
HAL Id: hal-00422475
https://hal.science/hal-00422475

Submitted on 7 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontology-Based Autonomic System for Improving
Data Warehouses by Cache Allocation Management
Vlad Nicolicin-Georgescu, Vincent Benatier, Rémi Lehn, Henri Briand

To cite this version:
Vlad Nicolicin-Georgescu, Vincent Benatier, Rémi Lehn, Henri Briand. An Ontology-Based Auto-
nomic System for Improving Data Warehouses by Cache Allocation Management. Workshop “Knowl-
edge and Experience Management” (FGWM) 09, Sep 2009, Darmstadt, Germany. pp.31-37. �hal-
00422475�

https://hal.science/hal-00422475
https://hal.archives-ouvertes.fr

Abstract
With the increase in the amount and complexity
of information, data warehouse performance has
become a constant issue, especially for decision
support systems. As a consequence, decision ex-
perts are faced with the management of all this
information, and thus realize that special tech-
niques are required to keep good performances.
This paper proposes an approach to data ware-
house systems improvement based on Autonomic
Computing. The idea is that by rendering certain
tasks autonomic, such as the configuration of
cache memory allocations between groups of da-
ta warehouses, we ensure a better data warehouse
management at a lower cost and save substantial
decision experts' time that can be used on higher
level decision tasks.

1 Introduction
Decision Support Systems are defined as computerized
systems whose main goal is to analyze a series of facts
and give various propositions for actions regarding the
facts involved [Druzdel and Flynn (1999)]. The process
of decision making in enterprises based on such systems is
also known as Business Intelligence. This concept is very
well applied by large enterprises. Via this process, they
specifically focus on their data warehouse efforts. The
problem is that data warehouses usually become fast very
large and complex, thus their performances become rapid-
ly an issue. This is why between 70 and 90% [Frolick and
Lindsey (2003)] of the enterprises consider that their data
warehouse efforts is inefficient, as in many cases, the
large amount of data involved becomes unusable. In many
of these cases, the cause is bad management or costs that
are too high to sustain.

One of the main problems that lead to this is common
resource sharing between data warehouses. The resources
are usually limited either by financial costs or by architec-
tural considerations. Consider the following real example,
to emphasize the problematic. An enterprise has a special
server for its data warehouses. In total, a group of 50 data
warehouses that share the same RAM memory is dep-
loyed on this server. Each of the data warehouse requires
at least 20 GB of RAM to have good performances (i.e.
the query average time is under a second). So there is a
need for at least 1TB of RAM (ignoring all other RAM
requirements of the server). First, the costs of having 1TB

of RAM on server are financially high (~ 40000 EUR1).
Second, if the enterprise is ready to cover these costs,
suppose the server has an architecture that enables a max-
imum of 16GB to be installed. Also the migration of some
data warehouses on another server would be too expen-
sive and too complicated. An option is to compromise,
asking each time an expert to re-configure the memory
allocation for each of the data warehouse. In a short time
after this is done, with the evolution of the data ware-
houses' size or if new data warehouses are added or some
become obsolete, the problem reappears and the same
action must be taken, over and over again.

Based on the example above we can intuitively see a
simple solution: enable autonomic tasks that reconfigure
the memory allocations, instead of asking a human expert
each time to intervene (human resources are the most ex-
pensive, and not always provide the optimal results). This
is easy to be said but it is hard to formalize, due to two
main issues.

First, how to formally represent the group of data ware-
houses along with the knowledge involved in the deci-
sions and actions of the expert? To do this, we differen-
tiated three main types of information that needs to be
formalized: a) architectural information (how a group of
data warehouse is organized, the number of groups, how
are they linked, etc.); b) configuration and performance
information (how much memory each data warehouse
needs, what performance is achieved with this allocation,
etc.); and c) experience information that represents best
practices and advices for the memory allocations (coming
from editor documents, human experience, etc.). We
present in this paper a formalization of the three types into
a unified knowledge base, using ontologies [Gruber
(1992)] and ontology based rules [Stojanovic et
al.(2004)].

Second, having the information formalized, we need an
organized form of rendering the autonomic process. To
this end, IBM proposes a solution called Autonomic
Computing [IBM (2001)]. It consists in the division of the
actions that are taken when trying to provide autonomy to
a process, corresponding to objective-specific phases and
states. Autonomic concepts can be integrated in hierar-
chical organized systems, so each higher level aggregates
what has been done to its sub levels. There are numerous
autonomic computing based works that relate especially to
problem resolution [Manoel et al.(2005)] or system ad-
ministration [Barret et al.(2004)]. On the other hand, little
has been done on data warehouse improvement.

1 http://www.materiel.net/ctl/Serveurs/

An Ontology-Based Autonomic System for Improving Data Warehouses by Cache
Allocation Management

Vlad Nicolicin Georgescu and Vincent Benatier
SP2 Solutions, www.sp2.fr, vladgeorgescun@sp2.fr

Remi Lehn and Henri Briand
LINA CNRS 6241 - COD Team – Ecole Polytechnique de l’Université de Nantes

So, we propose to use autonomic computing on the uni-
fied formalized knowledge base. Specifically, we treat a
common configuration problem: cache memory allocation
for a group of data warehouses (that share the same
amount of common available RAM memory). The objec-
tive is to reach a better performance (in terms of query
response times when extracting data from the data ware-
house) with lower costs. The implication is that by in-
creasing the amount of cached data, there are better
chances that a request hits the cache; the response times in
order to extract the data decrease, which translates in bet-
ter performances. But, the whole amount of data obvious-
ly can't be put in the cache, and then we need a way to
automatically determine and adjust the cache parameters.

Section 2 presents a view of data warehouse manage-
ment through caches in the context of decision support
systems. It presents the information that needs to be ma-
nipulated and how the division of this information can
lead to a unified knowledge base representation. Section 3
presents how autonomic computing is used with managing
data warehouse through caches. It presents how the know-
ledge base is integrated to permit autonomic tasks. It
equally proposes two heuristics for cache allocation,
based on the problematic described. Section 4 shows how
we integrate the elements together using ontologies for the
knowledge base representation and ontology based rules
for the autonomic process. We provide some results ob-
tained with our approach. In the conclusion we sum the
work presented giving future directions and hoping that
our work could help enterprises with their data warehouse
efforts.

2 Data Warehouse and Cache Allocations
First of all, when speaking of data warehouse we usually
make reference to a definition as a repository of an organ-
ization's electronically stored data and is designed to faci-
litate reporting and analysis [Inmon (2005)]. Managing a
data warehouse includes the process of analyzing, extract-
ing, transforming and loading data and metadata. As deci-
sional experts, we know that once data warehouses are put
in place, enterprises then base their decisions on the data
that is stored within them. So a good organization in start
and a good performance in time are the requirements of
data warehousing.

We do not put into question the initial organization. We
observed that in time data warehouse performances are
constantly degrading up to a point where the system is no
longer usable. One aspect of data warehouse performance
is strongly related to the operation of data extraction
which in turn depends on the query response times on the
data. Obviously, the larger a data warehouse is, the more
information it contains so we expect to have higher re-
sponse times. Considering that some information is often
more demanded than other, data warehouse management
systems offer the possibility of keeping frequently ac-
cessed data in cache memories with the hypothesis that
fetching data from the cache is greatly faster than fetching
them from the persistent storage media. The problem oc-
curs when confronted with groups of data warehouse on
the same machine that share the same amount of memory.
In decision support systems, such groups contain data of
up to several thousand gigabytes. They cannot be all put
into the cache, so solutions are required.

Although the problematic of performance improvement
in data warehouses throughout caches is debated [Malik et

al.(2008)], [Saharia and Babad (2000)] the issue is always
addressed either through the physical design or the design
of algorithms to determine which information is likely to
be stored in cache memories. These solutions apply well
when we focus on a single data warehouse.

So, what actually happens in enterprises is that the ini-
tial cache allocations remain the same throughout time.
Whereas the quantity of data in the data warehouse in-
creases, some of them are no longer used; there are new
data warehouses that are constructed etc. Therefore there
is a need for a dynamic system.

The first aspect of the system we propose and that we
approach is knowledge formalization. In the example pre-
sented in the introduction, the expert in order to reallocate
the memory makes use of several types of information.
We propose to divide this information into three main
types, detailing and exemplifying based on the Hyperion
Essbase2 business intelligence solution.

Architectural information corresponds to the organiza-
tion of the groups of data warehouse. Figure 1 shows an
example of a possible organization.

Figure 1 - Architectural organization for groups of data

warehouse
Based on a decision support system simple organization,
we can distinguish on top of the tree a Physical Server as
the actual machine. Underneath, there are a number of
Applications installed that share the RAM memory avail-
able on the server. And, in turn each application contains
one or more data warehouses (Essbase cubes or bases),
sharing the same memory. Each application is seen as a
group of data warehouses, and then memory reallocation
is done within each application.

Configuration and performance information contains
all the indicators that reflect the actual characteristics and
configuration of the data warehouses and the perfor-
mances obtained with this configuration. For the characte-
ristics and configuration we refer to the Essbase cubes.
There are many characteristics, but for our example we
take into consideration the following indicators:

• The size of each data warehouse represented by: the
Index File size and the Data File size. This corres-
ponds to the actual size that each data warehouse is
occupying on a hard disk. A value of tens of GB for
the two together is a frequently met characteristic.

• The values of three types of caches: Index, DataFile
and Data Cache. Corresponding to the sizes pre-
sented before, they represent a percentage of the ac-
tual data files that can be kept in cache. Ideally, we
should have the total of index file size in the index

2http://download.oracle.com/docs/cd/E10530_01/doc/epm.9
31/html_esb_dbag/frameset.htm?dstcache.htm

cache, and the total of data file size in the data and
data file cache.

For the performance aspect, there are many indicators to
take into consideration such as: query response times,
calculation times, aggregation operation times, etc. We
chose the query response time as a performance indicator
as this is a frequently used measure [Saharia and Babad
(2000)] of the system performance, and, it directly reflects
the quality of the user experience in the decision system.
It represents the time needed to extract data through a
query from the data warehouse.
 Experience and best practices information represent a
more delicate subject in comparison with the first two
information types. The main reason is that it comes from
several different sources. Therefore the challenge is how
to combine these sources into a single unified knowledge
base. For instance, how to combine practices taken from
an Essbase support document with practices that are part
of the human experience and that are only known by the
expert. We present here the formalization aspect, that is
revised and validated by a human expert. In order to for-
malize the experience and best practices, we have found a
completely different approach to knowledge representa-
tion, which is the rule based representation. Basically, we
translate the pieces of advice and best practices into Event
Condition Action (ECA [Huebscher and McCann (2008)])
rules. Such rules are often associated with business intel-
ligence practices, and integrating different rules at differ-
ent timelines (via the autonomic aspect) proved to be a
good choice for our proposition. ECA rules have certain
drawbacks, such as it is hard to prove the coherence and
the no contradiction. But for the rules in our system, this
aspect is not currently an issue.

3 Driving the data warehouse – Autonomic
Computing

Once the principal knowledge types are well separated
and formalized, they have to be ‘put to life’. We refer of
course at the second aspect of the improvement system:
rendering it autonomic. Autonomic systems have been
present within our everyday lives. A very intuitive exam-
ple of an autonomic system that manages itself is the hu-
man body. Reflexes like breathing, digestion, heart pulsa-
tion etc. are part of the autonomy the human body pro-
vides (we don’t control these we just know they are conti-
nually present and moreover they function). Starting from
this idea, the first approaches were especially towards
self-healing systems, the survey of [Ghosh et al.(2007)]
summing up this evolution. And, as expected the concept
developed, and in 2001, IBM proposed a formalization of
the self-x factor by introducing the notion of Autonomic
Computing (AC) [IBM (2001)]. Most of the IT organiza-
tions spend a lot of time reacting to problems that occur at
the IT infrastructure component level. This prevents them
from focusing on monitoring their systems and from being
able to predict and prevent problems before end users are
impacted [IBM (2005)]. Autonomic computing is the abil-
ity for an IT infrastructure to adapt and change in accor-
dance with business policies and objectives. Quite simply,
it is about freeing IT professionals to focus on higher–
value tasks by making technology work smarter, with
business rules guiding systems to be self-configuring,
self-healing, self-optimizing and self-protecting [IBM
(2001)].

From this to applying autonomic computing to enable
improvement in IT infrastructures was just a small step.
The subject proved to be of great interest to enterprises.
Works have been done in this area and put into practice
for improving database performance by IBM [Markl et
al.(2003)], [Lightstone et al.(2002)] and Microsoft
[Mateen et al.(2008)]. IBM specifications link autonomic
computing with the notion of autonomic manager as the
entity that coordinates the activity of the autonomic
process. An autonomic manager (ACM) is an implemen-
tation that automates the self-management function and
externalizes this function according to the behavior de-
fined by management interfaces. The autonomic manager
is a component that implements an intelligent control
loop. For a system component to be self-managing, it
must have an automated method to collect the details it
needs from the system (Monitor); to analyze those details
to determine if something needs to change (Analyze); to
create a plan, or sequence of actions, that specifies the
necessary changes (Plan); and to perform those actions
(Execute) [IBM (2001)]. Similar alternatives to autonomic
computing were made in real BI [Nguyen et al.(2005)] but
the idea is the same: to be able to analyze and improve (in
our case) a given system through a closed loop that diffe-
rentiates a series of states.

We propose the usage of autonomic managers to enable
data warehouse self-improvement. Figure 2 shows the
transformation of the architecture from Figure 1, with the
implementation of autonomic managers on each of the
entities (or component of the architecture) involved.

Figure 2 - Autonomic Computing Managers on each of

the architectural levels
We notice that each of the entities has its own individual
loop. The autonomic managers communicate only with
the ones from the superior levels, and not between the
same level. This way, each entity has two responsibilities:
one strictly related to its individual self management and
the other related to the management of its descendants.
The idea is that the two can function independently of
each other. For instance, consider an Application that has
2GB of RAM allocated to its data warehouses. So each
data warehouse uses the allocated RAM and self-improves
itself with what it has. Now suppose that at a certain point
the Application receives another 1GB of RAM. If the new
information is not integrated then the data warehouses
continue to function with the already allocated 2GB. Once
the application runs the management of its descendants, a
reallocation of the memory is done also for the data ware-
houses. In order to simulate the two behaviors, we have
elaborated two heuristics.

3.1 Data warehouse Self-improvement heuristic
This concerns only the individual loop at a data ware-
house level. Its role is to describe how cache allocations
vary with the query response times. The idea is the fol-
lowing: starting from a given maximal cache configura-
tion we try to decrease the values of the caches and study
the impact this decrease has on the data warehouse query
response times. The algorithm stops when the difference
between the current and the last average query response
time is greater than a specified threshold. This is done
independently for each data warehouse. So, we define two
parameters for this heuristics:

Step - represents the amount with which each cache
value is decreased. The following formula shows how a
cache value modifies with step:

CV1 = CV0 - (CVmax –CV0)*step
where CV0 represents the old cache value, CV1 the new
calculated value and CVmax the maximum possible value .
A frequent value of step we used in our experiments was
10% based on the recommendation of our human experts.
 Delta – represents the threshold accepted for the differ-
ence between the current and the last average response
time. It can be seen as the accepted impact that a cache
modification has. If (RT1-RT0)/RT0 < delta then we accept
the new cache proposition (where RT = average response
time for the respective data warehouse). A frequent value
we used for delta was 5%, based on our clients’ average
performance acceptance specification (i.e. for a value of x,
an fluctuation in performance with 5% is accepted).
Table 1 illustrates the self-improvement heuristics with a
timeline, based on the autonomic manager loop phases. At
t0 we have the initial configuration. At t1 we have made
the first cache adjustment, and validated it. At t2, the
second cache modification has an impact too great on the
response time so we leave the cache value as it is.

Table 1 - Individual Data Warehouse Self-Improvement
Heuristics on the autonomic manager phases

Time AML Phase Action
0 Monitor step = 0.1, delta = 0.05, CVmax=1GB

CV0=500MB, RT0=5s
Analyze N(ot)/A(vailable)
Plan CV1=450MB
Execute Change script for DW with CV1

1 Monitor CV1=450MB, RT1=5.2s
Analyze (RT1-RT0)/RT0=0.04 < delta
Plan CV2=395MB
Execute Change script for DW with CV2

2 Monitor CV2=395MB, RT2=6s
Analyze (RT2-RT1)/RT1=0.15 > delta
Plan CV3=395MB
Execute No change for DW

3.2 Group of data warehouses cache realloca-
tion heuristic

The first heuristics was individual data warehouse based.
Each of the data warehouses was independent and each
was in a state of self-improvement in time. But, taking it
into consideration alone makes no sense as the perfor-
mances on individual data warehouses are expected to
decrease as the caches decrease. To explain how it results
in an actual improvement at group level, we introduce the
group of data warehouses heuristic. Its purpose is to real-
locate periodically the memory that the individual data
warehouse heuristics saved from the self-improvement

process. And it is here where the ‘catch’ is: by a small
sacrifice (delta) of some data warehouses, we can gain an
important performance on others.

The core of the heuristic is to differentiate the non per-
forming from the performing data warehouses in a group.
The idea is the following: a data warehouse is considered
performing if its average response time is below the aver-
age value of the response time for the whole group. Oth-
erwise, it is considered as non-performing. This perfor-
mance indicator can be equally made more complex by
taking into account the applications priority or impor-
tance. This way scaled mixed performance indicators can
be obtained and used. The specification of priorities and
importance is usually part of Service License Agreements
and is one of the future directions in our work.

 So in this case, we take the memory from the perform-
ing data warehouse and give it to the non-performing.
Relating with the architecture in Figure 1, the Application
level is responsible for the implementation of this heuris-
tic. The Application decides how to redistribute the mem-
ory between the data warehouses it concerns.

Table 2 shows this heuristics. The example is based on
a group of two data warehouses that are part of the same
application and share the same amount of memory for
their caches.
Table 2 - Group of Data Warehouse Improvement Heuris-

tic – Cache Evolution Exemple
Step DW Cache

Value
Memory to
allocate

Free
Memory

RT

0 DW1 130 MB 140 MB 10 MB 5s
DW2 80 MB 90 MB 10 MB 7s

1 DW1 130 MB 130 MB 0 MB 5s
DW2 100 MB 100 MB 0 MB 6s

2 DW1 120 MB 120 MB 0 MB 5.3s
DW2 110 MB 110 MB 0 MB 5.5s

In start at s0 we have a given cache allocation along with
the available memory for each data warehouse. At s1 the
heuristic is run the first time. It takes all the available
memory from the performing data warehouse (DW1) and
redistributes it to the non performing (DW2). So DW2
gains all the free memory (20MB) from s0. As the differ-
ences in response times are still important, it goes further
at s2. Here, it takes some memory from DW1 by force,
leading to a decrease in performance for DW2. But as
seen, we gain an important amount of performance for
DW2, and now the response times for the two data ware-
houses are close.
 It is important to note that this heuristic is independent
from the previous one, and in addition the two heuristics
are mutually exclusive. This means that in the moments
when this heuristic is considered, the other does nothing.
This is why between the two tables we differentiate be-
tween “Time” and “Step”. An example of usage is to run
the individual self-improvement heuristic once each day
(from Tuesday to Friday), and the group reallocation heu-
ristic once at the beginning of each weak (Monday).

4 Combining the elements
Having the two main aspects, knowledge formalization
and autonomic capabilities, the final and innovative stage
in our approach is to combine them. In order to do this we
base on the preliminary works presented in [[Nicolicin-
Georgescu et al.(2009)]]. The solution proposed the appli-
cation of ontologies and ontology based rules (describing
business rules) with autonomic computing for improving

average query response times in data warehouse. The
concept is the same, but in this previous work we only
described how can simple businesses rules can be used to
improve data warehouse performance. There is no indica-
tion to how heuristics are used within the autonomic man-
ager loop.

4.1 System implementation
In previous works, we were proposing a division of the

knowledge in the system into static knowledge and dy-
namic knowledge. Based on this organization we imple-
ment the new presented elements. The means of know-
ledge formalization do not change, static knowledge being
implemented with the help of ontologies and OWL3 whe-
reas the dynamic aspect is expressed with ontology based
rules via the Jena Rules4 formalization. The ontology con-
tains over 150 concepts and 250 axioms, whereas a num-
ber of 30 rules are based on it. From what we have pre-
sented, we focus on the dynamic aspect, as it includes the
two heuristics projected on the phases of the autonomic
computing.

The first step in order to understand how rules are or-
ganized is to understand how the autonomic managers on
the different hierarchical levels communicate. As seen the
group heuristic reallocates memory and excludes the indi-
vidual heuristic. In order for the autonomic managers to
communicate, we propose a hierarchy of the autonomic
phases, corresponding to the architectural structure. Fig-
ure 3 show how the four phases of autonomic manager are
projected on the architectural levels.

We notice how the monitor phases ascends, starting
from the lowest level (data warehouse). This means that
first the data regarding the data warehouses are gathered,
then the application, and then the physical server. Then
the analysis is made top down from the physical server to
the data warehouse level. Retaking the memory allocation
example, first the server allocates memory between its
applications, then each application allocates in turn to its
data warehouses etc. Then the planning stage ascends
again, the changes are planned from the analysis level
starting with the data warehouses and finishing with the
physical server. Last, the execution phase makes changes
top down similar to the analyze phase. A change in the
RAM memory is first done to the physical server, then the
applications receive the new memory and then the data
warehouses change their memory (now possible because
the memory has already been changed at application lev-
el).
Figure 3 - Autonomic Manager phases projection on the

architectural levels

3http://www.w3.org/2007/OWL/wiki/OWL_Working_Grou
p
4 http://jena.sourceforge.net/inference/#rules

We exemplify below how the system is implemented on
each of the four phases.

Monitor
For the monitor phase, in order to obtain the cache values
and average response times, we use SQL data bases that
are filled with the help of vbscripts via the api provided by
Hyperion Essbase. Then, to transform and load this know-
ledge in the ontology, we pass via a java program using
the Jena API and a set of correspondences that links the
data from the SQLdbs to ontology concepts. Table 3
shows how some parts of how a data warehouse is
represented in the ontology:

Table 3 - Data Warehouse ontology representation
Subject Predicate Object
?dw rdf:type DataWarehouse
?app rdf:type PhysicalApplication
?dw isChildOf ?app
?dw hasAvgResponseTime ?avgt
?dw hasPrevAvgResponseTime ?prevt

We can see two classes, the DataWarehouse and the
PhysicalApplication. Each of these classes consist from
multiple instances as OWL individuals. The ?dw is one
such individual that is linked to an ?app individual by the
OWL object property isChildOf . This property establish-
es the hierarchical relations between individuals from the
different hierarchical levels. Then, there are two OWL
data type properties that are linked to the ?dw and express
the current and previous average response time for ?dw.
The values for these properties are filled from the SQL
dbs that contains to the data warehouse monitor informa-
tion.

Analyze
Once this phase of monitoring and pre-processing of in-

formation is done, the system passes to analyze. We
present below two rules that formalize a cache decrease.

Rule Description
(?dw cp:hasPrevAvgResponseTime ?prevt)
(?dw cp:hasAvgResponseTime ?avgt)
(?dw cp:hasAlgorithm ?alg)
(?alg cp:hasDelta ?delta)
quotient(?t, ?avgt, ?prevt) le(?t, ?delta) ->
(?dw cp:hasState cp:DecreaseCache)

Validate a cache
decrease via the
individual heu-
ristic

(?dw cp:hasState cp:DecreaseCache)
(?dw cp:hasIndexCacheMin ?ic_min)
(?dw cp:hasIndexCache ?ic)
(?dw cp:hasAlgorithm ?alg)
(?alg cp:hasStep ?step)
product(?p, ?ic, ?step) difference(?ic_new,
?ic, ?p) ge(?ic_new, ?ic_min) ->
(?dw cp:hasIndexCache ?ic_new)

If the decrease of
cache is re-
quested, test if
the new value is
not under the
minimal value. If
not enable the
new change.

The first rule test to whether the cache values for a sin-
gle data warehouse can be decreased, accordingly with the
individual heuristic. We have again the ?dw individual, an
instance of the DataWarehouse class, with the two data
type properties from Table 4. In addition we have a new
object property that related the ?dw with an the individual
heuristic algorithm. The rule compares the rapport be-
tween the two average times (current and previous) with
the delta of the algorithm. If the rapport is lower than del-
ta, the ?dw becomes into a new state, in which it is al-
lowed to decrease its cache. Otherwise, nothing changes.

The second rule makes use of the results of the first
rule. If the DecreaseCache state has been generated by the
first rule, then it tries to see whether or not the operation is
possible. Two new data type properties are introduced for
the ?dw: hasIndexCacheMin and hasIndexCache, which
represent the values of the minimum threshold and the
current value of the cubes index cache. These values are
equally filled from the monitor phase. The rule retakes the
individual heuristic algorithms’ parameters (step this
time) and tests if by modifying the index cache with its
formula, the new index cache value is greater than the
minimum one. If so, it changes directly the current index
cache value to the newly computed one.

Plan and Execute
The plan and execute phases are linked to each other.

As the new cache values are calculated, there is a prepara-
tion of VBscripts that will be run via the program. These
scripts will change the values of the caches in the Essbase
cubes, according to the new values proposed by the ana-
lyze phase. At the end of the execution phase, practically
the inverse monitor operation of data processing is made.
The cache values are passed from the ontology to the
SQLdbs and then to the modification scripts.

4.2 Experimentation and Results
For our experiments we considered the following sce-

nario: on an existing server, we created an Essbase appli-
cation with two cubes. The cubes contain in average 11
principal axes and 27 level 2 axes and the data file has an
average size of 300MB. With this configuration, we car-
ried several tests, simulating a period of 14 days (time
stamps period). Each time-stamp, a series of random que-
ries (from a given set) was executed so that activity on the
application was simulated. The individual data warehouse
self improvement heuristic is running each day, whereas
the group heuristic is running once each 4 days. Figure 4
shows the evolution of the response times for the two data
warehouses with the evolution of their total cache alloca-
tion:

Figure 4 - Average Response Time evolution with cache

allocations
Again, the objective is to obtain better average response

times with lower cache values. First what we notice is that
at the end of 5 days we already have a good ratio response
time/cache allocation. The data warehouses improve
themselves fast, and then once reaching a good point, they
oscillate around this point. This oscillation is shown by
the peaks on DW2 that tries each time to improve more its
performances, but it can’t due to the heuristic constraints

in terms of delta. Their impact on the system is felt in
terms of the performance drops the days where the peaks
are noticed. By limiting the number of peaks (i.e. after one
or two peaks the system should no longer try to optimize
under the same circumstances) we avoid the risk of such
drops. But, we also have to take into consideration that by
limiting the number of peaks (by forcing the algorithm to
stop for instance at a certain point) we risk to miss some
needs of improvement due to reconfiguration aspects. The
ideal would be to leave the heuristic running as usual and
not to force the algorithm to stop, but not to accept the
cache decreases once a certain level of performance is
reached. One of the future directions and improvements is
the introduction of attenuation mechanisms in the loop.

So, in numbers, at the end of the sixth day: DW1 looses
very little in performances (~2%), DW2 gains substantial
performances (~80%), and the total cache used by the
application is decreased by ~60%. So the sacrifice of
DW1 was worth from the perspective of the entire system.
These results prove how an efficient way of improving the
data warehouse group performances can be achieved in an
autonomic manner, without the intervention of a human
expert.

5 Conclusions
This article presented a way of using ontologies and auto-
nomic computing for improving query response times in
data warehouses groups by modifying cache memory al-
locations. It has presented this applied to the problematic
of shared resource allocation in groups of data ware-
houses. Also, the article presented a proposition of replac-
ing some of the human expert’s work by introducing au-
tonomic and human independent ways of managing data
warehouses.

We have proposed a division and formalization of the
knowledge used for configuring groups of data ware-
houses by using ontology and ontology based rules. Also,
we have proposed an organization of this process based on
the autonomic computing considerations. It is not the first
attempt to combine the two [Stojanovic et al.(2004)], but
the novelty is from using such techniques in the domain of
decision support systems and especially in the groups of
data warehouse improvement.

Our future directions are to expand the data warehouses
described above so that our prototype can prove its effi-
ciency on a larger spectrum of rules and indicators. Our
purpose is to integrate the prototype presented here with
more than one aspect (data warehouse cache allocations
based on response times) of decision support systems. We
also intend to approach the notions of Service License
Agreement (SLA) and Quality of Service (QoS), by intro-
ducing the QoS as a performance indicator in the system.
SLA considerations such as application priority and im-
portance depending on utilization periods, are two aspects
that are little approached and equally very important in a
decision support system. Also in terms of autonomic loop
control, we take into consideration the usage of mechan-
isms for avoiding peaks and unnecessary loop passages.

As the domain is relatively new we try to bring as much
support as possible for future development in the direction
of autonomic knowledge based decision support systems.
We follow the changes with the new technologies and
hope that our work will be useful in this expanding envi-
ronment.

References

[Barret et al.(2004)] Rob Barret, Paul P. Maglio, Eser
Kandogan, and John Bailey. Usable autonomic computing
systems: the administrator’s perspective. In ICAC 2004,
2004.
[Druzdel and Flynn (1999)] M.J. Druzdel and R.R. Flynn.
Decision Support Systems. Encyclopedia of library and
information science, 1999.
[Frolick and Lindsey (2003)] Mark N. Frolick and Keith
Lindsey. Critical factors for data warehouse failure. Busi-
ness Intelligence Journal, Vol. 8, No. 3, 2003.
[Ghosh et al.(2007)] Debanjan Ghosh, Raj Sharman,
H. Raghav Rao, and Shambhu Upadhyaya. Self-healing
systems — survey and synthesis. Decision Support Sys-
tems 42, Vol 42:p. 2164–2185, 2007.
[Gruber (1992)] T. Gruber. What is an ontology? Aca-
demic Press Pub., 1992.
[Huebscher and McCann (2008)] M.C. Huebscher and
J.A. McCann. A survey on autonomic computing – de-
grees, models and applications. ACM Computing Surveys,
Vol. 40, No. 3, 2008.
[IBM (2001)] Corporation IBM. An architectural blue-
print for autonomic computing. IBMCorporation, 2001.
[IBM (2005)] Corporation IBM. Autonomic computing.
powering your business for success. International Journal
of Computer Science and Network Security, Vol.7
No.10:p. 2–4, 2005.
[Inmon (2005)] W.H. Inmon. Building the data ware-
house, fourth edition. Wiley Publishing, 2005.
[Lightstone et al.(2002)] S.S. Lightstone, G. Lohman, and
D. Zilio. Toward autonomic computing with db2 universal
database. ACM SIGMOD Record, Vol. 31, Issue 3, 2002.
[Malik et al.(2008)] T. Malik, X. Wang, R. Burn, D. Dash,
and A. Ailamaki. Automated physical design in database
caching. In ICDE Workshop, 2008.
[Manoel et al.(2005)] E. Manoel, M.J. Nielsen,
A. Salahshour, S. Sampath, and S. Sudarshanan. Problem
determination using self-managing autonomic technology.
IBM RedBook, pages p. 5 – 9, 2005.
[Markl et al.(2003)] V. Markl, G. M. Lohman, and
V. Raman. Leo : An autonomic optimizer for db2. IBM
Systems Journal, Vol. 42, No. 1, 2003.
[Mateen et al.(2008)] A. Mateen, B. Raza, and
T. Hussain. Autonomic computing in sql server. In 7th
IEEE/ACIS International Conference on Computer and
Information Science, 2008.
[Nguyen et al.(2005)] T. M. Nguyen, J. Schiefer, and
A. Min Tjoa. Sense & response service architecture (sare-
sa). In DOLAP’05, 2005.
[Nicolicin-Georgescu et al.(2009)] Vlad Nicolicin-
Georgescu, Vincent Benatier, Remi Lehn, and Henri
Briand. An ontology-based autonomic system for improv-
ing data warehouse performances. In Knowledge-Based
and Intelligent Information and Engineering Systems,
13th International Conference, KES2009, 2009.
[Saharia and Babad (2000)] A. N. Saharia and Y.M. Ba-
bad. Enhancing data warehouse performance through
query caching. The DATA BASE Advances in Informatics
Systems, Vol 31, No.3, 2000.
[Stojanovic et al.(2004)] L. Stojanovic, J. Schneider,
A. Maedche, S. Libischer, R. Studer, Th. Lumpp,
A. Abecker, G. Breiter, and J. Dinger. The role of ontolo-
gies in autonomic computing systems. IBM Systems Jour-
nal, Vol. 43, No. 3:p. 598–616, 2004.

Barret et al.(2004)] Rob Barret, Paul P. Maglio, Eser
Kandogan, and John Bailey. Usable autonomic computing
systems: the administrator’s perspective. In ICAC 2004,
2004.
[Druzdel and Flynn (1999)] M.J. Druzdel and R.R. Flynn.
Decision Support Systems. Encyclopedia of library and
information science, 1999.
[Frolick and Lindsey (2003)] Mark N. Frolick and Keith
Lindsey. Critical factors for data warehouse failure. Busi-
ness Intelligence Journal, Vol. 8, No. 3, 2003.
[Ghosh et al.(2007)] Debanjan Ghosh, Raj Sharman,
H. Raghav Rao, and Shambhu Upadhyaya. Self-healing
systems — survey and synthesis. Decision Support Sys-
tems 42, Vol 42:p. 2164–2185, 2007.
[Gruber (1992)] T. Gruber. What is an ontology? Aca-
demic Press Pub., 1992.
[Huebscher and McCann (2008)] M.C. Huebscher and
J.A. McCann. A survey on autonomic computing – de-
grees, models and applications. ACM Computing Surveys,
Vol. 40, No. 3, 2008.
[IBM (2001)] Corporation IBM. An architectural blue-
print for autonomic computing. IBMCorporation, 2001.
[IBM (2005)] Corporation IBM. Autonomic computing.
powering your business for success. International Journal
of Computer Science and Network Security, Vol.7
No.10:p. 2–4, 2005.
[Inmon (2005)] W.H. Inmon. Building the data ware-
house, fourth edition. Wiley Publishing, 2005.
[Lightstone et al.(2002)] S.S. Lightstone, G. Lohman, and
D. Zilio. Toward autonomic computing with db2 universal
database. ACM SIGMOD Record, Vol. 31, Issue 3, 2002.
[Malik et al.(2008)] T. Malik, X. Wang, R. Burn, D. Dash,
and A. Ailamaki. Automated physical design in database
caching. In ICDE Workshop, 2008.
[Manoel et al.(2005)] E. Manoel, M.J. Nielsen,
A. Salahshour, S. Sampath, and S. Sudarshanan. Problem
determination using self-managing autonomic technology.
IBM RedBook, pages p. 5 – 9, 2005.
[Markl et al.(2003)] V. Markl, G. M. Lohman, and
V. Raman. Leo : An autonomic optimizer for db2. IBM
Systems Journal, Vol. 42, No. 1, 2003.
[Mateen et al.(2008)] A. Mateen, B. Raza, and
T. Hussain. Autonomic computing in sql server. In 7th
IEEE/ACIS International Conference on Computer and
Information Science, 2008.
[Nguyen et al.(2005)] T. M. Nguyen, J. Schiefer, and
A. Min Tjoa. Sense & response service architecture (sare-
sa). In DOLAP’05, 2005.
[Nicolicin-Georgescu et al.(2009)] Vlad Nicolicin-
Georgescu, Vincent Benatier, Remi Lehn, and Henri
Briand. An ontology-based autonomic system for improv-
ing data warehouse performances. In Knowledge-Based
and Intelligent Information and Engineering Systems,
13th International Conference, KES2009, 2009.
[Saharia and Babad (2000)] A. N. Saharia and Y.M. Ba-
bad. Enhancing data warehouse performance through
query caching. The DATA BASE Advances in Informatics
Systems, Vol 31, No.3, 2000.
[Stojanovic et al.(2004)] L. Stojanovic, J. Schneider,
A. Maedche, S. Libischer, R. Studer, Th. Lumpp,
A. Abecker, G. Breiter, and J. Dinger. The role of ontolo-
gies in autonomic computing systems. IBM Systems Jour-
nal, Vol. 43, No. 3:p. 598–616, 2004.

