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Abstract 
With the increase in the amount and complexity 
of information, data warehouse performance has 
become a constant issue, especially for decision 
support systems. As a consequence, decision ex-
perts are faced with the management of all this 
information, and thus realize that special tech-
niques are required to keep good performances. 
This paper proposes an approach to data ware-
house systems improvement based on Autonomic 
Computing. The idea is that by rendering certain 
tasks autonomic, such as the configuration of 
cache memory allocations between groups of da-
ta warehouses, we ensure a better data warehouse 
management at a lower cost and save substantial 
decision experts' time that can be used on higher 
level decision tasks. 

 

1 Introduction 
Decision Support Systems are defined as computerized 
systems whose main goal is to analyze a series of facts 
and give various propositions for actions regarding the 
facts involved [Druzdel and Flynn (1999)].  The process 
of decision making in enterprises based on such systems is 
also known as Business Intelligence. This concept is very 
well applied by large enterprises. Via this process, they 
specifically focus on their data warehouse efforts. The 
problem is that data warehouses usually become fast very 
large and complex, thus their performances become rapid-
ly an issue. This is why between 70 and 90% [Frolick and 
Lindsey (2003)] of the enterprises consider that their data 
warehouse efforts is inefficient, as in many cases, the 
large amount of data involved becomes unusable. In many 
of these cases, the cause is bad management or costs that 
are too high to sustain.  

One of the main problems that lead to this is common 
resource sharing between data warehouses. The resources 
are usually limited either by financial costs or by architec-
tural considerations. Consider the following real example, 
to emphasize the problematic. An enterprise has a special 
server for its data warehouses. In total, a group of 50 data 
warehouses that share the same RAM memory is dep-
loyed on this server. Each of the data warehouse requires 
at least 20 GB of RAM to have good performances (i.e.  
the query average time is under a second). So there is a 
need for at least 1TB of RAM (ignoring all other RAM 
requirements of the server). First, the costs of having 1TB 

of RAM on server are financially high (~ 40000 EUR1). 
Second, if the enterprise is ready to cover these costs, 
suppose the server has an architecture that enables a max-
imum of 16GB to be installed. Also the migration of some 
data warehouses on another server would be too expen-
sive and too complicated. An option is to compromise, 
asking each time an expert to re-configure the memory 
allocation for each of the data warehouse. In a short time 
after this is done, with the evolution of the data ware-
houses' size or if new data warehouses are added or some 
become obsolete, the problem reappears and the same 
action must be taken, over and over again. 

Based on the example above we can intuitively see a 
simple solution: enable autonomic tasks that reconfigure 
the memory allocations, instead of asking a human expert 
each time to intervene (human resources are the most ex-
pensive, and not always provide the optimal results). This 
is easy to be said but it is hard to formalize, due to two 
main issues.  

First, how to formally represent the group of data ware-
houses along with the knowledge involved in the deci-
sions and actions of the expert? To do this, we differen-
tiated three main types of information that needs to be 
formalized:  a) architectural information (how a group of 
data warehouse is organized, the number of groups, how 
are they linked, etc.); b) configuration and performance 
information (how much memory each data warehouse 
needs, what performance is achieved with this allocation, 
etc.); and c) experience information that represents best 
practices and advices for the memory allocations (coming 
from editor documents, human experience, etc.). We 
present in this paper a formalization of the three types into 
a unified knowledge base, using ontologies [Gruber 
(1992)] and ontology based rules [Stojanovic et 
al.(2004)].    

Second, having the information formalized, we need an 
organized form of rendering the autonomic process. To 
this end, IBM proposes a solution called Autonomic 
Computing [IBM (2001)]. It consists in the division of the 
actions that are taken when trying to provide autonomy to 
a process, corresponding to objective-specific phases and 
states. Autonomic concepts can be integrated in hierar-
chical organized systems, so each higher level aggregates 
what has been done to its sub levels. There are numerous 
autonomic computing based works that relate especially to 
problem resolution [Manoel et al.(2005)] or system ad-
ministration [Barret et al.(2004)]. On the other hand, little 
has been done on data warehouse improvement.  

                                                 
1 http://www.materiel.net/ctl/Serveurs/ 
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So, we propose to use autonomic computing on the uni-
fied formalized knowledge base. Specifically, we treat a 
common configuration problem: cache memory allocation 
for a group of data warehouses (that share the same 
amount of common available RAM memory). The objec-
tive is to reach a better performance (in terms of query 
response times when extracting data from the data ware-
house) with lower costs. The implication is that by in-
creasing the amount of cached data, there are better 
chances that a request hits the cache; the response times in 
order to extract the data decrease, which translates in bet-
ter performances. But, the whole amount of data obvious-
ly can't be put in the cache, and then we need a way to 
automatically determine and adjust the cache parameters. 

Section 2 presents a view of data warehouse manage-
ment through caches in the context of decision support 
systems. It presents the information that needs to be ma-
nipulated and how the division of this information can 
lead to a unified knowledge base representation. Section 3 
presents how autonomic computing is used with managing 
data warehouse through caches. It presents how the know-
ledge base is integrated to permit autonomic tasks. It 
equally proposes two heuristics for cache allocation, 
based on the problematic described. Section 4 shows how 
we integrate the elements together using ontologies for the 
knowledge base representation and ontology based rules 
for the autonomic process. We provide some results ob-
tained with our approach. In the conclusion we sum the 
work presented giving future directions and hoping that 
our work could help enterprises with their data warehouse 
efforts. 

2 Data Warehouse and Cache Allocations 
First of all, when speaking of data warehouse we usually 
make reference to a definition as a repository of an organ-
ization's electronically stored data and is designed to faci-
litate reporting and analysis [Inmon (2005)]. Managing a 
data warehouse includes the process of analyzing, extract-
ing, transforming and loading data and metadata. As deci-
sional experts, we know that once data warehouses are put 
in place, enterprises then base their decisions on the data 
that is stored within them. So a good organization in start 
and a good performance in time are the requirements of 
data warehousing.   

We do not put into question the initial organization. We 
observed that in time data warehouse performances are 
constantly degrading up to a point where the system is no 
longer usable. One aspect of data warehouse performance 
is strongly related to the operation of data extraction 
which in turn depends on the query response times on the 
data. Obviously, the larger a data warehouse is, the more 
information it contains so we expect to have higher re-
sponse times. Considering that some information is often 
more demanded than other, data warehouse management 
systems offer the possibility of keeping frequently ac-
cessed data in cache memories with the hypothesis that 
fetching data from the cache is greatly faster than fetching 
them from the persistent storage media. The problem oc-
curs when confronted with groups of data warehouse on 
the same machine that share the same amount of memory. 
In decision support systems, such groups contain data of 
up to several thousand gigabytes. They cannot be all put 
into the cache, so solutions are required.  

Although the problematic of performance improvement 
in data warehouses throughout caches is debated [Malik et 

al.(2008)], [Saharia and Babad (2000)] the issue is always 
addressed either through the physical design or the design 
of algorithms to determine which information is likely to 
be stored in cache memories. These solutions apply well 
when we focus on a single data warehouse.  

So, what actually happens in enterprises is that the ini-
tial cache allocations remain the same throughout time. 
Whereas the quantity of data in the data warehouse in-
creases, some of them are no longer used; there are new 
data warehouses that are constructed etc. Therefore there 
is a need for a dynamic system. 

The first aspect of the system we propose and that we 
approach is knowledge formalization. In the example pre-
sented in the introduction, the expert in order to reallocate 
the memory makes use of several types of information. 
We propose to divide this information into three main 
types, detailing and exemplifying based on the Hyperion 
Essbase2 business intelligence solution. 

Architectural information corresponds to the organiza-
tion of the groups of data warehouse. Figure 1 shows an 
example of a possible organization.  

 
Figure 1 - Architectural organization for groups of data 

warehouse 
Based on a decision support system simple organization, 
we can distinguish on top of the tree a Physical Server as 
the actual machine. Underneath, there are a number of 
Applications installed that share the RAM memory avail-
able on the server. And, in turn each application contains 
one or more data warehouses (Essbase cubes or bases), 
sharing the same memory. Each application is seen as a 
group of data warehouses, and then memory reallocation 
is done within each application. 

Configuration and performance information contains 
all the indicators that reflect the actual characteristics and 
configuration of the data warehouses and the perfor-
mances obtained with this configuration. For the characte-
ristics and configuration we refer to the Essbase cubes. 
There are many characteristics, but for our example we 
take into consideration the following indicators: 

• The size of each data warehouse represented by: the 
Index File size and the Data File size. This corres-
ponds to the actual size that each data warehouse is 
occupying on a hard disk. A value of tens of GB for 
the two together is a frequently met characteristic.  

• The values of three types of caches: Index, DataFile 
and Data Cache. Corresponding to the sizes pre-
sented before, they represent a percentage of the ac-
tual data files that can be kept in cache. Ideally, we 
should have the total of index file size in the index 

                                                 
2http://download.oracle.com/docs/cd/E10530_01/doc/epm.9
31/html_esb_dbag/frameset.htm?dstcache.htm 
 



cache, and the total of data file size in the data and 
data file cache. 

For the performance aspect, there are many indicators to 
take into consideration such as: query response times, 
calculation times, aggregation operation times, etc. We 
chose the query response time as a performance indicator 
as this is a frequently used measure [Saharia and Babad 
(2000)] of the system performance, and, it directly reflects 
the quality of the user experience in the decision system. 
It represents the time needed to extract data through a 
query from the data warehouse. 
 Experience and best practices information represent a 
more delicate subject in comparison with the first two 
information types.  The main reason is that it comes from 
several different sources. Therefore the challenge is how 
to combine these sources into a single unified knowledge 
base. For instance, how to combine practices taken from 
an Essbase support document with practices that are part 
of the human experience and that are only known by the 
expert. We present here the formalization aspect, that is 
revised and validated by a human expert. In order to for-
malize the experience and best practices, we have found a 
completely different approach to knowledge representa-
tion, which is the rule based representation. Basically, we 
translate the pieces of advice and best practices into Event 
Condition Action (ECA [Huebscher and McCann (2008)]) 
rules. Such rules are often associated with business intel-
ligence practices, and integrating different rules at differ-
ent timelines (via the autonomic aspect) proved to be a 
good choice for our proposition. ECA rules have certain 
drawbacks, such as it is hard to prove the coherence and 
the no contradiction. But for the rules in our system, this 
aspect is not currently an issue. 

3 Driving the data warehouse – Autonomic 
Computing 

Once the principal knowledge types are well separated 
and formalized, they have to be ‘put to life’. We refer of 
course at the second aspect of the improvement system: 
rendering it autonomic. Autonomic systems have been 
present within our everyday lives. A very intuitive exam-
ple of an autonomic system that manages itself is the hu-
man body. Reflexes like breathing, digestion, heart pulsa-
tion etc. are part of the autonomy the human body pro-
vides (we don’t control these we just know they are conti-
nually present and moreover they function). Starting from 
this idea, the first approaches were especially towards 
self-healing systems, the survey of [Ghosh et al.(2007)] 
summing up this evolution. And, as expected the concept 
developed, and in 2001, IBM proposed a formalization of 
the self-x factor by introducing the notion of Autonomic 
Computing (AC) [IBM (2001)]. Most of the IT organiza-
tions spend a lot of time reacting to problems that occur at 
the IT infrastructure component level. This prevents them 
from focusing on monitoring their systems and from being 
able to predict and prevent problems before end users are 
impacted [IBM (2005)]. Autonomic computing is the abil-
ity for an IT infrastructure to adapt and change in accor-
dance with business policies and objectives. Quite simply, 
it is about freeing IT professionals to focus on higher–
value tasks by making technology work smarter, with 
business rules guiding systems to be self-configuring, 
self-healing, self-optimizing and self-protecting [IBM 
(2001)].  

From this to applying autonomic computing to enable 
improvement in IT infrastructures was just a small step. 
The subject proved to be of great interest to enterprises. 
Works have been done in this area and put into practice 
for improving database performance by IBM [Markl et 
al.(2003)], [Lightstone et al.(2002)] and Microsoft 
[Mateen et al.(2008)]. IBM specifications link autonomic 
computing with the notion of autonomic manager as the 
entity that coordinates the activity of the autonomic 
process. An autonomic manager (ACM) is an implemen-
tation that automates the self-management function and 
externalizes this function according to the behavior de-
fined by management interfaces. The autonomic manager 
is a component that implements an intelligent control 
loop. For a system component to be self-managing, it 
must have an automated method to collect the details it 
needs from the system (Monitor); to analyze those details 
to determine if something needs to change (Analyze); to 
create a plan, or sequence of actions, that specifies the 
necessary changes (Plan); and to perform those actions 
(Execute) [IBM (2001)]. Similar alternatives to autonomic 
computing were made in real BI [Nguyen et al.(2005)] but 
the idea is the same: to be able to analyze and improve (in 
our case) a given system through a closed loop that diffe-
rentiates a series of states.   

We propose the usage of autonomic managers to enable 
data warehouse self-improvement. Figure 2 shows the 
transformation of the architecture from Figure 1, with the 
implementation of autonomic managers on each of the 
entities (or component of the architecture) involved.  

 
Figure 2 - Autonomic Computing Managers on each of 

the architectural levels 
We notice that each of the entities has its own individual 
loop. The autonomic managers communicate only with 
the ones from the superior levels, and not between the 
same level. This way, each entity has two responsibilities: 
one strictly related to its individual self management and 
the other related to the management of its descendants. 
The idea is that the two can function independently of 
each other. For instance, consider an Application that has 
2GB of RAM allocated to its data warehouses. So each 
data warehouse uses the allocated RAM and self-improves 
itself with what it has. Now suppose that at a certain point 
the Application receives another 1GB of RAM. If the new 
information is not integrated then the data warehouses 
continue to function with the already allocated 2GB. Once 
the application runs the management of its descendants, a 
reallocation of the memory is done also for the data ware-
houses. In order to simulate the two behaviors, we have 
elaborated two heuristics. 



3.1 Data warehouse Self-improvement heuristic 
This concerns only the individual loop at a data ware-
house level. Its role is to describe how cache allocations 
vary with the query response times. The idea is the fol-
lowing: starting from a given maximal cache configura-
tion we try to decrease the values of the caches and study 
the impact this decrease has on the data warehouse query 
response times. The algorithm stops when the difference 
between the current and the last average query response 
time is greater than a specified threshold. This is done 
independently for each data warehouse. So, we define two 
parameters for this heuristics: 

Step - represents the amount with which each cache 
value is decreased. The following formula shows how a 
cache value modifies with step: 

CV1 = CV0 - (CVmax –CV0)*step 
where CV0 represents the old cache value, CV1 the new 
calculated value and CVmax the maximum possible value . 
A frequent value of step we used in our experiments was 
10% based on the recommendation of our human experts.  
 Delta – represents the threshold accepted for the differ-
ence between the current and the last average response 
time. It can be seen as the accepted impact that a cache 
modification has. If (RT1-RT0)/RT0 < delta then we accept 
the new cache proposition (where RT = average response 
time for the respective data warehouse).  A frequent value 
we used for delta was 5%, based on our clients’ average 
performance acceptance specification (i.e. for a value of x, 
an fluctuation in performance with 5% is accepted).  
Table 1 illustrates the self-improvement heuristics with a 
timeline, based on the autonomic manager loop phases. At 
t0 we have the initial configuration. At t1 we have made 
the first cache adjustment, and validated it. At t2, the 
second cache modification has an impact too great on the 
response time so we leave the cache value as it is. 

Table 1 - Individual Data Warehouse Self-Improvement 
Heuristics on the autonomic manager phases 

Time AML Phase Action 
0 Monitor step = 0.1, delta = 0.05, CVmax=1GB 

CV0=500MB, RT0=5s 
Analyze N(ot)/A(vailable) 
Plan CV1=450MB  
Execute Change script for DW with CV1 

1 Monitor CV1=450MB, RT1=5.2s 
Analyze (RT1-RT0)/RT0=0.04 < delta 
Plan CV2=395MB 
Execute Change script for DW with CV2 

2 Monitor CV2=395MB, RT2=6s 
Analyze (RT2-RT1)/RT1=0.15 > delta 
Plan CV3=395MB 
Execute No change for DW 

3.2 Group of data warehouses  cache realloca-
tion heuristic 

The first heuristics was individual data warehouse based. 
Each of the data warehouses was independent and each 
was in a state of self-improvement in time. But, taking it 
into consideration alone makes no sense as the perfor-
mances on individual data warehouses are expected to 
decrease as the caches decrease. To explain how it results 
in an actual improvement at group level, we introduce the 
group of data warehouses heuristic. Its purpose is to real-
locate periodically the memory that the individual data 
warehouse heuristics saved from the self-improvement 

process. And it is here where the ‘catch’ is: by a small 
sacrifice (delta) of some data warehouses, we can gain an 
important performance on others. 

The core of the heuristic is to differentiate the non per-
forming from the performing data warehouses in a group. 
The idea is the following: a data warehouse is considered 
performing if its average response time is below the aver-
age value of the response time for the whole group. Oth-
erwise, it is considered as non-performing. This perfor-
mance indicator can be equally made more complex by 
taking into account the applications priority or impor-
tance. This way scaled mixed performance indicators can 
be obtained and used. The specification of priorities and 
importance is usually part of Service License Agreements 
and is one of the future directions in our work. 

 So in this case, we take the memory from the perform-
ing data warehouse and give it to the non-performing. 
Relating with the architecture in Figure 1, the Application 
level is responsible for the implementation of this heuris-
tic. The Application decides how to redistribute the mem-
ory between the data warehouses it concerns.  

Table 2 shows this heuristics. The example is based on 
a group of two data warehouses that are part of the same 
application and share the same amount of memory for 
their caches. 
Table 2 - Group of Data Warehouse Improvement Heuris-

tic – Cache Evolution Exemple 
Step DW Cache 

Value 
Memory to 
allocate 

Free 
Memory 

RT 

0 DW1 130 MB 140 MB 10 MB 5s 
DW2 80 MB 90 MB 10 MB 7s 

1 DW1 130 MB 130 MB 0 MB 5s 
DW2 100 MB  100 MB 0 MB 6s 

2 DW1 120 MB 120 MB 0 MB 5.3s 
DW2 110 MB  110 MB 0 MB 5.5s 

In start at s0 we have a given cache allocation along with 
the available memory for each data warehouse. At s1 the 
heuristic is run the first time. It takes all the available 
memory from the performing data warehouse (DW1) and 
redistributes it to the non performing (DW2). So DW2 
gains all the free memory (20MB) from s0.  As the differ-
ences in response times are still important, it goes further 
at s2. Here, it takes some memory from DW1 by force, 
leading to a decrease in performance for DW2. But as 
seen, we gain an important amount of performance for 
DW2, and now the response times for the two data ware-
houses are close. 
 It is important to note that this heuristic is independent 
from the previous one, and in addition the two heuristics 
are mutually exclusive. This means that in the moments 
when this heuristic is considered, the other does nothing. 
This is why between the two tables we differentiate be-
tween “Time” and “Step”. An example of usage is to run 
the individual self-improvement heuristic once each day 
(from Tuesday to Friday), and the group reallocation heu-
ristic once at the beginning of each weak (Monday). 

4 Combining the elements 
Having the two main aspects, knowledge formalization 
and autonomic capabilities,  the final and innovative stage 
in our approach is to combine them. In order to do this we 
base on the preliminary works presented in [[Nicolicin-
Georgescu et al.(2009)]]. The solution proposed the appli-
cation of ontologies and ontology based rules (describing 
business rules) with autonomic computing for improving 



average query response times in data warehouse.  The 
concept is the same, but in this previous work we only 
described how can simple businesses rules can be used to 
improve data warehouse performance. There is no indica-
tion to how heuristics are used within the autonomic man-
ager loop. 

4.1 System implementation 
In previous works, we were proposing a division of the 

knowledge in the system into static knowledge and dy-
namic knowledge. Based on this organization we imple-
ment the new presented elements. The means of know-
ledge formalization do not change, static knowledge being 
implemented with the help of ontologies and OWL3 whe-
reas the dynamic aspect is expressed with ontology based 
rules via the Jena Rules4 formalization. The ontology con-
tains over 150 concepts and 250 axioms, whereas a num-
ber of 30 rules are based on it. From what we have pre-
sented, we focus on the dynamic aspect, as it includes the 
two heuristics projected on the phases of the autonomic 
computing.  

The first step in order to understand how rules are or-
ganized is to understand how the autonomic managers on 
the different hierarchical levels communicate. As seen the 
group heuristic reallocates memory and excludes the indi-
vidual heuristic. In order for the autonomic managers to 
communicate, we propose a hierarchy of the autonomic 
phases, corresponding to the architectural structure. Fig-
ure 3 show how the four phases of autonomic manager are 
projected on the architectural levels.  

We notice how the monitor phases ascends, starting 
from the lowest level (data warehouse). This means that 
first the data regarding the data warehouses are gathered, 
then the application, and then the physical server. Then 
the analysis is made top down from the physical server to 
the data warehouse level.  Retaking the memory allocation 
example, first the server allocates memory between its 
applications, then each application allocates in turn to its 
data warehouses etc. Then the planning stage ascends 
again, the changes are planned from the analysis level 
starting with the data warehouses and finishing with the 
physical server. Last, the execution phase makes changes 
top down similar to the analyze phase. A change in the 
RAM memory is first done to the physical server, then the 
applications receive the new memory and then the data 
warehouses change their memory (now possible because 
the memory has already been changed at application lev-
el). 
Figure 3 - Autonomic Manager phases projection on the 

architectural levels 

 
                                                 

3http://www.w3.org/2007/OWL/wiki/OWL_Working_Grou
p 
4 http://jena.sourceforge.net/inference/#rules 

We exemplify below how the system is implemented on 
each of the four phases. 

Monitor 
For the monitor phase, in order to obtain the cache values 
and average response times, we use SQL data bases that 
are filled with the help of vbscripts via the api provided by 
Hyperion Essbase. Then, to transform and load this know-
ledge in the ontology, we pass via a java program using 
the Jena API and a set of correspondences that links the 
data from the SQLdbs to ontology concepts. Table 3 
shows how some parts of how a data warehouse is 
represented in the ontology: 

Table 3 - Data Warehouse ontology representation 
Subject Predicate  Object 
?dw rdf:type DataWarehouse 
?app rdf:type PhysicalApplication 
?dw isChildOf ?app 
?dw hasAvgResponseTime ?avgt 
?dw hasPrevAvgResponseTime ?prevt 

We can see two classes, the DataWarehouse and the 
PhysicalApplication. Each of these classes consist from 
multiple instances as OWL individuals. The ?dw is one 
such individual that is linked to an ?app individual by the 
OWL object property isChildOf . This property establish-
es the hierarchical relations between individuals from the 
different hierarchical levels. Then, there are two OWL 
data type properties that are linked to the ?dw and express 
the current and previous average response time for ?dw. 
The values for these properties are filled from the SQL 
dbs that contains to the data warehouse monitor informa-
tion. 

Analyze 
Once this phase of monitoring and pre-processing of in-

formation is done, the system passes to analyze. We 
present below two rules that formalize a cache decrease. 

Rule Description 
(?dw cp:hasPrevAvgResponseTime ?prevt) 
(?dw cp:hasAvgResponseTime ?avgt)  
(?dw cp:hasAlgorithm ?alg)  
(?alg cp:hasDelta ?delta)  
quotient(?t, ?avgt, ?prevt) le(?t, ?delta) -> 
(?dw cp:hasState cp:DecreaseCache) 

Validate a cache 
decrease via the 
individual heu-
ristic 

(?dw cp:hasState cp:DecreaseCache)  
(?dw cp:hasIndexCacheMin ?ic_min)  
(?dw cp:hasIndexCache ?ic) 
(?dw cp:hasAlgorithm ?alg)  
(?alg cp:hasStep ?step)    
product(?p, ?ic, ?step) difference(?ic_new, 
?ic, ?p) ge(?ic_new, ?ic_min) -> 
(?dw cp:hasIndexCache ?ic_new) 

If the decrease of 
cache is re-
quested, test if 
the new value is 
not under the 
minimal value. If 
not enable the 
new change. 

The first rule test to whether the cache values for a sin-
gle data warehouse can be decreased, accordingly with the 
individual heuristic. We have again the ?dw individual, an 
instance of the DataWarehouse class, with the two data 
type properties from Table 4.  In addition we have a new 
object property that related the ?dw with an the individual 
heuristic algorithm. The rule compares the rapport be-
tween the two average times (current and previous) with 
the delta of the algorithm. If the rapport is lower than del-
ta, the ?dw becomes into a new state, in which it is al-
lowed to decrease its cache. Otherwise, nothing changes. 



The second rule makes use of the results of the first 
rule. If the DecreaseCache state has been generated by the 
first rule, then it tries to see whether or not the operation is 
possible. Two new data type properties are introduced for 
the ?dw: hasIndexCacheMin and hasIndexCache, which 
represent the values of the minimum threshold and the 
current value of the cubes index cache. These values are 
equally filled from the monitor phase. The rule retakes the 
individual heuristic algorithms’ parameters (step this 
time) and tests if by modifying the index cache with its 
formula, the new index cache value is greater than the 
minimum one. If so, it changes directly the current index 
cache value to the newly computed one. 

Plan and Execute 
The plan and execute phases are linked to each other. 

As the new cache values are calculated, there is a prepara-
tion of VBscripts that will be run via the program. These 
scripts will change the values of the caches in the Essbase 
cubes, according to the new values proposed by the ana-
lyze phase. At the end of the execution phase, practically 
the inverse monitor operation of data processing is made. 
The cache values are passed from the ontology to the 
SQLdbs and then to the modification scripts.   

4.2 Experimentation and Results 
For our experiments we considered the following sce-

nario: on an existing server, we created an Essbase appli-
cation with two cubes. The cubes contain in average 11 
principal axes and 27 level 2 axes and the data file has an 
average size of 300MB. With this configuration, we car-
ried several tests, simulating a period of 14 days (time 
stamps period). Each time-stamp, a series of random que-
ries (from a given set) was executed so that activity on the 
application was simulated. The individual data warehouse 
self improvement heuristic is running each day, whereas 
the group heuristic is running once each 4 days. Figure 4 
shows the evolution of the response times for the two data 
warehouses with the evolution of their total cache alloca-
tion: 

 
Figure 4 - Average Response Time evolution with cache 

allocations 
Again, the objective is to obtain better average response 

times with lower cache values. First what we notice is that 
at the end of 5 days we already have a good ratio response 
time/cache allocation. The data warehouses improve 
themselves fast, and then once reaching a good point, they 
oscillate around this point. This oscillation is shown by 
the peaks on DW2 that tries each time to improve more its 
performances, but it can’t due to the heuristic constraints 

in terms of delta. Their impact on the system is felt in 
terms of the performance drops the days where the peaks 
are noticed. By limiting the number of peaks (i.e. after one 
or two peaks the system should no longer try to optimize 
under the same circumstances) we avoid the risk of such 
drops. But, we also have to take into consideration that by 
limiting the number of peaks (by forcing the algorithm to 
stop for instance at a certain point) we risk to miss some 
needs of improvement due to reconfiguration aspects. The 
ideal would be to leave the heuristic running as usual and 
not to force the algorithm to stop, but not to accept the 
cache decreases once a certain level of performance is 
reached. One of the future directions and improvements is 
the introduction of attenuation mechanisms in the loop. 

So, in numbers, at the end of the sixth day: DW1 looses 
very little in performances (~2%), DW2 gains substantial 
performances (~80%), and the total cache used by the 
application is decreased by ~60%. So the sacrifice of 
DW1 was worth from the perspective of the entire system. 
These results prove how an efficient way of improving the 
data warehouse group performances can be achieved in an 
autonomic manner, without the intervention of a human 
expert.  

5 Conclusions 
This article presented a way of using ontologies and auto-
nomic computing for improving query response times in 
data warehouses groups by modifying cache memory al-
locations. It has presented this applied to the problematic 
of shared resource allocation in groups of data ware-
houses. Also, the article presented a proposition of replac-
ing some of the human expert’s work by introducing au-
tonomic and human independent ways of managing data 
warehouses.  

We have proposed a division and formalization of the 
knowledge used for configuring groups of data ware-
houses by using ontology and ontology based rules. Also, 
we have proposed an organization of this process based on 
the autonomic computing considerations. It is not the first 
attempt to combine the two [Stojanovic et al.(2004)], but 
the novelty is from using such techniques in the domain of 
decision support systems and especially in the groups of 
data warehouse improvement. 

Our future directions are to expand the data warehouses 
described above so that our prototype can prove its effi-
ciency on a larger spectrum of rules and indicators. Our 
purpose is to integrate the prototype presented here with 
more than one aspect (data warehouse cache allocations 
based on response times) of decision support systems. We 
also intend to approach the notions of Service License 
Agreement (SLA) and Quality of Service (QoS), by intro-
ducing the QoS as a performance indicator in the system. 
SLA considerations such as application priority and im-
portance depending on utilization periods, are two aspects 
that are little approached and equally very important in a 
decision support system. Also in terms of autonomic loop 
control, we take into consideration the usage of mechan-
isms for avoiding peaks and unnecessary loop passages. 

As the domain is relatively new we try to bring as much 
support as possible for future development in the direction 
of autonomic knowledge based decision support systems. 
We follow the changes with the new technologies and 
hope that our work will be useful in this expanding envi-
ronment. 
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