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Abstract: In this paper, the design of a polytopic Unknown Input Observer (UIO) for polytopic
Linear Varying Parameter (LPV) descriptor systems is investigated. The method presented is
based on the representation of a�ne LPV descriptor systems where parameters evolve in a
hypercube domain. The considered polytopic UIO is able to estimate the states of the system
in spite of the presence of unknown inputs. This approach is also applied to actuator fault
detection, isolation and estimation. Stability conditions of such observer are expressed in terms
of Linear Matrix Inequalities (LMI). An example illustrates the e�ectiveness and performances
of such polytopic LPV observer.
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1. INTRODUCTION

Real physical processes are often described by nonlinear
models. As it is di�cult to design nonlinear observers,
many authors preferred to represent these systems by a
Linear Parameter Varying (LPV) approach. The idea of
this approach is to represent the system as an interpolation
of simple (usually a�ne) local models.
For a�ne LPV systems, the interpolation techniques
present a good approach to get a polytopic structure. This
structure is a set of linear model scheduled by a convex
function. Several attempts have already been made in this
direction. Taking the polytopic representation, in (Ro-
drigues et al.2008), (Akhenak et al 2004) and (Rodrigues
et al.2005), the authors have developed a method for fault
diagnosis and have designed a robust polytopic unknown
input observer. In the same area, (Sylvain et al.2006),
(Zolghadri et al.2008) have applied this approach in the
design of Fault Detection and Isolation �lters for varying
parameters models.
Many processes are naturally modeled by systems of non-
linear Di�erential and Algebraic Equations (DAE), where
the explicit di�erential equations arise from dynamic bal-
ances of mass and energy, while the algebraic equations
typically consist of empirical correlations. DAE, singular
or descriptor systems arise frequently in various engineer-
ing �elds as well, especially in chemical, mechanical and
electrical engineering.

Observer design for such descriptor nonlinear systems has
been studied by many authors as (Boutayeb et al.1995)
who have proposed an asymptotic observer of autonomous
nonlinear descriptor systems where the matrix E is in
the general form and may be rectangular, (Darouach
et al.1995), (Hou et al.1999) for their works on the design
of observer for descriptor systems . A full-order and pro-
portional integral observers for lipschitz nonlinear descrip-
tor systems have been designed by (Koenig et al.2006).
For nonlinear descriptor time invariant systems, (Marx
et al 2007) have proposed a multiobserver by extending
the ordinary Takagi-Sugeno (T-S) fuzzy model. Finally,
nonlinear descriptor systems are often studied for control
(Taniguchi et al.2000), robust control (Wang et al.2004),
(Toscano 2006) and fault tolerant control purposes (Gao
et al.2007). Now, we will focus on systems which can
be represented by polytopic LPV models (Rodrigues
et al.2007). We will use this representation and extend
it to descriptor polytopic LPV systems.
In this paper, we study the design of unknown inputs
observers (UIO) for polytopic LPV descriptor systems.
This observer is used for state estimation and for residual
generation in order to detect and isolate the faults when
they occur (see (Chen et al.1999) for Fault Diagnosis
preliminaries).
The �rst step of this work consists to represent the a�ne
LPV descriptor system by a polytopic form when the pa-
rameters evolve in a polytopic domain. The vertices of this



polytope are called the submodels of this representation.
Those submodels are then combined by weighing functions
to yield a global model. The second step is devoted to
the design of a local observer for each singular submodel.
Stability of this polytopic UIO is ensured by using LMI
techniques.
This paper is organized as follows. The polytopic repre-
sentation of a�ne LPV singular systems is presented in
Section 2. The polytopic Unknown Input Observer design
corresponding to the polytopic models is given in Section
3. The stability conditions of the polytopic UIO are studied
in Section 4. Section 5 is dedicated to detect, isolate
and estimate an actuator fault by using a bank of UIO.
Finally, an illustrative example is provided to show the
e�ectiveness of the proposed approach.

2. POLYTOPIC LPV STRUCTURAL DESCRIPTOR
SYSTEM

Let us consider the following LPV descriptor representa-
tion {

Eẋ(t) = A(θ)x(t) + B(θ)u(t) + R(θ)d(t)
y(t) = Cx(t)

(1)

where x ∈ Rn is the state vector, u ∈ Rp the input
vector, d ∈ Rq is the unknown inputs vector and y ∈ Rm

represents the measured outputs vector.
(E, Ai) ∈ Rlxn, E is a constant matrix and rank(E) < n.
Θ = {θ1, ..., θr} is the vector of r parameters. In the
case of parameters a�ne dependence, the elements of the
representation (1) can be written as follows

Π(θ) = Π0 +

r∑
i=1

θiΠi (2)

where
Π(θ) =

(
A(θ) B(θ) R(θ)
C 0 0

)
,∀θ ∈ Θ (3)

where Θ = {θ : θ = θ1, ..., θr ∈ Θ ⊂ Rr}.
In this paper, the �eld Θ is an hypercube of dimension r,
where each vertex corresponds to the extreme values of θ
(Rodrigues et al 2007). The system (1) can be de�ned via
barycentric combination of a matrix polytope with vertices
Si = [ Ai, Bi, C, Ri ] ,
∀ i ∈ [1, ...,M ] where M = 2r. Consequently, system (1)
can be rewritten as a polytopic representation





Eẋ(t) =
M∑

i=1

µi(θ(t))(Aix(t) + Biu(t) + Rid(t))

y(t) = Cx(t)

(4)

where µi(θ(t)) = µ(θ̄i, θi, θi(t), t) (θ̄i and θi represent the
maximum and the minimum value of θi respectively).
Ai ∈ Rn×n, Bi ∈ Rn×p, Ri ∈ Rn×q and C ∈ Rm×n are
time invariant matrices de�ned for the ith model. The
polytopic LPV descriptor system is scheduled through
µi(θ(t)), ∀ i ∈ [1, ..., M ] functions lie in the following
convex set

Ω =





µi(θ(t)) ∈ RM , µi(θ) = [µ1(θ), ..., µM (θ)]T , µi(θ) ≥ 0,

∀ i,
M∑

i=1

µi(θ(t)) = 1





3. POLYTOPIC UNKNOWN INPUT OBSERVER
DESIGN

3.1 Preliminary study

In this section, we consider a nonlinear descriptor system
represented by the following polytopic LPV descriptor
model: 




Eẋ(t) =
M∑

i=1

µi(θ(t))(Aix(t) + Biu(t) + Rid(t))

y(t) = Cx(t)

(5)

A local model will be de�ned by:{
Eẋ(t) = Aix(t) + Biu(t) + Rid(t)
y(t) = Cx(t)

(6)

At this step, we will focus on the design of a local observer
for this linear descriptor model (6). Since rank(E) = r
and rank([ E Ri ]) = rank(E) , there exists a non singular
matrix P such as (Darouach et al 1995)

PE =

[
E0

0

]
, PAi=

[
A0i

A1i

]
, PBi=

[
B0i

B1i

]
, PRi=

[
R0i

0

]
(7)

where E0 ∈ Rr×n and rank(E0) = r. This transformation
makes it possible to split the static part and the dynamic
part of the descriptor system (6). By injecting the static
part in the outputs equations, the submodel (6) becomes

{
E0ẋ(t) = A0ix(t) + B0iu(t) + R0id(t)
y0i(t) = C0ix(t)

(8)

where
y0i(t) =

[−B1iu(t)
y(t)

]
∈ Rj, C0i=

[
A1i

C

]
∈ Rjxn

and j = p + n− r
The polytopic LPV descriptor model is written as follows




E0ẋ(t) =
M∑

i=1

µi(θ(t))(A0ix(t) + B0iu(t) + R0id(t))

y0(t) = C0x(t)

(9)

where: y0(t) =


 −

M∑
i=1

µi(θ(t))B1iu(t)

y(t)


 ∈ Rj

and C0=




M∑
i=1

µi(θ(t))A1i

C


 ∈ Rjxn.

3.2 Polytopic UIO Design

The proposed polytopic UIO of the polytopic LPV descrip-
tor model (8) has the following form:




Ż(t) =
M∑

i=1

µi(θ(t))(NiZ(t) + G1iu(t) + Liy0i(t))

x̂(t) =
M∑

i=1

µi(θ(t))(Z(t) + H2iy0i(t))

(10)

where Z(t) represents the estimated vector, G1i ∈ Rn×m

are the gains of the local observers. The equations (10)
de�ne a polytopic UIO for descriptor LPV system (4), if
the estimation error tends towards zero asymptotically in
spite of the presence of unknown inputs on the system.
This polytopic UIO aggregates all the local observer de-
�ned at each vertex. The problem consists in synthesizing
the parameters Ni, G1i, Li and H2i such that the polytopic



UIO satis�es the properties of stability and rate of conver-
gence of the observation error. To estimate the states of
system (4), we assume that (Hou et al 1999)

rank

[
AT

0i ET
0 CT

0i
ET

0 0 0

]
= n + rank(E0) (11)

rank

[
sE0 −A0i

C0i

]
= n,∀i = 1, . . . , M (12)

The matrices of the polytopic UIO can be determined in
such a way to enable the asymptotical convergence to zero
of the state estimation error for the ith model, de�ned by
ei(t) = x(t)− x̂(t)

ei(t) = (In −H2iC0i)x(t)− Z(t),∀ i = 1, ..., M (13)

Let us consider H1i ∈ Rn×r, such as
H1iE0 = In −H2iC0i (14)

Then, since
[

E0

C0i

]
is of full column rank, and using (14),

the equality (13) becomes
ei(t) = x(t)− x̂(t) = H1iE0x(t)− Z(t) (15)

By taking into account the expressions (9), (10) and (15),
the dynamics of the estimation error is given by the
following equation

ė(t) =
M∑

i=1

µi(θ(t))
{

H1iE0ẋ(t)− Ż(t)
}

ė(t) =
M∑

i=1

µi(θ(t)) {H1iA0ix(t) + H1iB0iu(t) + H1iR0id(t)

−Ni(H1iE0x(t)− e(t))−G1iu(t)− Liy0i(t)}
(16)

ė(t) =
M∑

i=1

µi(θ(t)) {Nie(t) + (H1iA0i −NiH1iE0 − LiC0i)x(t)

+(H1iB0i −G1i)u(t) + H1iR0id(t)}
(17)

If the following conditions are satis�ed:
H1A0i −NiH1iE0 − LiC0i = 0 (18)

G1i = H1iB0i (19)
H1iR0i = 0 (20)

H1iE0 = In −H2iC0i (21)
Equation (17) is reduced to:

ė(t) =

M∑
i=1

µi(θ(t))Nie(t) (22)

The error of state tends asymptotically towards zero if the
matrix

M∑
i=1

µi(θ(t))Ni is stable.

4. STABILITY AND CONVERGENCE CONDITION

The su�cient condition for ensuring the stability of (10)
is given by the following theorem.

Theorem 1: The polytopic UIO (10) is asymptotically
stable if there exists a common matrix X = XT> 0 such
that

NT
i X + XNi < 0, ∀ i ∈ {1, .., M} (23)

¥
Proof:
Consider a candidate of quadratic function V (e(t)) =

eT (t)Xe(t) > 0
Using the equation (22)

V̇ (e(t)) =

M∑
i=1

µi(θ(t))
{

eT (t)(NT
i X + XNi))e(t)

}
< 0 (24)

for all θ,
M∑
i=1

µi(θ(t)) = 1 and µi(θ(t)) ≥ 0.
There, for all e(t) 6= 0, (24) is satis�ed if
NT

i X + XNi < 0, ∀ i ∈ {1, ..,M} ¤

De�nition: The state estimation error between the poly-
topic LPV descriptor system (9) and the polytopic UIO
(10) converges towards zero, if all the pairs (A0i, C0i) are
observable and if the conditions (18) to (21) hold true and

NT
i X + XNi < 0,∀i ∈ {1, . . . , M} ¥ (25)

The substitution of (21) in (18) gives
Ni = H1iA0i + (NiH2i − Li)C0i (26)

Ni = H1iA0i + KiC0i where Ki = NiH2i − Li (27)
The inequality (25) becomes

(H1iA0i + KiC0i)
T X + X(H1iA0i + KiC0i) < 0,

∀i ∈ 1, .., M
(28)

If one considers the change of variable according to
Wi = XKi, (28) becomes:

(H1iA0i)
T X + X(H1iA0i) + WiC0i + CT

0iW
T
i < 0,

∀i ∈ 1, .., M
(29)

These last inequalities are linear compared to the unknown
variables X and Wi. Consequently, LMI tools can be used
to solve (29). The other matrices of the polytopic observer
can then be deduced from the matrices H1i, H2i, X and
Wi

Ki = X−1Wi (30)
Ni = H1iA0i + KiC0i (31)

Li = NiH2i −Ki (32)
G1i = H1iB0i (33)

where
[

H1i H2i

]
=

[
In 0

] [
E0 R0i

C0i 0

]+

(34)

The polytopic unknown inputs observer is obtained by
the interpolation of the observers from each vertex by
using the same validity functions as the polytopic LPV
descriptor system.
Remark: To ensure the rate of estimation error conver-
gence, one de�nes in the left part of the complex plan
a bounded area S with a line of abscissa (−α) where
α ∈ R+. The inequalities (29) must be replaced by these
inequalities

(H1iA0i)
T X + X(H1iA0i) + WiC0i + CT

OiW
T
i + 2αX < 0

∀i ∈ 1, .., M
(35)

5. FAULT DETECTION AND ISOLATION FOR LPV
DESCRIPTOR SYSTEM

A method of Fault Detection, Isolation (FDI) and estima-
tion with a polytopic UIO has been given by (Rodrigues
et al 2005). In this section, we will extend this approach
to a�ne LPV descriptor system. Assume that the a�ne
LPV descriptor system (8) is a�ected by an actuator fault
vector f ∈ Rf .



5.1 Residual generation and actuator fault

Here, a residual generation using unknown input observer
scheme is considered in order to be sensitive to fault vector
f(t) and insensitive to fd(t) like in a Generalized Observer
Scheme (see (Theilliol et al. 2002)) . We consider that
only a single actuator fault may occur at a given time,
simultaneous faults are not considered. Hence, vector fd(t)
is considered in this FDI scheme as an unknown input. In
order to be able to detect and isolate an actuator fault, we
have to consider that the control matrix B0i is constant,
i.e. B0i = B0. Then, the system become as follows




E0ẋ(t) =
M∑

i=1

µi(θ(t))(A0ix(t) + B0u(t) + R0fd(t) + F0f(t))

y0(t) = C0x(t)

(36)
where R0 is an ith column of B0 and F0 is the matrix B0

without the ith column.
A full-order UIO observer for residual generation has the
following form




Ż(t) =
M∑

i=1

µi(θ(t))(NiZ(t) + G1iu(t) + Liy0(t))

x̂(t) =
M∑

i=1

µi(θ(t))(Z(t) + H2iy0(t))

ŷ0(t) = C0x̂(t)

(37)

Our aim is to generate a residual r(t) which allows to
detect actuator fault. De�ning the state estimation and
output estimation error as e(t) = x(t) − x̂(t) and ey(t) =
y0(t)− ŷ0(t) respectively, the estimation error equation is
described by

ė(t) =

M∑
i=1

µi(θ(t))(Nie(t) + H1iF0f(t)) (38)

A general expression for the residual vector is written as
r(t) = ey(t) = C0e(t) (39)

Some relations have to be veri�ed for detection purposes,
ensuring that such synthesis does not a�ect fault detection:

rank(H1iF0) = rank(F0) (40)
This condition allows to verify that de-coupling does not
a�ect fault detection by the estimation error (Rodrigues
et al 2005). These residuals are used to detect and identify
the actuator faults. The fault isolation is realized by a bank
of p polytopic unknown input observers. Each residual
vector r(t)l with (l ∈ [1, . . . , p]), produced by the l-th
polytopic unknown input observer, may be used to detect
a fault according to a statistical test: Page-Hinkley test,
limit checking test, generalized likelihood ratio test. If
conditions (18-21) are ful�lled, an unknown input observer
provides an estimation of the state vector, used to generate
a residual vector r(t)l = y(t) (l ∈ [1, . . . , p]), independent
from fd(t). This means that r(t) = 0 if f(t) = 0 and
r(t) 6= 0 if f(t) 6= 0 whatever u(t) and fd(t).

5.2 Fault estimation

According to the fault isolation, the fault magnitude
estimation of the corrupted element is extracted directly
from the l-th polytopic unknown input observer which is
built to be insensitive to the l-th fault (f(t) = 0). To

estimate the faults, let us replace x(t) by x̂(t) in (36) when
f(t) = 0, the fault fd(t) can be replaced also by f̂d(t) and
we obtain




E0
˙̂x(t) =

M∑
i=1

µi(θ(t))(A0ix̂(t) + B0u(t) + R0f̂d(t))

y0(t) = C0x̂(t)
(41)

The estimation f̂d(t) of the unknown input fd(t) is consid-
ered by using the whole of the equations (36)

f̂d(t) = R+
0

{
E0

˙̂x(t)−
M∑

i=1

µi(θ(t))(A0ix̂(t) + B0u(t))

}
(42)

The existence of f̂d(t) is ensured by condition (11), and
R0 is of full column rank.

6. ILLUSTRATIVE EXAMPLE

Let us consider the descriptor LPV system de�ned by{
Eẋ(t) = A(θ)x(t) + B(θ)u(t) + R(θ)d(t)
y(t) = Cx(t)

where

A(θ) =



−0.75 1 0 0
−1 −0.85 + θ1 0 0
0 −1 −0.75 + θ1 0
0 0 0 −1 + θ2


,

E =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


, B(θ) =




1 + θ1 1
1 0.5 + θ2

0 0
θ2 0




R(θ) =




1
0.5 + θ2

0
0


 and C =

[
1 0 0 0
0 1 0 1

]

The variables θi vary according to θ1 ∈ [−0.05, 0.05] and
θ2 ∈ [−0.1, 0.1], r = 2. Due to the fact that the system is
a�ne, this system can be represented in a polytopic form.
In this fact the representation can be written as follows




Eẋ(t) =
M∑

i=1

µi(θ(t))(Aix(t) + Biu(t) + Rd(t))

y(t) = Cx(t)

This polytope has 4 vertices corresponding to the extreme
values of the parameters θi. All the matrices describing the
system are given.

A1 =



−0.75 1 0 0
−1 −0.9 0 0
0 −1 −0.8 0
0 0 0 −1.1


 , A2 =



−0.75 1 0 0
−1 −0.9 0 0
0 −1 −0.8 0
0 0 0 −0.9




A3 =



−0.75 1 0 0
−1 −0.8 0 0
0 −1 −0.7 0
0 0 0 −1.1


 , A4 =



−0.75 1 0 0
−1 −0.8 0 0
0 −1 −0.7 0
0 0 0 −0.9




B1 =




0.95 1
1 0.4
0 0

−0.1 0


 , B2 =




0.95 1
1 0.6
0 0

0.1 0


 , B3 =




1.05 1
1 0.4
0 0

−0.1 0




B4 =




1.05 1
1 0.6
0 0

0.1 0


 , R1 = R3 =




1
0.4
0
0


, R2 = R4 =




1
0.6
0
0




and C1 = C2 = C3 = C4 = C =
[

1 0 0 0
0 1 0 1

]

The parameters µi(θ) are:
µ1(θ) = θ1−θ1

θ1−θ1

θ2−θ2

θ2−θ2
= (θ1+0.05)(θ2+0.1)

0.02



µ2(θ) = θ1−θ1

θ1−θ1

θ2−θ2

θ2−θ2
= (θ1+0.05)(0.1−θ2)

0.02

µ3(θ) = θ1−θ1

θ1−θ1

θ2−θ2

θ2−θ2
= (0.05−θ1)(θ2+0.1)

0.02

µ4(θ) = θ1−θ1

θ1−θ1

θ2−θ2

θ2−θ2
= (0.05−θ1)(0.1−θ2)

0.02

Those models can be transformed as follows E0 =[
1 0 0 0
0 1 0 0

]
, A01 = A02 =

[ −0.75 1 0 0
−1 −0.9 0 0

]

A03 = A04 =
[ −0.75 1 0 0

−1 −0.8 0 0

]
, B01 =

[
0.95 1
1 0.4

]

B02 =
[

0.95 1
1 0.6

]
, B03 =

[
1.05 1
1 0.4

]
, B04 =

[
1.05 1
1 0.6

]

C01 =




0 −1 −0.8 0
0 0 0 −1.1
1 0 0 0
0 1 0 1


 , C02 =




0 −1 −0.8 0
0 0 0 −0.9
1 0 0 0
0 1 0 1




C03 =




0 −1 −0.7 0
0 0 0 −1.1
1 0 0 0
0 1 0 1


 , C04 =




0 −1 −0.7 0
0 0 0 −0.9
1 0 0 0
0 1 0 1




R01 = R03 =
[

1
0.4

]
, R02 = R04 =

[
1
0.6

]

6.1 UIO Design

To design the polytopic UIO, the constraints (11) and (12)
are veri�ed. Matrices X and Wi are calculated by resolving
the LMIs (35) using LMIs toolbox with α = 4. So for

K1 =




0.1029 0.1444 −4.5890 0.1063
0 −3.4049 0.2376 −3.7454

5.6250 4.2561 −0.4256 4.6817
0 3.7805 −0.1313 −0.3415




K2 =




0.0992 0.1024 −4.5834 0.0343
0 −4.0582 0.1481 −3.6524

5.6250 5.0728 −0.3091 4.5655
0 4.4797 −0.1138 −0.4683




K3 =




0.1067 0.1478 −4.5890 0.1131
0 −3.4577 0.2474 −3.8034

6.4286 4.9395 −0.5058 5.4335
0 3.8044 −0.1343 −0.3152




K4 =




0.1019 0.1059 −4.5834 0.0413
0 −4.1210 0.1590 −3.7089

6.4286 5.8872 −0.3727 5.2985
0 4.5144 −0.1177 −0.4371




The parameters of the polytopic observer are obtained
from equality (31), (32) and (33).
For initial conditions, x0 = [ 0 0 0 0 ]T , x̂0 = [ 5 3 4 1 ]T ,
α = 4 and an unknown input applied at t=10s, we have
the following �gures.

Fig. 1. The parameters evolution µi(t), i ∈ 1, ..., 4

Fig. 2. Asymptotic convergence of the estimated states
x̂1(t) towards the real states x1(t)

Fig. 3. Asymptotic convergence of the estimated states
x̂2(t) towards the real states x2(t)

Fig. 4. Asymptotic convergence of the estimated states
x̂3(t) towards the real states x3(t)

Fig. 5. Asymptotic convergence of the estimated states
x̂4(t) towards the real states x4(t)

The parameters variations µi(θ(t)) are illustrated in Figure
(1). The �gures (2), (3), (4) and (5) show the comparison
between the state of the LPV descriptor system and its
estimation from the polytopic UIO. It can be observed
that the estimated states can closely track the original
states. Next, we will consider a second example for FDI
illustration.

6.2 Fault diagnosis with polytopic LPV UIO

In this part, we will only consider two actuator faults
with constant magnitude. Let us consider the studied plant
(36) and the polytopic UIO (37) with the same previous



matrices except for a constant matrix B(θ) :
B0i = B0 =

[
1 1
1 0.5

]

In this part, we recall that R0 is an ith column of B0 and
F0 is the matrix B0 without the ith column (see Section
5). In order to detect and isolate the 2 actuator faults,
we have to consider 2 polytopic UIO each one designed
as explained in Section 5. For the �rst UIO, we have to
consider the following matrices
R0 =

[
1
1

]
and F0 =

[
1

0.5

]
.

For the second UIO, we have to consider the following
matrices
R0 =

[
1
0.5

]
and F0 =

[
1
1

]
.

Based on the relation (42), the actuator faults are well
estimated on Figures (6) and (7) where we can see the
e�ectiveness of this technique.

Fig.6. First actuator fault fd1(t) and its estimation f̂d1(t)

Fig.7. Second actuator fault fd2(t) and its estimation
f̂d2(t)

7. CONCLUSION

The main goal of this paper is to design a polytopic
Unknown Input Observer for polytopic LPV descriptor
systems. This polytopic UIO allows both estimate states in
spite of unknown inputs but, it also can be used to detect,
isolate and estimate actuator fault. This paper generalizes
previous works on UIO to polytopic LPV descriptor sys-
tems. The stability of the polytopic UIO is based on the
resolution of a LMI problem under structural constraints.
An example of a polytopic LPV descriptor system has been
presented to illustrate the e�ectiveness of the scheme.
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