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Abstract

With the increase in the amount and complexity
of information, data warehouse performance has
become a constant issue, especially for decision
support systems. As a consequence, decision ex-
perts are faced with the management of all this
information, and thus realize that special tech-
niques are required to keep good performances.
This paper proposes an approach to data ware-
house systems improvement based on Autonomic
Computing. The idea is that by rendering certain
tasks autonomic, such as the configuration of
cache memory allocations between groups of da-

ta warehouses, we ensure a better data warehouse

management at a lower cost and save substantial
decision experts' time that can be used on higher
level decision tasks.

1 Introduction

of RAM on server are financially high (~ 40000 EYR
Second, if the enterprise is ready to cover thesssc
suppose the server has an architecture that erainhes-
imum of 16GB to be installed. Also the migrationsoime
data warehouses on another server would be toonexpe
sive and too complicated. An option is to compranis
asking each time an expert to re-configure the nmgmo
allocation for each of the data warehouse. In atgime
after this is done, with the evolution of the datare-
houses' size or if new data warehouses are addsohe
become obsolete, the problem reappears and the same
action must be taken, over and over again.

Based on the example above we can intuitively see a
simple solution: enable autonomic tasks that régané
the memory allocations, instead of asking a humamer
each time to intervene (human resources are thé¢ emes
pensive, and not always provide the optimal relultkis
is easy to be said but it is hard to formalize, ttuewo
main issues.

First, how to formally represent the group of datae-
houses along with the knowledge involved in thei-dec

Decision Support Systems are defined as computkrizesions and actions of the expert? To do this, wiedih-

systems whose main goal is to analyze a seriesat$ f
and give various propositions for actions regardihg
facts involved [Druzdel and Flynn (1999)]. The qees
of decision making in enterprises based on suctessis
also known as Business Intelligence. This concepery
well applied by large enterprises. Via this procebsy
specifically focus on their data warehouse effofthe
problem is that data warehouses usually becomeréagt
large and complex, thus their performances becapiel+
ly an issue. This is why between 70 and 90% [Fkadind
Lindsey (2003)] of the enterprises consider thatrtdata
warehouse efforts is inefficient, as in many cagés,
large amount of data involved becomes unusablmany
of these cases, the cause is bad management ertkast
are too high to sustain.

tiated three main types of information that neeanlhé¢
formalized: a) architectural information (how agp of
data warehouse is organized, the number of grdups,
are they linked, etc.); b) configuration and perfance
information (how much memory each data warehouse
needs, what performance is achieved with this atlon,
etc.); and c) experience information that represdgst
practices and advices for the memory allocationsn{ng
from editor documents, human experience, etc.). We
present in this paper a formalization of the thyges into
a unified knowledge base, using ontologies [Gruber
(1992)] and ontology based rules [Stojanovic et
al.(2004)].

Second, having the information formalized, we nard
organized form of rendering the autonomic procdss.

One of the main problems that lead to this is commothis end, IBM proposes a solution called Autonomic
resource sharing between data warehouses. Thercesou Computing [IBM (2001)]. It consists in the divisiai the

are usually limited either by financial costs ordghitec-
tural considerations. Consider the following resdmple,
to emphasize the problematic. An enterprise hgseaial
server for its data warehouses. In total, a grdupOadata

actions that are taken when trying to provide aoioy to

a process, corresponding to objective-specific @hasd
states. Autonomic concepts can be integrated imahie
chical organized systems, so each higher leveleagges

warehouses that share the same RAM memory is depvhat has been done to its sub levels. There areerous

loyed on this server. Each of the data warehougeines

autonomic computing based works that relate esjhetia

at least 20 GB of RAM to have good performances (i. problem resolution [Manoel et al.(2005)] or systent

the query average time is under a second). So these
need for at least 1TB of RAM (ignoring all other RA
requirements of the server). First, the costs ofritpl TB

ministration [Barret et al.(2004)]. On the othendalittle
has been done on data warehouse improvement.

! http://mww.materiel.net/ctl/Serveurs/



So, we propose to use autonomic computing on the unal.(2008)], [Saharia and Babad (2000)] the issisvigys
fied formalized knowledge base. Specifically, weatra addressed either through the physical design od¢lsgn
common configuration problem: cache memory allacati of algorithms to determine which information isdii to
for a group of data warehouses (that share the sant® stored in cache memories. These solutions apely
amount of common available RAM memory). The objec-when we focus on a single data warehouse.
tive is to reach a better performance (in termgjuéry So, what actually happens in enterprises is thairth
response times when extracting data from the dat@-w tial cache allocations remain the same throughivog.t
house) with lower costs. The implication is that inoy = Whereas the quantity of data in the data warehause
creasing the amount of cached data, there arerbettereases, some of them are no longer used; therseare
chances that a request hits the cache; the respiorein  data warehouses that are constructed etc. Thertifere
order to extract the data decrease, which trarsslatbet- is a need for a dynamic system.
ter performances. But, the whole amount of datdanlsy The first aspect of the system we propose andviieat
ly can't be put in the cache, and then we needyatwa approach is knowledge formalization. In the exangk
automatically determine and adjust the cache paemme  sented in the introduction, the expert in ordere@llocate

Section 2 presents a view of data warehouse managtie memory makes use of several types of informatio
ment through caches in the context of decision stpp We propose to divide this information into threeima
systems. It presents the information that needsetona- types, detailing and exemplifying based on the Higpme
nipulated and how the division of this informatican  Essbasgbusiness intelligence solution.
lead to a unified knowledge base representatiocti3e3 Architectural informationcorresponds to the organiza-
presents how autonomic computing is used with magag tion of the groups of data warehouse. Figure 1 shaw
data warehouse through caches. It presents holinthe-  example of a possible organization.
ledge base is integrated to permit autonomic ta#ks.

L . PHYSICAL
equally proposes two heuristics for cache allocatio SRV
based on the problematic described. Section 4 shows -
we integrate the elements together using ontoldgiethe
knowledge base representation and ontology baded ru ¢ ;
for the autonomic process. We provide some resdts APP1| ... APP k
tained with our approach. In the conclusion we shm = =
work presented giving future directions and hopihgt
our work could help enterprises with their dataetause

efforts. pwi1 | [pwaz | DW 1n DWki| [pwk2 | DW kn
2 Data Warehouse and Cache Allocations Figure 1 - Architectural organization for groups of data
First of all, when speaking of data warehouse wells warehouse

make reference to a definition as a repositoryrobman- ~ Based on a decision support system simple orgamiat
ization's electronically stored data and is degigiefaci- ~ We can distinguish on top of the tree a Physical&eas
litate reporting and analysis [Inmon (2005)]. Mainaga the gctu_al m_achlne. Underneath, there are a nurt_mber
data warehouse includes the process of analyzitggos-  APPlications installed that share the RAM memorypigv

ing, transforming and loading data and metadatadets- able on the server. And, in turn each applicationt&ins
sional experts, we know that once data warehousegua ~ One or more data warehouses (Essbase cubes o, bases
in place, enterprises then base their decisiontherdata Sharing the same memory. Each application is seea a
that is stored within them. So a good organizatipstart ~ 9roup of data warehouses, and then memory realocat

and a good performance in time are the requiremeints S done within each application. _ _ _
data warehousing. Configuration and performance informatiorontains

We do not put into question the initial organizatigtve  all the indicators that reflect the actual chanasties and

observed that in time data warehouse performanaes aconfiguration of the data warehouses and the perfor
constantly degrading up to a point where the systeno ~ Mances obtained with this configuration. For therehte-

is strongly related to the operation of data etiac 1heré are many characteristics, but for our examyse
which in turn depends on the query response timethe  take into consideration the following indicators:

data. Obviously, the larger a data warehouse é&sntare e The size of each data warehouse represented by: the
informatipn it contai_ns SO we expect to have_higfer Index File size and the Data File size. This cerres
sponse times. Considering that some informatiooftisn ponds to the actual size that each data warehsuse i

more demanded than other, data warehouse management ccupying on a hard disk. A value of tens of GB for
systems offer the possibility of keeping frequenty-

) . ; the two together is a frequently met characteristic
cessed data in cache memories with the hypotheats t g g y

fetching data from the cache is greatly faster flearhing  The values of three types of caches: Index, DataFil
them from the persistent storage media. The proldem and Data Cache. Corresponding to the sizes pre-
curs when confronted with groups of data wareharse sented before, they represent a percentage otthe a
the same machine that share the same amount of memo tual data files that can be kept in cache. Idealy,

In decision support systems, such groups contaia dfa should have the total of index file size in theerd

up to several thousand gigabytes. They cannot Ibgual
into the cache, so solutions are required.

Althoughthe problematic of performance improvement
in data warehouses throughout caches is debatelik[dta

Zhttp://download.oracle.com/docs/cd/E10530_01/dan/ép
31/html_esb_dbag/frameset.htm?dstcache.htm



cache, and the total of data file size in the datd
data file cache.

For the performance aspect, there are many indgabo
take into consideration such as: query responsestim
calculation times, aggregation operation times, ¥t
chose the query response time as a performanceatodi
as this is a frequently used measure [Saharia aifxhd
(2000)] of the system performance, and, it diremtijects
the quality of the user experience in the decisigstem.
It represents the time needed to extract data d¢frau
query from the data warehouse.

Experience and best practices informati@present a
more delicate subject in comparison with the fingb
information types. The main reason is that it cerftem
several different sources. Therefore the challéagsow
to combine these sources into a single unified kedge
base. For instance, how to combine practices téien
an Essbase support document with practices thgpaate
of the human experience and that are only knowthby
expert. We present here the formalization aspéet, is
revised and validated by a human expert. In orddott-
malize the experience and best practices, we havalfa
completely different approach to knowledge represen
tion, which is the rule based representation. Béigicwe
translate the pieces of advice and best practitessvent
Condition Action (ECA [Huebscher and McCann (2008)]
rules. Such rules are often associated with busimgsl-
ligence practices, and integrating different rudésliffer-
ent timelines (via the autonomic aspect) proveddoa
good choice for our proposition. ECA rules havetaiar
drawbacks, such as it is hard to prove the coherand
the no contradiction. But for the rules in our syst this
aspect is not currently an issue.

3 Driving the data warehouse — Autonomic
Computing

Once the principal knowledge types are well sepdrat
and formalized, they have to be ‘put to life’. Wafar of
course at the second aspect of the improvemengérayst
rendering it autonomic. Autonomic systems have beel
present within our everyday lives. A very intuitiegam-
ple of an autonomic system that manages itseligshiu-
man body. Reflexes like breathing, digestion, hpatsa-
tion etc. are part of the autonomy the human body p
vides (we don't control these we just know they @vati-
nually present and moreover they function). Stgrfiom
this idea, the first approaches were especiallyatdes
self-healing systems, the survey of [Ghosh et @0{J]
summing up this evolution. And, as expected theceph
developed, and in 2001, IBM proposed a formalizatib
the self-x factor by introducing the notion of Aotamic
Computing (AC) [IBM (2001)]. Most of the IT orgariz
tions spend a lot of time reacting to problems twatur at
the IT infrastructure component level. This pregethiem
from focusing on monitoring their systems and fro@ing
able to predict and prevent problems before endsume
impacted [IBM (2005)]. Autonomic computing is thieila
ity for an IT infrastructure to adapt and changeadator-
dance with business policies and objectives. iitgly,

it is about freeing IT professionals to focus oghar—

value tasks by making technology work smarter, with

business rules guiding systems to be self-configyri
self-healing, self-optimizing and self-protectingB
(2001)].

From this to applying autonomic computing to enable
improvement in IT infrastructures was just a snsidip.
The subject proved to be of great interest to eniters.
Works have been done in this area and put intotipeac
for improving database performance by IBM [Markl et
al.(2003)], [Lightstone et al.(2002)] and Microsoft
[Mateen et al.(2008)]. IBM specifications link aotomic
computing with the notion of autonomic manager fees t
entity that coordinates the activity of the automom
process. An autonomic manager (ACM) is an implemen-
tation that automates the self-management funcdioch
externalizes this function according to the behawde-
fined by management interfaces. The autonomic m&nag
is a component that implements an intelligent adntr
loop. For a system component to be self-managing, i
must have an automated method to collect the deitail
needs from the system (Monitor); to analyze thostith
to determine if something needs to change (Anajyize)
create a plan, or sequence of actions, that specifie
necessary changes (Plan); and to perform thosenacti
(Execute) [IBM (2001)]. Similar alternatives to anbmic
computing were made in real Bl [Nguyen et al.(2Q@bit
the idea is the same: to be able to analyze antbiref(in
our case) a given system through a closed loopdiffat
rentiates a series of states.

We propose the usage of autonomic managers toesnabl
data warehouse self-improvement. Figure 2 shows the
transformation of the architecture from Figure lthwthe
implementation of autonomic managers on each of the
entities (or component of the architecture) invdlve

ACM

PHYSICAL
SRV

APP1|.... ACM

APPk

Dwil| |pwiz | DW1n DWki| |Dwk2| |[DWkn| ACM

Figure 2 - Autonomic Computing Managers on each of
the architectural levels

We notice that each of the entities has its owiividdal
loop. The autonomic managers communicate only with
the ones from the superior levels, and not betwiben
same level. This way, each entity has two respditigb:
one strictly related to its individual self managsrand
the other related to the management of its descenda
The idea is that the two can function independenfly
each other. For instance, consider an Applicatiat has
2GB of RAM allocated to its data warehouses. Scheac
data warehouse uses the allocated RAM and selfeiesr
itself with what it has. Now suppose that at aaiarpoint
the Application receives another 1GB of RAM. If thew
information is not integrated then the data wareksu
continue to function with the already allocated 2@Bice
the application runs the management of its desceada
reallocation of the memory is done also for theadsére-
houses. In order to simulate the two behaviors,hesee
elaborated two heuristics.




3.1 Data warehouse Self-improvement heuristic

This concerns only the individual loop at a datarewa
house level. Its role is to describe how cachecations

vary with the query response times. The idea isftihe

lowing: starting from a given maximal cache confau
tion we try to decrease the values of the cachdssardy

the impact this decrease has on the data warelyméesg

response times. The algorithm stops when the dififes

between the current and the last average querymesp
time is greater than a specified threshold. Thislase

independently for each data warehouse. So, weealbfin

parameters for this heuristics:

Step - represents the amount with which each cach
value is decreased. The following formula shows taow
cache value modifies with step:

CV; = CVy - (CViax—C\Wy)*step
where CV, represents the old cache value, ;Gke new
calculated value and G),the maximum possible value
A frequent value of step we used in our experimergds
10% based on the recommendation of our human expert

Delta — represents the threshold accepted for the diffe
ence between the current and the last average nespo
time. It can be seen as the accepted impact tlcache
modification has. If RT;-RTg)/RT, < deltathen we accept
the new cache proposition (wheRd = average response
time for the respective data warehouse). A frequehteva
we used for delta was 5%, based on our clientsfamee
performance acceptance specification (i.e. forlaevaf X,
an fluctuation in performance with 5% is accepted).
Table 1 illustrates the self-improvement heuristiéth a
timeline, based on the autonomic manager loop ghage
to we have the initial configuration. At tve have made
the first cache adjustment, and validated it. Atthe
second cache madification has an impact too gnedhe
response time so we leave the cache value as it is.

Table 1 -Individual Data Warehouse Self-Improvement
Heuristics on the autonomic manager phases

Time | AML Phase Action
0 Monitor step = 0.1, delta = 0.05, GY=1GB
CV,=500MB, RT=5s
Analyze N(ot)/A(vailable)
Plan CV,=450MB
Execute Change script for DW with GV
1 Monitor CV;=450MB, RT,=5.2s
Analyze (RTl'RTo)/RTO=OO4 < delt
Plan C\,=395MB
Execute Change script for DW with GV
2 Monitor C\,=395MB, RT,=6s
Analyze (RT-RT))/RT,=0.15 > delt
Plan C\4,=395MB
Execute No change for DW

3.2 Group of data warehouses cache realloca-
tion heuristic

The first heuristics was individual data warehobased.
Each of the data warehouses was independent amd e
was in a state of self-improvement in time. Buking it
into consideration alone makes no sense as therperf
mances on individual data warehouses are expected
decrease as the caches decrease. To explain hesuits
in an actual improvement at group level, we intcelthe
group of data warehouses heuristic. Its purpose isal-
locate periodically the memory that the individuta

r

process. And it is here where the ‘catch’ is: bgnaall
sacrifice (delta) of some data warehouses, we aaman
important performance on others.

The core of the heuristic is to differentiate thn per-
forming from the performing data warehouses in@ugr
The idea is the following: a data warehouse is ictemed
performing if its average response time is belogvaker-
age value of the response time for the whole gr@th-
erwise, it is considered as non-performing. Thisfqre
mance indicator can be equally made more complex by
taking into account the applications priority or pion-
tance. This way scaled mixed performance indicatars
ge obtained and used. The specification of prasitnd
Importance is usually part of Service License Agreets
and is one of the future directions in our work.

So in this case, we take the memory from the perfo
ing data warehouse and give it to the non-perfogmin
Relating with the architecture in Figure 1, the Aqgtion
level is responsible for the implementation of theuris-
tic. The Application decides how to redistribute them-
ory between the data warehouses it concerns.

Table 2 shows this heuristics. The example is based
a group of two data warehouses that are part ofanee
application and share the same amount of memory for
their caches.

Table 2 -Group of Data Warehouse Improvement Heuris-
tic — Cache Evolution Exemple

Step| DW | Cache | Memory to| Free RT
Value allocate Memory

0 DW1 | 130 ME | 140 ME 10 MB 5¢
DW2 | 80 MB 90 MB 10 MB 7s

1 DW1 | 130 ME | 130 ME 0 MB 5¢
DW2 | 100 MB | 100 MB 0 MB 6s

2 DW1 | 120 ME | 120 ME 0 MB 5.3¢
DW2 | 110 MB | 110 MB 0 MB 5.55

In start at gwe have a given cache allocation along with
the available memory for each data warehouse.; Altes
heuristic is run the first time. It takes all theadable
memory from the performing data warehouse (DW1) and
redistributes it to the non performing (DW2). So RW
gains all the free memory (20MB) from sAs the differ-
ences in response times are still important, itsgoether

at s. Here, it takes some memory from DWL1 by force,
leading to a decrease in performance for DW2. But a
seen, we gain an important amount of performance fo
DW2, and now the response times for the two dataewa
houses are close.

It is important to note that this heuristic is émndent
from the previous one, and in addition the two reias
are mutually exclusive. This means that in the mume
when this heuristic is considered, the other dashing.
This is why between the two tables we differentibée
tween “Time” and “Step”. An example of usage isto
the individual self-improvement heuristic once eafay
(from Tuesday to Friday), and the group reallocatieu-
ristic once at the beginning of each weak (Monday).

4% Combining the elements

Having the two main aspects, knowledge formalizatio
and autonomic capabilities, the final and innoxeastage
in our approach is to combine them. In order tdhde we
base on the preliminary works presented in [[Niak
Georgescu et al.(2009)]]. The solution proposedatydi-
cation of ontologies and ontology based rules (dlgisg

warehouse heuristics saved from the self-improvémerPUsiness rules) with autonomic computing for imjmgv



average query response times in data warehousee ThVe exemplify below how the system is implemented on

concept is the same, but in this previous work wuby/ o
described how can simple businesses rules canduktas

each of the four phases.
Monitor

improve data warehouse performance. There is noand
tion to how heuristics are used within the autorcoman-
ager loop.

For the monitor phase, in order to obtain the cacliees
and average response times, we use SQL data beges t
are filled with the help of vbscripts via the apopided by
4.1 System implementation Hyperion Essbase. Then, to transform and loacktiisy-

In previous works, we were proposing a divisiorttef ~ /€dge in the ontology, we pass via a java programgu
knowledge in the system into static knowledge age d the Jena APl and a set of correspondences that tire
namic knowledge. Based on this organization we empl data from the SQLdbs to ontology concepts. Table 3
ment the new presented elements. The means of knowoWs how some parts of how a data warehouse is
ledge formalization do not change, static knowledgimg ~ 'ePresented in the ontology:
implemented with the help of ontologies and e- Table 3 -Data Warehouse ontology representation

reas the dynamic aspect is expressed with ontdd@ggd | Subject | Predicate Object

rules via the Jena Rufeformalization. The ontology con-| 2w rdf:type DataWarehouse
tains over 150 concepts and 250 axioms, whereasra n 2app rdf:type PhysicalApplication
ber of 30 rules are based on it. From what we lmee [ o5, isChildOf 2app

sented, we focus on the dynamic aspect, as itdeslthe |[5q,, hasAvgResponseTime 2avgt

two heuristics projected on the phases of the amn g hasPrevAvgResponseTimé  2prevt

computing.

The first step in order to understand how rulesare
ganized is to understand how the autonomic manamers
the different hierarchical levels communicate. Asrsthe e n 1S L e
group heuristic reallocates memory and excludesritie ~ such individual that is linked to an ?app indivitiog the
vidual heuristic. In order for the autonomic manage OWL object property isChildOf . This property edish-
Communicate’ we propose a hierarchy of the autwomies the hler_al’Chlca_ll relations between individuadsnf the
ure 3 show how the four phases of autonomic marager data type properties that are linked to the ?dweaqmiess
projected on the architectural levels. the current and previous average response timédar.

We notice how the monitor phases ascends, startinghe values for these properties are filled from S@L
from the lowest level (data warehouse). This mehas .bs that contains to the data warehouse monitorrimd-
first the data regarding the data warehouses atega, ton.
then the application, and then the physical servaen
the analysis is made top down from the physicaleseto
the data warehouse level. Retaking the memorgatiion
example, first the server allocates memory betwigen
applications, then each application allocates in to its
data warehouses etc. Then the planning stage asce
again, the changes are planned from the analys& le
starting with the data warehouses and finishindh wlite
physical server. Last, the execution phase makasges
top down similar to the analyze phase. A changéhén | (?alg cp:hasDelta ?delta) ristic
RAM memory is first done to the physical serveertithe | quotient(?t, 2avgt, ?prevt) le(?t, ?delta) -
applications receive the new memory and then tha da(?dw cp:hasState cp:DecreaseCache)
warehouses change their memory (now possible becau§’dw cp:hasState cp:DecreaseCache)

We can see two classes, the DataWarehouse and the
PhysicalApplication. Each of these classes corfsish
multiple instances as OWL individuals. The ?dw i®o

Analyze

Once this phase of monitoring and pre-processirig-of
formation is done, the system passes to analyze. We
present below two rules that formalize a cacheesesa.

rkule Description

(?dw cp:hasPrevAvgResponseTime ?previyalidate a cache
(?dw cp:hasAvgResponseTime ?avgt) decrease via the
(?dw cp:hasAlgorithm ?alg) individual heu-

A4

If the decrease of

the memory has already been changed at appliciion | (?dw cp:hasindexCacheMin ?ic_min) cache is  req
el) (?dw cp:hasindexCache ?ic) quested, test i
N . .. ? : i ? :
Figure 3 - Autonomic Manager phases projection on the (7% cP-hasAlgorithm ?alg) the new value is
. (?alg cp:hasStep ?step)
architectural levels : , . not under the
product(?p, ?ic, ?step) difference(?ic_ne Viminimal value. If
> o ?ic, ?p) ge(?ic_new, ?ic_min) -> not enable .the
, ‘ (?dw cp:hasindexCache ?ic_new) new change
o PHYSICAL
The first rule test to whether the cache valuesafein-

gle data warehouse can be decreased, accordinpyhve
individual heuristic. We have again the ?dw indiat] an
instance of the DataWarehouse class, with the tata d
type properties from Table 4. In addition we haveew
object property that related the ?dw with an thavidual
heuristic algorithm. The rule compares the rappmt
tween the two average times (current and previouit)
the delta of the algorithm. If the rapport is lowlean del-
ta, the ?dw becomes into a new state, in whicls @l
lowed to decrease its cache. Otherwise, nothinggds

Tl
—| Monitor |
[ S |
| >

3 X
= \
fir
7 H \ bl

| DW 1n | DW k1

3http:/ivww.w3.0rg/2007/OWL/wiki/OWL_Working_Grou

p
“ http://jena.sourceforge.net/inference/#rules
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The second rule makes use of the results of tls¢ fir
rule. If the DecreaseCache state has been gendnatbe
first rule, then it tries to see whether or not diperation is
possible. Two new data type properties are intreduor

in terms of delta. Their impact on the system i i@
terms of the performance drops the days where ¢ags
are noticed. By limiting the number of peaks (after one
or two peaks the system should no longer try tanupé

the ?dw: hasindexCacheMin and hasindexCache, whictnder the same circumstances) we avoid the riskuoh

represent the values of the minimum threshold dmed t
current value of the cubes index cache. These sauve
equally filled from the monitor phase. The ruleatats the
individual heuristic algorithms’ parameters (stelpist
time) and tests if by modifying the index cachehwitis
formula, the new index cache value is greater tten
minimum one. If so, it changes directly the curregmtex
cache value to the newly computed one.

Plan and Execute

drops. But, we also have to take into considerétian by
limiting the number of peaks (by forcing the algiom to
stop for instance at a certain point) we risk t@srsome
needs of improvement due to reconfiguration aspétts
ideal would be to leave the heuristic running asatisnd
not to force the algorithm to stop, but not to gtcihe
cache decreases once a certain level of performasnce
reached. One of the future directions and improvemis
the introduction of attenuation mechanisms in topl

So, in numbers, at the end of the sixth day: DWikés

The plan and execute phases are linked to each. othgery little in performances (~2%), DW2 gains subtia

As the new cache values are calculated, therpisara-
tion of VBscripts that will be run via the prograifhese
scripts will change the values of the caches inBbsbase
cubes, according to the new values proposed bwihe
lyze phase. At the end of the execution phase tipediy

the inverse monitor operation of data processingasle.

performances (~80%), and the total cache used by th
application is decreased by ~60%. So the sacrifite
DW1 was worth from the perspective of the entirsteam.
These results prove how an efficient way of impngvihe
data warehouse groygerformances can be achieved in an
autonomic manner, without the intervention of a ham

The cache values are passed from the ontology €o thexpert.

SQLdbs and then to the modification scripts.

4.2 Experimentation and Results

For our experiments we considered the following sce
nario: on an existing server, we created an Esshpsk
cation with two cubes. The cubes contain in averbbe
principal axes and 27 level 2 axes and the datahfils an
average size of 300MB. With this configuration, oa-
ried several tests, simulating a period of 14 déiyse
stamps period). Each time-stamp, a series of rargioen
ries (from a given set) was executed so that agton the
application was simulated. The individual data \watese
self improvement heuristic is running each day, nehe
the group heuristic is running once each 4 daygurei 4
shows the evolution of the response times for weedata
warehouses with the evolution of their total caaelteca-
tion:

DW1-Total Cache Viaue DW2- Total Cache Viaue

=——DW1-Average of RT  ===DW?2- Average of RT
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Figure 4 - Average Response Time evolution with cache
allocations
Again, the objective is to obtain better averagpoase
times with lower cache values. First what we notcthat
at the end of 5 days we already have a good rasipanse

5 Conclusions

This article presented a way of using ontologies auto-
nomic computing for improving query response tinmes
data warehouses groups by modifying cache memery al
locations. It has presented this applied to thévlproatic
of shared resource allocation in groups of dataewar
houses. Also, the article presented a propositfarac-
ing some of the human expert's work by introducing
tonomic and human independent ways of managing data
warehouses.

We have proposed a division and formalization &f th
knowledge used for configuring groups of data ware-
houses by using ontology and ontology based rédlss,
we have proposed an organization of this processcan
the autonomic computing considerations. It is het first
attempt to combine the two [Stojanovic et al.(2008t
the novelty is from using such techniques in thmdio of
decision support systems and especially in the pgaf
data warehouse improvement.

Our future directions are to expand the data warsé®
described above so that our prototype can provefits
ciency on a larger spectrum of rules and indicatGnsr
purpose is to integrate the prototype presented tth
more than one aspect (data warehouse cache adlogati
based on response times) of decision support sgstéfa
also intend to approach the notions of Service risee
Agreement (SLA) and Quality of Service (QoS), biran
ducing the QoS as a performance indicator in tistesy.
SLA considerations such as application priority amd
portance depending on utilization periods, are &spects
that are little approached and equally very impdria a
decision support system. Also in terms of autonolaip
control, we take into consideration the usage ofhae-
isms for avoiding peaks and unnecessary loop passag

As the domain is relatively new we try to bringrasch
support as possible for future development in fihection

time/cache allocation. The data warehouses improvef autonomic knowledge based decision support Byste

themselves fast, and then once reaching a good, plogy
oscillate around this point. This oscillation isosm by
the peaks on DW?2 that tries each time to improveenits
performances, but it can’t due to the heuristicst@ints

We follow the changes with the new technologies and
hope that our work will be useful in this expandienyvi-
ronment.
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