = IL,W(S(n,n’)v)Il,s. Consequently, (2.2.22) implies
(2.3.7). Note that since o > 0¢p+d+ 1, we may take some integer M > d, such that og+ M < o,
so that for v, hy in H7, the right hand side of (2.3.7) is bounded from above by C(n — n’>_M.
This shows that W (v) is indeed bounded on HP. O

Proof of Proposition 2.3.1: Let h; be in H*>°(S! x T¢;R?) and write

(2.3.9) Dio(v,w,€)-hy =2 (W (v, w, €)v)hy dtdz + ((DW(v,w,€) - hy)v)v dtdz.
StxTd Sl xTd
Define N
V=2 Z/ ]1‘"‘”"STI()(WH\H’I)H"W(”’ w, €)1l

Bounding in (2.3.7) [|0%S(n,n")v|ne0 by C|lv|ne when |a|] < M < o — 0¢ and controlling
|S(n, 0" )he ||, 00+n, by Cllhelloo+m, We obtain that V satisfies estimates (2.1.1) i.e. is an
element of U”(0,0,q). Let us show that the remaining terms in (2.3.9) give contributions to the
last term in (2.3.3). Set

Rl(va w, 6) =2 Z Z HTLW(Ua W, 6)1_[77/]l|n—n’\>flo(|n|+\n’|)‘
n pf

We estimate

(2.3.10) Hnnagoaglafm (0,w,€) + (his. .., he)TLy

L(HO)

using (2.3.7) with M > ¢ — ag. Since ||S(n, n')w|yoo+s < C(1 + inf(|n|, [n/]))F+o0=)+ ||w]|3e,
we get for (2.3.10) the upper bound

14
O+ [n| + )" (1 + inf(|n], |n' )0~ T lIhellne
=1
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Taking M large enough, we deduce from that the boundedness of Ry (v, w, €) and of its derivatives
from H® to H¥T(@=0=d=1) for any s > og i.e. Ry € Ror(0,0,9).

We treat next the last contribution to (2.3.9), defining an operator Ra(v,w, €) by
(2.3.11) / (DWW (v,w,€) - hyo]w didz — / [Ro (v, w, )w]h dtde

for any h,w € HT>. In the left hand side, we decompose the last v as >, IIyv and w as
>, pw. We bound the modulus of (2.3.11) by

(2.3.12) > Y L DW (v,w,€) - AL || 2340y | T 240 | w30

n n/

To show that Ra(v,w, €) is bounded from H® to H5*", we bound ||IL, w0 < ¢p(n) ™ *||w||xs, for
a 2-sequence (c,), and take h € H~5". We use (2.3.7) with £ = 1. We bound

QN (1078 (1 Ylle70)a) 1S (1Yl pgog ey < C(L + inf([nl, | [)) =540 Bl |-
since v is bounded in H?. Consequently, the general term of (2.3.12) is smaller than
(2:3.13)  Cfn—n")" (L +inf(nf, [/ (n) = cp el [llpgs—r ()70 110

for some ¢*-sequence (c),),. Taking M = d + 1, and using the value (2.3.2) of r and s >
0,0 > 0, one checks that the sum in n,n’ of (2.3.13) converges. This shows the boundedness
of Ry(v,w,€) from H* to H5H". One treats in the same way 92004 0% Ry(v,w, €). Consequently
Ry € R&R(O, 0,q). This concludes the proof of the proposition. |

Let us conclude this section writing the equation we are interested in in complex coordinates.
By proposition 2.3.1, equation (2.3.1) may be written

(2.3.14) Lov+ef +€V(v,w,€)v+ eR(v,w,e)v = 0.

We write v = [1}] € R? and set u = vy +ivy, U= [4], I'=[§ % ].

Corollary 2.3.3 Let ¢ >0, 0 > 09 +d+ 1, r given by (2.5.2). There is an element V (U, w, €)
in U0(0,0,q) ® Ma(R) with V(U,w, €)* = V(U,w,¢€), there is R(U,w,¢) in R5(0,0,q) ® Ma(R)
such that equation (2.53.14) is equivalent to

(2.3.15) [(WI'Dy + (=A + p)I) + eV (U,w, €)]U = eR(U,w, €)U + €f

(where, abusing notations, we set f for [ﬁf%ﬁ])

Proof:  Write V(v,w, €) = (Vij(v,w, €))1<ij<2, R(v,w,€) = (R ;(v,w,€))1<ij<o and note that
(2.3.14) implies

(th - A + ,UJ)U = e(fl + Zf2) - E‘/il(UvuJ? E)U - E‘/lZ(anv E)
+eR11 (U, w, €)u + €R12(U, w, €)

N

(2.3.16)

N
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if we set
1~ o~ o~ -
Vii = _5[‘/11 + Vag + (Va1 — V)]

1- - -
Vig = —5[‘/11 — Vag + (Va1 + Vi2)]
(2.3.17)

R = [En + Ryy + i(ém - fiu)]

N =N =

Ria = =[R11 — Ros + i(Ra1 + R12)].

We define Vo1 = Vig, Voo = Vi1, Ra1 = Riz, Roa = Ru1, V = (Vijhi<ij<o, R = (Riji<ij<o-
Since 'V = V and V = V, we see that V* = V and (2.3.16), (2.3.17) imply (2.3.15). This
concludes the proof. O

3 Diagonalization of the problem

The goal of this section is to deduce from equation (2.3.15) a new equation where, up to remain-
ders, V(U,w,€) will be replaced by a block diagonal operator relatively to the decomposition
HO = @, Range(Il,) coming from (1.2.5). This is the key point, that will allow us to avoid
using Nash-Moser methods in the construction of the solution performed in section 4.

3.1 Spaces of diagonal and non diagonal operators

Definition 3.1.1 Letc e R, NeN, 6 >090+d+1+2N, meR, ¢ >0.

(i) One denotes by X (N, c,q) the space V" (N, c,q) @ M2(R). Abusing notations, we also write
Ry(N,0,q) for Ry(N,0,q) @ Ma(R).

(it) One denotes by X5 (N, 0, q) the subspace of ¥ (N, 0, q) made of those elements A(U,w, €) =
(Aij(U,w, €))1<ij<2 such that Aja = A1 =0 and for any o,/ € A with o # o/

(3.1.1) ﬁaAH(U,w, e)ﬁa/ = O’ﬁaAQQ(U7CL)7 e)ﬁa/ =0.

(7i7) One denotes by X3 (N, 0,q) the subspace of ¥™(N, o, q) made of those elements A(U,w, €)
such that for any o € A

(3.1.2) A1 (U, w, )y = 0,y Age (U, w, €)Il, = 0.
Clearly, we get a direct sum decomposition X™(N,c,q) = X5 (N, 0,q) ® X{p(N, 0,q).

Definition 3.1.2 Let p €]0,1]. One denotes by L}'(N,0,q) (resp. L,"(N,0,q)) the subspace
of ¥™7P(N, 0,q) given by those A(U,w, €) = (Ai;(U,w, €))1<ij<2 satisfying

(3.1.3) A1, Ay € \I/m_p(N, o, q), A9, Ao € \I/m_Q(N, o, q)
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(resp. satisfying (3.1.3) and

Remark: It follows from the definition and from proposition 2.1.4 (ii) that if A € L] (N, 0, q),
B € L) (N,o,q) with 0 > 09 + 2N +d + 1+ (m1 +m2 — 2p)4, AB is the sum of an element of
E;"1+m2_p(N, 0,q) and of an element of Ry(N, o, q) with

r=oc—op—(d+1)—m; —mg+2p—2N.

Proposition 3.1.3 Let A(U,w,¢€) be self-adjoint element of X (N, 0,q). There is an element
B(U,w,e€) of L,"(N,0,q) such that

(3.1.5) BU,w,e)*(A—p)+ (A= p)BU,w,e) = A(U,w,€)
(where p is given by lemma 1.2.1, for a given 3 €]0, 15[). Moreover [A, B] is in ™ (N, 0,q).

a(U,w,e) b(U,w,e)

b(U,w, )" c(U,w,e)] with a* =a, c* = c.

Proof: By assumption, we may write A(U,w,€) = [

al(vave) bl(U7w76)
bl(U,W,E)* Cl(Uv("J?e)
—c1. Then the left hand side of (3.1.5) may be written

We look for B(U,w,€) =

] for some ay, b1, c; satistying a] = —a1,c] =

(3.1.6) [ ) (A, a1] ) (A = )by + b1 (A - M)} .
bi(A — ) + (A — p)by A, e

Consequently, we have to solve the equations

(3.1.7) [Aya1] =a, (A —p)br +bi(A—p)=0,[A 1] =c

The first equation in (3.1.7) is equivalent to

(3.1.8) (In')* = |n|*) a1 1L,y = Myall,, for any n,n' € Z¢.

Since A € X (N, 0, q), (ii) of definition 3.1.1 implies that the right hand side in (3.1.8) vanishes
if n,n’ belong to a same (2, of the partition of lemma 1.2.1. Consequently, we may define

(3.1.9) a(Uwe)= > > > (I = |n*) " "M,a(U,w, e)I1,,

a,0’ €EANEQa N EN
a#a’

If we use the second lower bound in (1.2.2) and definition 2.1.1, we see that a; satisfies (2.1.1)
with m replaced by m — p. Thus a; € Y™ ?(N,0,q), and by (3.1.9) and the fact that a* = a,
we get aj = —aj. The last equation (3.1.7) is solved in the same way.

We are left with finding b1 (U, w, €). The equation giving it is equivalent to
(3.1.10) —(Inf* + |0/ + 2u)Tby I,y = TL,b11,,0

Since by assumption p € Z_, we may always define b; by division. Coming back to defini-
tion 2.1.1, we see that we get an element of ¥~2(N, o, q), which is moreover self-adjoint. This
concludes the proof since (3.1.6) shows that by construction [A, a1], [A, ¢1] belong to ¥ (N, o, q),
and since Aby, b1 A and their adjoints are in ¥"*(N, 0, q). O
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3.2 Diagonalization theorem

The main result of this subsection is the following one, which gives a reduction for the left hand
side of equation (2.3.15).

Proposition 3.2.1 Let r be a given positive number and fix an integer N such that (N +1)p >
r+2. Let 0 € R satisfy

(3.2.1) c>00+2(N+1)+d+ 1+

Let ¢ > 0 be given. One may find elements Q;(U,w,€) in Ep_jp(j, 0,q9), 0 < j < N, elements
Vi (U,w,€) in 2577 (4,0,q), 0 < j < N —1, an element Ry (U,w,€) in R5(N +1,0,q), with C*
dependence in (w,€), such that if one denotes

N—

1 0
(3.2.2) QU,w,e) ;)Q]Uwe) VDUwezg D.j(U,w,€), I’Z[O _11’

one gets for any U € B,(H(S! x T4;C?))

(Id + €Q(U, w, €))*(wI'Dy + (—=A 4+ p)I + eV (U,w, €))(Id + eQ(U, w, €))

3.2.3
( ) =wl'Di + (—A+ p) + eVp(U,w, €) — Ry (U, w, €).

We shall prove proposition 3.2.1 constructing recursively ;, 0 < j < N so that (); may be
written Q; = Q) + Q' with
Q) € L,77(j,0.q), [A,Q)) €X7(j,09), j=0,....N
(3.2.4) Ve £,U0(50,q), [A,Q)) € x7UTP(j5.q), j=0,...,N—1
QN = 0.
We compute first the left hand side of (3.2.3).

Proposition 3.2.2 Let r,0, N satisfying (N + 1)p > r + 2 and (3.2.1). Let Q(U,w,e) =
;VZO Q;(U,w, €) be given, with Q; = Q’; + QY satisfying (3.2.4). There are elements

(3.2.5) Si(U,w,e) € £,9TV°(j,0,q), j=0,...,N -1 with [A,S;] € ~UT?(j,0,q)

where S; depends only on Q), 0 < <j, Q/,0<0<j—1;

There are elements '

ViU,w,e) € 277°(j,0,q), 0< j < N
with (V;)* = V;, V; depending only on Q¢ ¢ < j —1;
There is an element R € R5(N + 1,0,q) such that, if we set

N N—-1
VN (U w,e) =3 Vi(U,w,e), S¥(U,w,e) =Y S;(U,w,e),
j=0

N N
Q=Y Q) Q"=> Qf, Ly =wI'Di+ (-A+p)I,

J=0 J=0
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the following equality holds

(I1d 4 €Q)*[Ly, + eV](Id + €Q) = Lo, + VN + €[(SN)* Ly, + Lo (S™)]
(3.2.6) +e[ @™ (—A +p) + (A + 1)Q]
+€[Q" Ly, + LoQ"] + €R.

Before starting the proof, we compute some commutators.

Lemma 3.2.3 (i) One may find A; € X77°(j —1,0,q), 1 < j < N, A; depending only on Qy,
¢ < j—1 and satisfying A7 = Aj, one may find B; € £;(j+1)p(j,a, q), 0<j<N-1, By
depending only on Q), £ < j and Qf, ¢ < j —1 and satisfying [A, B;| € »=UtDr(4,0,q), one
may find R € R5(N +1,0,q), such that, if one sets A = Z;-Vzl A, B = Z;y:f)l B;

(3.2.7) (Q*,L.]Q + Q*[Lw, Q] = A+ B*L, + L B+ R.
(1) One may find A; as above for 1 < j < N, B; € L';(jH)p(j,a,q), 0 <j<N-1,
satisfying [A, B;] € S=UtVP(5.5,q), B; depending only on Q), £ < j, Q, £ < j —1, and

R e R5(N +1,0,q) such that, with the same notations as in (i),

(3.2.8) Q*L,Q=A+ B*L,+ L,B+R.

Proof: (i) Let us write
L, Q] = —[A, Q] + w[I'Dy, Q]
= —[A, Q] -+ WII[Dt, Q} + CU[I/, Q]Dt
= —[A, Q] +wI'[Dy, Q) + [I', QII'(A — p) + [I', Q|I' L.

The left hand side of (3.2.7) may be written

—Q*[A, Q)+ wQ*I'[Dy, Q) + Q*[I', QII'(A — )
(3.2.9) —[Q*, AlQ + w[Q", DII'Q + (A — w)I'[Q*, I'|Q
+Q* [, QI'Ly, + L, I'[Q*, T)Q.

Denote by ﬁi the sum of the first two lines in (3.2.9). Then A is self-adjoint and may be written
as Z?gf 2 Aj, where A;j is the sum of the following terms

(3'2'10) Z (*[Q;NA]QJQ - Q;z [A’QhD (] > 1)7
Jitge=j—1
0<j1,jo<N
(3.2.11) WY (@D Qi+ Q) DITQL)) (G2 2),
(RN
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(3:2.12) S Q@A — ) + (A= W IQ 1) (> 1),

Jitje=j—1

0<j1,j2<N
Let us check that we may write A; = A; + Ry j with A; in ¥77°(min(N + 1,5 — 1),0,q) and
Ry ; in Ry(min(N +1,j —1),0,q). Since E;j“’(jg,a, q) € -UtDe(5, 0,q), it follows from
(3.2.4) and from (ii) of proposition 2.1.4 that the general term in (3.2.10) may be written as a
contribution to A; plus a remainder belonging to Ry (min(V,j — 1), 0, ¢) with

rm=c—09g—2N—(d+ 1)+ Gi1+j+1p>r.
Moreover these contributions depend only on @y, ¢ < 7 — 1.

Consider the general term of (3.2.11). The second remark following definition 2.1.1 implies that
[Dt, Qj,] € E_(j2+1)p(j2 +1,0,q). Consequently, using again (ii) of proposition 2.1.4, we may
write (3.2.11) as a contribution to A;, plus a remainder belonging to R{' (min(N + 1,5 — 1), 0, q),
depending only on Qy, £ < j — 2.

Let us finally consider (3.2.12). If C' = (Cy;(U, w, €))1<i j<2 is an element of L'(N, 7,q), [I',C] =
[_20621 20012] belongs to X" 2(N, 0, q) according to (3.1.3). Consequently, the first term in the
sum (3.2.12) is given by the composition of an element in X~U1+DP(j;, o, q) and of an element in
$792P(jy, 0, q). Applying again proposition 2.1.4, we may write this as a contribution to A; plus
a remainder in Ry(min(N, j — 1), 0, q), depending only on Qp, ¢ < j—1. The second term in the
argument of the sum (3.2.12) is treated in the same way. This shows that the sum of the first two
lines in (3.2.9) contributes to A+ R in the right hand side of (3.2.7), since for j > N+1, A; isin
»~(N+Dp(N 41,0, ¢), hence in R(N + 1,0, q) by the inequality (N + 1)p > r and the remark
after the statement of definition 2.1.3. Let us show that the last line in (3.2.9) contributes

to B*L, + L,B + R in (3.2.7). We have seen above that since Q) is in Lp_jp(j, g,q) (resp.
—(+1)p, - : 0. .
Qj € Ep(]+ )p(j,a,q)), Q5T = [602 ] with e, € U9P72(j,0,q) (resp. [ I = [502 T ] with

ep € U=UHDP=2(5 5 ¢)). We set

Bi= Y ML Y QIR + (@11

Ji+i2=jJ Jit+je=j5—1
0<j1,j2<N 0<j1,j2<N
1T AR T AN
+ > I INQ,
J1+je=j—2
0<j1,72<N

Applying proposition 2.1.4, we decompose again Bj = Bj + Rj, where B; belongs to the
class Ep_(j+1)p(min(N,j), 0,q) (actually, B; is in ~U+DP=2(min(N, j),0,¢)) and R; belongs to
R (min(j, N), o, q) because of (3.2.1). Moreover, B; depends only on @), £ < j, QY, £ < j—1
and by construction, [A, B;] € »~U+DP(min(N, j),0,q). For j < N — 1, we get contributions
to B and R in (3.2.8), noting that R;L,, L,R; are in R5(N,,q). For j > N, Bj as well as R;
contribute to the remainder in (3.2.7) since (N + 1)p > r. This concludes the proof of (i).

(ii) We write . .
Q"Lo@Q = 51Q QLo + LuQ*Q] + 51Q7[Lu, Q) + (@7, Lu]Q)-
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By (i), the last term may be written as a contribution to the right hand side of (3.2.8). Let us
write the first term in the right hand side under the form B*L., + L,B + R. We write Q*Q as
the sum in j of

1% A /% 11 % 11 % I
Z Qj1 sz + Z (Qﬁ Q Q sz) + Z Q Qh'
Ji+je2=j Ji1t+j2=j5—1 Jitje=j—2
0<j1,j2<N 0<j1,j2<N 0<j1,j2<N

By (3.2.4) and the remark following definition 3.1.2, this may be written B; + R; with B; €
E;(]H)p(min(N,j),o, q) depending only on Qj, ¢ < j, Q, ¢ < j — 1, [Bj,A] belonging to
»~0+tDe(min(N, 4), 0, q), and with R; € R (min(N, ), o, ¢) with

ro=0—09g—(d+1)+(j+2)p—2min(j,N) > r + 2.
We obtain contributions to the right hand side of (3.2.8) when j < N — 1, and to the remainder

R when j > N since (N 4 1)p > r + 2. This concludes the proof. O

Proof of Proposition 3.2.2: We write the left hand side of (3.2.6)

Lo+ €V (U,w,€) +€[Q*(=A 4 1) + (—A + 1)Q']
+€[Q" Ly, + L,Q"
+€[Q*I'wDy + wI' Dy Q')
+ Q' LuQ + QY + VQ] + EQVQ.

(3.2.13)

The term V in (3.2.13) contributes to the V; component of V¥ in the right hand side of
(3.2.6). The first two brackets in (3.2.13) give rise to the last two ones in (3.2.6). To study
the contribution of Q*L,Q, we use (3.2.8). The B; component of B in the right hand side
of (3.2.8) contributes to the S; component of S in (3.2.6). Let us study the third bracket in
(3.2.13). By (3.2.4) and deﬁn1t10n3 1.2, we may write Q_; = [ 2 %] witha,c € ¥77°(j —1,0,q),

be U~U-1r2(j —1,0,q), a* = —a, ¢* = —c. This implies that

D Dy, b
Q;’JU’Dt—l-I/Dthfl = [ D, al D, ]1

_[Dt’ b*] _[Dt7 C]

is a self-adjoint operator belonging to ¥77°(j, g, q),

1 < 5 < N using the second remark after
definition 2.1.1. We thus get a contribution to V; in (3.2.6

6).

Finally, let us check that the last two terms in (3.2.13) may be written as contributions to V¥
and to R in the right hand side of (3.2.6). Actually, we may write Q*V + VQ + eQ*VQ as the
sum in j of
Qi AV+VQ,_ +Q] 3V +VQ;
+e Y Q@ VQJQ +e Y, (QFVQ, +QivaQy)

(3.2.14) J1+ie=7-2 Ji+ti2=3-3
Le Z Q//* Q;‘IQ‘
J1tje=j—4
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Using that Q) € »-UtDe(j,0,q), Qj € »-Ut2e(4.0,q), V € £9(0,0,q), we write (3.2.14) as
V;+ R;j where V; depends only on Q), £ < j—1, Q/, ¢ < j—2 and is in ¥ 7°(min(N,j — 1), 0,q)
and R; € R{(N,0,q). This concludes the proof. O

Proof of Proposition 3.2.1:  Let us construct recursively @7, 0 < j < N, Q7,0 <j <N —1so
that the right hand side of (3.2.6) may be written as the right hand side of (3.2.3). Assume that
Qo,-..,Qj—1 have been already determined in such a way that the right hand side of (3.2.6)
may be written

7j—1 N-1
Lo+eY Vpj+eY [SiLo+ L,Sy]
3'=0 i'=j
N
+e Y QN (A +p) + (—A+ p)Q]
Jj'=3
(3.2.15) N o
+e > [Q) Ly + LoQY)]
Jj'=3
N
+e€ Z Vir + €R.
Jj'=j

Write V; = [ & %] with a,b,c € V797(j,0,q), a* = a, ¢* = ¢ and define

Vbj =Y Ha[§2]1a, Vap,; =V;— Vb,
acA
Then Vp; € 25’7 (j,0,9), (Vb;)* = Vb, and Vap,j is in ¥ (4,0,9), (Vapj)* = Vap,;. More-
over Vxp,; depends only on Qg, ¢ < j— 1. We apply proposition 3.1.3 to find Q) € E’p_jp(j, 7,q)
such that Q;*(—A +u)+ (A + N)Q; = Vap,; and [A,Q;] is in X77°(j,0,q). In that way,
condition (3.2.4) is satisfied by Q;, and we have eliminated the jth component in the fourth
and sixth terms of (3.2.15). To eliminate the jth component of the third and fifth terms, we set
Qj = —8;,j <N —1, Q% = 0. Then condition (3.2.4) is satisfied by @7, and the definition is
consistent since S; depends only on Q, ¢ < j, @y, £ < j — 1. This concludes the proof. O

4 Iterative scheme

This section will be devoted to the proof of theorem 1.1.1. We shall construct a solution to
equation (2.3.15) — which is equivalent to equation (1.1.3) — writing this equation under an
equivalent form involving the right hand side of (3.2.3). The first subsection will be devoted
to the study of the restriction of the operator Lo + eVp(U,w,€) to the range of one of the
projectors II,. We shall show that, for (w,€) outside a subset of small measure, this restriction
is invertible. As usual in these problems, the inverse we construct loses derivatives. This will
not cause much trouble, since proposition 3.2.1 allows us to write the equation essentially under
the form (L, + ¢Vp(U,w, €))W = Ry (U, w, €)W for a new unknown W. Since R; is smoothing,
it gains enough derivatives to compensate the losses coming from (Zw + €Vp)~!. Because of
that, we may construct the solution using a standard iterative scheme.
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4.1 Lower bounds for eigenvalues

Let 7o €]0,1],0 € R,N € N,¢ € Ry such that 0 > 09+ ¢+ 2(N + 1) +d + 1. We denote by
E7(¢) the space of functions

(tv Z,w, 6) - U(t7 z,w, 6)

4.1.1
(4-L1) St x T4 x [1,2] x [0, 0] — C2

which are continuous functions of w with values in H°(S* x T%; C?) and C* functions of w with
values in H°¢~2(S! x T¢; C?), uniformly in € € [0,~0]. We set

(4.1.2) 1Ulle(e) = sup UG w,e)lwe +  sup [|0U (s w, €)llpgo—ce.
(w,0)€[1,2]% [0,70] (w,0)€[1,2]x [0,70]

If TI,, is the projector of HO given by (1.2.5), we set F, = Range(Il,), Do = dim F,,. By (1.2.4)
and (1.2.6), Dy < C1(n())?*™ for some Cy > 0. We define for U € £7(¢), w € [1,2], € € [0, 0]

(4.1.3) Ao (w; U, €) = Ho(Ly, + €V (U, w, €))L,

This is a self-adjoint operator on F,, with C' dependence in w, since it follows from the expres-
sion (3.2.2) of Vp, condition (2.1.1) in the definition of (N, g, ¢), the fact that 9, U € H <2,
and the assumption made on o, that w — ﬁaVD(U(t, T, W, €),w, e)ﬁa is C'. The main result of
this subsection is the following:

Proposition 4.1.1 For any p € R — Z_, any q > 0, there are vy €]0,1], Cy > 0, Ag C A
a finite subset, and for any U € £7(C) with ||U|go¢) < g, any € € [0,70], any o € A, the
eigenvalues of A, form a finite family of C' real valued functions of w, depending on (U, €),

(4.1.4) w— A (w;Uye), 1 <0< D,
satisfying the following properties:

(i) For any o € A, any U,U" € H with |U||ne < q, [U||ne < q, any £ € {1,..., Dy}, any
€ € 0,7], any w € [1,2], there is £’ € {1,..., Dy} such that

(4.1.5) N (@3 U, €) = X w3 U, )] < Coe|U — U o

(ii) For any a € A— Ao, any U € £7(C) with |Ul[go(¢) < q, any € € [0,70], any £ € {1,..., Dy},
either

(4.1.6) Cylin(a))? < %(w; U, e) < Co(n(a))? for any w in [1,2],
(4.1.7) —Co(n(a))? < %(w; U,e) < —CyHn(a))? for any w in [1,2].

(iii) Denote for 6 €]0,1], € € [0,70], « € A, U € £7(() with ||U||go(¢) < g,

(4.1.8) I(a,Uyje,0) ={w € [1,2;V0 € {1,..., Dy}, | A (w; U, €)| > §(n(a)) "¢},
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Then there is a constant Ey, depending only on the dimension, such that for anyw € I(a, U, €,0),
Ay (w; U €) is invertible and

1Aa(w; U, &) M| 20y < Eod ™ (n(a))®

4.1.9
L) 100 Aa(w; U, €) | 2oy < Eod 2 (n(a))**2.

Proof: The proof of such a result is quite classical, and may be found in the references given
in the introduction. For the sake of completeness, we give it in detail.

(i) By construction, 4, is a self-adjoint operator, acting on a space of finite dimension D,.
Moreover, A, is a C! function of w if U € £7(¢). By a theorem of Rellich (see for instance
theorem 6.8 in the book of Kato [18]), we know that we may index eigenvalues of that matrix
so that they are C! functions of w, A\}(w;U,e), 1 < £ < D,. Moreover, if B and B’ are
two self-adjoint matrices of the same dimension, for any eigenvalue A\¢(B) of B, there is an
eigenvalue Ay (B’) of B’ such that |A\;(B) — A\p(B’)| < ||B — B’||. Combining this with the fact
that U — A (w; U, €) is lipschitz with values in £(H"), with lipschitz constant Ce, we get (4.1.5).

(ii) Set
A% (@) = {£jw + [n* + 1155 € N,n € Qa, Ky (n(a))? < j < Ko(n(e))?}
so that the spectrum of Il LTI, is A% (a) U A (). The difference between an eigenvalue in

AY (), parametrized by (j,n), and an eigenvalue in A% («), parametrized by (j',n’) (j > 0, <
0) is bounded from below by

w(j —5) + Inf = 0| > 2K5 (n(a))? - 0 — Cln(a))’

by the first estimate (1.2.2), for some C > 0, 8 €]0, ;5[ If we take the subset Ay large enough,
we get that when o € A— Ay, the difference between such two eigenvalues is bounded from below
by K, Yn(a))?. Consequently, if 0 < e < o small enough, the spectrum of A, may be split in
two subsets Ay () UA_(a) whose distance is bounded from below by %K(;l(n(a))Q. Let T be
a contour in the complex plane turning once around A9 (), of length O((n(« ))?), such that the
distance between I' and the spectrum of L® = I, L,II, is bounded from below by ¢(n(a))?, and
such that A% () is outside T'. If ¢ is small enough, this contour satisfies the same conditions
with A9 (a) replaced by A+(a) and L2 replaced by A,. The spectral projector IIT (w) (resp.
IT}0) associated to the eigenvalues Ay () (resp. AY () of Ay (resp. L) is given by

1

(4.1.10) I (w) = 5im

(67

/ (Cld — A,)~Ldc, TiA0 = / (¢l — L&)~ dc.

2

Note that the second projector is just the orthogonal projector on
Veet {e0479): € O, K M n(a)? < j < Ko(n(a)?},

so is independent of w. Write

1

4.1.11 I (w) = IF0 =
( ) (w) %in

« «

[ (€1d = 40) (40 - E2)(C1a - L) dc.
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Using (4.1.3) and the definition of L2

140 = L £y + 100(Aa = L) £y < Ce
190 Aall () + 100 Ll () < Cnle)™.

Consequently (4.1.11) implies

L5 (@) = I 2y < Celn(a)) ™
10 IL (@)l 2(ry = 100 (T (w) = IO | () < Celn(e)™>.

@
Writing
I3 () AaTlF (W) = (T (w) = ) ATl (w) + 150 (A — LTI (w)
HISOLE (I (w) - TI50) + T O LI
we obtain that
(4.1.12) 100115 (W) Aallf () = IE LI 21, < Ce.

Let I be an interval contained in [1, 2] over which one of the eigenvalue Ay (w; U, €) of the matrix
I} (w)Aq (w; U, )} (w) has constant multiplicity m, denote by P(w) the associated spectral
projector. Then P(w) is C' in w € I and satisfies P(w)? = P(w), whence P(w)P'(w)P(w) = 0.
We get therefore for

1
A (w; Uye) =

—tr[P()II] () Ao (w; U, )11 () P(w)]

«

the equality .
O (Wi U, €) = —tr[P(w)8, (IIF (w) Aa (w; U, €)ILF (w)) P(w)].

m «

By (4.1.12), we obtain

1 o~ -
(4.1.13) DA (w; U, €) = —tr[P(w)d, (ITPLAITEO) P(w)] + O(e).

m
Since ITIOLOTIE0 is by definition of L a diagonal matrix with entries jw + |n|* + p, n €
Qo, Ky'(n(a))? < j < Ko(n(a))?, we see that (4.1.13) stays between K '(n(a))? — Ce and
Ko(n(a))? + Ce. This implies (4.1.6) if € € [0, 7] with 7o small enough. The case of eigenvalues
corresponding to A_(«) is treated in a similar way, and gives (4.1.7).

(iii) The first estimate in (4.1.9) follows from the fact that the eigenvalues Ay (w;U,¢€) of A,
satisfy the lower bound given by the definition of (4.1.8). The second estimate is a consequence
of the first one and of the fact that ||0,Aq(w; U, €)|£n0) < C(n(a))* by definition of A,. This
concludes the proof. O
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4.2 Tterative scheme

This subsection will be devoted to the proof of theorem 1.1.1, constructing the solution as the
limit of an iterative scheme. We fix indices s, o, N, (,r, d satisfying the following inequalities

c>00+2(N+1)+d+1+r r=(

(4.2.1)
(N+Dp>r+2, s>0+(+2, d€]0,d],

where g > 0 will be chosen small enough. We also assume that the parameter p is in R — Z_.
We shall solve equation (2.3.15) when its force term f is given in H*T¢(S! x T¢;C2). To achieve
this goal, he main task will be to construct a sequence (G, Ok, ¥k, Ug, Wy), k > 0, where Gy, O,
will be subsets of [1,2] x [0, §2], 1% will be a real valued function defined on [1, 2] x [0, 6], Uy, W
will be functions of (t,z,w,¢) € S' x T? x [1,2] x [0, 2] with values in C2. At order k = 0, we
define

Uy=Wp=0

4.2.2
422 = {(w, ) € [1,2] x [0,70); Jov € Ao, I € {1,..., Dy} with |\ (w; 0, €)| < 26}

using the notations of proposition 4.1.1. For any e € [0, 9] we denote by Op ., the e-section of
Op and set

Go = {(w,e) € [1,2] x [0,%]; d(w, R — Og,c) 2 850(’)}

where C(j > 0 is a constant such that for any o € Ag, any ¢ € {1,...,D,}, any (w,€) €
[1,2] x [0,7)], [0uAF(w;0,€)] < Cj. Then Op is an open subset of [1,2] x [0,70] and for any

€ [0,70], Go, is a closed subset of [1,2], contained in the open subset Op.. By Urysohn’s
lemma, we may for each fixed e construct a C! function w — vg(w, €), compactly supported in
Oo.e, equal to one on Gy, such that for any w,e, 0 < ¥g(w,€) < 1, |dubo(w,€)] < C1571 for
some uniform constant C depending only on Cj.

We denote by

(4.2.3) S = > I, k> 1.
acA;(n(a))<2k

Proposition 4.2.1 There are 6o €]0, /70|, positive constants C1, By, By and for any k > 1, any

5 €]0, 0], a 5-uple (Gy, O, Vi, Ux, Wi) satisfying the following conditions for any § €]0, do]:
O, = {(w,€) €[1,2] x [0,6%];3a € A — Ay with 2871 < (n(a)) < 2%,

(4.2.4) 30 e {1,...,Dy} with |\ (w; Up_1,€)| < 20275},

G = {(w.) € [1,2) % [0,57) d(w, R — Oy ) > 27+
0

where Cy is the constant in (4.1.6), (4.1.7);
Ur 2 [1,2] x [0,0?] — [0,1] is supported in Oy, equal to 1 on Gy,

4.2.5
( ) Clinw and for all (w,€), |0,k (w,€)| < %Qk(CH);
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The function (t,x,w,€) — Wi(t,z,w,€) is for any € € [0,0%] a continuous function of w with
values in H*(S' x T9;C?), which is a C' function of w with values in H*~~2(S! x T4 C?)
satisfying

€

5

uniformly in € € [0,6%],w € [1,2],8 €]0,8]. Moreover, for any (w,¢) € [1,2] x [0, ?] —U],z,:() O,
Wi solves the equation

(4.2.6) Wiy w, ) lles + 8]0 Wil @, €)lpgo—c2 < By

(Lo + VD (Ug—1,w, €)) Wi =S (1d + €Q(Uk—1,w, €))* R(Ug—1,w, €)Up 1
(4.2.7) + eSk[R1 (Up—1,w, €)Wi_1]
+ eSk(1d + eQ(Up—1,w,€)" f
where R is defined by the right hand side of (2.3.15) and Q,Vp, Ry are defined in (3.2.2), (3.2.3);
The function Uy is defined from Wy by
(4.2.8) U(t,z,w, €) = (Id + €Q(Ug—1,w, €)) Wy
and it satisfies

Uk — Up_1|lpe < 232§2—k<
(4.2.9)

€
1Uk(s @, )lles + 810Uk (s w, €)llpge—c-2 < Bas
uniformly for w € [1,2], ¢ € [0,6%],8 €]0,do]. Moreover

(4.2.10) Wi — Wil < 32§2—k<.

Remark: Note that since we assume ¢ < 62, the second estimate (4.2.9) implies, with the
notation introduced in (4.1.2), the uniform bound

(4.2.11) 1Ukllecey < @
for some gq.

Let us write the equation for Uy following from (4.2.8) and (4.2.7). Because of the uniform
estimate (4.2.11) for Uy_1, if 0 < € < §? < §3 with § small enough (Id + eQ(Uy_1,w, €))* is
invertible for any (w,€) € [1,2] x [0,52]. If we write
(Lo + €V (Up—1,w, ) Uk = (L + €V (Up—1,w,€))(Id + €Q(Ug—1,w, €)) Wi
and if we use (3.2.3) multiplied on the left by (Id 4+ €Q(Ug_1,w, €)*)~! and (4.2.7), we get
(4.2.12)
(Lo + €V (Up_1,w,€))Us = e(Id + €Q(Ug_1,w, €)*) [Sp(Id + €Q(Up_1,w, €)*)R(Up_1,w, €)Up_1
+Sk Ry (U1, w, ) Wi_1
+Sk(Id + €Q(Uy—1,w, €)*) f
*Rl(Uk—lawa E)Wk]
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for any (w,€) € [1,2] x [0,82] — UX_q O, 6 € [0, 80].

Proof of Proposition 4.2.1: 'We assume that (G, Ok, ¥, Uk, Wi) have been constructed satis-
fying (4.2.4) to (4.2.9), and shall construct these data at rank k£ + 1, if d is small enough and
the constants C7, By, By are large enough.

The sets Ok11, Giy1 are defined by (4.2.4) at rank k+ 1 as soon as Uy, is given. Then for fixed e,
Gl41,c is a compact subset of the open set O ., whose distance to the complement of Oy 1 .
is bounded from below by ﬁZ_(kH)(C*'Q). We may construct by Urysohn’s lemma a function

Yp1 satisfying (4.2.5) at rank k+ 1. Let us construct Wy for (w,€) € [1,2] %[0, 6% —U’,j?;lo Gy .
Since Vp(Ug,w,€) is by construction a block-diagonal operator, we may write equation (4.2.7)
at rank k 4 1 as the following system of equations:
(Lo + eV (Ug, w, ) o Wii1 = ellySp1(Id 4+ €Q(Ug, w, €)*) R(Ug, w, €) Uy
(4.2.13) +€ﬁa§k+1R1(Uk,w,€)Wk
+€ﬁa§k+1(1d + eQ(Ug,w,€)) f
for any a € A. If (n(a)) > 2k+1,jhe right hand side of (4.2.13) vanishes by definition of Sk 1,

so that we may set in this case II,Wy11 = 0 by definition. Let us solve (4.2.13) for those «
satisfying (n(a)) < 2F*t1. We shall apply proposition 4.1.1, using the following lemma:

Lemma 4.2.2 There is 0y €]0,1], depending only on the constants By, Ba, such that for any
k>0, any k' € {1,...,k+1}, any 6 € [0,0], any € € [0,6?], any a € A — Ay with 2¥ <
(n(a)) < 2K +1

(4.2.14) [1,2] — G e C I(a, Ug,€,9),

where I(-) is defined by (4.1.8). The same conclusion holds when k' =0, o € Ay.

Proof: Consider first the case &' # 0. Let w € [1,2] — Op . Take £ € {1,...,Ds}. By (i) of
proposition 4.1.1 applied to (U,U’) = (Ug, Up—1), there is ¢’ € {1,..., D,} such that

IAZ (w3 Uk, €)] = [AG (w; U1, €) — Coel|Ux — Upr—1 1o
€2 2—k’(
§1—2C
where the second lower bound follows from the definition (4.2.4) of Oy and from (4.2.9). Since
€ < 6%, we obtain the lower bound

(4.2.15) ,
> 2627FC _ 204 B,

(4.2.16) NS (w; Uy, €)| > 252*’“/4

if we [1,2] — O and 6 € [0,0g] with g small enough. If w € Oy — Gy, we take @ €
[1,2] — Opc with |w —&| < g&-27F (2. By (4.1.6), (4.1.7), we know that for any U € £7(¢)
with [|Ullgo ) < ¢, any @ € A— Ag, any £ € {1,..., Da},

sup 0,3 (W3 U, €)] < Co(n(a))?.
w’'€(1,2]
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Enlarging Cp, we may assume that this inequality is also valid when a € Ay. By condition
(4.2.11), we may apply it when U = Uy. Using (4.2.16), we get since 22" < (n(a))? < 22('+1)
NG (w3 Uk, )] = [AG (@3 U, €)] = Co{n(a))w — @]
> 027%C > §(n(a)) .

When &' = 0, we argue in the same way, taking in (4.2.15) U,_1 = 0. This shows that w belongs
to I(c, Uk, €,0). O

To solve equation (4.2.13), we shall need, in addition to the preceding lemma, estimates for its
right hand side. Set

Hy1 (U, Wi) = Spy1 (Id + €Q(Up, w, €)*)R(Uy,, w, €) Uy,
(4.2.17) +Sk 41 R (Ug, w, €)Wy
+Sp1(Id + €Q(Uy, w, €)*) f.

Lemma 4.2.3 There is a constant C > 0, depending on q in (4.2.11) but independent of k,
such that for any w € [1,2], any € € [0,52], any & €0, &

(4218)  [[Hgp1 (Up, Wi)llpgs+c < CllIUR( w, €l + (Wi (- w, €)llns] + (1 4 C)[ fllpgse

|00 Hyg1(Us, Wie) [ s-2 < Cl| Uk (, w, €)llnes + 100Uk, w, €)[|pgs—c—2
+ Wk (s w, )ll0s + 10Wi (- w, €)llgs—c—2 + €l flls—2],
| Hyr1 (U, W) — Hy(Ug—1, Wi—1) | pgo+¢ < C[||Ug — Ug—1lle + |Wr — Wi_1|l0e]
27 C(IUkllre + [Wrllne) + (14 COl Fllpgo<]-

(4.2.19)

(4.2.20)

Proof: The operators R and R; belong to R5(N + 1,0, q) with r = (. By definition 2.1.3, and
because of the assumption (4.2.1) on the indices, they are bounded from H* to H*T¢. Moreover,
Q(Up,w, €)* is in WO(N, 0, q) ® Ma(R), so is bounded on any H*-space by lemma 2.1.2. This
gives (4.2.18).

To obtain (4.2.19), one has to study the boundedness properties of

aw[Q(Ukvwv 6)] = 8UQ('7W> 6) ' (8wUk) + an(Ukawv E)a
(4.2.21) Ow[R(Ug,w, €)] = OuR(-,w,€) - (0uUg) + 0uR(Ug,w, €),
Ou[R1(Uk,w,€)] = OuR1(-,w, €) - (0,Ux) + 0 R1 (Ug,w, €).

By (2.1.2), inequalities (4.2.1), and the fact that by (4.2.11) 9,Uj is uniformly bounded in
H5™¢=2 C H?, we see that the first line in (4.2.21) is a bounded operator on any space H*'. By
(2.1.3), and the assumption s > o + ¢ + 2 in (4.2.1), we see in the same way that the second
and third lines in (4.2.21) give bounded operators from H*™¢~2 to H*~2 and from H* to H**<.
This gives estimate (4.2.19).
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To prove (4.2.20), let us write the difference Hyy1(Uy, Wy) — Hi (U1, Wy_1) from the following
quantities:

(Sks1 — Se)(Id + €Q(Uy, w, €)")R(U, w, €)Uy,
(4.2.22) (Sps1 — Sp)R1(Up, w, €)Wy,

(Sk1 — S)(Id + €Q(Uy, w, €)) £,

Egk[Q(Ukvwv 6)* - Q(Uk‘—lawv 6)*]R(U]€,UJ, E)Uka
Sp(Id + €Q(Up_1,w, €)")[R(Uy, w, €) — R(Up_1,w, €)|Us,

(4.2.23) 5
Sk[R1(Uk,w, €) — R (Up—1,w, €)|Wy,
€§k[Q(Uk,w, 6)* - Q(Uk‘—lywv 6)*]f7
(4.2.24) Sk(Id + eQ(Uy—1,w, €)* ) R(Up—1,w, €)(Uy, — Ug_1),

SpR1(Up,w, €)(Wy, — Wi_1).

By (4.2.6) and (4.2.9), Uy, Wy, stay in a bounded subset of H” and R, R; act from H to Ho+C,
Using the cut-off Sy, — Sk, we see that the H°+¢ norm of (4.2.22) is bounded from above by
the last term in the right hand side of (4.2.20).

By (2.1.3), the £(H°, HT¢) operator norm of R(Uy,w,e€) — R(Ugx_1,w,€) and of Ry(Uy,w,€) —
R1(Uy_1,w, €) is bounded from above by C||Uy — Up_1|%o. By (2.1.2), the L(HH¢, HO+¢)-norm
of Q(Uy,w,€)* — Q(Ug_1,w,€)* is bounded by the same quantity. This shows that the H7+¢
norm of (4.2.23) is bounded from above by the right hand side of (4.2.20).

Finally, (4.2.24) is trivially estimated. This concludes the proof. O

End of proof of proposition 4.2.1: We have seen that ﬁaWkH is a solution to equation (4.2.13).
Let ¥ € {1,...,k+1} and a € A — Ag such that 2 < (n(a)) < 2¥*!, or ¥ = 0,a € Ay. Let

€ [1,2] — Gy e. By lemma 4.2.2 and proposition 4.1.1, the operator A, (w; Uy, €) is invertible,
ant its inverse satisfies estimates (4.1.9). For such w, we may write equation (4.2.13)

(4.2.25) ﬁaWk+1 = €Ay (w; Uy, E)_lﬁaHk_H(Uk, Wi).
AI/)plying estimate/(4.1.9), we obtain that for any ¥ € {1,...,k+ 1}, any « € A — Ay with
2K < (n(a)) < 2K*1 any (w,€) € [1,2] x [0,0%] — Gy (resp. for any a € Ag, any (w,€) €
[LQ] X [0752] - GO)

~ 6 ~
(4.2.26) IHaWii1( w, )l < Eos a1 (U, W) (-, @, €) [gse.

In the same way, one gets the estimate

~ 6 T
oo 100 Wi (@, )llpe—c-2 < BoslTad Hiy1 (Ur, W) (5w, €) o2
. . 6 I
+E057||HaHk+1(UkvWk)('?"U?e)HHS'*‘C‘
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We define Wy 1(t, 7, w, €) for any value of (w,€) in [1,2] x [0,6%] from (4.2.25) setting

k+1
Wii1(t, z,w,€) = Z Z (1 — g (w, €)) o Wiaq (t, x,w, €)
k'=1 acA-Ay
(4228) 2kl§<n(a)><2kl+1
+ 3 (1 — o) (w, )Mo Wi (¢, 7, w, €).
acAg

Note that the right hand side is well defined since (4.2.25) determines Il Wiy 1(-,w,€) on the
support of 1 — ¢ when (a, k') satisfy the conditions in the summation.

We combine (4.2.28), (4.2.26) and (4.2.18). Taking into account (4.2.6) and (4.2.9), we get
€
)
To bound the 0,-derivative, we use that by (4.2.5)

(4.2.29) [Wit1 (-, w, €)||s < Eo—<[C(By + BQ)g + || fll s+ (1 + Ce)].

~ Cy ~
10tk T Wiksallpgs-c-2 < = oW e

when 2% < (n(a)) < 28+ o € A— Ag if k' # 0, and when a € Ag if & = 0. We apply this
inequality together with (4.2.28), (4.2.27), (4.2.18), (4.2.19) and the uniform bounds (4.2.6),
(4.2.9), to get

€
5+ Cel flle—2]

[C(By + B2)% + (14 C) | fleo+c]
€

(52

€
10Wig1(-,w, €)]|pgs—c—2 < EOE [C(By + Bs)
€
52
+ EyCh

(4.2.30) + Ey

[C(B1 + Ba) 5 + (14 COlf lesc].

In (4.2.29), (4.2.30), C depends on the a priori bound given by (4.2.11), while Ey,C; are
uniform constants. Consequently, if we take B; large enough relatively to || f||3s+¢, Eo, C1 and
then e < §2 < 42, with &y small enough, we deduce from (4.2.29), (4.2.30) that (4.2.6) holds at
rank k + 1. The second estimate (4.2.9) at rank k + 1 follows, with for instance By = 2By, if
dp is small enough. We are left with establishing the first estimate (4.2.9) at rank k£ + 1 and
(4.2.10).

First let us bound Wy, — Wy. By (4.2.25), for k' € {1,...,k}, (w,e) € [1,2] x [0,6%] — G,
ac A— Ay, 2" < (n(a)) < 2+ or for (w,€) € [1,2] x [0,6%] — Go and o € Ay,

(Lo + Vo (Ug, w, ) aWii1 = e[l Hy 1 (U, Wi)
(Lo + Vo (Up_1,w, )T Wy, = elly Hy (Up—1, Wi_1)
whence the equation

(Lo 4 €V (Up, w, ) a(Wit1 — W) = ello[Vo(Up_1,w, €) — Vo (U, w, €)] Wi

(4.2.31) N
+ello[Hy1(Uk, Wi) — Hp(Ug—1, Wi—1)].
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We make act A, (w; Uy, €)1 on both sides as in (4.2.25). Applying inequality (4.1.9) we get

~ FEye
11, (W, — W, o < —
(4.2.32) [Tl (W1 K)o < 5

[T [Hy 1 (Ur, W) — Hip(Ug—1, Wie—1)] |l o<

[”ﬁa[VD(kala W, 6) - VD(Uk,O), 6)]Wk”7‘lg+c

This estimate holds outside Gy (resp. Go) when k' # 0, a € A — Ag, 28 < (n(a)) < 2K +1
(resp. a € Ap). By (4.2.28), we may write

(W1 = W)t ,w,€) = > (1= o) o (Wit — Wi)
acAy

k
+) > (1 — ) o (Wis1 — W)
(4.2.33) k=1 aEA—Ag
2 < (n(a)) <2k’ +1

+ > (1 = ps )T Wigr.

acA—Ay
2k 1 <(n(a))<2F+2

The 1% norm of the last term is bounded by Co2 %= || Wy, 1 ||l < 023152_k(5_”) by (4.2.6),
for some universal constant Cy. The H7-norm of the &’-sum in (4.2.33) may be estimated using
(4.2.32), (4.2.20) and the bound

(Vb (Uk—1,w,€) = Vb (U, w, €))Willpyo+c < Cl|Ux — Up—1|me [|Wil[ 75

which follows from (2.1.2), and where we used s > o + (. Using the induction hypothesis (4.2.9),
(4.2.10), we get

Wit — Willne < EOE[CBlng%ﬂC + 303%2*’64 + 027 K(By + Bg)g
(4.2.34) +(1+ Ce)| fllpoc27*]
+02B1§2_k(5_a).
Since s > o + (, we may take Bj large enough relatively to Ej s, and By large enough
¢ y g g y s [ fll#e, g g

relatively to Ca, By, and § < 6 < §p small enough, so that (4.2.34) is smaller than BQ§2_(k+1)C,
whence (4.2.10) at rank k + 1. Writing

U1 — Up = (Id + €Q (U, w, €)) (Wig1 — W) + €(Q(Us, w, €) — Q(Uk—1,w, €)) Wy

we deduce from that the first inequality (4.2.9) at rank k+ 1, for small enough e. This concludes
the proof of the proposition. O

Proof of theorem 1.1.1: By (4.2.9), the series 3" (U, — Ug_1) converges in H(S' x T%;C?) and
its sum U satisfies U € H*(S* x T%; C2?) with

€
1UC,9, 0l + 810U 0,€)ges-2 < Bos.

We have to check that U gives a solution to our problem outside a set of parameters of small
measure. Let (w,€) € [1,2] x [0,6%] — U2, O, 0 €]0,80]. Then equation (4.2.12) is satisfied for
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any k. We make k — +o00. Since we have uniform H?® bounds for U, W} and H? convergence
for these quantities, the limit U satisfies

(L, + €V(U,w,€))U = €R(U,w, e)U + f

that is equation (2.3.15). We have seen that this equation is equivalent to (2.3.14), which is, by
proposition 2.3.1, the same as (2.2.13). Since proposition 2.2.4 shows that, up to a change of
notations, this equation is equivalent to the formulation (2.2.6) of equation (1.1.3), we obtain a
solution satisfying the requirements of theorem 1.1.1. We still have to check that (1.1.5) holds
with O = U},%, O According to (4.2.2), the set Op is included in the set of those (w, €) such
that there are (j,n) in a given finite subset of Z2 such that |jw + |n|*> + | < 26. The w-measure
of this set is O(d), § — 0 (Note that since p & Z_, we may always assume j # 0). For ¥’ > 0,
Oy is the union for o € A — Ay with 281 < (n(a)) < 2¥ and £ € {1,..., Dy} of the set of
those (w, €) satisfying

IN (w3 Upi_y, €)] < 2627F¢.
By (4.1.6), (4.1.7) the w-measure of each of these sets in bounded by C{n(a)) 2627%¢ <
02~ (F+2)¢5. Since D, < C12F0442) by (1.2.4), (1.2.6), we obtain for the measure of the
e-section of O the bound

C io o—(K'+2)C+K (Bd+2)+K'd 5

k'=0

If we take ¢ > (8 + 1)d + 2, we obtain the wanted O(d) bound. This concludes the proof. O

A Appendix

We gather here some elementary results used throughout the paper.

Lemma A.1 Let s > %l + 1. Then ﬁS(Sl x T% C) ¢ L>. Moreover, if F is a smooth function
on St x T4 x C, satisfying F'(t,x,0) = 0, there is some continuous function 7 — C(7) such that

for any w € H*, F(-,u) € H* with the estimate || F (-, )|z, < C([lullpee)]lullz-

Proof:  Let ¢ € C°(]0,4+0c0), ¢ > 0, » = 1 on [1,2] be such that >/°°_ ¢(27%)\) = 1 for
A € R%, and define ¥(\) = 3  ¢(27%A). Consider for (j,n) € Z x Z4

(A1) r(j.n) = 9272 (% + [n|)?), k21

®o(j,n) = (5% + [n|H)"?)
Define for u € ﬁo, ke N

S ei(ti+kn)
Aju =3 ®r(j,n)a(j, ") Gy
(A.2) "
_ 1 . i(tj+kn)
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Then for any N € N

(A.3) (8, 7)) < O 22 8) (1 4 220t 1) 4 k(e — 1))~V
and u € H® if and only if (28%||Apul|2)y is in £2.

The first statement of the lemma follows from the inequality [|Agul/r~ < C'Qk(Hg) | Ak 2,

which is a consequence of (A.3) (for the kernel corresponding to an enlarged ®%). To get the
second statement, we consider first the case of a function F' that does not depend on (¢,z). We
set Sk, = > <1 Ar when k > 1, Sp = 0 and write

“+00

F(u) = Z(F(S;H_lu) F(Sku)) Z my(u) Agu
k=0

where my(u) = fol F'(Spu 4+ 7Agu) dr. It follows from the definition of Sy that this operator
is given by a convolution kernel obeying the same estimates as in (A.3). Consequently, for any

(o, ) € N x N%,
(A4) 10505 my (u)|| Lo < C22Ro RIS

with a constant depending only on ||u||z. One writes for some Ny € N to be chosen

J—1-No

k=j7—No

The L2mnorm of the second sum is bounded by ch2_js\|u||ﬁs for some sequence (c;); in the
unit ball of £2, and some C depending only on ||u||ze. If Ny is fixed large enough, because of
the support properties of the Fourier transforms,

Ajilmi (u) Agu] = A;[[(Id = ;N )mp(u)] Agul
when k£ < j — 1 — Ng. We estimate the L?-norm of this quantity by
(A.6) [(Id = S~ )l oo | Al 12

and use that for any N |[(Id — S;_ny)mkl|pe < On279N || PVmy| L where P = 9} + A? + 1.
It follows from (A.4) that (A.6) is bounded from above by Cn2~*U=FN||Aul| 2, from which
we deduce that the L?-norm of the first sum in (A.5) is also smaller than 02_j50j||u||ﬁs. This
concludes the proof for functions F' independent of (¢, x). In the general case, we note that since
u is bounded, we may always assume that I’ is compactly supported, and we write

F(t,z,u) = /Fluﬁb(txﬁ)dﬁ

where Fj(u,0) = ¢ — 1 and b(t,z,0) is the Fourier transform of u — F(t,x,u). Then it
follows from the above proof that Fi(u,0) is in H* with a bound [|F1(u, 0)( 5, < C(ON | for

some exponent N(s). Moreover, for any N, [|b(-,0)|/z, < Cn(0)™". We get the conclusion by

superposition. O
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Corollary A.2 Let F : S' x T x C — C be a smooth function with F(t,z,0) = 0. Then for
any o > % +1, u— F(-,u) is a smooth map from H° to itself.

Proof: We write
1 1
F(t,z,u+h) — F(t,z,u) — 0,F(t,z,u)h = / / (D?F)(t, z,u+ T 72h)7 - h? dridmo
0 JO

and we apply the lemma to D2F(t,z,u) — D?*F(t, x,0). O

Lemma A.3 e Let s> 3+ 1. Ifue H® and v € H for some o’ € [—s, 5|, then wv € H” .

o Forany o €R, 09 > 4 +1, HT - H~7 € H~max(oo0),
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