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A REMARK ON THE SCHRÖDINGER SMOOTHING

EFFECT WITH CONFINING POTENTIAL

by

Laurent Thomann

Abstract. — We prove the equivalence between the smoothing effect for a

Schrödinger operator with confining potential and the decay of the associate

spectral projectors.

Résumé. — On donne une caractérisation de l’effet régularisant pour un

opérateur de Schrödinger avec potentiel confinant par la décroissance de ses

projecteurs spectraux.

1. Introduction

Let d ≥ 1, and consider the linear Schrödinger equation

(1.1)

{

i∂tu = Hu, (t, x) ∈ R × R
d,

u(0, x) = f(x) ∈ L2(Rd),

where H is a self-adjoint operator on L2(Rd).

By the Hille-Yoshida theorem, the equation (1.1) admits a unique solution

u(t) = e−itHf ∈ C
(

R;L2(Rd)
)

. Under suitable conditions on H, this solution

enjoys a local gain of regularity (in the space variable) : For all T > 0 there

exists C > 0 so that
(

∫ T

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2

L2(Rd)d t
)

1
2
≤ C‖f‖L2(Rd),

for some weight Ψ and exponent γ > 0.
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This phenomenon has been discovered by T. Kato [8] in the context of KdV

equations. For the Schrödinger equation in the case H = −∆, it has been

proved by P. Constantin- J.-C. Saut [3], P. Sjölin [12], L. Vega [13] and

K. Yajima [14]. The variable coefficients case has been obtained by S. Döı

[4, 5, 6, 7].

The more general results are due to L. Robbiano-C. Zuily [10, 11] for equations

with obstacles and potentials.

In the following, H will stand for the operator,

H = −∆ + V (x),

where V is a confining potential which satisfies

Assumption 1. — We suppose that V ∈ C∞(Rd, R+), and that there exists

k ≥ 2 so that

(i) There exists C > 1 so that for all x ∈ R,
1

C
〈x〉k ≤ V (x) ≤ C〈x〉k.

(ii) For any j ∈ N
d, there exists Cj > 0 so that |∂j

xV (x)| ≤ Cj〈x〉
k−|j|.

It is well known that under Assumption 1, the operator H has a self-adjoint

extension on L2(Rd) (still denoted by H) and has eigenfunctions
(

en

)

n≥1
which

form an Hilbertian basis of L2(Rd) and satisfy

Hen = λ2
nen, n ≥ 1,

with λn −→ +∞, when n −→ +∞.

For s ∈ R, we define the (Hilbert) Sobolev spaces based on the operator H

Hs = Hs(Rd) =
{

u ∈ S ′(Rd) : 〈H〉
s
2 u ∈ L2(Rd)

}

,

where 〈H〉 = (1 + H2)
1
2 .

For N ∈ N, we define the spectral projector PN by the following way. Let

f =
∑

n≥1

αnen ∈ L2(Rd), then

PNf =
∑

N≤λ2
n<N+1

αnen.

Observe that we then have

f =
∑

N≥0

PNf.

Our main result is a characterisation of the smoothing effect by the decay of

the eigenfunctions.
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Theorem 1.1 (Smoothing effect vs. decay). —

Let γ > 0 and Ψ ∈ C(Rd, R). Let H satisfy Assumption 1. Then the following

conditions are equivalent

(i) There exists C1 > 0 so that for all f ∈ L2(Rd)

(1.2)
(

∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2

L2(Rd)d t
)

1
2
≤ C1‖f‖L2(Rd).

(ii) There exists C2 > 0 so that for all N ≥ 1 and f ∈ L2(Rd)

(1.3) ‖Ψ PNf‖L2(Rd) ≤ C2N
− γ

2 ‖PNf‖L2(Rd).

The interesting point is that we can take the same function Ψ and exponent

γ > 0 in both statements (1.2) and (1.3).

Let H satisfy Assumption 1 with k ≥ 2. Then L. Robbiano and C. Zuily [10]

show that the smoothing effect (1.2) holds with γ = 1
k

and Ψ(x) = 〈x〉−
1
2
−ν ,

for any ν > 0.

In the special case of the dimension 1, we can remove the spectral projectors

and we have the following result.

Corollary 1.2. —

Let γ > 0 and Ψ ∈ C(R, R). Let H satisfy Assumption 1 in dimension 1. Then

the following conditions are equivalent

(i) There exists C1 > 0 so that for all f ∈ L2(R)

(1.4)
(

∫ 2π

0
‖Ψ(x) 〈H〉

γ
2 e−itHf‖2

L2(R)d t
)

1
2
≤ C1‖f‖L2(R).

(ii) There exists C2 > 0 so that for all n ≥ 1

(1.5) ‖Ψ en‖L2(R) ≤ C2λ
−γ
n , ∀n ≥ 1.

The statements (1.4) and (1.5) where obtained by K. Yajima & G. Zhang in

[16] when Ψ is the indicator of a compact K ⊂ R and with γ = 1
k
.

The statement (1.4) holds for Ψ(x) = 〈x〉−
1
2
−ν , by the work of L. Robbiano &

C. Zuily [10], but as far as we know, the bound (1.5) with this Ψ was unknown.

Notation. — We use the notation a . b if there exists a universal constant

C > 0 so that a ≤ Cb.
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2. Proof of the results

Proof of Theorem 1.1. — The proof is based on Fourier analysis in time. This

idea comes from [9] and has also been used in [16], but this proof was inspired

by [1].

(i) =⇒ (ii) : To prove this implication, it suffices to replace f with PNf in

(1.2).

(ii) =⇒ (i) : Define the abstract operator A by

Aen = [λ2
n]en, n ≥ 1,

where [x] denotes the integer part of x.

First we prove the assertion (1.2) with A instead of H.

Write f =
∑

N≥0 PNf , then

Ψ 〈A〉
γ
2 e−itAf =

∑

N≥0

e−iNt〈N〉
γ
2 Ψ PNf.

Now by Parseval in time

‖Ψ 〈A〉
γ
2 e−itAf‖2

L2(0,2π) .
∑

N≥0

〈N〉γ |Ψ PNf |2,

and by integration in the space variable and (1.3)

‖Ψ 〈A〉
γ
2 e−itAf‖2

L2(0,2π;L2(Rd)) .
∑

N≥0

〈N〉γ‖Ψ PNf‖2
L2(Rd)

.
∑

N≥0

‖PNf‖2
L2(Rd) = ‖f‖2

L2(R),

hence the result holds for the operator A.

Observe that the same computation yields

(2.1) ‖Ψ 〈H〉
γ
2 e−itAf‖2

L2(0,2π;L2(R)) . ‖f‖2
L2(R).

Now define v = e−itHf . This function solves the problem

(i∂t − A)v = (H − A)v, v(0, x) = f(x).

Then by the Duhamel formula

e−itHf = v = e−itAf − i

∫ t

0
e−i(t−s)A(H − A)v ds

= e−itAf − i

∫ 2π

0
1{s<t}e

−i(t−s)A(H − A)v ds.
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Therefore by (2.1) and Minkowski

‖Ψ 〈H〉
γ
2 e−itHv‖L2

2πL2 . ‖Ψ 〈H〉
γ
2 e−itAv‖L2

2πL2

+

∫ 2π

0
‖Ψ 〈H〉

γ
2 1{s<t}e

−i(t−s)A(H − A)v‖L2
t L2

x
ds

. ‖f‖L2 +

∫ 2π

0
‖(H − A)v‖L2 ds.(2.2)

Now observe that the operator (H − A) : L2(Rd) → L2(Rd) is bounded,

because |λ2
n − [λ2

n]| ≤ 1. Finally, by (2.2) we obtain

‖Ψ 〈H〉
γ
2 e−itHv‖L2

2πL2 . ‖f‖L2 ,

which was the claim.

Proof of Corollary 1.2. — In dimension 1, with a potential 1
C
〈x〉k ≤ V (x) ≤

C〈x〉k with k ≥ 2, there exists C > 0 so that

λ2
n ∼ Cn

2k
k+2 , when n −→ ∞.

Thus, [λ2
n] < [λ2

n+1] for n ≥ n0 large enough, and for n ≥ n0

PNf = αnen, with n so that N ≤ λ2
n < N + 1.

Remark 2.1. — With this time Fourier analysis, we can prove the following

smoothing estimate

‖〈H〉
θ(q,k)

2 e−itHf‖Lp(R;L2(0,T )) . ‖f‖L2(R),

where θ is defined by

θ(q, k) =



























2
k
(1
2 − 1

q
) if 2 ≤ q < 4,

1
2k

− η for any η > 0 if q = 4,

1
2 − 2

3 (1 − 1
q
)(1 − 1

k
) if 4 < q < ∞,

4−k
6k

if q = ∞.

This was done in [16] with a slightly different formulation.
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[5] S. Döı. Smoothing effects for Schrödinger evolution equation and global behavior
of geodesic flow. Math. Ann. 318 (2000) 355–389.
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