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Abstract

This paper proposes a model in which control variations induce an in-
crease in the uncertainty of the system. The aim of our paper is to provide a
stochastic theoretical model that can be used to explain under which uncer-
tainty conditions monetary policy rules should be less or more aggressive,
or, simply, applied or not.
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JEL: C61, E42, E52, E58

1 Introduction

This paper examines a model of systems for which the control action has an
ensuing impact on the uncertainty that pervades the system. For systems
that have origin in physical, chemical, biological or engineering phenomena,
the inherent system uncertainty is not dependent upon the controller action,
whereas in some macroeconomic systems considerable changes in the policy
can create an impact on the confidence of the various economic agents and
aggravate the overall system uncertainty. If the action is interpreted as a
change of course, for example a new insight from the central bank into the
health of the economy, the economic agents may have uncertain reactions to
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the new view. Thus, any change of course induced by a change in a policy
is bound to create further uncertainty, and policy-makers should act with
extra caution. There is no parallel to this reinforcing effect in the study of
physical phenomena, and to our knowledge, this behavior is not dealt with
in the field of control theory either.

Recently there has been a great deal of research on monetary policy
making under uncertainty. This research can be explained by the need to
reach beyond the classical linear-quadratic framework to model accurately
the policy-maker’s problem. During the sixties and the seventies, with the
development of modern optimal control theory, monetary models were con-
structed under the assumption that the parameters of the model would re-
main fixed over time, i.e., they are not affected by political decisions. Hence,
the main idea was that it is possible to deal with uncertainty using, for exam-
ple, the Bellman’s certainty equivalence. In a classic paper, Brainard (1967)
already criticized this point of view. He argued that the certainty equiva-
lence can be employed only in the case of additive uncertainty (e.g. shock
uncertainty). Brainard highlighted the fact that, in the case of multiplica-
tive uncertainty (e.g. model uncertainty), uncertainty about the parameters
of a model would lead to less aggressive policies than those used when un-
certainty is ignored. This result is known as the “Brainard conservatism
principle”. Another conclusion from this work is that we need robustness.
This conclusion is not a new one. One can find a similar conclusion in
Rosenbrock and McMorran (1971). For Rosenbrock and McMorran a dis-
tinction exists between Good, Bad and Optimal decision rules. It may hap-
pen that optimal rules are not Good rules since the optimality characteristic
comes from an exact specification of the optimization problem (including
the constraints). Hence, any deviations of the constraints, for example, may
lead to poor performances of the ex-ante optimal rules. As a consequence,
and as argued by Onatski and Williams (2003), model uncertainties has to
be explicitly described.

Based on the use of Bayesian decision theory and robust optimal con-
trol theory, there have recently been many research papers challenging the
need for robustness (see for example Edge, Laubach, and Williams (2007)
or Onatski and Williams (2003)). Among these approaches, Markov switch-
ing models have also provided an interesting tool. The use of Markov
switching models in the optimal monetary policy literature is explained
by their ability to model both exogenous and endogenous regime changes.
Blake and Zampolli (2006), for example, provide two algorithms to compute
the solution of a model with regime shifts. They show that these methods
can be applied to decision-making processes in order to incorporate the
case of different beliefs between the policy-maker and the private sector.
In a recent paper, Svensson and Williams (2007) combine Bayesian learning
theory and Markov jump-linear-quadratic (MJLQ) systems to handle the
problem of a policy-maker who does not know the structure of the economy.
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While interesting, these papers are far from having reached any consensus
on the theoretical aggressiveness of the monetary policy rules. As noticed
by Issing (2002), uncertainty about the persistence of the inflation process
can lead policy-makers to adjust interest rates more vigorously, since this
can reduce uncertainty about the future development of inflation. Similarly,
when such uncertainty arises from imperfect credibility, policy-makers may
be well-advised to act more decisively. Furthermore, empirical monetary
policies, such as official interest rate changes, tend to be adjusted relatively
infrequently and in small steps. Usually, theoretical policies do not exhibit
such a smooth behavior.

As noticed by Cagliarini and Heath (2000), interest rates tend to move
in a sequence of steps in a given direction, or remain constant for some time,
rather than experiencing the frequent reversals that commonly arise from
optimal policy simulations. In other words, models of optimal monetary pol-
icy behaviour tend to generate much more volatile paths of interest rates,
for which policy reversals are frequent. Cagliarini and Heath (2000) develop
a model based on Bewley preferences with Knightian uncertainty which has
the potential to explain the inertia in the level of the interest rate observed
in actual interest rate paths. This Knightian uncertainty is directly related
to the fact that policy-makers may be uncertain not only about the param-
eters, but also about the general specification of the model being used. For
Cagliarini and Heath (2000), such a Knightan/risk approach is preferable to
some robust approaches since monetary policy-makers usually communicate
in terms of the balance of risks rather than in terms of avoiding worst-case
scenarios.

Our paper aims to take in account the step behaviour of the monetary
policy-makers through a different approach. We assume that the policy-
makers will choose an interest rate that decreases the amount of uncertainty
they are likely to face in the subsequent period. This can be used to explain
the collective decision of the FED, ECB and BOE to decrease all the fed-
eral funds rates in the subprime crisis. Rather than restoring trust in the
financial markets, this decision was followed by a worsening of this situation.

The effect described in the previous paragraph is well known. When
dealing with monetary policy rules, or more generally with economic sys-
tems, the actions of the policy-maker are observed by the distinct economic
agents, who react according to their interests. As a consequence, a change
of course represented by a change in a policy is bound to create further un-
certainty, and policy-makers should act with extra caution. This has been
noted in a seminal paper by Lucas (1976) for whom political decisions have
an impact on the economy and induce changes in the value of parameters.
Within this context, the aim of our paper is to provide a stochastic theoret-
ical model that can be used to explain under which uncertainty conditions
a policy rule should be less or more aggressive, or, simply applied or not.
The paper is structured as follows. Section 2 first surveys the literature on

3



monetary policy and uncertainty. Then we introduce a model that endoge-
nizes uncertainty. Section 3 applies this model to a general macroeconomic
monetary policy model. We show that, over 1964-2008, the FED may have
been more aggressive than predicted in our model. Then we conclude.

2 Monetary Policy and Uncertainty

Since the seminal work of Brainard (1967) the link between uncertainty and
aggressiveness of monetary policy has been considerably studied. We briefly
highlight some of the main results in the following section. We then present
the CVIU approach developed by Calmon, Vallée, and do Val (2009) that
endogenizes uncertainty.

2.1 Dynamic Uncertainty

2.1.1 The System

Consider a discrete-time system described by the state equation:

xk+1 = Akxk + bkuk + ωk, (1)

where A ∈ R
n×n, b ∈ R

n×1, xk ∈ R
n, uk ∈ R and ωk ∈ R

n are respectively,
the state, the input and a the noise (a stochastic process).

Suppose that in a given time window 0 ≤ k ≤ N , the system performance
is evaluated by means of the cost functional,

J(x0, µ) = E
[

N−1
∑

k=0

Ck(xk, uk) + CN (xN )
]

, (2)

where E[·] stands for the expected value of the corresponding random vari-
able, Ck is non-negative for each 0 ≤ k < N − 1 and convex in both ar-
guments. Also, the terminal cost CN is non-negative and convex. The
following quadratic cost function is a possible candidate

J(x0, µ) = E

{

N−1
∑

k=0

(xT
k Qxk + ukP

T x + uT
k Ruk) + xT

NFxN

}

We assume that at each time instant k the policy maker can deter-
mine the input control, uk, having perfect state information, and µ =
{u0, u1, . . . , uN−1} stands for an admissible policy.

2.1.2 Results on Uncertainty

Following Onatski and Stock (2000), different sources of uncertainty exist
that affect the formulation of monetary policy :
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1. Shock uncertainty: Future events, shocks and disturbances.

2. Parameter/Model uncertainty :

• The actual workings of the economy;

• Market reactions to central bank policy;

• Market expectations of central bank policy;

3. Econometric estimation error: Limitations of the date.

If we refer to our dynamic discrete system, these sources become

• Additive uncertainty → Shock: uncertainty on ωk;

• Parameter uncertainty

→ Multiple uncertainty (e.g. policy effectiveness): uncertainty about
the vector b,

→ Persistence uncertainty: uncertainty about the matrix A.

→ Objective uncertainty: uncertainty about the weights of the loss
function, Q,R and P .

• Econometric uncertainty: for example uncertainty about the final date
N .

Among some of the results (see Sahuc and Bihan (2002) for a survey),
we know that additive uncertainty does not impact the monetary policy be-
cause of the certainty equivalence principle (Brainard (1967)). The same
author showed that multiplicative uncertainty leads to caution unless a neg-
ative correlation between additive and multiple uncertainties exists. But, if
persistence uncertainty is more important than the one about policy effec-
tiveness (multiplicative uncertainty), then optimal policy may be aggressive
(see Craine (1979) or Mercado and Kendrick (2000,2006)). As Söderström
(2000) says when there is uncertainty about the persistence of inflation, it
is optimal for the central bank to respond more aggressively to shocks than
under certainty equivalence, since, this way, the central bank reduces un-
certainty about future changes in inflation. Finally, if the cost of target
variability (e.g. matrix Q of the loss function) is directly related to certain
structural parameters of the model (as B), the classic (Brainard) attenuation
of monetary policy can be overturned (see, for example, Levin and Williams
(2003)).

One of the main results is that there is no consensus about the link
between uncertainty and the optimal degree of aggressiveness of monetary
policy. Furthermore, these results also depend on the “optimization strat-
egy” adopted.1.

1It is well known now that using an optimal robust control approach will generally
increase the aggressiveness.
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2.2 Historical Federal Funds and Endogenous Uncertainty

As previously discussed, the sources of uncertainty are many and their con-
sequences on the degree of aggressiveness of monetary policy are varied.
When looking at empirical data, (see figure 1), one can easily conclude that
the ECB is less aggressive in its conduct of monetary policy than the FED.
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Figure 1: Evolution of the FED and ECB funds rate

Based on different assumptions concerning uncertainty, two different ex-
planations of this figure are possible:

• The ECB is facing more uncertainty than the FED, and, their conser-
vatism is compatible with a negative correlation between uncertainty
and the aggressiveness of their policy.

• The uncertainty was higher in USA, and this uncertainty is positively
correlated with the aggressiveness of their policy.

If we go back to a constant parameter case of our general state equation
(1):

xk+1 = Axk + buk + ωk, (3)

The existence of uncertainty about some parameters of A and B will
lead to

xk+1 = (A + Ã)xk + (b + b̃)uk + ωk, (4)

which can be reformulated as

xk+1 = Axk + buk + ωk + Ãxk + b̃uk, (5)

If xk is a known vector at time k, Ãxk is a shift in the initial additive
uncertainty ωk, while b̃uk becomes an endogeneous uncertainty due to the
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unknown exact impact of uk on the state. So it is likely that any change in
monetary policy can impact the overall level of uncertainty.

One framework used to analyze such an interdependence is the one of
signalling game (see for example Canzoneri (1985) and Walsh (1999)) where
any change in monetary policy will be interpreted by private agents as a
positive or a negative signal. In the case of a loss of credibility (bad signal),
the monetary policy may increase GDP and inflation variability, and thus in-
crease the level of uncertainty. Although interesting, this approach generally
assumes that the central bank knows the way its signal will impact private
agents’ expectations. Let assume, that the monetary authority knows only
that any particular change of its monetary policy, such as an increase of the
federal funds rate, may increase the level of uncertainty on the system and,
as a consequence, the future effectiveness of its policy. Following Brainard’s
conservatism principle, a risk neutral policy-maker may found optimal to
keep unchanged the federal funds rate.

We know that the ECB, like the FED, defines its optimal policy by look-
ing at both the inflation and the output gap dynamics. As a consequence,
many monetary policy models, such as the well known Rudebush-Svensson
model (Rudebusch and Svensson (1999)), integrate these two dynamics. So,
two sources of uncertainty are taken into account. Uncertainty concerning
future inflation dynamics, and uncertainty on other economic dynamics like
the output gap changes. Of course, uncertainty faced by the policy-makers
can influence these both dynamics with the same strength or may impact
them differently. In a similar way, the policy used can feedback on both
uncertainties or only one.

In the next section, we will introduce the principle of a system for which
control variations increase state uncertainty (CVIU). With such a model,
one can endogenize the level of uncertainty of the different dynamics of the
system.

2.3 The CVIU Approach

Traditionally, in stochastic control problems, the imbedded system uncer-
tainty is modeled by means of additive or multiplicative disturbances (Bertsekas
(2005)) and of parameter uncertainty, as in the Markov Jump Linear Sys-
tems (Costa, Fragoso, and Marques (2004)). However, these models may
not suffice to describe uncertainty in many situations. Consider, again, the
problem faced by a National Central Bank (NCB) when defining monetary
policy (Onatski and Stock (2002), Svensson and Williams (2005)). As it in-
creases or decreases the interest rate, the NCB has an uncertainty about
the expectations of the economic agents. Significant course change in the
monetary policy may induce unexpected and undesired consequences such
as an increase in inflation or a reduction in GDP. On the other hand, if the
variation of the interest rate is too small, the NCB objectives may not be
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accomplished. This is an example of a system for which any change of policy
leads to an increase in system uncertainty.

The monetary policy problem is an example of a system where control
variations increase state uncertainty (CVIU). From a control theory per-
spective, CVIU systems can be used to control systems with complex, un-
derdetermined dynamics, for which the behavior near a given point and for a
given control policy can be fairly well described by a linear model. However,
large variations of the control action can drift the system to regions where
the linear approximation error is too large. In this case, the approximation
error corresponds to the uncertainty generated by policy variations.

We consider that the magnitude of the control action acts as a source of
system uncertainty in such a way that the noise sequence ωk is modulated
by the absolute value of the control |uk|, as follows:

ωk = (σk + σk|uk|) εk,

where σk > 0, σk > 0, and εk is an i.i.d. random vector with a normalized
covariance matrix cov(ε̃k) = In×n.

We aim at the dynamic programming method, and in a preliminary
step we are interested in characterizing the function V : R

n × R → R and
V ∗ : R

n → R, defined as

V (x, u) = C(x, u) + E [F (x1)] , (6)

and
V ∗(x) = inf

u∈Rm
V (x, u), (7)

where C : R
n × R → R and F : R

n → R are both convex, non-negative,
Lipschitz functions. The random vector x1 is determined by (1) with x0 = x
and u0 = u. Note that the system is time homogeneous in the sense that if
xk = x and uk = u, one evaluates equivalently the expected value in (6) of
xk+1.

The following lemma is important for the characterization of V ∗.

Lemma 1. The functions V (x, u) and V ∗(x) given by (6) and (7) , respec-
tively, are convex.

Proof. See Calmon, Vallée, and do Val (2009).

Even though V ∗ is defined as a piecewise function, it will be differentiable
if V is strictly convex and differentiable. Moreover, based on V , we can
characterize the generalized gradient of V ∗. These facts are stated in the
following lemma.

Lemma 2. With V as defined as in (6) and V ∗ as in (7), and u∗(x) defined
as

u∗(x) = arg min
u∈R

V (x, u). (8)

then
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1. ∂V ∗(x) = co{∂xV (x, u) : u ∈ u∗(x)};

2. V ∗(x) will be differentiable if V is a strictly convex differentiable func-
tion.

Proof. See Calmon, Vallée, and do Val (2009).

With the fact that the value function is convex, we can determine the
sign of u∗ based solely on the value of the state x (see figure 2). Assume that
a function (x, u) → f(x, v) is differentiable. Provided that f is also convex
in u, one can obtain the sign of the minimum in u by analyzing ∇uf |u=0 for
each x. If ∇uf |u=0 > 0 (< 0), then the function is increasing (decreasing) at
the origin and, consequently, the minimum will be in the negative (positive)
half-plane. Of course, if ∇uf |u=0 = 0 the optimal solution is u∗ = 0. Note
that this analysis can not be applied to V in (6) since, even though V is
convex, it will not necessarily be differentiable at u = 0 (in fact, this will
never be the case). The following Lemma presents a result concerned with
this issue and shows that there will be a region in the state space where
u∗ = 0 if the cost function is Lipschitz. Furthermore, for the case where C
and F are differentiable, we will show that a region where u∗ = 0 will always
exist.

u∗
0

u

∂uV (x, u)

(a) x ∈ R1

u∗
0

u

∂uV (x, u)

(b) x ∈ R2

0
u

∂uV (x, u)

(c) x ∈ R3

Figure 2: Behaviour of ∂uV (x, u) for different x. In (c), u∗ = 0.

Lemma 3. For the function V described in (6) and u∗ given by (8) we have















u∗(x) > 0, if x ∈ R1(V ),

u∗(x) < 0, if x ∈ R2(V ),

u∗(x) = 0, if x ∈ R3(V ).

(9)

where

R1(V ) =
{

x : x ∈ R
n, lim

ui↓0
∇V (x, ui) < 0

}

, (10)

R2(V ) =
{

x : x ∈ R
n, lim

ui↑0
∇V (x, ui) > 0

}

, (11)

R3(V ) = R1 ∪R2. (12)
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Proof. See Calmon, Vallée, and do Val (2009).

We can now provide the following theorem.

Theorem 1. Suppose that for each 0 ≤ k < N we have that x → Ck(x, u), u →
Ck(x, u) and x→ CN (x) are convex functions and that (2) is limited for all
x0 ∈ R

n and µ. For the system in (1) and evaluated by means of the cost
function (2), the optimal policy can be obtained recursively as follows.

1. Define J∗N (x) = CN (x), x ∈ R
n and set k = N − 1;

2. Define Jk(x, u) for each x ∈ R
n, as

Jk(x, u) = Ck(x, u) + E[J∗k+1(Akx + bku + (σk + σk|u|)εk)],

3. For each x ∈ R
n, determine if the optimal action u∗k will be positive,

negative or zero with















u∗k(x) > 0, if x ∈ R1(Jk),

u∗k(x) < 0, if x ∈ R2(Jk),

u∗k(x) = 0, if x ∈ R3(Jk).

(13)

If u∗k ∈ R1(Jk) or u∗k ∈ R2(Jk), determine u∗k such that Jk(x, u∗k) ≤
Jk(x, u) for each u ∈ R. This is equivalent to requiring that

0 ∈ ∂uCk(x, u∗k) + ∂uE[J∗k+1(Akx + bku
∗
k + (σk + σk|u

∗
k|)εk)]

4. Define the function J∗k (x) by

J∗k (x) = Jk(x, u∗k(x)) = C(x, u∗k(x)) + E[J∗k+1(xk+1)]

with xk+1 = Akx + bku
∗
k(x) + (σk + σk|u

∗
k(x)|)εk. If k = 0, stop. If

else, return to step 2.

The optimal policy uk for each 0 ≤ k < N is thus obtained, in such a
way that

J∗k (x) = Jk(x, u∗k(x)) ≤ Jk(x, u),

holds for each (x, u) and, in particular, J∗(x) = J0(x, u∗0(x)) ≤ J0(x, u), ∀(x, u).

Proof. See Calmon, Vallée, and do Val (2009)
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Figure 3: Optimal input u∗ as a function of the state value for the system
described in the example.

2.4 A two Dimensional Example

In order to represent graphically the region in the state-space where the
optimal policy is to maintain the same control as before, i.e., v∗ = 0, consider
a two dimensional system described by

xk+1 = Axk + Bvk + (1 + |vk|)εk, εk ∼ N(0, In×n)

where

A =

[

2 1
1 −2

]

; b =

[

1
2

]

.

Suppose that the system is evaluated through the quadratic cost function:

J(x0, π) =
4

∑

k=0

(xT
k xk + 2vkP

T x + 0.5v2
k) + xT

5 x5

with P =
[

0 1
]T

.

Figure 3 shows v∗0 as a function of the initial state x0. The region where
v∗0 = 0 can be clearly seen in the center of the graph. In the other regions,
the optimal input will be a linear function of the initial state.

3 The CVIU Approach in a Monetary Model

3.1 The Model

Let consider a backward-looking model of the US economy given by:

πk+1 =
n1
∑

j=0

αjπk−j + δyk + ǫπ,k, (14)

yk+1 =
n2
∑

j=0

βjπk−j +
n3
∑

j=0

λjyk−j +
n4
∑

j=0

γjik−j + ǫy,k, (15)
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where πk is the quarterly annualized inflation, yk is the output gap and ik
is the quarterly average federal funds rate in percentage points given at an
annual rate.

The two shocks, ǫπ,k and ǫy,k, are responsible for state uncertainty.
This model is derived from the model proposed by Rudebusch and Svensson
(1999) (see also Svensson and Williams (2005)). The first equation is a ver-
sion of the Phillips curve, which relates inflation to a lagged output gap term
and to three lags of inflation. The second equation represents an aggregate-
demand relation that relates the output gap to its own lag, to inflation over
the previous three quarters and to two lags in the interest rate.

It is interesting to observe that large variations in the interest rate lead
to a high state uncertainty. Consequently, this system fits into our CVIU
approach with ǫy,k defined as a function of the interest rate variations. De-
noting the variations in the interest rate from instant k to instant k + 1 as
vk, we have:

ik = ik−1 + vk

Using a model similar to the one presented in Section 2.3, we obtain:

ǫk,π =
(

σπ + σπ|vk|
)

ξk,π (16)

ǫk,y =
(

σy + σy|vk|
)

ξk,y (17)

where ξk,π ∼ N(0, 1) and ξk,y ∼ N(0, 1) .

To determine the optimal decision policy, we must first describe the
system in a suitable form. First, by rewriting (15), we obtain the new
system:

πk+1 =
n1
∑

j=0

αjπk−j + δyk + ǫπ,k (18)

yk+1 =
n2
∑

j=0

βjπk−j +
n3
∑

j=0

λjyk−j + γ0(vk + ik−1) +
n4
∑

j=1

γjik−j + ǫy,k (19)

This system can be put in a state-space form:

xk+1 = Axk + Bvk + Ek(vk), (20)

where

nmax = max{n1, n2}

xk ≡ [πk . . . πk−nmax
yk . . . yk−n3

ik−1 . . . ik−n4
]T ,

Ek(vk) ≡
[

ǫπ,k+1 01×nmax
ǫy,k+1 01×(n3+n4)

]T
.
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Defining:

a :=
[

α0 . . . αn1

]T
, b :=

[

β0 . . . βn2

]T
,

c :=
[

λ0 . . . λn3

]T
, d :=

[

γ0 + γ1 γ2 . . . γn4

]T
,

the transition matrix A will be given by:

A ≡







A11 A12 0nmax+1×n4

A21 A22 A23

0n4×nmax+1 0(n4)×(n3+1) A33







where

A11 =



































[

aT

[In1×n1
0n1×1]

]

, if nmax = n1

[

aT 01×n2−n1

[In2×n2
0n2×1]

]

, if nmax = n2

and

A21 =











































[

bT 01×n1−n2

]

0n3×n1+1



 , if nmax = n1

[

bT

0n3×n2+1

]

, if nmax = n2

The other terms of A are:

A12 =

[
[

δ 01×n3

]

0n1×n3+1

]

, A22 =

[

cT
[

In3×n3
0n3×1

]

]

,

A23 =

[

dT

0n3×n4

]

, A33 =





[

1 01×n4−1

]

[

In4−1×n4−1 0n4−1×1

]





The matrix B is given by

B ≡
[

01×nmax+1 γ0 01×n3
1 01×(n4−1)

]T

In this example, the policy-maker’s goals are to reduce inflation and out-
put gap analyzing a period of N quarters. In the monetary literature (see
Dennis and Söderström (2006) for example), two different loss functions are
used. The first one does not include the interest rate smoothing, focus-
ing mainly on the two policy objectives of the Federal Reserve, while the
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second one takes the rate smoothing parameter into account. Since it is
widely believed that central banks smooth interest rates, that is, they aim
at limiting interest rate volatility, following Rudebusch and Svensson (1999)
and Svensson and Williams (2005), we consider the following criterion2 to
minimize at each current period k:

L = π2
k + y2

k +
1

2
(ik − ik−1)

2 (21)

The cost function can be rewritten as a function of v, leading to:

J(x) = E
[

x′NQxN +
N−1
∑

k=0

x′kQxk + 2Pxkvk + rv2
k

]

(22)

Using (20) and (22) we can apply Theorem 1 directly to obtain the
optimal input policy.

3.2 Empirical State Space Form

In order to simulate the model, we suppose that the model’s parameters
are as shown in Table 1, with n1 = 2, n2 = 2, n3 = 0 and n4 = 1. This
estimation is taken from Pardo, Rautureau, and Vallée (2009). They used
quarterly data for the US economy, from the first quarter of 1960 to the
fourth quarter of 2008. The interest rate (ik), is four-quarter average federal
funds rate from the Board of Governors. Inflation (πk) is the GDP chain-
type price index in percent at an annual rate, i.e. 400(ln pk − ln pk−1). The
output gap (yk) is built as 100(qk − q∗k)/q

∗
k, where qk is the actual real GDP

and q∗k is the potential GDP. The data used are available from BEA and
CBO. All the variables were de-meaned prior to estimation.

Parameters Estimation Parameters Estimation

α0 0.554 β0 0.015
α1 0.145 β1 -0.033
α2 0.256 β2 -0.02
δ 0.115 γ0 0.133
λ 0.902 γ1 -0.197

Table 1: Estimates of the US quarterly model

Using the parameters of Table 1, the system we are considering is:

xk+1 = Axk + Bvk + (σ + σ|vk|)ξk, ξk ∼ N(0,Σ) (23)

2 We will show in section 3.5 that relaxing the interest rate smoothing goal by setting
r = 0 will not change our general results.
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xk =
[

πk πk−1 πk−2 yk ik−1

]T
, vk =

[

ik − ik−1

]

,

A =















0.554 0.145 0.256 0.115 0
1 0 0 0 0
0 1 0 0 0

0.015 −0.033 −0.020 0.902 (0.133 − 0.197)
0 0 0 0 1















,

B =
[

0 0 0 0.133 1
]T

,

Σ =

[

I4×4 0
0 0

]

and with σ and σ being diagonal matrices where:

σk =
[

σπ 0 0 σy 0
]T

,

σk =
[

σπ 0 0 σy 0
]T

Finally, the system is evaluated through the cost function (22) with

Q =















1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0















;

P =
[

0 0 0 0 0 0
]T

;

r = 0.5.

We will consider two numerical approaches. In the first one, we will look
at the impact of σ starting from a given state value x0. We will compare
the results with standard Linear Quadratic Regulator (LQR) simulations.
Then, in a second approach, we will compare our numerical solutions with
some real data.

Remark: for all the simulations we add a constraint on the non negative
value of i(k), ∀k. That is, if at some time k the measure of change v(k) is
such that i(k) = v(k) + i(k − 1) < 0 then we set v(k) = −i(k − 1). That is,
the maximum decrease of the interest rate is fixed to the step between the
previous positive interest rate and 0.

3.3 LQR versus CVIU

We start the simulation with the historical values for the year 2008 (last

quarter), that is x0 =
[

0.4869 3.8615 1.1101 −4.280 1.94
]T

. We will

look at the impact of adding uncertainty, that is additive and multiplicative
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shocks. As stated earlier, when the uncertainty generated by input variation
(represented by σ) rises, the region in the state space where v∗k = 0 will
become larger. Conversely, if σ = 0 the problem becomes the traditional
LQR problem and the optimal input variation will be a linear function of the
state. In order to concentrate on the impact of rising uncertainty, we assume
that the shocks impact identically both economic equations (inflationary and
GDP), in that

σk =
[

σ 0 0 σ 0
]T

,

σk =
[

σ 0 0 σ 0
]T

where σ and σ are some constant scalar.
We simulate realizations of the system for σ = 0.3 and σ = 0, with

σ = 0.8. The results are shown in Figure 4. In the case where interest
rate variations increase system uncertainty (σ = 0.3) there exists many time
instants where v∗k = 0, leading to a smoother behaviour of the interest rate
(Figures 4a-4b). At the opposite, when σ = 0 the interest rate varies more
frequently. If we set σ = 0.1, as shown in Figures 4c-4d, then reaction is more
frequent, and the descent towards 0 is faster. Although the CVIU monetary
policy involves a small steps behaviour, this policy can be stronger than
the LQR one, as shown by Figure 4c, if we are far away from R3(Jk).

3.4 Comparison with Real Data

In order to study the impact of changing the historical starting date, Figure
5 shows the change in the interest rate based on one specific run (5a) and
based on an average evolution on 200 runs (5b). We compare these changes
with historical data when the simulations start at two different initial dates:
t0 ∈ {2006.1, 2008.4}

3 . As one can check, the descent in the last quarter of
2008 is faster than the one in the first quarter of 2006, which is consistent
with the historical data. The difference with the historical rate of change can
be explained either by a different level of uncertainty than the one used in
the simulations (ceteris paribus an increase of σ will generate conservatism),
or by a different gap on objective and current state value (ceteris paribus an
increase of this gap will increase the aggressiveness of the monetary policy).

Moreover, in a time horizon from 1962 to 2008, we compare at each
period of time k what would have been the next period CVIU monetary
policy and the LQR one. We compare these values with the historical ones.
We made two CVIU’s run defined by σ = 0.8 and σ ∈ {0.3, 0.8}. The same
vector of gaussian noises ǫ were used for each simulation. The results are
shown in Figure 6.

3We used an empirical state space estimated up to the first quarter of 2006 for the
run started at 2006.1: α0 = 0.608, α1 = 0.108, α2 = 0.236 , β0 = 0.038 , β1 = −0.075,
β2 = 0.000, δ = 0.106, γ0 = 0.121,γ1 = −0.195 and λ = 0.896.
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Figure 4: Comparison between realizations of the system considering the
following scenarios: (i) σ = 0.8 and σ = 0.3 (a,b) or σ = 0.1 (c,d); (ii)
σ = 0.8 and σ = 0 (a,b,c,d), which is the standard LQR case.

Observe first that, as expected, the LQR policy does worst than the
CVIU one for all σ. Second, the CVIU interest rates are closer to the real
ones when uncertainty is high. This result means that the Federal Reserve
Bank monetary policy was most likely conducted in an highly uncertain
world, mainly in the 70’s, up to the middle of the 80’s, where the inflation
and interest rates were high and increasing. Third, although the CVIU
policy is close to the real ones in the low inflation regime (mainly from the
middle of the 80’s to the 00’s), this is not true in the 70’s. In order to
improve these results one must add non constant and asymmetric standard
deviations σ, and/or modify the cost weights (Q).

3.5 A Sensitivity Analysis

From our previous results, one could ask whether or not the FED was run-
ning its monetary policy under high or low level of uncertainty. Although
our theoretical model is not directly formulated as an econometric model,
we try to answer this question based on the following steps. First, we ran
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Figure 5: Comparison between realizations of the system for n = 50 consid-
ering t0 ∈ {2006.1, 2008.4}: one isolated run (left), average run (right).

a Monte Carlo analysis (10000 runs), where at each run we randomly draw
σπ, σy, σπ, σy ∼ N [0, 1]. Then we compare4 the results of our theoretical
model with real data taken from 1962 (first quarter) to 2008 (fourth quar-
ter). That is, we test the values of the uncertainty parameters, σi and σi,
that allow the CVIU solution to be the closest of the real ones. We add the
following constraint to our previous simulations: ǫk = ǫ. We assume that
only one similar shock exists that affects both equations in a similar way.
This last assumption does not affect the general results.

The results of the Monte Carlo simulations are plotted using boxplots
(see Figures on Appendix A) were we underline the mean trend over different
quintile of the uncertainty parameters. Furthermore, we carried out some
regressions in order to analyze more precisely the impacts of the different
sources of uncertainty (σi, σi) on the discrepancy between real data and our
theoretical estimations (see Appendix B). From Tables 2-4 and Figures 8-10
the following remarks can be made.

• Additive uncertainty appears to be less important than multiplicative
uncertainty.

• We observe that smaller values in the interest rate errors are linked to
highest values of both additive and multiplicative uncertainty param-
eters. This confirms the result of Figure 6b. This may primarily be
interpreted as the fact that the interest rates policy is conducted in a
world of uncertainty.

• One should also notice that the reduction in the variance of the errors
when the value of the multiplicative uncertainty parameter increases

4The comparison is made based on the measure of the total square of error of the
one-period ahead forecast:

∑

N

t=1
(ξt)

2, with ξt = xt|t−1 − xt
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Figure 6: Comparison between theoretical interest rate values and historical
ones considering the following scenarios: σ = 0.8 and (a) σ = 0.3; (b) σ = 0.8
and, (c) σ = 0. Grey bars highlight lower historical inflation regime.

is mainly due to the property of our theoretical model that says to do
less (and sometimes nothing).

• The inflation rate has a better fit when uncertainty is high on GDP
rather on inflation. Increasing the multiplicative inflation uncertainty
increases the errors. A possible interpretation is that the activism
of the FED was stronger than it should be according to the CVIU
solutions. This is a possible interpretation we have already noted in
Section 2.2.

• Similarly, the errors on GDP gap are smaller when uncertainties lay
on inflation rather on GDP.
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As shown by Figures 11-14 in Appendix C, these results are not modified
by a change in the loss function parameters Q and r.

3.6 Sensitivity Analysis à la Diebold-Mariano

Our previous results are based on mean square errors minimization. We
analyze how these results are modified when using a more sophisticated
method. That is, we rank in a vector the different simulations using an or-
dinal procedure. Then, we analyze a possible correlation between the value
of a given parameter and the order of the simulation in this rank vector. We
use the test of predictive accuracy proposed by Diebold and Mariano (1995)
in order to construct the rank vector.

Assume that two different values for σ’s vector involves two different
models. The interest rate forecast errors from the two models are

ξ1,t+1|t = it+1 − i1,t+1|t (24)

ξ2,t+1|t = it+1 − i2,t+1|t (25)

These one-step forecast are computed for t = t0, .., T , where t0 = 1961.1 and
T = 2008.4, for a total of T0 = 188 forecasts. The accuracy of each forecast
is measured by a particular loss function. We restrict ourself to the absolute
error loss:

L(ξi,t+h|t) = |ξi,t+h|t| (26)

As in Diebold and Mariano (1995), one may test the null hypothesis of
equality performance

H0 : E[L(ξ1,t+h|t)] = E[L(ξ2,t+h|t)] (27)

against the alternative

H0 : E[L(ξ1,t+h|t)] 6= E[L(ξ2,t+h|t)] (28)

Using

dt = L(ξ1,t+h|t)− L(ξ2,t+h|t) (29)

one can rewrite the null hypothesis as

H0 : E[d(t)] = 0 (30)

The Diebold-Mariano test statistic is

S =
d

√

V̂ (d)
T

(31)
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where

d =
1

T

T
∑

t=1

dt (32)

V̂ (d) = γ0 + 2
T
∑

j=1

γj (33)

with γj = cov(dt, dt−j).

Rather than testing the null hypothesis using the result of S values in a
normal law, we compare the S values between two models. When a model
fits better than another one, one should rank this model in a better place.
So, we construct a rank vector based on the results of the Diebold-Mariano
test. The Pseudo-Code of the algorithm we used is as follows, where a total
number of runs N was done:

• BEGIN

• Initializations:

– 1) Creation of a rank vector (01×N ).

– 2) The loop counter is set to k = 1.

– 3) A vector of run’s number is created V ecNumb = [1, 2, .., N ].

• Loop:

– 1) Initialization: the best run is set to i = 1.

– 2) While i ≤ N − k do

∗ a) Test the run V ecNumb(i) against other runs V ecNumb(j),
with j > i and j ≤ N − k + 1.

∗ b) If Test(V ecNumb(i)) < Test(V ecNumb(j)), the best run
is set to j.

∗ c) Go back to a) with i← j.

– 3) Set the loop counter to k ← k + 1.

– 4) Set the score N − k + 1 at the position V ecNumb(i) in the
rank vector.

– 5) Reduce the order of V ecNumb: V ecNumb ← V ecNumb −
V ecnumb(i).

– 6) Go Back to 1).

• END
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First notice that the higher the number in the rank vector, the higher the
accuracy of the model. Figure 7 shows the link between the values in the rank
vector and the different values of σ’s vector. This underlines the accuracy of
the model with a high level of uncertainty since highest uncertainties involve
highest rank order. The main positive impact of increasing uncertainty is
due to multiple uncertainty on GDP. That is, the FED policy is compatible
with our CVIU approach if, and only if, the uncertainty facing the FED is
higher for GDP than for inflation. A natural counterintuitive corollary of
this result is that the FED thinks it is more able to manage inflation than
GDP.
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Figure 7: Relationship between Diebold-Mariano test value and the σ’s
vector values.
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4 Conclusion

In this paper, we developed a theoretical framework and the optimal con-
trol strategy for CVIU systems associated with a convex cost functional.
The convexity of the cost-to-go functions was asserted, making it simpler
to obtain the optimal policy using dynamic programming. Since the state
equation is not differentiable, an algorithm for determining the optimal pol-
icy was described using generalized gradients. The optimal strategy yields
that the state-space will be divided into three disjoint regions, represent-
ing the regions where the optimal control policy is to increase, decrease,
or maintain the previous input. Furthermore, for the case where the Cost
Functional is differentiable, it was asserted that a region where no variation
is optimal will always exist. This characteristic of the optimal policy is intu-
itively sound, since in many real-world problems, in face of the uncertainty
generated by changing the control policy, the best strategy is to maintain
the same policy as before. The presented CVIU model and analysis can
be directly applied to numerous practical scenarios, ranging from monetary
policy problems to medicine and biology and, in general, to problems for
which a complete dynamic model is too complex to be feasible.

From our numerical analysis, we obtain two main results. First, and on
the last two decades, monetary policy was mainly conducted on the basis
of an uncertain (multiple) world. Second, the activism of the FED was
stronger that it should be following our CVIU approach unless we admit
that uncertainty mainly occurs in GDP dynamics rather than in inflation
one. Our result is similar to the one of Tillmann (2008) who shows that the
optimal monetary policy under parameter uncertainty can motivate a non-
linear interest rate rule which involves that the policy response to inflation
becomes stronger, the higher the inflation rate and the larger the output
gap.

Finally, a comparison between our theoretical CVIU approach and the
real data lead to two general remarks. First, we known from regime switch-
ing modelization (see Pardo, Rautureau, and Vallée (2009)) that there have
been at least two historical regimes of inflation: a high level one (mainly
in the 70’s) and a low one (mainly the 90’s and 00’s). One should question
how our results are modified if evaluated in such a switching regime frame-
work. Second, and obviously, a link exists between our CVIU approach
and signalling monetary game theory (Canzoneri (1985), Walsh (1999)). A
characteristic of these ”political business cycle models” is that the central
bank knows the signaling effects of its monetary policy on private agents’
expectations. By losing credibility, monetary policy can increase GDP and
inflation variability, and thus increase the level of uncertainty. Proposing a
link between regime switching modelization (e.g. jump Markov model) and
monetary signalling game is the focus of our current research.
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A Figures of the Sensitivity Analysis

A.1 Inflation Rate
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Figure 8: Impact of uncertainty on the sum of the total square difference to
the real inflation rate.
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A.2 Interest Rate
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Figure 9: Impact of uncertainty on the sum of the total square difference to
the real interest rate.
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A.3 Output Gap

0−0.1 0.3−0.4 0.7−0.8

2
0
0

3
0
0

4
0
0

5
0
0

Additive Inflation Uncertainty σπ

0−0.1 0.3−0.4 0.7−0.8

2
0
0

3
0
0

4
0
0

5
0
0

Additive GDP Uncertainty σy

0−0.1 0.3−0.4 0.7−0.8

2
0
0

3
0
0

4
0
0

5
0
0

Multiplicative Inflation Uncertainty σπ

0−0.1 0.3−0.4 0.7−0.8

2
0
0

3
0
0

4
0
0

5
0
0

Multiplicative GDP Uncertainty σy

Figure 10: Impact of uncertainty on the sum of the total square difference
to the real output gap.
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B Some Regression Statistics

All the regressions have been carried out using the ”lm” procedure of the R
software.

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

B.1 Inflation Rate Errors: Σπ =
∑N

t=1(πt|t−1 − πt)
2.

Σπ Estimate Std. Error t-value Pr(> |t|) Adjusted R-squared

Constant case 0.955

(Intercept) 240.303 1.012 237.5 < 2e− 16 ∗ ∗∗

σπ 253.120 0.977 259.1 < 2e− 16 ∗ ∗∗

σy -82.055 0.968 -84.8 < 2e− 16 ∗ ∗∗

σπ 344.315 0.981 350.9 < 2e− 16 ∗ ∗∗

σy -140.103 0.982 -142.6 < 2e− 16 ∗ ∗∗

Table 2: Impact of the values of the uncertainty parameters on Σπ

B.2 Interest Rate Errors: Σi =
∑N

t=1(it|t−1 − it)
2.

Σi Estimate Std. Error t-value Pr(> |t|) Adjusted R-squared

Constant case 0.676

(Intercept) 1083.82 5.11 212.2 < 2e− 16 ∗ ∗∗

σπ -160.63 4.93 -32.6 < 2e− 16 ∗ ∗∗

σy -192.79 4.89 -39.5 < 2e− 16 ∗ ∗∗

σπ -444.89 4.95 -89.8 < 2e− 16 ∗ ∗∗

σy -492.80 4.96 -99.4 < 2e− 16 ∗ ∗∗

Table 3: Impact of the values of the uncertainty parameters on Σi
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B.3 GDP Gap Errors:Σy =
∑N

t=1(yt|t−1 − yt)
2.

Σy Estimate Std. Error t-value Pr(> |t|) Adjusted R-squared

Constant case 0.967

(Intercept) 256.174 0.588 436 < 2e− 16 ∗ ∗∗

σπ -61.808 0.567 -109 < 2e− 16 ∗ ∗∗

σy 154.532 0.562 275 < 2e− 16 ∗ ∗∗

σπ -111.043 0.570 -195 < 2e− 16 ∗ ∗∗

σy 233.825 0.571 410 < 2e− 16 ∗ ∗∗

Table 4: Impact of the values of the uncertainty parameters on Σy

C Impact of Q and r

We ran 20000 simulations with Qπ,π = 1. At each run we randomly drew
σπ, σy, σπ, σy ∼ [0, 1], Qπ,π = 1, Qy,y ∈ [0.1, 10], and r ∈ [0, 1.5].
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Figure 11: Sensitivity Analysis: Impact of r and σπ on Σi.
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Figure 12: Sensitivity Analysis: Impact of r and σy on Σi.
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Figure 13: Sensitivity Analysis: Impact of Qy,y and σπ on Σi.
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Figure 14: Sensitivity Analysis: Impact of Qy,y and σy on Σi.
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