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ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN

RANDOM ENVIRONMENT

By Olivier Garet and Régine Marchand

University of Lorraine

The aim of this article is to prove asymptotic shape theorems for
the contact process in stationary random environment. These the-
orems generalize known results for the classical contact process. In
particular, if Ht denotes the set of already occupied sites at time t,
we show that for almost every environment, when the contact process
survives, the set Ht/t almost surely converges to a compact set that
only depends on the law of the environment. To this aim, we prove
a new almost subadditive ergodic theorem.

1. Introduction. The aim of this paper is to obtain an asymptotic shape
theorem for the contact process in random environment on Zd. The ordinary
contact process is a famous interacting particle system modeling the spread
of an infection on the sites of Zd. In the classical model, the evolution de-
pends on a fixed parameter λ ∈ (0,+∞) and is as follows: at each moment,
an infected site becomes healthy at rate 1 while a healthy site becomes in-
fected at a rate equal to λ times the number of its infected neighbors. For
the contact process in random environment, the single infection parame-
ter λ is replaced by a collection (λe)e∈Ed of random variables indexed by
the set Ed of edges of the lattice Zd: the random variable λe gives the infec-
tion rate between the extremities of edge e, while each site becomes healthy
at rate 1. We assume that the law of (λe)e∈Ed is stationary and ergodic.
From the application point of view, allowing a random infection rate can
be more realistic in modelizing real epidemics; note that in his book [15],
Durrett already underlined the inadequacies of the classical contact process
in the modelization of an infection among a racoon rabbits population, and
proposed the contact process in random environment as an alternative.

Our main result is the following: if we assume that the minimal value
taken by the (λe)e∈Ed is above λc(Z

d) (the critical parameter for the ordinary
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contact process on Zd), then there exists a norm µ on Rd such that for almost
every environment λ= (λe)e∈Ed , the set Ht of points already infected before
time t satisfies

Pλ(∃T > 0, t≥ T =⇒ (1− ε)tAµ ⊂ H̃t+⊂ (1 + ε)tAµ) = 1,

where H̃t =Ht + [0,1]d, Aµ is the unit ball for µ and Pλ is the law of the
contact process in the environment λ, conditioned to survive. The growth
of the contact process in random environment conditioned to survive is thus
asymptotically linear in time, and governed by a shape theorem, as in the
case of the classical contact process on Zd.

Until now, most of the work devoted to the study of the contact process
in random environment focuses on determining conditions for its survival
Liggett [31], Andjel [3], Newman and Volchan [33] or its extinction Klein [29].
They also mainly deal with the case of dimension d = 1. Concerning the
speed of the growth when d= 1, Bramson, Durrett and Schonmann [6] show
that a random environment can give birth to a sublinear growth. On the
contrary, they conjecture that the growth should be of linear order for d≥ 2
as soon as the survival is possible and that an asymptotic shape result should
hold.

For the classical contact process, the proof of the shape result mainly falls
in two parts:

• The result is first proved for large values of the infection rate λ by Dur-
rett and Griffeath [17] in 1982. They first obtain, for large λ, estimates
essentially implying that the growth is of linear order, and then they get
the shape result with superconvolutive techniques.

• Later, Bezuidenhout and Grimmett [4] show that a supercritical contact
process conditioned to survive, when seen on a large scale, stochastically
dominates a two-dimensional supercritical oriented percolation; this guar-
antees at least linear growth of the contact process. They also indicate how
their construction could be used to obtain a shape theorem. This last step
essentially consists of proving that the estimates needed in [17] hold for
the whole supercritical regime, and is done by Durrett [16] in 1989.

Similarly, in the case of a random environment, proving a shape theorem
can also fall into two different parts. The first one, and undoubtedly the
hardest one, would be to prove that the growth is of linear order, as soon
as survival is possible; this corresponds to the Bezuidenhout and Grimmett
result in random environment. The second one, which we tackle here, is
to prove a shape theorem under conditions assuring that the growth is of
linear order; this is the random environment analogous to the Durrett and
Griffeath work. We thus chose to put conditions on the random environment
that allow it to obtain, with classical techniques, estimates similar to the ones
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needed in [17] and to focus on the proof of the shape result, which already
presents serious additional difficulties when compared to the proof in the
classical case.

The history of shape theorems for random growth models begins in 1961
with Eden [18] asking for a shape theorem for a tumor growth model.
Richardson [35] then proves in 1973 a shape result for a class of models,
including Eden model, by using the technique of subadditive processes ini-
tiated in 1965 by Hammersley and Welsh [21] for first-passage percolation.
From then, asymptotic shape results for random growth models are usually
proved with the theory of subadditive processes, and, more precisely, with
Kingman’s subadditive ergodic theorem [27] and its extensions. The most
famous example is the shape result for first passage-percolation on Zd (see
also different variations of this model Boivin [5], Garet and Marchand [19],
Vahidi-Asl and Wierman [39], Howard and Newmann [24], Howard [23], Dei-
jfen [10]).

The random growth models can be classified in two families. The first
and most studied one is composed of the permanent models, in which the
occupied set at time t is nondecreasing and extinction is impossible. First of
all are, of course, Richardson models [35]. More recently, we can cite the frog
model, introduced in its continuous time version by Bramson and Durrett,
and for which Ramı́rez and Sidoravicius [34] obtained a shape theorem, and
also the discrete time version, first studied by Telcs and Wormald [38] and
for which the shape theorem has been obtained by Alves et al. [1, 2]. We
can also cite the branching random walks by Comets and Popov [9]. In these
models, the main part of the work is to prove that the growth is of linear
order, and the whole convergence result is then obtained by subadditivity.

The second family contains nonpermanent models, in which extinction is
possible. In this case, we rather look for a shape result under conditioning by
the survival. Hammersley [20] himself, from the beginning of the subadditive
theory, underlined the difficulties raised by the possibility of extinction. In-
deed, if we want to prove that the hitting times (t(x))x∈Zd are such that
t(nx)/n converges, Kingman’s theory requires subadditivity, stationarity
and integrability properties for the collection t(x). Of course, as soon as ex-
tinction is possible, the hitting times can be infinite. Moreover, conditioning
on the survival can break independence, stationarity and even subadditiv-
ity properties. The theory of superconvolutive distributions was developed
to treat cases where either the subadditivity or the stationarity property
lacks; see the lemma proposed by Kesten in the discussion of Kingman’s
paper [27], and slightly improved by Hammersley [20], page 674. Note that
recently, Kesten and Sidoravicius [26] use the same kind of techniques as an
ingredient to prove a shape theorem for a model of the spread of an infection.

Following Bramson and Griffeath [7, 8], it is on these “superconvolutive”
techniques that Durrett and Griffeath [17] rely to prove the shape result for
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the classical contact process on Zd; see also Durrett [15], that corrects or
clarifies some points of [17]. However, as noticed by Liggett in the Introduc-
tion of [30], superconvolutive techniques require some kind of independence
of the increments of the process that can limit its application. It is partic-
ularly the case in a random environment setting; for the hitting times, we
have a subadditive property of type

tλ((n+ p)x)≤ tλ(nx) + t̃nx.λ(px) + r(n,p,x).

Here, the exponent gives the environment, t̃nx.λ(px) the same law as the
hitting time of px but in the translated environment nx.λ, and r(n,p,x) are
to be thought of as a small error term. Following the superconvolutive road
would require that tλ(nx) and t̃nx.λ(px) are independent and that t̃nx.λ(px)
has the same law as tλ(px). Now, if we work with a given (quenched) en-
vironment, we lose all the spatial stationarity properties; t̃nx.λ(px) has no
reason to have the same law as tλ(px). But if we work under the annealed
probability, we lose the markovianity of the contact process and the in-
dependence properties it offers. We thus cannot use, at least directly, the
superconvolutive techniques.

Liggett’s extension [30] of the subadditive ergodic theorem provides an
alternate approach when independence properties fail. However, it does not
give the possibility to deal with an error term. Some works in the same
decade (see, e.g., Derriennic [11], Derriennic and Hachem [12] and Schürger
[36, 37]) propose almost subadditive ergodic theorems that do not require
independence, but stationarity assumptions on the extra term are too strong
to be used here. Thus we establish, with techniques inspired from Liggett,
a general subadditive ergodic theorem allowing an error term that matches
our situation.

In fact, we do not apply this almost subadditive ergodic theorem directly
to the collection of hitting times t(x), but we rather introduce the quan-
tity σ(x), that can be seen as a regeneration time, and that represents a time
when site x is occupied and has infinitely many descendants. This σ has
stationarity and almost subadditive properties that t lacks and thus fits the
requirements of our almost subadditive ergodic theorem. Finally, by showing
that the gap between t and σ is not too large, we transpose to t the shape
result obtained for σ.

2. Model and results.

2.1. Environment. In the following, we denote by ‖ · ‖1 and ‖ · ‖∞ the

norms on Rd, respectively, defined by ‖x‖1 =
∑d

i=1 |xi| and ‖x‖∞ =
max1≤i≤d |xi|. The notation ‖ · ‖ will be used for an unspecified norm.

We fix λc(Z
d)< λmin ≤ λmax <+∞, where λc(Z

d) stands for the critical
parameter for the classical contact process in Zd. Additionally, we restrict
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our study to random environments λ = (λe)e∈Ed taking their value in Λ =

[λmin, λmax]
Ed
. An environment is thus a collection λ= (λe)e∈Ed ∈Λ.

Let λ ∈Λ be fixed. The contact process (ξt)t≥0 in environment λ is a ho-
mogeneous Markov process taking its values in the set P(Zd) of subsets of Zd.
For z ∈ Zd we also use the random variable ξt(z) = 1{z∈ξt}. If ξt(z) = 1, we
say that z is occupied or infected, while if ξt(z) = 0, we say that z is empty
or healthy. The evolution of the process is as follows:

• an occupied site becomes empty at rate 1,
• an empty site z becomes occupied at rate

∑

‖z−z′‖1=1 ξt(z
′)λ{z,z′},

each of these evolutions being independent from the others. In the following,
we denote by D the set of càdlàg functions from R+ to P(Zd); it is the set
of trajectories for Markov processes with state space P(Zd).

To define the contact process in environment λ ∈ Λ, we use the Harris con-
struction [22]. It allows us to couple contact processes starting from distinct
initial configurations by building them from a single collection of Poisson
measures on R+.

2.2. Construction of the Poisson measures. We endow R+ with the Borel
σ-algebra B(R+), and we denote by M the set of locally finite counting
measures m=

∑+∞
i=0 δti . We endow this set with the σ-algebra M generated

by the maps m 7→m(B), where B describes the set of Borel sets in R+.
We then define the measurable space (Ω,F) by setting

Ω =MEd ×MZd
and F =M⊗Ed ⊗M⊗Zd

.

On this space, we consider the family (Pλ)λ∈Λ of probability measures de-
fined as follows: for every λ= (λe)e∈Ed ∈Λ,

Pλ =

(

⊗

e∈Ed

Pλe

)

⊗P⊗Zd

1 ,

where, for every λ ∈R+, Pλ is the law of a punctual Poisson process on R+

with intensity λ. If λ ∈ R+, we write Pλ (rather than P(λ)
e∈Ed

) for the law

in deterministic environment with constant infection rate λ.
For every t ≥ 0, we denote by Ft the σ-algebra generated by the maps

ω 7→ ωe(B) and ω 7→ ωz(B), where e ranges over all edges in Ed, z ranges
over all points in Zd and B ranges over the set of Borel sets in [0, t].

2.3. Graphical construction of the contact process. This construction is
exposed in all details in Harris [22]; we just give here an informal description.
Let ω = ((ωe)e∈Ed , (ωz)z∈Zd) ∈ Ω. Above each site z ∈ Zd, we draw a time
line R+, and we put a cross at the times given by ωz. Above each edge
e ∈ Ed, we draw at the times given by ωe a horizontal segment between the
extremities of the edge.
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An open path follows the time lines above sites (but crossing crosses
is forbidden) and uses horizontal segments to jump from a time line to
a neighboring time line; in this description, the evolution of the contact
process looks like a percolation process, oriented in time but not in space.
For x, y ∈ Zd and t≥ 0, we say that ξxt (y) = 1 if and only if there exists an
open path from (x,0) to (y, t), then we define

ξxt = {y ∈ Zd : ξxt (y) = 1},
(1)

∀A∈ P(Zd) ξAt =
⋃

x∈A
ξxt .

For instance, we obtain (A⊂B)⇒ (∀t≥ 0 ξAt ⊂ ξBt ).
When λ ∈ R∗

+, Harris shows that under Pλ, the process (ξAt )t≥0 is the
contact process with infection rate λ, starting from initial configuration A.
The proof can readily be extended to a nonconstant λ ∈ Λ, which allows
us to define the contact process in environment λ starting from initial con-
figuration A. This is a Feller process, and thus it benefits from the strong
Markov property.

2.4. Time translations. For t≥ 0, we define the translation operator θt
on a locally finite counting measure m=

∑+∞
i=1 δti on R+ by setting

θtm=

+∞
∑

i=1

1{ti≥t}δti−t.

The translation θt induces an operator on Ω, still denoted by θt; for every
ω ∈Ω, we set

θtω = ((θtωe)e∈Ed , (θtωz)z∈Zd).

The Poisson point process being translation invariant, every probability mea-
sure Pλ is stationary under θt. The semigroup property of the contact process
here has a stronger trajectorial version; for every A⊂ Zd, for every s, t≥ 0,
for every ω ∈Ω, we have

ξAt+s(ω) = ξ
ξAt (ω)
s (θtω) = ξ�s(θtω) ◦ ξAt (ω),(2)

that can also be written in the classical markovian way

∀B ∈ B(D) P((ξAt+s)s≥0 ∈B|Ft) = P((ξ�s)s≥0 ∈B) ◦ ξAt .
We can write in the same way the strong Markov property: if T is an (Ft)t≥0

stopping time, then, on the event {T <+∞},

ξAT+s(ω) = ξ
ξAT (ω)
s (θTω),

∀B ∈ B(D) P((ξAT+s)s≥0 ∈B|FT ) = P((ξ�s)s≥0 ∈B) ◦ ξAT .
We recall that FT is defined by

FT = {B ∈ F :∀t≥ 0B ∩ {T ≤ t} ∈ Ft}.
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2.5. Spatial translations. The group Zd can act on the process and on
the environment. The action on the process changes the observer’s point of
view of the process. For x ∈ Zd, we define the translation operator Tx by

∀ω ∈Ω Txω = ((ωx+e)e∈Ed , (ωx+z)z∈Zd),

where x+ e the edge e translated by vector x.
Besides, we can consider the translated environment x.λ defined by (x.λ)e =

λx+e. These actions are dual in the sense that for every λ ∈ Λ, for every
x ∈ Zd,

∀A∈ F Pλ(Txω ∈A) = Px.λ(ω ∈A).(3)

Consequently, the law of ξx under Pλ coincides with the law of ξ0 under Px.λ.

2.6. Essential hitting times and associated translations. For a set A⊂ Zd,
we define the life time τA of the process starting from A by

τA = inf{t≥ 0 : ξAt =∅}.
For A⊂ Zd and x∈ Zd, we also define the first infection time tA(x) of site x
from set A by

tA(x) = inf{t≥ 0 :x ∈ ξAt }.
If y ∈ Zd, we write ty(x) instead of t{y}(x). Similarly, we simply write t(x)
for t0(x).

We now introduce the essential hitting time σ(x): it is a time where the
site x is infected from the origin 0 and also has an infinite life time. This
essential hitting time is defined through a family of stopping times as follows.
We set u0(x) = v0(x) = 0 and we define recursively two increasing sequences
of stopping times (un(x))n≥0 and (vn(x))n≥0 with u0(x) = v0(x)≤ u1(x)≤
v1(x)≤ u2(x) · · · as follows:
• Assume that vk(x) is defined. We set uk+1(x) = inf{t≥ vk(x) :x ∈ ξ0t }. If
vk(x)<+∞, then uk+1(x) is the first time after vk(x) where site x is once
again infected; otherwise, uk+1(x) = +∞.

• Assume that uk(x) is defined, with k ≥ 1. We set vk(x) = uk(x) + τx ◦
θuk(x). If uk(x)<+∞, the time τx ◦ θuk(x) is the life time of the contact
process starting from x at time uk(x); otherwise, vk(x) = +∞.

We then set

K(x) = min{n≥ 0 :vn(x) =+∞ or un+1(x) = +∞}.(4)

This quantity represents the number of steps before the success of this pro-
cess; either we stop because we have just found an infinite vn(x), which
corresponds to a time un(x) when x is occupied and has infinite progeny,
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or we stop because we have just found an infinite un+1(x), which says that
after vn(x), site x is never infected anymore.

We then set σ(x) = uK(x), and call it the essential hitting time of x. It is, of
course, larger than the hitting time t(x) and can been seen as a regeneration
time.

Note however that σ(x) is not necessary the first time when x is occupied
and has infinite progeny. For instance, such an event can occur between u1(x)
and v1(x), being ignored by the recursive construction.

We will see that K(x) is almost surely finite, so σ(x) is well defined. At
the same time, we define the operator θ̃x on Ω by

θ̃x =

{

Tx ◦ θσ(x), if σ(x)<+∞,
Tx, otherwise,

or, more explicitly,

(θ̃x)(ω) =

{

Tx(θσ(x)(ω)ω), if σ(x)(ω)<+∞,
Tx(ω), otherwise.

We will mainly deal with the essential hitting time σ(x) that enjoys, un-
like t(x), some good invariance properties in the survival-conditioned envi-
ronment. We will also control the difference between σ(x) and t(x), which
will allow us to transpose to t(x) the results obtained for σ(x).

2.7. Contact process in the survival-conditioned environment. We now
have to introduce the random environment. In the following, we fix a proba-

bility measure ν on the sets of environments Λ = [λmin, λmax]
Ed
. We assume

that ν is stationary and, denoting by Erg(ν) the set of x ∈ Zd \{0} such that
the translation by x is ergodic for ν, then the cone generated by Erg(ν) is
dense in Rd. This condition is obviously fulfilled if Erg(ν) = Zd \ {0}. This
perhaps odd condition allows us to consider some natural models where the
ergodicity assumption is not satisfied in some directions, for example, along
the coordinate vectors. This setting naturally contains the case of an i.i.d.
random environment and the case of a deterministic environment λ > λc(Z

d);

we simply take for ν the Dirac measure (δλ)
⊗Ed

.
For λ ∈Λ, we define the probability measure Pλ on (Ω,F) by

∀E ∈ F Pλ(E) = Pλ(E|τ0 =+∞).

It is thus the law of the family of Poisson point processes, conditioned to the
survival of the contact process starting from 0. On the same space (Ω,F),
we define the corresponding annealed probability P by setting

∀E ∈ F P(E) =

∫

Λ
Pλ(E)dν(λ).

In other words, the environment λ= (λe)e∈Ed where the contact process lives
is a random variable with law ν, and it is under the probability measure P

that we seek the asymptotic shape theorem.
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It could seem more natural to work with the following probability mea-
sure:

∀E ∈ F P̂(E) = P(E|τ0 =+∞) =

∫

Pλ(E)Pλ(τ
0 =+∞)dν(λ)

∫

Pλ(τ0 =+∞)dν(λ)
.

It appears that our proofs do not work with this probability measure. How-
ever, our restrictions on the set Λ of possible environments ensure that P

and P̂ are equivalent; the P-a.s. asymptotic shape theorem is thus also a P̂-
a.s. asymptotic shape theorem.

2.8. Organization of the paper and results. In Section 3, we establish the
invariance and ergodicity properties. In particular, we prove the following
theorem.

Theorem 1. For every x ∈ Erg(ν), the measure-preserving dynamical

system (Ω,F ,P, θ̃x) is ergodic.

In Section 4, we study the integrability properties of the family (σ(x))x∈Zd ;
we also control the discrepancy between σ(x) and t(x) and the lack of sub-
additivity of σ.

Theorem 2. There exist A5,B5 > 0 such that for any λ ∈ Λ, for any x,
y ∈ Zd,

∀t > 0 Pλ(σ(x+ y)− (σ(x) + σ(y) ◦ θ̃x)≥ t)≤A5 exp(−B5

√
t).(5)

At first sight, one could think that σ(x + y) ≤ σ(x) + σ(y) ◦ θ̃x always
holds, but this is not the case because σ(x + y) is not necessary the first
time when x+ y is occupied and has infinite progeny.

However, the theorem says that the lack of subadditivity of σ is really
small; in particular, it does not depend on the considered points. Then, in
the same spirit as Kingman [28] and Liggett [30], we prove in Section 5 that

for every x ∈ Zd, the ratio σ(nx)
n converges P-a.s. to a real number µ(x).

The functional x 7→ µ(x) can be extended into a norm on Rd, which will
characterize the asymptotic shape. In the following, Aµ will denote the unit
ball for µ. We define the sets

Ht = {x ∈ Zd : t(x)≤ t},
Gt = {x ∈ Zd :σ(x)≤ t},

K ′
t = {x ∈ Zd :∀s≥ t ξ0s (x) = ξZ

d

s (x)},
and we denote by H̃t, G̃t, K̃

′
t their “fattened” versions

H̃t =Ht + [0,1]d, G̃t =Gt + [0,1]d and K̃ ′
t =K ′

t + [0,1]d.

We can now state the asymptotic shape result.
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Theorem 3 (Asymptotic shape theorem). For every ε > 0, P-a.s., for
every t large enough,

(1− ε)Aµ ⊂ K̃ ′
t ∩ G̃t

t
⊂ G̃t

t
⊂ H̃t

t
⊂ (1 + ε)Aµ.(6)

The set K ′
t∩Gt is the coupled zone of the process. Usually, the asymptotic

shape result for the coupled zone is rather expressed in terms of Kt ∩Ht,
where

Kt = {x ∈ Zd : ξ0t (x) = ξZ
d

t (x)}.
Our result also gives the shape theorem for Kt ∩ Ht, because K

′
t ∩ Gt ⊂

Kt ∩Ht ⊂Ht.
Let us note that the shape result can also be formulated in the following

“quenched” terms: for ν-a.e. environment, we know that on the event “the
contact process survives,” its growth is governed by (6) for t large enough.
We can also give a complete convergence result.

Theorem 4 (Complete convergence theorem). For every λ ∈Λ, the con-
tact process in environment Λ admits an upper invariant measure mλ defined

by

∀A⊂ Zd, |A|<+∞ mλ(ω ⊃A) = lim
t→+∞

Pλ(ξ
Zd

t ⊃A).

Then, for every finite set A⊂ Zd and for ν-a.e. environment λ, one has

PA
λ,t =⇒ Pλ(τ

A <+∞)δ∅ + Pλ(τ
A =∞)mλ,

where PA
λ,t is the law of ξAt under Pλ and =⇒ stands for the convergence in

law.

The proof of this result does not require any new idea, and we just give
a hint at the end of Section 6.

As explained in the Introduction, in order to prove the asymptotic shape
theorem, we need some estimates analogous to the ones needed in the proof
by Durrett and Griffeath in the classical case. We set

Bx
r = {y ∈ Zd :‖y − x‖∞ ≤ r},

and we write Br instead of B0
r .

Proposition 5. There exist A,B,M, c, ρ > 0 such that for every λ ∈Λ,
for every y ∈ Zd, for every t≥ 0,

Pλ(τ
0 =+∞)≥ ρ,(7)
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Pλ(H
0
t 6⊂BMt)≤A exp(−Bt),(8)

Pλ(t < τ0 <+∞)≤A exp(−Bt),(9)

Pλ

(

t0(y)≥ ‖y‖
c

+ t, τ0 =+∞
)

≤A exp(−Bt),(10)

Pλ(0 /∈K ′
t, τ

0 =+∞)≤A exp(−Bt).(11)

All these estimates are already available for the classical contact process
in the supercritical regime. For large λ, they are established by Durrett and
Griffeath [17], and the extension to the entire supercritical regime is made
possible thanks to Bezuidenhout and Grimmett’s work [4]. For the crucial
estimate (9), one can find the detailed proof in Durrett [16] or in Liggett [32].
The need for these estimates explains our restrictions on the possible range
of the random environment.

We chose to focus on the stationarity and subadditivity properties of the
essential hitting time σ and on the proof of the shape result. We thus admit
in Sections 3, 4 and 5 the uniform controls given by Proposition 5, whose
proof (via restart arguments) is postponed to Section 6. That section is
totally independent of the rest of the paper. Finally, in the Appendix, we
prove a general (almost) subadditive ergodic theorem. As we think it could
also be useful in other situations, we present it in a more general form than
what is needed for our aim.

3. Properties of θ̃x.

3.1. First properties. We first check that K(x) is almost surely finite and
even has a subgeometrical tail.

Lemma 6. ∀A⊂ Zd,∀x∈ Zd,∀λ∈ Λ,∀n ∈N Pλ(K(x)>n)≤ (1− ρ)n.

Proof. Remember that ρ is given in (7). Let λ ∈ Λ and n ∈ N. The
strong Markov property applied at time un+1(x) ensures that

Pλ(K(x)>n+ 1) = Pλ(un+2(x)<+∞)

≤ Pλ(un+1(x)<+∞, vn+1(x)<+∞)

≤ Pλ(un+1(x)<+∞, τx ◦ θun+1(x) <+∞)

≤ Pλ(un+1(x)<+∞)Pλ(τ
x <+∞)

≤ Pλ(un+1(x)<+∞)(1− ρ)

= Pλ(K(x)>n)(1− ρ),

which proves the lemma. �
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Lemma 7. Let λ ∈Λ. Pλ-a.s., for every x ∈ Zd,

(K(x) = k) and
(12)

(τ0 =+∞) ⇐⇒ (uk(x)<+∞ and vk(x) = +∞).

Proof. Let λ ∈ Λ. By Lemma 6, the number K(x) is Pλ-a.s. finite. Let
k ∈N; the strong Markov property applied at time vk(x) ensures that

Pλ(τ
0 =+∞, vk(x)<+∞, uk+1(x) = +∞|Fvk(x))

= 1{vk(x)<+∞}Pλ(τ
� =+∞, t�(x) =+∞) ◦ ξ0vk(x).

Consider now a finite nonempty set B ⊂ Zd. With (10), we get

Pλ(τ
B =+∞, tB(x) = +∞)≤

∑

y∈B
Pλ(τ

y =+∞, ty(x) =+∞)

≤
∑

y∈B
Py.λ(τ

0 =+∞, t0(x− y) = +∞) = 0.

This gives the direct implication. The reverse one comes from (2). �

Our construction of σ(x) is very similar to the restart process exposed
in Durrett and Griffeath [17]. The essential difference is that in that paper,
the aim is to find, close to x, a point that survives while we require here
the point to be exactly at x. Thus, we will be able to describe precisely
the law of the contact process starting from x at time σ(x), and construct
transformations under which P is invariant.

Lemma 8. Let x ∈ Zd \ {0}, A in the σ-algebra generated by σ(x) and

B ∈F . Then

∀λ ∈Λ Pλ(A∩ (θ̃x)
−1(B)) = Pλ(A)Px.λ(B).

Proof. We just have to check that for any k ∈N∗, one has

Pλ(A∩ (θ̃x)
−1(B)∩ {K(x) = k}) = Pλ(A∩ {K(x) = k})Px.λ(B).

Consider a Borel set A′ ⊂R such that A= {σ(x) ∈A′}. The essential hitting
time σ(x) is not a stopping time, but we can use the stopping times of the
construction

Pλ({τ0 =+∞}∩A∩ (θ̃x)
−1(B)∩ {K(x) = k})

= Pλ(τ
0 =+∞, σ(x) ∈A′, Tx ◦ θσ(x) ∈B,uk(x)<+∞, vk =+∞)(13)

= Pλ(uk(x)<+∞, uk(x) ∈A′, τx ◦ θuk(x) =+∞, Tx ◦ θuk(x) ∈B)(14)

= Pλ(uk(x) ∈A′, uk(x)<+∞)Pλ(τ
x =+∞, Tx ∈B)(15)

= Pλ(uk(x) ∈A′, uk(x)<+∞)Px.λ({τ0 =+∞}∩B).(16)
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For (13), we use equivalence (12). For (14), we notice that for any stopping
time T ,

{T <+∞, x ∈ ξ0T , τ0 ◦ Tx ◦ θT =+∞}⊂ {τ0 =+∞}.(17)

Equality (15) follows from the strong Markov property applied at time uk(x),
while (16) comes from the spatial translation property (3). Dividing the
identity by Pλ(τ

0 =+∞), we obtain an identity of the form

Pλ(A∩ (θ̃x)
−1(B)∩ {K(x) = k}) = ψ(x,λ, k,A)Px.λ(B),

and the number ψ(x,λ, k,A) is identified by taking B =Ω. �

Corollary 9. Let x, y ∈ Zd and λ∈ Λ. Assume that x 6= 0.

• The probability measure P is invariant under the translation θ̃x.
• Under Pλ, σ(y)◦ θ̃x and σ(x) are independent. Moreover, the law of σ(y)◦
θ̃x under Pλ is the same as the law of σ(y) under Px.λ.

• The random variables (σ(x) ◦ (θ̃x)j)j≥0 are independent under Pλ.

Proof. For the first point, we just apply the previous lemma with
A=Ω, then we integrate with respect to λ and use the stationarity of ν.

For the second point, let A′,B′ be two Borel sets in R and apply Lemma 8
with A= {σ(x) ∈A′} and B = {σ(y) ◦ θ̃x ∈B′}.

Let n≥ 1 and A0,A1, . . . ,An be some Borel sets in R. We have

Pλ(σ(x) ∈A0, σ(x) ◦ θ̃x ∈A1, . . . , σ(x) ◦ (θ̃x)n ∈An)

= Pλ(σ(x) ∈A0, (σ(x), . . . , σ(x) ◦ (θ̃x)n−1) ◦ θ̃x ∈A1 × · · · ×An)

= Pλ(σ(x) ∈A0)Px.λ(σ(x) ∈A1, σ(x) ◦ θ̃x ∈A2, . . . , σ(x) ◦ (θ̃x)n−1 ∈An),

where the last equality comes from Lemma 8. We recursively obtain

Pλ

(

⋂

0≤j≤n

{σ(x) ◦ (θ̃x)j ∈Aj}
)

=
∏

0≤j≤n

Pjx.λ(σ(x) ∈Aj),

which ends the proof of the lemma. �

3.2. Ergodicity. To prove Theorem 1, it seems natural to estimate the
evolution withm of the dependence between A and θ̃−m

x (B) for some events A
and B. If m ≥ 1, the operator θ̃mx corresponds to a spatial translation by
vector mx and to a time translation by vector Sm(x)

θ̃mx = Tmx ◦ θSm(x) with Sm(x) =
m−1
∑

j=0

σ(x) ◦ θ̃jx.

We begin with a lemma in the same spirit as Lemma 8.
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Fig. 1. An example with k1 = 3, k2 = 2 and k3 = 4.

Lemma 10. Let t > 0, A ∈Ft and B ∈F .

Then, for any x ∈ Zd, any λ ∈ λ, any m≥ 1,

Pλ(A∩ {t≤ Sm(x)} ∩ (θ̃mx )−1(B)) = Pλ(A∩ {t≤ Sm(x)})Pmx.λ(B).

Proof. Set Km(x) = (K(x),K(x) ◦ θ̃x, . . . ,K(x) ◦ θ̃m−1
x ). It is sufficient

to prove that for any k = (k0, . . . , km−1) ∈ (N∗)m, one has

Pλ(A, t≤ Sm(x), θ̃−m
x (B),Km(x) = k)

= Pλ(A, t≤ Sm(x),Km(x) = k)Pmx.λ(B).

Let k ∈ (N∗)m. We set R0(x) = 0 and, for l≤m−2, Rl+1(x) =Rl+ukl(x)◦
θRl(x). Thanks to remark (17), the following events coincide (see Figure 1):

{τ0 =+∞,Km(x) = k}
= {uk1(x)<+∞, uk2(x) ◦ Tx ◦ θR1(x) <+∞, . . . ,

ukm(x) ◦ T(m−1)x ◦ θRm−1(x) <+∞, τ0 ◦ Tmx ◦ θRm(x) =+∞}.
Moreover, on this event, Sm(x) =Rm(x) holds. Thus

Pλ(τ
0 =+∞,A, t≤ Sm(x),Km(x) = k, θ̃−m

x (B))

= Pλ(A,uk1(x)<+∞, uk2(x) ◦ Tx ◦ θR1(x) <+∞, . . . ,

ukm(x) ◦ T(m−1)x ◦ θRm−1(x) <+∞, t≤Rm(x),

τ0 ◦ Tmx ◦ θRm(x) =+∞, Tmx ◦ θRm(x) ∈B).

By construction, Rm(x) is a stopping time and the event

A∩{uk1(x)<+∞}∩· · ·∩{ukm(x)◦T(m−1)x ◦θRm−1(x) <+∞}∩{t≤Rm(x)}



CONTACT PROCESS IN RANDOM ENVIRONMENT 15

is measurable with respect to FRm(x). Using the strong Markov property
and the spatial translation property (3), we get

Pλ(τ
0 =+∞,A, t≤ Sm(x),Km(x) = k, θ̃−m

x (B))

= Pλ(A,uk1(x)<+∞, uk2(x) ◦ Tx ◦ θuk1
(x) <+∞, . . . ,

ukm(x) ◦ T(m−1)x ◦ θRm−1(x) <+∞, t≤Rm(x))

× Pmx.λ({τ =+∞}∩B).

Dividing the identity by Pλ(τ =+∞), we obtain an identity of the form

Pλ(A, t≤ Sm(x), θ̃−m
x (B),Km(x) = k) = ψ(x,λ, k,m,A)Pmx.λ(B),

and we identify the value of ψ(x,λ, k,m,A) by taking B =Ω. �

We can now state a mixing property.

Lemma 11. Let t > 0 and q > 1 be fixed. There exists a constant A(t, q)
such that for any x ∈ Zd \ {0}, for any A ∈ Ft, for any B ∈ F , λ ∈ Λ and
every ℓ≥ 1,

|Pλ(A∩ (θ̃ℓx)
−1(B))− Pλ(A)Pℓx.λ(B)| ≤A(t, q)q−ℓ.

Proof. Let ℓ≥ 1. With Lemma 10, we get

|Pλ(A∩ θ̃−ℓ
x (B))− Pλ(A)Pλ(θ̃

−ℓ
x (B))|

≤ |Pλ(t≤ Sℓ(x),A ∩ θ̃−ℓ
x (B))− Pλ(t≤ Sℓ(x),A)Pλ(θ̃

−ℓ
x (B))|

+2Pλ(t > Sℓ(x))

= 2Pλ(t > Sℓ(x)).

Let us now fix α> 0.
With the Markov inequality, Pλ(Sℓ(x) ≤ t) ≤ exp(αt)Eλ(exp(−αSℓ(x))).

Using the two last points of Corollary 9, one has

Eλ(exp(−αSℓ(x)))≤ Eλ

(

exp

(

−α
ℓ−1
∑

j=0

σ(x) ◦ θ̃jx

))

≤
ℓ−1
∏

j=0

Eλ(exp(−ασ(x) ◦ θ̃jx))

=

ℓ−1
∏

j=0

Ejx.λ(exp(−ασ(x))).

Now we just have to prove the existence of some α > 0 such that for every
λ ∈ Λ,

Eλ(exp(−ασ(x)))≤ q−1.
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Let ρ be the constant given in (7):

Eλ(exp(−ασ(x))) ≤
1

ρ
Eλ(exp(−ασ(x)))

≤ 1

ρ
Eλmax(exp(−ασ(x)))

≤ 1

ρ

2dλmax

α+ 2dλmax
,

because σ(x)≥ t(x), and t(x) stochastically dominates an exponential ran-
dom variable with parameter 2dλmax. This gives the desired inequality if α
is large enough. �

We can now move forward to the proof of the ergodicity properties of the
systems (Ω,F ,P, θ̃x).

Proof of Theorem 1. We have already seen in Corollary 9 that
for any x ∈ Zd, the probability measure P is invariant under the action
of θ̃x. To prove ergodicity, we use an embedding in a larger space to con-
sider simultaneously a random environment and a random contact pro-
cess.

We thus set Ω̃ = Λ×Ω, equipped with the σ-algebra F̃ = B(Λ)⊗F , and
we define a probability measure Q on F̃ by

∀(A,B) ∈ B(Λ)×F Q(A×B) =

∫

Λ
1A(λ)Pλ(B)dν(λ).

We define the transformation Θ̃x on Ω̃ by setting Θ̃x(λ,ω) = (x.λ, θ̃x(ω)). It
is easy to see that Q is invariant under Θ̃x. Indeed, for (A,B) ∈ B(Λ)×F ,
using Lemma 8, one has

Q(Θ̃x(λ,ω) ∈A×B) =Q(x.λ ∈A, θ̃x(ω) ∈B)

=

∫

Λ
1A(x.λ)Pλ(θ̃x(ω) ∈B)dν(λ)

=

∫

Λ
1A(x.λ)Px.λ(B)dν(λ)

=

∫

Λ
1A(λ)Pλ(B)dν(λ)

=Q(A×B).

Note that if g(λ,ω) = f(λ), then
∫

g dQ=
∫

f dν.

Similarly, if g(λ,ω) = f(ω), then
∫

g dQ=
∫

f dP.
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Note that A=
⋃

t≥0Ft is an algebra that generates F . To prove that θ̃x
is ergodic, it is then sufficient to show that for every A ∈A,

1

n

n−1
∑

k=0

1A(θ̃
k
x) converges in L2(P) to P(A).(18)

The quantity above can be seen as a function of the two variables (λ,ω). Thus
it is equivalent to prove that the sequence of functions (λ,ω) 7→ 1

n

∑n−1
k=0 1A(θ̃

k
xω)

converges to P(A) in L2(Q). Let A ∈A and t > 0 be such that A ∈ Ft. For
every (ω,λ) ∈ Ω̃, we split the sum into two terms:

1

n

n−1
∑

k=0

1A(θ̃
k
xω) =

1

n

n−1
∑

k=0

(1A(θ̃
k
xω)− Pkx.λ(A))

+
1

n

n−1
∑

k=0

Pkx.λ(A).

If we set f(λ) = Pλ(A), the second term can be written

1

n

n−1
∑

k=0

Pkx.λ(A) =
1

n

n−1
∑

k=0

f(kx.λ).

Since x ∈Erg(ν), the Von Neumann ergodic theorem says that this quantity
converges in L2(ν) to

∫

fdν = P(A). Seen as a function of (λ,ω), it also

converges in L2(Q) to P(A). Set, k ≥ 0,

Yk = 1A(θ̃
k
xω)− Pλ(θ̃

−k
x (A)) = 1A(θ̃

k
xω)− Pkx.λ(A)

and Ln = Y0+Y1+ · · ·+Yn−1. It only remains to prove that Ln/n converges
to 0 in L2(Q). As Yk = Y0 ◦ Θ̃k

x, the field (Yk)k≥0 is stationary. We thus have
∫

L2
n dQ=

∑

0≤i,j≤n−1

∫

YiYj dQ

=

n−1
∑

i=0

∫

Y 2
i dQ+2

n−1
∑

ℓ=1

(n− ℓ)

∫

Y0Yℓ dQ

≤ 2n

(

+∞
∑

ℓ=0

∣

∣

∣

∣

∫

Y0Yℓ dQ

∣

∣

∣

∣

)

≤ 2n

(

+∞
∑

ℓ=0

∫

Λ
|Eλ(Y0Yℓ)|dν(λ)

)

≤ 2n

(

+∞
∑

ℓ=0

∫

Λ
|Pλ(A∩ θ̃−ℓ

x (A))− Pλ(A)Pλ(θ̃
−ℓ
x (A))|dν(λ)

)

≤ 2n

(

+∞
∑

ℓ=0

A(t,2)2−ℓ

)

= 4A(t,2)n,
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thanks to Lemma 11. This ends the proof of (18), hence, the proof of The-
orem 1. �

4. Bound for the lack of subadditivity. In this section, we are going to
bound quantities such as σ(x+ y)− [σ(x) + σ(y) ◦ θ̃x] and σ(x)− t(x).

We will use these results in the application of a (almost) subadditive er-
godic theorem in Section 5. In both cases, we use a kind of restart argument.
Considering the definition of the essential hitting time σ, we will have to deal
with two types of sums of random variables that are quite different: sums of
vi − ui on one hand, and sums of ui+1 − vi on the other hand.

• The life time vi(x)− ui(x) of the contact process starting from x at time
ui(x) can be bounded independently of the precise configuration of the
process at time ui(x). So the control is quite simple.

• On the contrary, ui+1(x) − vi(x), which represents the amount of time
needed to reinfect site x after time vi(x), clearly depends on the whole
configuration of the process at time vi(x), which is not easy to control
precisely and uniformly in x. This explains why the restart argument we
use is more complex and the estimates we obtain less accurate than in
more classical situations (e.g., in Section 6, we obtain the exponential
estimates of Proposition 5 by standard restart arguments).

As an illustration of the first point, we easily obtain the following lemma.

Lemma 12. There exist A,B > 0 such that for every λ ∈ Λ,

∀x ∈ Zd,∀t > 0 Pλ(∃i <K(x) :vi(x)− ui(x)> t)≤A exp(−Bt).(19)

Proof. Let F :Ω→R+ be a measurable function and x∈ Zd. We set

Lx(F ) =
+∞
∑

i=0

1{ui(x)<+∞}F ◦ θui(x).

With the Markov property and the definition of K(x), we have

Eλ[Lx(F )] =

+∞
∑

i=0

Eλ[1{ui(x)<+∞}]Eλ[F ] =

(

1 +

+∞
∑

i=0

Pλ(K(x)> i)

)

Eλ[F ]

= (1 +Eλ[K(x)])Eλ[F ]≤
(

1 +
1

ρ

)

Eλ[F ],

where the last equality comes from Lemma 6. We choose F = 1{t<ui(x)−vi(x)<+∞},
and with estimate (7), we obtain

Pλ(∃i <K(x) :vi(x)− ui(x)> t)≤ 1

ρ
Pλ(∃i < K(x) :vi(x)− ui(x)> t)
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≤ 1

ρ
Pλ(Lx(F )≥ 1)≤ 1

ρ
Eλ[Lx(F )]

≤ 1

ρ

(

1 +
1

ρ

)

Pλ(t < τx <+∞).

We can then conclude with inequality (9). �

To deal with the reinfection times ui+1(x)− vi(x), the idea is to look for
a point (y, t) (in space–time coordinates) close to (x,ui(x)), infected from
(0,0) and with infinite life time. The at-least-linear-growth estimate (10)
will then ensure it does not take too long to reinfect x after time t, just by
looking at infection starting from the new source point (y, t). The difficulty
lies in the control of the distance between (x,ui(x)) and a source point
(y, t); if the configuration around (x,ui(x)) is “reasonable,” this point will
not be too far from (x,ui(x)), and we will obtain a good control of ui+1(x)
and ui(x).

We recall that for every x ∈ Zd, ωx is the Poisson point process giving
the possible death times at site x, and that M and c are, respectively, given
in (8) and (10). Note that we can assume that M > 1. We note

γ = 3M(1 + 1/c)> 3.(20)

For x, y ∈ Zd and t > 0, we say that the growth from (y,0) is bad at scale t
with respect to x if the following event occurs:

Ey(x, t) = {ωy[0, t/2] = 0} ∪ {Hy
t 6⊂ y +BMt} ∪ {t/2< τy <+∞}

∪ {τy =+∞, inf{s≥ 2t :x∈ ξys}> γt}.
We want to check that with a high probability, there is no such bad growth
point in a box around x. So we define, for every x ∈ Zd, every L > 0 and
every t > 0,

NL(x, t) =
∑

y∈x+BMt+2

∫ L

0
1Ey(x,t) ◦ θs d

(

ωy +
∑

e∈Ed : y∈e
ωe + δ0

)

(s).

In other words, we count the number of points (y, s) in the space–time box
(x+BMt+1)× [0,L] such that something happens for site y at time t, either
a possible death, or a possible infection, and at this time the bad event
Ey(x, t) ◦ θs occurs. We first check that if the space–time box has no bad
points and if ui(x) is in the time window, then we can control the delay
before the next infection.

Lemma 13. If NL(x, t) ◦ θs = 0 and s+ t≤ ui(x)≤ s+L, then vi(x) =
+∞ or ui+1(x)− ui(x)≤ γt.

Proof. By definition of ui(x), site x is infected from (0,0) at time ui(x).
Since s + t ≤ ui(x) ≤ s + L and ui(x) is a possible infection time for x,



20 O. GARET AND R. MARCHAND

the nonoccurrence of Ex(x, t) ◦ θui(x) ensures that τ
x ◦ θui(x) =+∞ or that

τx ◦ θui(x) ≤ t/2. If τx ◦ θui(x) =+∞, we are done because then vi(x) =+∞.
Otherwise, note that vi(x)− ui(x)≤ t/2.

By definition, there exists an infection path γi : [0, ui(x)]→ Zd from (0,0)
to (x,ui(x)), that is, such that γi(0) = 0 and γi(ui(x)) = x. Consider the por-
tion of γi between time ui(x)− t and time ui(x). Denote by x0 = γi(ui(x)− t)
and let us see that x0 ∈ x+BMt+2. Indeed, if x0 /∈ x+BMt+2, we seek the
first time t1 after time ui(x)− t when γi enters in x+BMt+2 at a site we
call x1 (note that since x1 is in the inside boundary of x+BMt+2, we have
‖x− x1‖∞ ≥Mt+ 1). Time t1 is a possible infection time for x1, and the
nonoccurrence of Ex1(x, t) ◦ θt1 ensures that the infection of x from (x1, t1)
will at least require a delay t, which contradicts ui(x)− t≥ 0.

So x0 ∈ x + BMt+2. Since NL(x, t) ◦ θs = 0, the first possible death at
site x0 after time ui(x)− t cannot occur after a delay of t/2; thus the first
time t2 when the path γi jumps to a different point x2 satisfies t2 ≤ ui(x)−
t+ t/2 = ui(x)− t/2. Consequently, when (x2, t2) infects (x,ui(x)), it is at
least t/2 aged, and the nonoccurrence of Ex2(x, t)◦θt2 ensures it lives forever
and

inf{u≥ 2t :x ∈ ξx2
u } ◦ θt2 ≤ γt.

So there exists t3 ∈ [t2 + 2t, t2 + γt] with x ∈ ξ0t3 . Since vi(x)− ui(x) ≤ t/2,
one has

t3 ≥ t2 +2t≥ (ui(x)− t) + 2t= ui(x) + t≥ vi(x).

Finally, ui+1(x)− ui(x)≤ t3 − ui(x)≤ t2 − ui(x) + γt≤ γt. �

Now we estimate the probability that a space–time box contains no bad
points.

Lemma 14. There exist A21,B21 > 0 such that for every λ ∈Λ,

∀L> 0,∀x ∈ Zd,∀t > 0 Pλ(NL(x, t)≥ 1)≤A21(1 +L) exp(−B21t).(21)

Proof. Let us first prove there exist A,B > 0 such that for every λ ∈ Λ,

∀x ∈ Zd,∀t > 0,∀y ∈ x+BMt+2 Pλ(E
y(x, t))≤A exp(−Bt).(22)

Let x ∈ Zd, t > 0 and y ∈ x+BMt+2. If τ
y =+∞, there exists z ∈ ξy2t with

τ z ◦ θ2t =+∞. Thus, definition (20) of γ implies that

{τy =+∞, inf{s≥ 2t :x ∈ ξys}> γt}

⊂ {ξy2t 6⊂ y +B2Mt} ∪
⋃

z∈y+B2Mt

{tz(x) ◦ θ2t > (γ − 2M)t}

⊂ {ξy2t 6⊂ y +B2Mt} ∪
⋃

z∈y+B2Mt

{

tz(x) ◦ θ2t >
‖x− z‖

c
+Mt− 3

c

}

.
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Hence, with (8) and (10),

Pλ(τ
y =+∞, inf{s≥ 2t :x ∈ ξys}> γt)

≤A exp(−2BMt) + (1 + 4Mt)dA exp(−B(Mt− 3/c)).

The distribution of the number ωy([0, t/2]) of possible deaths on site y be-
tween time 0 and time t/2 is a Poisson law with parameter t/2, so

Pλ(ωy([0, t/2]) = 0) = exp(−t/2).
The two remaining terms are controlled with (8) and (9); this gives (22).

Now fix y ∈ x+BMt+2 and note βy = ωy +
∑

e∈Ed : y∈e ωe. Under Pλ, βy is

a Poisson point process with intensity 2dλe. Let S0 = 0 and (Sn)n≥1 be the
increasing sequence of the times given by this process:

∫ L

0
1Ey(x,t) ◦ θs d(βy + δ0)(s) =

+∞
∑

n=0

1{Sn≤L}1Ey(x,t) ◦ θSn .

So, with the Markov property,

Eλ

(
∫ L

0
1Ey(x,t) ◦ θs d(βy + δ0)(s)

)

=
+∞
∑

n=0

Eλ(1{Sn≤L}1Ey(x,t) ◦ θSn) =
+∞
∑

n=0

Eλ(1{Sn≤L})Pλ(E
y(x, t))

= (1 +Eλ[βy([0,L])])Pλ(E
y(x, t)) = (1 +L(2dλe +1))Pλ(E

y(x, t)).

So (21) follows from (22), from the remark that Pλ(NL(x, t)≥ 1)≤ Eλ[NL(x, t)]
and from an obvious bound on the cardinality of BMt+2. �

Once the process is initiated, Lemma 13 can be used recursively to control
ui+1(x)−ui(x). To initiate the process, we assume that there exists a point
(u, s), reached from (0,0), living infinitely and close to x in space.

Lemma 15. For any t, s > 0, for every x ∈ Zd, the following inclusion
holds:

{τ0 =+∞}∩ {∃u ∈ x+BMt+2, τu ◦ θs =+∞, u ∈ ξ0s}
∩ {NK(x)γt(x, t) ◦ θs = 0}(23)

∩
⋂

1≤i<K(x)

{vi(x)− ui(x)< t}(24)

⊂ {τ0 =+∞}∩ {σ(x)≤ s+K(x)γt}.(25)

Proof. If every finite ui(x) is smaller than s+ t, we are done because
σ(x)≤ s+ t≤ s+K(x)γt. So set

i0 =max{i :ui(x)≤ s+ t}.
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Since vi0(x) < +∞, the event (24) ensures that vi0(x)− ui0(x) < t, and so
vi0(x) ≤ s + 2t. Now, since τu = +∞, the nonoccurrence of Eu(x, t) ◦ θs
implied by (23) says that

inf{s≥ 2t :x ∈ ξus } ◦ θs ≤ γt,

which leads to ui0+1(x)≤ s+ γt. Noting that for any j ≥ 1, ui0+j(x+ y)≥
s+ t, we prove by a recursive use of Lemma 13 with the event {NK(x)γt(x, t)◦
θs = 0} that

∀j ∈ {1, . . . ,K(x)− i0} ui0+j ≤ s+ jγt.

For j =K(x)− i0, we get σ(x) = ui0+j(x)≤ s+(K(x)− i0)γt≤ s+K(x)γt,
which proves (25). �

4.1. Bound for the lack of subadditivity. To bound σ(x + y) − [σ(x) +
σ(y) ◦ θ̃x], we apply the strategy we have just explained around site x+ y.
To initiate the recursive process, one can benefit here from the existence of
an infinite start at the precise point (x+ y,σ(x) + σ(y) ◦ θ̃y).

Proof of Theorem 2. Let x, y ∈ Zd, λ ∈ Λ and t > 0. We set s =
σ(x) + σ(y) ◦ θ̃x:

Pλ(σ(x+ y)>σ(x) + σ(y) ◦ θ̃x + t)

≤ Pλ

(

K(x+ y)>

√
t

γ

)

+ Pλ

(

τ0 =+∞,K(x+ y)≤
√
t

γ
, σ(x+ y)≥ s+K(x+ y)γ

√
t

)

.

With the sub-geometrical behavior of the tail of K given in Lemma 6 and the

uniform control (7), we can control the first term. Note that if K(x+y)≤
√
t

γ ,

then K(x+ y)γ
√
t≤ t, and so that

{NK(x+y)γ
√
t(x+ y,

√
t)≥ 1} ⊂ {Nt(x+ y,

√
t)≥ 1}.

We apply Lemma 15 around x+ y, on a scale
√
t, an initial time s= σ(x)+

σ(y) ◦ θ̃x and a source point u= x+ y,

Pλ

(

τ0 =+∞,K(x+ y)≤
√
t

γ
, σ(x+ y)≥ s+K(x+ y)γ

√
t

)

≤ Pλ(Nt(x+ y,
√
t) ◦ θs ≥ 1)(26)

+ Pλ(∃i <K(x+ y) :vi(x+ y)− ui(x+ y)>
√
t).

Since Nt(x+ y,
√
t) =Nt(0,

√
t) ◦ Tx ◦ Ty and s= σ(x) + σ(y) ◦ θ̃x, we have

Nt(x+ y,
√
t) ◦ θs =Nt(0,

√
t) ◦ θ̃y ◦ θ̃x.
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Thus Pλ(Nt(x+y,
√
t)◦θs ≥ 1) = P(x+y).λ(Nt(0,

√
t)≥ 1), which is controlled

by Lemma 14 and estimate (7). Finally, (26) is bounded with Lemma 12.
�

Corollary 16. For x, y ∈ Zd, set r(x, y) = (σ(x+ y)− (σ(x) + σ(y) ◦
θ̃x))

+.

For any p≥ 1, there exists Mp > 0 such that

∀λ∈ Λ,∀x, y ∈ Zd Eλ[r(x, y)
p]≤Mp.(27)

Proof. We write Eλ[r(x, y)
p] =

∫ +∞
0 pup−1Pλ(r(x, y) > u)du and use

Theorem 2. �

4.2. Control of the discrepancy between hitting times and essential hitting

times. To bound σ(x) − t(x), we would like to apply the same strategy
starting from (x, t(x)) but we do not have any natural candidate for an
infinite start close to this point. We are going to look for such a point along
the infection path between (0,0) and (x, t(x)) which requires controls on
a space–time box whose height (in time) of order t(x), that is, of order ‖x‖.
So we will lose in the precision of the estimates and in their uniformity.

Proposition 17. There exist A28,B28, α28 > 0 such that for every z > 0,
every x∈ Zd, every λ ∈Λ,

Pλ(σ(x)≥ t(x) +K(x)(α28 log(1 + ‖x‖) + z))≤A28 exp(−B28z).(28)

Proof. For x, y ∈ Zd and t,L > 0, we define

Ẽy(t) =

{

τy <+∞,
⋃

s≥0

Hy
s 6⊂ y +BMt

}

,

ÑL(x, t) =
∑

y∈x+BMt+1

∫ L

0
1Ẽy(t) ◦ θsd

(

∑

e∈Ed : y∈e
ωe

)

(s).

With (7), (8) and (9), it is easy to get the existence of A,B > 0 such that

∀λ∈ Λ,∀x∈ Zd,∀t > 0 Pλ(ÑL(x, t)≥ 1)≤A(1 +L) exp(−Bt).(29)

Now, we choose the last point (u, s) on the infection path between (0,0) and
(x, t(x)) such that τu ◦θs =+∞. Note that on {τ0 =+∞}, such an s always
exists.

Let us see that if Ñt(x)(x, t) = 0, then u ∈ x+BMt+2. Indeed, if ‖u−x‖>
Mt+2, we consider the first point (u′, s′) on the infection path after (u, s) to
be in x+BMt. The definition of s ensures that the contact process starting
from (u′, s′) does not survive, but, since it contains (x, t(x)), its diameter
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must be larger than Mt, which implies that Ñt(x)(x, t) ≥ 1, and gives the
desired implication.

On event {Ñt(x)(x, t) = 0}, we are going to apply Lemma 15 around point
(x,0), at scale

t=
α log(1 + ‖x‖) + z

γ
≥ z

γ

with source point (u, s) and a time length L = K(x)γt. Here and in the
following, α > 0 is a large constant that will be chosen later. Since s≤ t(x),

Pλ(σ(x)≥ t(x) +K(x)(α log(1 + ‖x‖) + z))

= Pλ(σ(x)≥ t(x) +K(x)γt)

≤ Pλ(σ(x)≥ s+K(x)γt)

≤ Pλ(σ(x)≥ s+K(x)γt, Ñt(x)(x, t) = 0)
(30)

+ Pλ(Ñt(x)(x, t)≥ 1)

≤ Pλ(NK(x)γt(x, t) ◦ θs ≥ 1)

+ Pλ(∃i < K(x) :vi(x)− ui(x)> t)

+ Pλ(Ñt(x)(x, t)≥ 1).

The second term in (30) is bounded with Lemma 12. For the last term, we
write

Pλ(Ñt(x)(x, t)≥ 1)≤ Pλ(Ñ‖x‖/c+z(x, t)≥ 1) + Pλ

(

t(x)>
‖x‖
c

+ z

)

.

The second term is controlled with (7) and (10), and (29) ensures that

Pλ(Ñ‖x‖/c+t(x, t)≥ 1)≤A

(

1 +
‖x‖
c

+ z

)

exp(−Bt)

≤A

(

1 +
‖x‖
c

+ z

)

exp

(

−B(α log(1 + ‖x‖) + z)

γ

)

≤A′ exp(−B′z)

as soon as α is large enough.
For the first term of (30), we note thatNK(x)γt(x, t)◦θs ≤Nt(x)+K(x)γt(x, t).

Thus

Pλ(NK(x)γt(x, t) ◦ θs ≥ 1)≤ Pλ(N‖x‖/c+z+K(x)γt(x, t)≥ 1)

+ Pλ

(

t(x)≥ ‖x‖
c

+ z

)

.
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As previously stated, the second term is bounded with (7) and (10) and
while using (21), we get

Pλ(N‖x‖/c+z+K(x)γt(x, t)≥ 1)

≤
+∞
∑

k=1

√

Pλ(K(x) = k)
√

Pλ(Nkγt+‖x‖/c+z(x, t)≥ 1)

≤
+∞
∑

k=1

√

Pλ(K(x) = k)

√

A21

(

kγt+
‖x‖
c

+ z

)

exp(−B21t)

≤
√

A21

(

1 +
‖x‖
c

)

(1 + z)(1 + γt) exp

(

−B21

2
t

)

×
+∞
∑

k=1

√

(1 + k)Pλ(K(x) = k).

The sub-geometrical behavior of the tail of K(x) given by Lemma 6 ensures
that the sum is finite, and we end the proof by increasing α if necessary. �

Lemma 18. For every p≥ 1, there exists C31(p)> 0 such that for every

x ∈ Zd

∀λ∈ Λ Eλ(|σ(x)− t(x)|p)≤C31(p)(log(1 + ‖x‖))p.(31)

Proof. Set Vx =
σ(x)−t(x)

K(x) − α28 log(1 + ‖x‖). By Proposition 17, there

exists a random variable W with exponential moments that stochastically
dominates Vx under Pλ for every x and every λ. Moreover, Lemma 6 ensures
that K(x) is stochastically dominated by a geometrical random variable K ′.

Set v(x) = σ(x) − t(x) =K(x)(α log(1 + ‖x‖) + Vx) and let p ≥ 1. With
the Minkowski inequality, we have

(Eλv(x)
p)1/p ≤ α log(1 + ‖x‖)(EλK(x)p)1/p + (Eλ[K(x)pV p

x ])
1/p

≤ α log(1 + ‖x‖)(EλK(x)p)1/p + (EλK(x)2pEλV
2p
x )1/(2p)

≤ α log(1 + ‖x‖)(EK ′p)1/p + (EK ′2pEW 2p)1/(2p),

and the proof is complete. �

Corollary 19. P-a.s., lim‖x‖→+∞
|σ(x)−t(x)|

‖x‖ = 0.

Proof. Let p > d. Equation (31) gives
∑

x∈Zd

E
|σ(x)− t(x)|p
(1 + ‖x‖)p ≤C31(p)

∑

x∈Zd

(log(1 + ‖x|))p
(1 + ‖x‖)p <+∞.

So ( |σ(x)−t(x)|
(1+‖x‖) )x∈Zd is almost surely in ℓp(Zd) and thus goes to 0. �
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Corollary 20. There exist A32,B32,C32 > 0 such that for every λ ∈Λ,

∀x∈ Zd,∀t > 0 Pλ(σ(x)≥C32‖x‖+ t)≤A32 exp(−B32

√
t).(32)

Proof. Let α = α28 be given as in Proposition 17, and note that if
K(x) ≤ 1

2α

√

‖x‖+ t/2 and z = α
√

‖x‖+ t/2, then, since log(1 + u) ≤ √
u,

we get

K(x)[α log(1 + ‖x‖) + z]≤ 2zK(x)≤ ‖x‖+ t/2.

Thus with (10) and (7),

Pλ

(

σ(x)>

(

1

c
+1

)

‖x‖+ t

)

≤ Pλ

(

t(x)≥ ‖x‖
c

+ t/2

)

+ Pλ

(

K(x)>
1

2α

√

‖x‖+ t/2

)

+ Pλ(σ(x)> t(x) +K(x)(α log(1 + ‖x‖) + α
√

‖x‖+ t/2)).

The first term is controlled with (10), the second one with Lemma 6 and
the last one by Proposition 17. �

Corollary 21. For any p≥ 1, there exists C33(p)> 0 such that

∀λ∈ Λ,∀x∈ Zd Eλ[σ(x)
p]≤C33(p)(1 + ‖x‖)p.(33)

Proof. With the Minkowski inequality, one has

(Eλ[σ(x)
p])1/p ≤C32‖x‖+ (Eλ[((σ(x)−C32‖x‖)+)p])1/p.

Moreover,

Eλ[((σ(x)−C32‖x‖)+)p] =
∫ +∞

0
pup−1Pλ(σ(x)−C32‖x‖> u)du <+∞

by Corollary 20. �

Remark. In classical restart arguments, the existence of exponential
moments for a random variable usually comes from the following argument:
if (Xn)n∈N are independent identically distributed random variables with
exponential moments, if K is independent of the (Xn)n∈N’s and also has
exponential moments, then

∑

0≤n≤KXn has exponential moments. Here,
our difficulties to precisely bound the reinfection times ui+1 − vi prevent us
to use this scheme; we thus have to use ad hoc arguments, which lead to
weaker estimates.

5. Asymptotic shape theorems. We can now move forward to the proof
of Theorem 3. The first step consists of proving convergence for ratios of the

type σ(nx)
n . With Corollary 16, we know that for every n,p≥ 0,

E[σ((n+ p)x)]≤ E[σ(nx)] +E[σ(px)] +M1.
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Thus the Fekete lemma says that 1
nE[σ(nx)] has a finite limit when n goes

to +∞ and the natural candidate for the limit of σ(nx)
n is thus

µ(x) = lim
n→+∞

E(σ(nx))

n
.

Theorem 22. P-a.s. ∀x∈ Zd limn→+∞
σ(nx)

n = limn→+∞
Eσ(nx)

n = µ(x).

This convergence also holds in any Lp(P), p≥ 1.

To prove this result, we need the two following (almost) subadditive er-
godic theorems, whose proof will be given in the Appendix.

Theorem 23. Let (Ω,F ,P) be a probability space, (θn)n≥1 a collection of
transformations leaving the probability measure P invariant. On this space,
we consider a collection (fn)n≥1 of integrable functions, a collection (gn)n≥1

of nonnegative functions and a collection (rn,p)n,p≥1 of real functions such
that

∀n,p≥ 1 fn+p ≤ fn + fp ◦ θn + gp ◦ θn + rn,p.(34)

We assume that:

• c= infn≥1
Efn
n >−∞.

• g1 is integrable, gn/n almost surely converges to 0 and Egn
n converges to 0.

• There exists α > 1 and a sequence of positive numbers (Cp)p≥1 such that
E[(r+n,p)

α]≤Cp for every n,p and

+∞
∑

p=1

Cp

pα
<+∞.

Then 1
nEfn converges; if µ denotes its limit, one has

E

[

lim
n→+∞

fn
n

]

≥ µ.

If we set f = limn→+∞
fn
n , then f is invariant under the action of each θn.

Theorem 24. We keep the setting and assumptions of Theorem 23. We
assume, moreover, that for every k,

1

n

(

fnk −
n−1
∑

i=0

fk ◦ (θk)i
)+

→ 0 a.s.

Then fn/n converges a.s. to f .

Proof of Theorem 22. We apply Theorem 23 with the choices fn =
σ(nx), θn = θ̃nx, gp = 0, rn,p = r(nx, px) and the probability measure P= P.
We take α > 1. Corollary 21 gives the integrability of σ(x) under P and
Corollary 16 gives the necessary controls on its moments.
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We now check the extra assumption of Theorem 24; it is easy to see that

t(nkx)≤
n−1
∑

i=0

σ(kx) ◦ (θ̃kx)i,

which implies that (σ(nkx)−∑n−1
i=0 σ(kx) ◦ (θ̃kx)i)+ ≤ σ(nkx)− t(nkx).

Corollary 19 ensures that this quantity is o(n). Thus σ(nx)/n converges
to a random variable µ(x), which is invariant under the action of θ̃x. But
Theorem 1 says that this µ(x) is in fact a constant, which ends the proof of
the a.s. convergence.

To prove that a sequence converges in Lp, it suffices to show that it
converges a.s. and that it is bounded in Lq for some q > p. Since Corollary 21
says that fn/n is bounded in any Lp, the proof is complete. �

The next step is to prove the asymptotic shape result, namely, Theorem 3.
We start by proving the shape result for the essential hitting time σ, by
following the classical strategy:

• We extend µ to an asymmetric norm on Rd in Lemma 25.
• We prove that the directional convergence given by Theorem 22 is in fact

uniform in the direction in Lemma 27.
• We easily deduce the shape result from this lemma in Lemma 28.

To transpose this shape result for the classical hitting time t (Lemma 29),
we just need to control the discrepancy between σ and t; this was done
in Lemma 19. Finally, the shape result for the coupled zone is proved in
Lemma 30 by introducing a coupling time t′ and by bounding the difference
between this time t′ and the essential hitting time σ.

Note that we did not succeed in proving immediately that µ could be
extended to a norm, but only to an asymmetric norm; that is, the property
µ(λx) = |λ|µ(x) a priori only holds for nonnegative λ. We will finally deduce
from the asymptotic shape theorems that µ is actually a norm.

Lemma 25. The functional µ can be extended to an asymmetric norm on Rd.

Proof. Homogeneity in natural integers. By extracting subsequences,
we prove the homogeneity in natural integers,

∀k ∈N,∀x∈ Zd µ(kx) = kµ(x).

Subadditivity. One has σ(nx+ ny)≤ σ(nx) + σ(ny) ◦ θ̃nx + r(nx,ny).
Since P is invariant under the action of θ̃nx, we get, with Corollary 16,

Eσ(nx+ ny)≤ Eσ(nx) +Eσ(ny) +Er(nx,ny)≤ Eσ(nx) + Eσ(ny) +M1.

We deduce that ∀x∈ Zd,∀y ∈ Zd, µ(x+ y)≤ µ(x) + µ(y).
Extension to Rd. The Fekete lemma ensures that

µ(x) +M1 = inf
n≥1

Eσ(nx) +M1

n
,
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so µ(x)≤ Eσ(x). Corollary 21 gives some L> 0 such that Eσ(x)≤L‖x‖ for
any x. Finally, µ(x)≤L‖x‖ for every x ∈ Zd, which leads to |µ(x)−µ(y)| ≤
L‖x − y‖. We can then extend µ to Qd par homogeneity, then to Rd by
uniform continuity.

Positivity. Let M be given by Proposition 5. With (8), we obtain

P

(

σ(nx)<
n‖x‖
2M

)

≤ P

(

t(nx)<
n‖x‖
2M

)

≤ P(ξn‖x‖/M 6⊂Bn‖x‖/2)

≤
∫

Pλ(τ
0 =+∞, ξ0n‖x‖/(2M ) 6⊂Bn‖x‖/2)

Pλ(τ0 =+∞)
dν(λ)

≤ A

ρ
exp

(

−Bn‖x‖
2M

)

.

With the Borel–Cantelli lemma, we deduce that µ(x) ≥ 1
2M ‖x‖. This in-

equality, once established for every x ∈ Zd, can be extended by homogeneity
and continuity to Rd. So µ is an asymmetric norm. �

In the following, we set C = 2C32, where C32 is as given in Corollary 20.

Lemma 26. For every ε > 0, P-a.s., there exists R> 0 such that

∀x, y ∈ Zd (‖x‖ ≥R and ‖x− y‖ ≤ ε‖x‖) =⇒ (|σ(x)− σ(y)| ≤Cε‖x‖).

Proof. For m ∈N and ε > 0, we define the event

Am(ε) = {∃x, y ∈ Zd :‖x‖=m,‖x− y‖ ≤ εm and |σ(x)− σ(y)|>Cεm}.
Noting that

Am(ε)⊂
⋃

(1−ε)m≤‖x‖≤(1+ε)m

‖x−y‖≤εm

{σ(y − x) ◦ θ̃x + r(x, y− x)>Cεm},

we see, with Corollaries 20 and 16, that

Pλ(Am(ε))≤
∑

(1−ε)m≤‖x‖≤(1+ε)m

‖z‖≤εm

Pλ(σ(z) ◦ θ̃x + r(x, z)>Cεm)

≤
∑

(1−ε)m≤‖x‖≤(1+ε)m

‖z‖≤εm

Px.λ(σ(z)> 2Cεm/3)

+ Pλ(r(x, y− x)>Cεm/3)

≤ (1 + 2εm)d(1 + 2(1 + ε)m)dA32 exp(−B32

√

Cεm/3)

+A27 exp(−B27

√

C ′εm/3)
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by Corollary 20 and Theorem 2. Integrating then with respect to λ, we
conclude the proof with the Borel–Cantelli lemma. �

Lemma 27. P-a.s. lim‖x‖→+∞
|σ(x)−µ(x)|

‖x‖ = 0.

Proof. Assume by contradiction that there exists ε > 0 such that the
event “|σ(x) − µ(x)| > ε‖x‖ for infinitely many values of x” has a positive
probability. We focus on this event. There exists a random sequence (yn)n≥0

of sites in Zd such that ‖yn‖1 → +∞ and, for every n, |σ(yn) − µ(yn)| ≥
ε‖yn‖1. By extracting a subsequence, we can assume that

yn
‖yn‖1

→ z.

Fix ε1 > 0 (to be chosen later); we can find z′ ∈Erg(ν) such that
∥

∥

∥

∥

z′

‖z′‖1
− z

∥

∥

∥

∥

1

≤ ε1.

For each yn, we can find an integer point on Rz′ close to yn. Let hn be the

integer part of ‖yn‖1
‖z′‖1 . We have

‖yn − hn.z
′‖1 ≤

∥

∥

∥

∥

yn −
‖yn‖1
‖z′‖1

z′
∥

∥

∥

∥

1

+

∣

∣

∣

∣

‖yn‖1
‖z′‖1

− hn

∣

∣

∣

∣

‖z′‖1

≤ ‖yn‖1
∥

∥

∥

∥

yn
‖yn‖1

− z′

‖z′‖1

∥

∥

∥

∥

1

+ ‖z′‖1.

Take N > 0 large enough to have (n ≥ N) ⇒ (‖ yn
‖yn‖1 − z‖1 ≤ ε1). By our

choice for z′, one has

(n≥N)⇒
(
∥

∥

∥

∥

yn
‖yn‖1

− z′

‖z′‖1

∥

∥

∥

∥

1

≤ 2ε1

)

and, consequently, ‖yn − hn.z
′‖1 ≤ 2ε1‖yn‖1 + ‖z′‖1. Thus, increasing N if

necessary, one has, for every n ≥N , ‖yn − hn.z
′‖1 ≤ 3ε1‖yn‖1. But if N is

large enough, Lemma 26 ensures that

∀n≥N |σ(yn)− σ(hn.z
′)| ≤ 3Cε1‖yn‖1.

Finally, for every large n, we have

|σ(yn)− µ(yn)|
≤ |σ(yn)− σ(hn.z

′)|+ |σ(hn.z′)− µ(hn.z
′)|+ |µ(hn.z′)− µ(yn)|

≤ 3Cε1‖yn‖1 + hn

∣

∣

∣

∣

σ(hn.z
′)

hn
− µ(z′)

∣

∣

∣

∣

+L‖hn.z′ − yn‖1

≤ 3Cε1‖yn‖1 + (1 + ε1)
‖yn‖1
‖z′‖1

∣

∣

∣

∣

σ(hn.z
′)

hn
− µ(z′)

∣

∣

∣

∣

+ 3ε1L‖yn‖1.
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But the a.s. convergence in the z′ direction ensures that for every large n,
∣

∣

∣

∣

σ(hn.z
′)

hn
− µ(z′)

∣

∣

∣

∣

≤ ε1.

Now if ε1 > 0 is small, we obtain, for every large n, |σ(yn)−µ(yn)|< ε‖yn‖1;
this brings contradiction and the proof is complete. �

We can now prove the shape result for the “fattened” version G̃t of Gt =
{x ∈ Zd :σ(x)≤ t}; we recall that Aµ is the unit ball for µ.

Lemma 28. For every ε > 0, P-a.s., for every large t,

(1− ε)Aµ ⊂ G̃t

t
⊂ (1 + ε)Aµ.

Proof. Let us prove by contradiction that if t is large enough, Gt
t ⊂

(1 + ε)Aµ. Thus assume that there exists an increasing sequence(tn)n≥1,

with tn →+∞ and Gtn
tn

6⊂ (1+ ε)Aµ; so there exists xn with σ(xn)≤ tn and
µ(xn)/tn > 1 + ε. So µ(xn)/σ(xn) > 1 + ε, which contradicts the uniform
convergence of Lemma 27. Since µ(xn)> tn(1 + ε), the sequence (‖xn‖)n≥1

goes to infinity.
For the inverse inclusion, we still assume by contradiction that there exists

an increasing sequence (tn)n≥1, with tn → +∞ and (1 − ε)Aµ 6⊂ G̃tn
tn

; this
means we can find xn with µ(xn)≤ (1− ε)tn, but σ(xn)> tn. Since tn goes

to +∞, the sequence (xn)n≥1 is not bounded and satisfies µ(xn)
σ(xn)

< 1− ε; this
contradicts once again the uniform convergence of Lemma 27 and the proof
is complete. �

Then we immediately recover the uniform convergence result for the hit-
ting time t via Lemma 19, and, by an argument similar to the one used
in Lemma 28, the asymptotic shape result for the “fattened” version H̃t of
Ht = {x ∈ Zd : t(x)≤ t}.

Lemma 29. P-a.s., lim‖x‖→+∞
t(x)−µ(x)

‖x‖ = 0, and for every ε > 0, P-a.s.,

for every large t, (1− ε)Aµ ⊂ H̃t
t ⊂ (1 + ε)Aµ.

It only remains now to prove the shape result for the coupled zone K̃ ′
t,

which is the “fattened” version of K ′
t = {x ∈ Zd :∀s≥ tξ0s (x) = ξZ

d

s (x)}.

Lemma 30. For every ε > 0, P-a.s., for every large t, (1−ε)Aµ ⊂ K̃ ′
t∩G̃t

t .

Proof. Since t 7→K ′
t ∩Gt is nondecreasing, we use the same scheme of

proof as for Lemma 28. We set, for x ∈ Zd,

t′(x) = inf{t≥ 0 :x∈K ′
t ∩Gt}.

It is then sufficient to prove that P-a.s., lim‖x‖→+∞
|t′(x)−σ(x)|

‖x‖ = 0.
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By definition, t′(x) ≥ σ(x); thus it is sufficient to prove the existence of
constants A′,B′ > 0 such that

∀x∈ Zd,∀s≥ 0 P(t′(x)− σ(x)≥ s)≤A′e−B′s.(35)

• First note that for every t≥ 0, Kσ(x)+t ⊃ x+Kt ◦ θ̃x.
Indeed, let z ∈ x+Kt ◦ θ̃x. First consider the case z /∈ ξZd

σ(x)+t. Since, by

additivity (1), ξ0σ(x)+t ⊂ ξZ
d

σ(x)+t, we have z /∈ ξ0σ(x)+t, and so that z ∈Kσ(x)+t.

Consider now the case z ∈ ξZd

σ(x)+t. Since, by additivity, ξZ
d

σ(x) ⊂ ξZ
d

0 ◦ θ̃x, we
have y = z − x ∈ ξZd

t ◦ θ̃x. But since y ∈Kt ◦ θ̃x, the definition of Kt implies

that ξ0t (y) ◦ θ̃x = ξZ
d

t (y) ◦ θ̃x = 1. Since x ∈ ξ0σ(x) and y ∈ ξ0t ◦ θ̃x, we obtain

z = x+ y ∈ ξ0σ(x)+t, and so z ∈Kσ(x)+t.

• Fix s≥ 0. The previous point says that
(

⋂

t≥s

Kσ(x)+t

)

⊃
(

x+
⋂

t≥s

(Kt ◦ θ̃x)
)

and so K ′
σ(x)+s ⊃ (x+ (K ′

s ◦ θ̃x)).

Since P is invariant under θ̃x, we get

P(t′(x)>σ(x) + s) = P(x /∈K ′
σ(x)+s ∩Gσ(x)+s)

= P(x /∈K ′
σ(x)+s)≤ P(x /∈ (x+K ′

s ◦ θ̃x))

≤ P(0 /∈K ′
s ◦ θ̃x) = P(0 /∈K ′

s).

We conclude with (11). �

Let us finally prove that µ is a norm. Considering Lemma 25, we only
have to prove that µ(x) = µ(−x) holds for each x ∈ Zd. This would be im-
mediate if we had supposed that the law ν of the random environment was
invariant under the central symmetry. But, in general, we have to use a time
reversal argument and the shape theorem for the coupled zone. We first give
a characterization of µ that will allow us to use the symmetries of the model.

Lemma 31. Let us define P̌ by P̌(A) =
∫

Λ Pλ(A)dν(λ). Then, for each

x ∈ Zd

µ(x) = sup
{

a > 0; lim
n→+∞

P̌(nx ∈ ξn/a)> 0
}

.

Proof. Define g(x) = sup{a > 0; limn→+∞ P̌(nx ∈ ξn/a) > 0}. Let a >
µ(x). By the asymptotic shape theorem, limn→+∞Pλ(nx ∈ ξn/a) = 0 ν al-

most surely holds, so by dominated convergence, limn→+∞ P̌(nx ∈ ξn/a) = 0.
This gives g(x)≤ µ(x). Now take some a < µ(x). We will show that

lim
n→+∞

Pλ(nx ∈ ξn/a)≥ Pλmin
(τ =+∞)2, ν-a.s.,
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which will give

lim
n→+∞

P̌(nx∈ ξn/a)≥
∫

Λ
lim

n→+∞
Pλ(nx ∈ ξn/a)dν ≥ Pλmin

(τ =+∞)2

by Fatou’s lemma, whence g(x) ≥ a, which will lead to g(x) = µ(x). Ob-
viously, limn→+∞Pλ(nx ∈ ξn/a) ≥ limn→+∞Pλ(nx ∈ ξn/a, τ0 = +∞). How-
ever, the convergence theorem for the coupled zone implies that

lim
n→+∞

Pλ(nx ∈ ξZ
d

n/a, nx /∈ ξn/a, τ0 =+∞) = 0, ν-a.s.,

hence, by a classical time-reversal argument and using the FKG inequality,

lim
n→+∞

Pλ(nx ∈ ξn/a)≥ lim
n→+∞

Pλ(nx∈ ξZ
d

n/a, τ
0 =+∞)

≥ lim
n→+∞

Pλ(nx∈ ξZ
d

n/a)Pλ(τ
0 =+∞)

≥ lim
n→+∞

Pλ

(

τnx ≥ n

a

)

Pλ(τ
0 =+∞)

≥ Pλmin
(τ =+∞)2,

which ends the proof of the lemma. �

We now have a handsome expression to prove the symmetry property.
Actually, for every x ∈ Zd, t > 0, λ ∈Λ, a time-reversal argument proves that
Pλ(x ∈ ξt) = Px.λ(−x ∈ ξt), hence integrating with respect to ν and using
the invariance of ν under the translation by x,

P̌(x ∈ ξt) = P̌(−x ∈ ξt),
which, with Lemma 31, gives the symmetry of µ.

6. Uniform controls of the growth. The aim of this section is to establish
some of the uniform controls announced in Proposition 5. To control the
growth of the contact process, we need some lemmas on the Richardson
model.

6.1. Some lemmas on the Richardson model. We call Richardson model
with parameter λ the time-homogeneous, P(Zd)-valued Markov process
(ηt)t≥0, whose evolution is defined as follows: an empty site z becomes in-
fected at rate λ

∑

‖z−z′‖1=1 ηt(z
′), the different evolutions being independent.

Thanks to the graphical construction, we can, for each λ ∈ Λ, build a cou-

pling of the contact process in environment λ with the Richardson model
with parameter λmax, in the following way: at any time t, the space occupied
by the contact process is contained in the space occupied by the Richardson
model.
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The first lemma, whose proof is omitted, easily follows from the represen-
tation of the Richardson model in terms of first passage percolation, together
with a path counting argument.

Lemma 32. For every λ > 0, there exist constants A,B > 0 such that

∀t≥ 0 P(η1 6⊂Bt)≤A exp(−Bt).
Lemma 33. For every λ > 0, there exist constants A,B,M > 0 such that

∀s≥ 0 P(∃t≥ 0 :ηt 6⊂BMt+s)≤A exp(−Bs).
Proof. The representation of the Richardson model in terms of first

passage percolation ensures the existence of A′,B′,M ′ > 0 such that for
each t≥ 0,

P(ηt 6⊂BM ′t)≤A′ exp(−B′t).(36)

For more details, one can refer to Kesten [25].
We first control the process in integer times thanks to the following esti-

mate:

P(∃k ∈N :ηk 6⊂BM ′k+s/2)≤ P(∃k ∈N :ηk+s/(2M ′) 6⊂BM ′k+s/2)

≤
+∞
∑

k=0

P(ηk+s/(2M ′) 6⊂BM ′k+s/2)(37)

≤ A′

1− exp(−B′)
exp

(

− B′s
2M ′

)

.

Let us now control the fluctuations between integer times. Let M >M ′,

P({∃t≥ 0 :ηt 6⊂BMt+s} ∩ {∀k ∈N, ηk ⊂BM ′k+s/2})
(38)

≤
+∞
∑

k=0

P(∃t ∈ [k, k+1] :ηk ⊂BM ′k+s/2 and ηt 6⊂BMt+s).

Then, denoting by C ′ > 0 a constant such that |Bt| ≤C ′(1+ t)d and by A,B
the constants appearing in Lemma 32,

P(∃t ∈ [k, k+1] :ηk ⊂BM ′k+s/2 and ηt 6⊂BMt+s)

≤ P(ηk ⊂BM ′k+s/2 and ηk+1 6⊂BMk+s)

≤ |BM ′k+s/2|P(η1 6⊂Bk(M−M ′)+s/2)(39)

≤C ′(1 +M ′k+ s/2)dA exp(−B(k(M −M ′) + s/2))

≤AC ′(1 + s/2)d exp(−Bs/2)(1 +M ′k)d exp(−B(k(M −M ′))).

Inequality (39) comes from the Markov property and from the subadditivity
of the contact process. Since the series ((1+M ′k)d exp(−B(k(M −M ′)))k≥1

converges, the desired result follows from (37) and (38). �
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6.2. A restart procedure. We will use here a so-called restart argument,
which can be summed up as follows. We couple the system that we want
to study (the strong system) with a system that it stochastically dominates
(the weak system), and that is best understood. Then, we can transport
some of the properties of the known system to the one we study; we let
the processes simultaneously evolve and, each time the weaker dies and the
stronger remains alive, we restart a copy of the weakest, coupled with the
strongest again. Thus, either both processes die before we found any weak
process surviving. In this case, the control of large finite lifetimes for the
weak can be transposed to the strongest one, or the strongest indefinitely
survives and is finally coupled with a weak surviving one. In that case,
a bound for the time that is necessary to find a successful restart permits
us to transfer properties of the weak surviving process to the strong one.

This technique is already old; that can be found, for example, in Dur-
rett [14], Section 12, in a very pure form. It is also used by Durrett and
Griffeath [17], in order to transfer some controls for the one-dimensional
contact process to the contact process in a larger dimension. We will use it
here by coupling the contact process in inhomogeneous environment λ ∈ Λ
with the contact process with a constant birth rate λmin. Here, the assump-
tion λmin >λc(Z

d) matters.
To this end, we will couple collections of Poisson point processes. Fix

λ ∈ Λ. We can build a probability measure P̃λ on Ω×Ω under which:

• the first coordinate ω is a collection ((ωe)e∈Ed , (ωz)z∈Zd) of Poisson point
processes, with respective intensities (λe)e∈Ed for the bond-indexed pro-
cesses, and intensity 1 for the site-indexed processes.

• the second coordinate η is a collection ((ηe)e∈Ed , (ηz)z∈Zd) of Poisson point
processes, with intensity λmin for the bond-indexed processes, and inten-
sity 1 for the site-indexed processes.

• site-indexed Poisson point processed (death times) coincide; for every
z ∈ Zd, ηz = ωz.

• bond-indexed Poisson point processed (birth-times candidates) are cou-
pled; for each e ∈ Ed, the support of ηe is included in the support of ωe.

We denote by ξA = ξA(ω,η) the contact process in environment λ starting
from A and built from the Poisson process collection ω, and ζB = ζB(ω,η)
the contact process in environment λmin starting from B and built from the
Poisson process collection η. If B ⊂A, then P̃λ almost surely, ζBt ⊂ ξAt holds
for each t≥ 0. We can note that the process (ξA, ζB) is a Markov process.

We introduce the lifetimes of both processes:

τ = inf{t≥ 0 : ξ0t =∅} and for x ∈ Zd τ ′x = inf{t≥ 0 : ζxt =∅}.
Note that the law of τ ′x under P̃λ is the law of τx under Pλmin

; it actually does
not depend on the process starting point, because the model with constant
birth rate is translation invariant.
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We recursively define a sequence of stopping times (uk)k≥0 and a sequence
of points (zk)k≥0, letting u0 = 0, z0 = 0 and for each k ≥ 0:

• if uk <+∞ and ξuk
6=∅, then uk+1 = τ ′zk ◦ θuk

;
• if uk =+∞ or if ξuk

=∅, then uk+1 =+∞;
• if uk+1 <+∞ and ξuk+1

6=∅, then zk+1 is the smallest point of ξuk+1
for

the lexicographic order;
• if uk+1 =+∞ or if ξuk+1

=∅, then zk+1 =+∞.

In other words, until uk < +∞ and ξuk
6= ∅, we take in ξuk

the smallest
point zk for the lexicographic order, and look at the lifetime of the weakest
process, namely, ζ , starting from zk at time uk. The restart procedure can
stop in two ways; either we find k such that uk < +∞ and ξuk

=∅, which
implies that the strongest process (which contains the weak) precisely dies
at time uk, or we find k such that uk < +∞, ξuk

6= ∅ and uk+1 = +∞. In
this case, we have found a point zk such that the weak process which starts
from zk at time uk survives; particularly, this implies that the strongest also
survives. We then define

K = inf{n≥ 0 :un+1 =+∞}.
The name of the K variable is chosen by analogy with Section 3. The current
section being independent from the rest of the article, confusion should not
be possible. It comes from the preceding discussion that

(τ =+∞⇐⇒ ξ0uK
6=∅) and if τ <+∞ then uK = τ.(40)

We regroup in the next lemma some estimates on the restart procedure
that are necessary to prove Proposition 5. Recall that ρ is introduced in (7).

Lemma 34. We work in the preceding frame. Then:

• ∀λ ∈Λ,∀n ∈N P̃λ(K > n)≤ (1− ρ)n.
• ∀B ∈ B(D) P̃λ(τ =+∞, ζzK ◦ θuK

∈B) = Pλ(τ =+∞)Pλmin
(ξ0 ∈B).

• there exist α,β > 0 such that for every λ ∈ Λ, Ẽλ(exp(αuK))< β.

Proof. By the strong Markov property, we have

P̃λ(K ≥ n+ 1) = P̃λ(un+1 <+∞)

= P̃λ(un <+∞, ξun 6=∅, τ ′zn ◦ θun <+∞)

≤ P̃λ(un <+∞)(1− ρ)

= P̃λ(K ≥ n)(1− ρ).

Thus, K has a subexponential tail, which proves the first point. Particu-
larly, K is almost surely finite.
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Using (40) and the strong Markov property, we also have

P̃λ(τ =+∞, ζzK ◦ θuK
∈B)

= P̃λ(ξuK
6=∅, ζzK ◦ θuK

∈B)

=

+∞
∑

k=0

∑

z∈Zd

P̃λ(K = k, ξ0uk
6=∅, zk = z, ζzK ◦ θuK

∈B)

=

+∞
∑

k=0

∑

z∈Zd

P̃λ(uk <+∞, ξ0uk
6=∅, zk = z, τ ′zK ◦ θuk

=+∞, ζzK ◦ θuK
∈B)

=

+∞
∑

k=0

∑

z∈Zd

P̃λ(uk <+∞, ξ0uk
6=∅, zk = z)Pλmin

(τ =+∞, ξ0 ∈B)

= Pλmin
(τ =+∞, ξ0 ∈B)

+∞
∑

k=0

P̃λ(uk <+∞, ξ0uK
6=∅).

Taking for B the whole set of trajectories, we can identify

P̃(τ =+∞) = Pλ(τ =+∞) = Pλmin
(τ =+∞)

+∞
∑

k=0

P̃λ(uk <+∞, ξ0uK
6=∅),

which gives us the second point.
Since λmin > λc(Z

d), the results by Durrett and Griffeath [17] for large λ,
extended to the whole supercritical regime by Bezuidenhout and Grim-
mett [4], ensure the existence of A,B > 0 such that

∀t≥ 0 Pλmin
(t≤ τ <+∞)≤A exp(−Bt),

which gives the existence of exponential moments for τ1{τ<+∞}. Since
Pλmin

(τ = +∞)> 0, we can choose (e.g., by dominated convergence) some
α > 0 such that Eλmin

(exp(ατ)1{τ<+∞}) = r < 1.
For k ≥ 0, we note

Sk = exp

(

α
k−1
∑

i=0

τ ′zi ◦ θui

)

1{uk<+∞}.

We note that Sk is Fuk
-measurable. Let k ≥ 0. We have

exp(αuK)1{K=k} ≤ Sk.

Thus, applying the strong Markov property at time uk−1 <+∞, we get, for
k ≥ 1,

Ẽλ[exp(αuK)1{K=k}]≤ Ẽλ(Sk) = Ẽλ(Sk−1)Eλmin
(exp(ατ)1{τ<+∞})

≤ rẼλ(Sk−1).

Since r < 1, it comes that Ẽλ[exp(αuK)]≤ r
1−r <+∞. �
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6.3. Proof of Proposition 5. Estimates (8) and (7) follow from a simple
stochastic comparison.

Proof of (7). It suffices to note that for every environment λ ∈Λ and
each z ∈ Zd, we have

Pλ(τ
z =+∞)≥ Pλmin

(τ z =+∞) = Pλmin
(τ0 =+∞)> 0. �

Proof of (8). We use the stochastic domination of the contact process
in environment λ by the Richardson model with parameter λmax. For this
model, (36) ensures a growth which is at least linear. �

Then, it remains to prove (9), (10) and (11) with a restart procedure.

Proof of (9). Let α,β > 0 as given in the third point of Lemma 34.
Recall that uK = τ on {τ <+∞}. For each λ ∈ Λ and each t > 0, we have

Pλ(t < τ <+∞) = Pλ(e
αt < eατ , τ <+∞) = P̃λ(e

αt < eαuK , τ <+∞)

≤ P̃λ(e
αt < eαuK )≤ e−αtẼλe

αuK ≤ βe−αt,

which concludes the proof. �

Proof of (10). Since λmin > λc(Z
d), Durrett and Griffeath’s results [17]

for large λ, extended to the whole supercritical regime by Bezuidenhout and
Grimmett [4], ensure the existence of constants A,B, c > 0 such that, for
each y ∈ Zd, for each t≥ 0,

Pλmin

(

t(y)≥ ‖y‖
c

+ t

)

≤A exp(−Bt).(41)

Besides, the domination by the Richardson model with parameter λmax and
Lemma 33 ensure the existence of A,B,M > 0 such that for every λ ∈ Λ, for
each s≥ 0,

Pλ(∃t≥ 0, ξ0t 6⊂BMt+s)≤A exp(−Bs).(42)

By decreasing c or increasingM if necessary, we can also assume that c
M ≤ 1.

Now,

P̃λ

(

t(y)≥ ‖y‖
c

+ t, τ =+∞
)

≤ P̃λ

(

uK ≥ tc

6M

)

+ P̃λ

(

uK ≤ tc

6M
,ξ0uK

6⊂Btc/3

)

+ P̃λ

(

τ =+∞, uK ≤ tc

6M
,ξ0uK

⊂Btc/3, t(y)≥
‖y‖
c

+ t

)

.



CONTACT PROCESS IN RANDOM ENVIRONMENT 39

By Lemma 34, uK has exponential moments, so we can bound the first term;
there exist C,α > 0 such that for each λ ∈ Λ, for each t≥ 0,

P̃λ

(

uK ≥ tc

6M

)

≤C exp

(

−αct

6M

)

.

The second term is controlled with the help of (42):

P̃λ

(

uK ≤ tc

6M
,ξ0uK

6⊂Btc/3

)

≤ Pλ(∃t≥ 0, ξ0t 6⊂BMt+(tc)/6)≤A exp

(

−Btc
6

)

.

It remains to bound the last term. We note here

t′(y) = inf{t≥ 0 :y ∈ ζ0t }.
Recall that if τ = +∞, then ξuK

6= ∅ and zK is well defined. Since t(y) is
the hitting time of y and ξ0t ⊃ ζ0t for each t, we have, on {τ =+∞},

t(y)≤ uK + t′(y − zK) ◦ TzK ◦ θuK
.

If uK ≤ tc
6M ≤ t

6 , then t(y)≤ t
6 + t′(y − zK) ◦ TzK ◦ θuK

. If, moreover, ξ0uK
⊂

Btc/3, we have ‖y‖ ≥ ‖y − zK‖ − tc
3 , which gives, with the second point in

Lemma 34,

P̃λ

(

τ =+∞, uK ≤ ct

6M
,ξ0uK

⊂Bct/3, t(y)≥
‖y‖
c

+ t

)

≤ P̃λ

(

τ =+∞, t′(y − zK) ◦ TzK ◦ θuK
≥ ‖y − zK‖

c
+
t

2

)

≤ Pλ(τ =+∞) sup
z∈Zd

Pλmin

(

t(y − z)≥ ‖y − z‖
c

+
t

2

)

≤A exp(−Bt/2),

where the last inequality follows from (41). The proof is complete. �

Proof of (11). Let s≥ 0, and denote by n the integer part of s. Let
γ > 0 be a fixed number, whose precise value will be specified later:

P(0 /∈K ′
s) = P(∃t≥ s : 0 /∈Kt)

≤
+∞
∑

k=n

P(Bγk 6⊂Kk)

+

+∞
∑

k=n

P(Bγk ⊂Kk,∃t ∈ [k, k+ 1) such that 0 /∈Kt).

Let us first bound the second sum. Fix k ≥ n. Assume that Bγk ⊂ Kk

and consider t ∈ [k, k + 1) such that 0 /∈Kt. Then, there exists x ∈ Zd such
that 0 ∈ ξxt \ ξ0t . Since 0 ∈ ξxt and t≥ k, there exists y ∈ Zd such that y ∈ ξxk
and 0 ∈ ξyt−k ◦ θk. If y ∈ Bγk ⊂ Kk, then ξ0k(y) = ξZ

d

k (y) = 1, which implies
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that y ∈ ξ0k . Now, since 0 ∈ ξ
y
t−k ◦ θk, we obtain 0 ∈ ξ0t , which contradicts the

assumption 0 /∈ ξ0t . Thus, we necessarily have y /∈Bγk, so

Pλ(Bγk ⊂Kk,∃t ∈ [k, k+ 1) tel que 0 /∈Kt)

≤ 1

Pλ(τ =+∞)
Pλ

(

θ−1
k

(

0 ∈
⋃

s∈[0,1]
ξ
Zd\Bγk
s

))

≤ 1

ρ
Pλ

(

0 ∈
⋃

s∈[0,1]
ξ
Zd\Bγk
s

)

≤ 1

ρ
Pλ

(

⋃

s∈[0,1]
ξ0s 6⊂Bγk

)

=
1

ρ
Pλ(H

0
1 6⊂Bγk).

Since the Richardson model with parameter λmax stochastically dominates
the contact process in environment λ, we control the last term thanks to
Lemma 32.

To control the first sum, it is sufficient to prove that there exist positive
constants A,B,γ (and this will fix the precise value of γ) such that for each
λ ∈ Λ and each t≥ 0

Pλ(Bγt 6⊂Kt, τ
0 =+∞)≤A exp(−Bt).(43)

The number of integer points in a ball being polynomial with respect to
the radius, it is sufficient to prove that there exist some constants A,B, c′ > 0
such that for each t≥ 0, for each x ∈ Zd,

‖x‖ ≤ c′t =⇒ P̃λ(ξ
0
t 6=∅, x ∈ ξZd

t \ ξ0t )≤A exp(−Bt).(44)

To prove (44), we will use the following result, that has been obtained by
Durrett [16] as a consequence of the Bezuidenhout and Grimmett construc-
tion [4]. If ξ0 and ξ̃x are two independent contact processes with parameter
λ > λc(Z

d), respectively, starting from 0 and from x, then there exist positive
constants A,B,α such that for each t≥ 0 and each x ∈ Zd,

‖x‖ ≤ αt =⇒ P(ξ0t ∩ ξ̃xt =∅, ξ̃xt 6=∅, ξ0t 6=∅)≤A exp(−Bt).(45)

Let α andM be the constants, respectively, given by equations (45) and (8).
We put c′ = α/2 and choose ε > 0 such that c′ +2εM ≤ α.

Let a ∈B0
αt/4 and b ∈Bx

αt/4. We set

αa,s = ζas ◦ θεt/2 and βb,s = {y ∈ Zd : b ∈ ζys ◦ θt(1−ε/2)−s}.
Then, (αa,s)0≤s≤t/2(1−ε) and (βa,s)0≤s≤t/2(1−ε) are independent contact pro-
cesses with constant birth rate λmin, respectively, starting from a and from b.
The process (βa,s)0≤s≤t/2(1−ε) is a contact process, but for which the time
axis has been reverted. In the same way, we set

ξ̂xs = {y ∈ Zd :x ∈ ξys ◦ θt−s}.



CONTACT PROCESS IN RANDOM ENVIRONMENT 41

Note that (ξ̂xs )0≤s≤t/2 has the same law as (ξxs )0≤s≤t/2. Note that:

• assuming a ∈ ξ0εt/2, αa,(1−ε)t/2 ∩ βb,(1−ε)t/2 6=∅ and b ∈ ξ̂xεt/2, then x ∈ ξ0t ;
• if x ∈ ξZd

t , then ξ̂xt/2 is nonempty;

• if ξ0t is nonempty, then ξ0t/2 is nonempty.

Thus, letting

E0 = {ξ0t/2 6=∅} \ {∃a∈B0
αt/4 ∩ ξ0εt/2 :αa,(1−ε)t/2 6=∅}

and

Êx = {ξ̂xt/2 6=∅} \ {∃b ∈Bx
αt/4 ∩ ξ̂xεt/2 :βb,(1−ε)t/2 6=∅},

we get

P̃λ(ξ
0
t 6=∅, x ∈ ξZd

t \ ξ0t )≤ P̃λ(ξ
0
t/2 6=∅, ξ̂xt/2 6=∅, ξ0t/2 ∩ ξ̂xt/2 =∅)

(46)
≤ P̃λ(E

0) + P̃λ(Ê
x) + S,

where S =
∑

a∈B0
αt/4

,b∈Bx
αt/4

P̃λ(αa,(1−ε)t/2 6= ∅, βb,(1−ε)t/2 6= ∅, αa,(1−ε)t/2 ∩
βb,(1−ε)t/2 =∅).

For every couple (a, b) that appears in S, we have ‖a− b‖ ≤ ‖a‖+ ‖b−
x‖+ ‖x‖ ≤ αt/4 + αt/4 + αt/2 = αt, which allows us to use (45), and gives
the existence of constants A,B,C ′ > 0 such that

S ≤C ′(1 + αt/4)2dA exp(−B(1− ε)t/2).

By another time reversal, we see that P̃λ(Ê
x) = P̃x.λ(E

0); then it suffices to
control P̃λ(E

0) uniformly in λ. Let

E1 = {ξ0t/2 6=∅} \ {∃a ∈ Zd :a ∈ ξ0εt/2, αa,(1−ε)t/2 6=∅}.

We have P̃λ(E
0)≤ P̃λ(E1) + P̃λ(ξ

0
εt/2 6⊂B0

αt/4). By the choice we made for ε

and inequality (8), we have

∀λ ∈Λ,∀t≥ 0 P̃λ(ξ
0
εt/2 6⊂B(0, αt/4))≤A exp(−Bεt/2).

Thanks to the restart Lemma 34, we can see that

P̃λ(uK > εt/2)≤ β exp(−αεt/2).
Suppose then that uK ≤ εt/2 and ξ0t/2 6= ∅: zK is thus well defined and

we have τ ′zK ◦ θuK
=+∞. Then, there exists an infinite infection branch in

the coupled process in environment λmin starting from ξ0uK
. This branch

contains at least one point a ∈ ξ0(1−ε)t/2. By construction a ∈ ξ0(1−ε)t/2 and

αa,(1−ε)t/2 6=∅, which completes the proof of (43). �

Remark. On our way, we proved that for each λ ∈Λ,

lim
t→+∞

P̃λ(ξ
0
t 6=∅, ξ̂xt 6=∅, ξ0t ∩ ξ̂xt =∅) = 0,
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which is the essential ingredient in the proof of the complete convergence
Theorem 4. One can refer to the article by Durrett [16] for the details in the
case of the classical contact process.

APPENDIX: PROOF OF ALMOST SUBADDITIVE ERGODIC
THEOREMS 23 AND 24

Proof of Theorem 23. Let ap = C
1/α
p and un = E[fn]; for every

n,p ∈N, we have E[r+n,p]≤ (E[(r+n,p)
α])1/α ≤C

1/α
p = ap, hence,

un+p ≤ un + up + E[gp] + E[rn,p]≤ un + up +E[gp] + ap.

The general term of a convergent series tends to 0, so Cp = o(pα) or ap = o(p).

Since an+Egn
n tends to 0, the convergence of un/n is classical (see Derrien-

nic [11], e.g.). The limit µ is finite because un ≥ cn holds for each n.

We are going to show that f = limn→+∞
fn
n stochastically dominates

a random variable whose mean value is not less than µ.
For every random variable X , let us denote by L(X) its law under P.

We denote by K the set of probability measures on RN∗

+ whose marginals m
satisfy

∀t > 0 m(]t,+∞[)≤ P(f1 + g1 > t/2) +C1(2/t)
α.

Define, for k ≥ 1,

∆k = fk+1 − fk

and denote by ∆ the process ∆= (∆k)k≥1. For k ∈N, subadditivity ensures
that ∆k ≤ (f1 + g1) ◦ θk + rk,1, hence, for each t > 0,

P(∆k > t)≤ P((f1 + g1) ◦ θk > t/2) + P(r+k,1 > t/2)

≤ P(f1 + g1 > t/2) +C1(2/t)
α.

This ensures that ∆ ∈K.
We denote by s the shift operator s((uk)k≥0) = (uk)k≥1, and consider the

sequence of probability measures on RN∗

(Ln)n≥1 =

(

1

n

n
∑

j=1

L(sj ◦∆)

)

n≥1

.

Since K is convex and invariant by s, the sequence (Ln)n≥1 is K-valued. Let
n,k ≥ 1.

∫

πk(x)dLn(x) =
1

n

n
∑

j=1

E(πk(s
j ◦∆))
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=
1

n

n
∑

j=1

E(fk+j+1 − fk+j)

=
1

n
(E[fn+k+1]− E[fk+1]).

Let Mk = supn≥1
1
n |E[fn+k+1]− E[fk+1]|. The convergence of un/n implies

that Mk is finite. Similarly, the subadditivity gives
∫

π+k (x)dLn(x) =
1

n

n
∑

j=1

E(π+k (s
j ◦∆))

=
1

n

n
∑

j=1

E[(fk+j+1 − fk+j)
+]

≤ E[f+1 ] + E[g1] + a1.

Thus, we have
∫

|πk(x)|dLn(x)≤
∫

2π+k (x)dLn(x) +

∣

∣

∣

∣

∫

πk(x)dLn(x)

∣

∣

∣

∣

≤Mk +2E[f+1 ] + 2E[g+1 ] + 2a1.

Let K′ be the family of laws m on RN∗
such that for each k,

∫

|πk|dm ≤
2Mk + E[f+1 ] + E[g+1 ] + a1. K′ is compact for the topology of the conver-
gence in law and the sequence (Ln)n≥1 is K′-valued. So, let γ be a limit
point of (Ln)n≥1 and (nk)k≥1 a sequence of indexes such that Lnk

=⇒ γ. By
construction, γ is invariant under the shift s.

Now, the sequence of the laws of the first coordinate π1(x) under (Lnk
)k≥0

weakly converges to the law of the first coordinate under γ. Also, by defini-
tion of K, the positive parts of these elements form a uniformly integrable
collection, so

∫

π+1 dγ = lim
∫

π+1 dLnk
. However, the Fatou lemma tells us

that
∫

π−1 dγ ≤ limk→+∞
∫

π−1 dLnk
, hence, finally

∫

π1 dγ ≥ lim
k→+∞

∫

π1 dLnk
= µ.

Let Y = (Yk)k≥1 be a process whose law is γ. Since γ is invariant under the
shift s, the Birkhoff theorem tells us that the sequence ( 1n

∑n
k=1Yk)n≥1 a.s.

converges to a random variable Y∞, which then satisfies E(Y∞) =
∫

π1 dγ ≥ µ.
It remains to see that the law of Y∞ is stochastically dominated by the

law of f = limn→+∞
1
nfn. We will show that for each a ∈ R, P(Y∞ > a) ≤

P(f > a). By left-continuity, it is sufficient to prove the inequality in a dense
subset of R. Thus, we can assume that a is not an atom for the law of f :

{Y∞ > a}=
{

lim
n→+∞

Y1 + · · ·+ Yn
n

> a

}

=
⋃

k≥1

{

inf
n≥k

Y1 + · · ·+ Yn
n

> a

}

.



44 O. GARET AND R. MARCHAND

Hence,

P(Y∞ > a)

= lim
k→+∞

PY

(

inf
n≥k

π1 + · · ·+ πn
n

> a

)

= lim
k→+∞

inf
n≥k

PY

(

inf
k≤i≤n

π1 + · · ·+ πi
i

> a

)

≤ lim
k→+∞

inf
n≥k

lim
K→+∞

1

nK

nK
∑

j=1

P

(

inf
k≤i≤n

π1 + · · ·+ πi
i

◦ sj ◦∆> a

)

.

Let ε > 0. We have, for fixed k,n, j,

P

(

inf
k≤i≤n

π1 + · · ·+ πi
i

◦ sj ◦∆> a

)

= P

(

inf
k≤i≤n

fi+j+1 − fj+1

i
> a

)

≤ P

(

inf
k≤i≤n

(fi + gi) ◦ θj+1 + rj+1,i

i
> a

)

≤ P

(

inf
k≤i≤n

(fi + gi) ◦ θj+1

i
> a− ε

)

+ P

(

sup
i≥k

rj+1,i

i
> ε

)

.

On one hand, we have

P

(

sup
i≥k

rj+1,i

i
> ε

)

≤ P

(

∑

i≥k

(

r+j+1,i

i

)α

> εα
)

≤ ε−α
∑

i≥k

1

iα
E[(r+j+1,i)

α]

≤ ε−α
∑

i≥k

Ci

iα
.

We can note that this term does not depend on j nor on n. On the other
hand,

P

(

inf
k≤i≤n

(fi + gi) ◦ θj+1

i
> a− ε

)

= P

(

inf
k≤i≤n

fi + gi
i

> a− ε

)

,

which does not depend on j. Then, for each ε > 0, we have for every n,k,
with n≥ k,

lim
K→+∞

1

nK

nK
∑

j=1

P

(

inf
k≤i≤n

π1 + · · ·+ πi
i

◦ sj ◦∆> a

)

≤ ε−α
∑

i≥k

Ci

iα
+ P

(

inf
k≤i≤n

fi + gi
i

> a− ε

)

;
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next

inf
n≥k

lim
K→+∞

1

nK

nK
∑

j=1

P

(

inf
k≤i≤n

π1 + · · ·+ πi
i

◦ sj ◦∆> a

)

≤ ε−α
∑

i≥k

Ci

iα
+ inf

n≥k
P

(

inf
k≤i≤n

fi + gi
i

> a− ε

)

.

Finally,

P(Y∞ > a)≤ lim
k→+∞

inf
n≥k

P

(

inf
k≤i≤n

fi + gi
i

> a− ε

)

+ lim
k→+∞

ε−α
∑

i≥k

Ci

iα

≤ lim
k→+∞

P

(

inf
i≥k

fi + gi
i

> a− ε

)

≤ P

(

lim
i→+∞

fi + gi
i

> a− ε

)

= P

(

lim
i→+∞

fi
i
> a− ε

)

,

considering that gi/i almost surely converges to 0. Letting ε tend to zero,
we obtain

P(Y∞ > a)≤ P

(

lim
i→+∞

fi
i
≥ a

)

= P(f > a).

It remains to see that f is invariant under the θn’s. Fix n≥ 1. We have

E

[

+∞
∑

p=1

(

r+n,p
p

)α
]

=

+∞
∑

p=1

E

[(

r+n,p
p

)α]

≤
+∞
∑

p=1

Cp

pα
<+∞.

Particularly,
r+n,p

p almost surely converges to 0 when p tends to infinity. Since

fn+p ≤ fn + fp ◦ θn + gp ◦ θn + r+n,p, dividing by n+ p and letting p tend to
+∞, it comes that

f ≤ f ◦ θn a.s.

Since P is invariant under θn, we classically conclude that f is invariant
under θn. �

Remark. In the present article, we made no use of the possibility to
take a nonzero gp. In the case where the (gp) are not zero, but the rn,p’s are,
we obtain a result which sounds a bit like Theorem 3 in Schürger [37]. Like
Schürger [36], we use the idea of a coupling with a stationarized process. This
idea is due to Durrett [13] and has been popularized by Liggett [30]. How-
ever, here there is a refinement, because we directly establish a stochastic
comparison with the random variable Y , whereas previous papers establish
a stochastic comparisons with the whole process (Yn)n≥1, that admits Y as
its infimum limit.
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In the majority of almost subadditive ergodic theorems, almost sure con-
vergence requires strong conditions on the lack of subadditivity (stationarity,
e.g.). Here we obtain an almost sure behavior by only considering a condi-
tion on the moments (of order greater than 1) of the lack of subadditivity.
Besides, we know that bounding the first moment of the lack of subaddi-
tivity is not sufficient to get an almost sure behavior (see the remark by
Derriennic [11] and the counter-example by Derriennic and Hachem [12]).

Proof of Theorem 24. It remains to prove that E(limn→+∞
fn
n )≤ µ.

We fix k ≥ 1. By subadditivity, we have for each n≥ 0 and every 0≤ r≤
k− 1,

fnk+r ≤ fnk + (fr + gr) ◦ θnk + r+nk,r

≤
(

n−1
∑

i=0

fk ◦ (θk)i
)

+

(

fnk −
n−1
∑

i=0

fk ◦ (θk)i
)+

+ (fr + gr) ◦ θnk + r+nk,r.

Since P is invariant under θk, the Birkhoff theorem gives the L1 and almost-
sure convergence

lim
n→+∞

1

n

n−1
∑

j=0

fk ◦ (θk)j
k

=
E(fk|Ik)

k
,

where Ik is the σ-algebra of the θk-invariant events. Let us now control the
residual terms. Since the finite collection (fr + gr)0≤r≤k−1 is equi-integrable
and P is invariant under θk, the collection (sup0≤r≤k−1(fr + gr) ◦ θnk )n≥1 is

equi-integrable, which ensures the almost sure and L1 convergence

lim
n→+∞

1

n
sup

0≤r≤k−1
(fr + gr) ◦ (θk)n = 0.

We have
∑+∞

n=1E[(
r+nk,r

n )α] ≤∑+∞
n=1

Cr
nα < +∞, which implies, as previously,

that r+nk,r/n almost surely converges to 0. Finally,

∀r ∈ {0, . . . , k− 1} lim
n→+∞

fnk+r

nk+ r
≤ E[fk|Ik]

k
,

hence, E[limn→+∞
fn
n ] ≤ E[fk]

k . We complete the proof by letting k tend to
+∞. �

Remark. When there is no lack of subadditivity, the assumptions of
Theorem 24 obviously hold; thus we obtain a subadditive ergodic theorem
which sounds very much like Liggett’s [30]. However, these theorems are not
strictly comparable, in the following sense that no one implies the other one.
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Indeed, extending a remark made by Kingman in his Saint-Flour’s
course [28], page 178, we can note that the assumption of Kingman’s original
article [the stationarity of the doubly indexed process (Xs,t)s≥0,t≥0] can be
weakened in two different ways:

• Either assuming that for each k, the process (X(r−1)k,rk)r≥1 is stationary;
this assumption will be used by Liggett [30].

• Or assuming that the law of Xn,n+p does not depend on p. That assump-
tion, suggested by Hammersley and Welsh, is the one that we use here,
also used by Schürger in [37].

Note, however, that the special assumption of stationarity is used in Liggett’s
proof [30] only in the so-called easy part, that is, the bound for the supremum
limit.

Kingman thought that the first set of assumptions surpassed the second
one, in view of possible applications. More than 30 years later, the progresses
of subadditive ergodic theorems, particularly about bounding the infimum
limit, lead to moderate this affirmation.
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[11] Derriennic, Y. (1983). Un théorème ergodique presque sous-additif. Ann. Probab.
11 669–677. MR0704553

[12] Derriennic, Y. and Hachem, B. (1988). Sur la convergence en moyenne des suites
presque sous-additives. Math. Z. 198 221–224. MR0939537

[13] Durrett, R. (1980). On the growth of one-dimensional contact processes. Ann.
Probab. 8 890–907. MR0586774

http://www.ams.org/mathscinet-getitem?mr=1910638
http://www.ams.org/mathscinet-getitem?mr=1893139
http://www.ams.org/mathscinet-getitem?mr=1203176
http://www.ams.org/mathscinet-getitem?mr=1071804
http://www.ams.org/mathscinet-getitem?mr=1074741
http://www.ams.org/mathscinet-getitem?mr=1112403
http://www.ams.org/mathscinet-getitem?mr=0578279
http://www.ams.org/mathscinet-getitem?mr=0606980
http://www.ams.org/mathscinet-getitem?mr=2303944
http://www.ams.org/mathscinet-getitem?mr=1970474
http://www.ams.org/mathscinet-getitem?mr=0704553
http://www.ams.org/mathscinet-getitem?mr=0939537
http://www.ams.org/mathscinet-getitem?mr=0586774


48 O. GARET AND R. MARCHAND

[14] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–
1040. MR0757768

[15] Durrett, R. (1988). Lecture Notes on Particle Systems and Percolation. Wadsworth
and Brooks/Cole, Pacific Grove, CA. MR0940469

[16] Durrett, R. (1991). The contact process, 1974–1989. In Mathematics of Random
Media (Blacksburg, VA, 1989). Lectures in Applied Mathematics 27 1–18. Amer.
Math. Soc., Providence, RI. MR1117232

[17] Durrett, R. and Griffeath, D. (1982). Contact processes in several dimensions.
Z. Wahrsch. Verw. Gebiete 59 535–552. MR0656515

[18] Eden, M. (1961). A two-dimensional growth process. In Proc. 4th Berkeley Sympos.
Math. Statist. and Prob., Vol. IV 223–239. Univ. California Press, Berkeley, CA.
MR0136460

[19] Garet, O. and Marchand, R. (2004). Asymptotic shape for the chemical distance
and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab.
Stat. 8 169–199 (electronic). MR2085613

[20] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2

652–680. MR0370721
[21] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subad-

ditive processes, stochastic networks, and generalized renewal theory. In Proc.
Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. 61–110.
Springer, New York. MR0198576

[22] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods.
Ann. Probab. 6 355–378. MR0488377

[23] Howard, C. D. (2004). Models of first-passage percolation. In Probability on Dis-
crete Structures. Encyclopaedia of Mathematical Sciences 110 125–173. Springer,
Berlin. MR2023652

[24] Howard, C. D. and Newman, C. M. (1997). Euclidean models of first-passage
percolation. Probab. Theory Related Fields 108 153–170. MR1452554

[25] Kesten, H. (1986). Aspects of first passage percolation. In École D’été de Probabilités
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