A remark on the Schrödinger smoothing effect
Laurent Thomann

To cite this version:
Laurent Thomann. A remark on the Schrödinger smoothing effect. Asymptotic Analysis, 2010, 69 (1-2), pp.117–123. hal-00422424v2

HAL Id: hal-00422424
https://hal.science/hal-00422424v2
Submitted on 25 Dec 2009
A REMARK ON THE SCHRÖDINGER SMOOTHING EFFECT

by

Laurent Thomann

Abstract. — We prove the equivalence between the smoothing effect for a Schrödinger operator and the decay of the associate spectral projectors. We give two applications to the Schrödinger operator in dimension one.

Résumé. — On donne une caractérisation de l’effet régularisant pour un opérateur de Schrödinger par la décroissance de ses projecteurs spectraux. On en déduit deux applications à l’opérateur de Schrödinger en dimension un.

1. Introduction

Let $d \geq 1$, and consider the linear Schrödinger equation

\begin{equation}
\begin{cases}
i \partial_t u = H u, & (t, x) \in \mathbb{R} \times \mathbb{R}^d, \\
u(0, x) = f(x) & \in L^2(\mathbb{R}^d),
\end{cases}
\end{equation}

where H is a self-adjoint operator on $L^2(\mathbb{R}^d)$.

By the Hille-Yoshida theorem, the equation (1.1) admits a unique solution $u(t) = e^{-itH}f \in C(\mathbb{R}; L^2(\mathbb{R}^d))$. Under suitable conditions on H, this solution enjoys a local gain of regularity (in the space variable): For all $T > 0$ there exists $C > 0$ so that

\[
\left(\int_0^T \| \Psi(x) \langle H \rangle^{\frac{\gamma}{2}} e^{-itH} f \|_{L^2(\mathbb{R}^d)}^2 dt \right)^{\frac{1}{2}} \leq C \| f \|_{L^2(\mathbb{R}^d)},
\]

for some weight Ψ and exponent $\gamma > 0$.

2000 Mathematics Subject Classification. — 35-XX.
Key words and phrases. — Schrödinger equation, potential, smoothing effect.

The author was supported in part by the grant ANR-07-BLAN-0250.
This phenomenon has been discovered by T. Kato \cite{Kato} in the context of KdV equations. For the Schrödinger equation in the case $H = -\Delta$, it has been proved by P. Constantin- J.-C. Saut \cite{Constantin}, P. Sjölin \cite{Sjolin}, L. Vega \cite{Vega} and K. Yajima \cite{Yajima}. The variable coefficients case has been obtained by S. Doi \cite{Doi1, Doi2, Doi3, Doi4}. The more general results are due to L. Robbiano-C. Zuily \cite{Robbiano1, Robbiano2} for equations with obstacles and potentials.

Let H be a self adjoint operator on $L^2(\mathbb{R}^d)$. It can be represented thanks to the spectral measure by

$$H = \int \lambda dE_\lambda.$$

In the sequel we moreover assume that $H \geq 0$. For $N \geq 0$, we can then define the spectral projector P_N associated to H by

$$(1.2) \quad P_N = 1_{[N,N+1]}(H) = \int 1_{[N,N+1]}(\lambda)dE_\lambda.$$

Our main result is a characterisation of the smoothing effect by the decay of the spectral projectors. Denote by $\langle H \rangle = (1 + \langle H \rangle^2)^{1/2}$.

Theorem 1.1 (Smoothing effect vs. decay). —

Let $\gamma > 0$ and $\Psi \in C(\mathbb{R}^d, \mathbb{R})$. Then the following conditions are equivalent

(i) There exists $C_1 > 0$ so that for all $f \in L^2(\mathbb{R}^d)$

$$(1.3) \quad \left(\int_0^{2\pi} \|\Psi(x) \langle H \rangle^{\gamma} e^{-itH} f \|_{L^2(\mathbb{R}^d)}^2 dt \right)^{1/2} \leq C_1 \|f\|_{L^2(\mathbb{R}^d)}.$$

(ii) There exists $C_2 > 0$ so that for all $N \geq 1$ and $f \in L^2(\mathbb{R}^d)$

$$(1.4) \quad \|\Psi P_N f\|_{L^2(\mathbb{R}^d)} \leq C_2 N^{-\gamma} \|P_N f\|_{L^2(\mathbb{R}^d)}.$$

The interesting point is that we can take the same function Ψ and exponent $\gamma > 0$ in both statements (1.3) and (1.4).

By the works cited in the introduction, in the case $H = -\Delta$ on \mathbb{R}^d, (1.3) is known to hold with $\gamma = \frac{1}{2}$ and $\Psi(x) = \langle x \rangle^{-\frac{1}{2} - \nu}$, for any $\nu > 0$.

There is also a class of operators H on $L^2(\mathbb{R}^d)$ for which (1.3) is well understood. Let $V \in C^\infty(\mathbb{R}, \mathbb{R}_+)$, and assume that for $|x|$ large enough $V(x) \geq C(x)^k$ and that for any $j \in \mathbb{N}^d$, there exists $C_j > 0$ so that $|\partial_j^l V(x)| \leq C_j (x)^{k-|j|}$. Then L. Robbiano and C. Zuily \cite{Robbiano2} show that the smoothing effect (1.3) holds for the operator $H = -\Delta + V(x)$, with $\gamma = \frac{1}{k}$ and $\Psi(x) = \langle x \rangle^{-\frac{1}{k} - \nu}$, for any $\nu > 0$.

We now turn to the case of dimension $d = 1$, and consider the operator $H = -\Delta + V(x)$. We make the following assumption on V

Assumption 1. — We suppose that $V \in C^\infty(\mathbb{R}, \mathbb{R}_+)$, and that there exist $2 < m \leq k$ so that for $|x|$ large enough

(i) There exists $C > 1$ so that $\frac{1}{C} \langle x \rangle^k \leq V(x) \leq C \langle x \rangle^k$.

(ii) $V''(x) > 0$ and $xV'(x) \geq mV(x) > 0$

(iii) For any $j \in \mathbb{N}$, there exists $C_j > 0$ so that $|\partial_x^j V(x)| \leq C_j \langle x \rangle^{k-|j|}$.

For instance $V(x) = \langle x \rangle^k$ with $k > 2$ satisfies Assumption 1. It is well known that under Assumption 1 the operator H has a self-adjoint extension on $L^2(\mathbb{R})$ (still denoted by H) and has eigenfunctions $(e_n)_{n \geq 1}$ which form an Hilbertian basis of $L^2(\mathbb{R})$ and satisfy

$$He_n = \lambda_n^2 e_n, \quad n \geq 1,$$

with $\lambda_n \to +\infty$, when $n \to +\infty$.

For $N \in \mathbb{N}$ the spectral projector P_N defined in (1.2) can be written in the following way. Let $f = \sum_{n \geq 1} \alpha_n e_n \in L^2(\mathbb{R})$, then

$$P_N f = \sum_{N \leq \lambda_n^2 < N+1} \alpha_n e_n.$$

Observe that we then have $f = \sum_{N \geq 0} P_N f$.

For such a potential, we can remove the spectral projectors in (1.4) and deduce from Theorem 1.1

Corollary 1.2. — Let $\gamma > 0$ and $\Psi \in C(\mathbb{R}, \mathbb{R})$. Let $H = \Delta + V(x)$ so that $V(x) = x^2$ or $V(x)$ satisfies Assumption 1. Then the following conditions are equivalent

(i) There exists $C_1 > 0$ so that for all $f \in L^2(\mathbb{R})$

$$\left(\int_0^{2\pi} \|\Psi(x) \langle H \rangle^{\frac{1}{2}} e^{-itH} f \|_{L^2(\mathbb{R})}^2 dt \right)^{\frac{1}{2}} \leq C_1 \|f\|_{L^2(\mathbb{R})}. \quad (1.5)$$

(ii) There exists $C_2 > 0$ so that for all $n \geq 1$

$$\|\Psi e_n\|_{L^2(\mathbb{R})} \leq C_2 \lambda_n^{-\gamma}, \quad \forall n \geq 1. \quad (1.6)$$

The statements (1.5) and (1.6) were obtained by K. Yajima & G. Zhang in [16] when Ψ is the indicator of a compact $K \subset \mathbb{R}$ and with $\gamma = \frac{1}{k}$.

1
The statement (1.5) holds for $\Psi(x) = \langle x \rangle^{-\frac{1}{2} - \nu}$, by [9], but as far as we know, the bound (1.6) with this Ψ was unknown.

With Theorem 1.1 we are also able to prove the following smoothing effect for the usual Laplacian Δ on \mathbb{R}.

Proposition 1.3. — Let $\Psi \in L^2(\mathbb{R})$. Then there exists $C > 0$ so that for all $f \in L^2(\mathbb{R})$

$$\left(\int_0^{2\pi} \|\Psi(x) \langle \Delta \rangle^{\frac{1}{4}} e^{-it\Delta} f \|^2_{L^2(\mathbb{R})} dt \right)^{\frac{1}{2}} \leq C \|\Psi\|_{L^2(\mathbb{R})} \|f\|_{L^2(\mathbb{R})}.$$

From the works cited in the introduction, we have

$$\left(\int_{\mathbb{R}} \|\Psi(x) \langle \Delta \rangle^{\frac{1}{4}} e^{-it\Delta} f \|^2_{L^2(\mathbb{R})} dt \right)^{\frac{1}{2}} \leq C \|f\|_{L^2(\mathbb{R})},$$

for $\Psi(x) = \langle x \rangle^{-\nu}$, for any $\nu > 0$. Hence Proposition 1.3 shows that we can extend the class of the weights, but we are only able to prove local integrability in time.

Notation. — We use the notation $a \lesssim b$ if there exists a universal constant $C > 0$ so that $a \leq Cb$.

2. Proof of the results

We define the self adjoint operator $A = [H]$ (entire part of H) by

$$A = \int [\lambda] dE_\lambda.$$

Notice that we immediately have that $A - H$ is bounded on $L^2(\mathbb{R}^d)$.

The first step in the proof of Theorem 1.1 is to show that we can replace e^{-itH} by e^{-itA} in (1.3).

Lemma 2.1. — Let $\gamma > 0$ and $\Psi \in C(\mathbb{R}^d, \mathbb{R})$. Then the following conditions are equivalent

(i) There exists $C_1 > 0$ so that for all $f \in L^2(\mathbb{R}^d)$

$$\left(\int_0^{2\pi} \|\Psi(x) \langle H \rangle^{\frac{3}{4}} e^{-it\Delta} f \|^2_{L^2(\mathbb{R}^d)} dt \right)^{\frac{1}{2}} \leq C_1 \|f\|_{L^2(\mathbb{R}^d)}.$$

(ii) There exists $C_2 > 0$ so that for all $f \in L^2(\mathbb{R}^d)$

$$\left(\int_0^{2\pi} \|\Psi(x) \langle H \rangle^{\frac{1}{2}} e^{-it\Delta} f \|^2_{L^2(\mathbb{R}^d)} dt \right)^{\frac{1}{2}} \leq C_2 \|f\|_{L^2(\mathbb{R}^d)}.$$
Proof. — We assume (2.1) and we prove (2.2). Let \(f \in L^2(\mathbb{R}^d) \) and define
\[
 v = e^{-itH}f.
\]
This function solves the problem
\[
 (i\partial_t - A)v = (H - A)v, \quad v(0, x) = f(x).
\]
Then by the Duhamel formula
\[
 e^{-itH}f = v = e^{-itA}f - i \int_0^t e^{-i(t-s)A}(H - A)v \, ds.
\]
Therefore by (2.1) and Minkowski
\[
 \| \Psi\langle H \rangle \gamma^2 e^{-itH}v \|_{L^2_{\mathcal{A}}L^2} \lesssim \| \Psi\langle H \rangle \gamma^2 e^{-itA}v \|_{L^2_{\mathcal{A}}L^2} + \int_0^{2\pi} \| \Psi\langle H \rangle \gamma^2 e^{-i(t-s)A}(H - A)v \|_{L^2 L^2} \, ds \lesssim \| f \|_{L^2} + \int_0^{2\pi} \| (H - A)v \|_{L^2} \, ds.
\]
Now use that the operator \((H - A) : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)\) is bounded, and by (2.3) we obtain
\[
 \| \Psi\langle H \rangle \gamma^2 e^{-itH}v \|_{L^2_{\mathcal{A}}L^2} \lesssim \| f \|_{L^2},
\]
which is (2.2).
The proof of the converse implication is similar.

Proof of Theorem 1.1 — The proof is based on Fourier analysis in time. This idea comes from [8] and has also been used in [16], but this proof was inspired by [1].

\((i) \implies (ii)\) : To prove this implication, we use the characterisation (2.1). From (1.2) and the definition of \(A \), \(e^{-itA}P_N f = e^{-itN}P_N f \). Hence it suffices to replace \(f \) with \(P_N f \) in (1.3) and (1.4) follows.

\((ii) \implies (i)\) : Again we will use Lemma 2.1. We assume (2.2) and we first prove that
\[
 \| \Psi\langle A \rangle \gamma^2 e^{-itA}f \|_{L^2(\mathbb{R}^d)} \lesssim \| f \|_{L^2(\mathbb{R}^d)}.
\]
Write \(f = \sum_{N \geq 0} P_Nf \), then
\[
 \Psi\langle A \rangle \gamma^2 e^{-itA}f = \sum_{N \geq 0} e^{-iNt(\langle N \rangle \gamma^2)} P_N f.
\]
Now by Parseval in time
\[\| \langle A \rangle^{\frac{\gamma}{2}} e^{-itA} f \|_{L^2(0,2\pi)}^2 \lesssim \sum_{N \geq 0} \langle N \rangle^\gamma \| \Psi P_N f \|_{L^2}^2, \]
and by integration in the space variable and (1.4)
\[\| \langle A \rangle^{\frac{\gamma}{2}} e^{-itA} f \|_{L^2(0,2\pi;L^2(\mathbb{R}^d))}^2 \lesssim \sum_{N \geq 0} \langle N \rangle^\gamma \| \Psi P_N f \|_{L^2(\mathbb{R}^d)}^2 \]
\[\lesssim \sum_{N \geq 0} \| P_N f \|_{L^2(\mathbb{R}^d)}^2 = \| f \|_{L^2(\mathbb{R}^d)}^2, \]
which yields (2.4). Now since the operator \(\langle A \rangle^{\frac{\gamma}{2}} (\langle H \rangle^{\frac{\gamma}{2}} f) \) is bounded on \(L^2 \) and commutes with \(e^{-itA} \), we have by (2.4)
\[\| \langle H \rangle^{\frac{\gamma}{2}} e^{-itA} f \|_{L^2(0,2\pi;L^2(\mathbb{R}^d))} = \| \langle A \rangle^{\frac{\gamma}{2}} e^{-itA} (\langle A \rangle^{\frac{\gamma}{2}} (\langle H \rangle^{\frac{\gamma}{2}} f)) \|_{L^2(0,2\pi;L^2(\mathbb{R}^d))} \]
\[\lesssim \| (\langle A \rangle^{\frac{\gamma}{2}} (\langle H \rangle^{\frac{\gamma}{2}} f)) \|_{L^2(\mathbb{R}^d)} \]
\[\lesssim \| f \|_{L^2(\mathbb{R}^d)}, \]
which is (2.1).

Proof of Corollary 1.2. — Let \(V \) satisfy Assumption 1. Then by [14, Lemma 3.3] there exists \(C > 0 \) such that
\[|\lambda_{n+1}^2 - \lambda_n^2| \geq C \lambda_n^{1 - \frac{2}{m}}, \]
for \(n \) large enough. This implies that \([\lambda_n^2] < [\lambda_{n+1}^2] \) for \(n \) large enough, because \(m > 2 \) and \(\lambda_n \to +\infty \). As a consequence
\[P_N f = \alpha_n e_n, \]
with \(n \) so that \(N \leq \lambda_n^2 < N + 1, \)
and this yields the result.
We now consider \(V(x) = x^2. \) In this case, the eigenvalues are the integers \(\lambda_n^2 = 2n + 1, \) and the claim follows.

Remark 2.2. — With this time Fourier analysis, we can prove the following smoothing estimate for \(H \) which satisfies Assumption 1
\[\| \langle H \rangle^{\frac{\theta(q,k)}{2}} e^{-itH} f \|_{L^p(\mathbb{R};L^2(0,T))} \lesssim \| f \|_{L^2(\mathbb{R})}, \]
where \(\theta \) is defined by

\[
\theta(q, k) = \begin{cases}
\frac{2}{q} \left(\frac{1}{2} - \frac{1}{q} \right) & \text{if } 2 \leq q < 4, \\
\frac{1}{2k} - \eta & \text{for any } \eta > 0 \text{ if } q = 4, \\
\frac{1}{2} - \frac{2}{q} \left(1 - \frac{1}{q} \right) \left(1 - \frac{1}{k} \right) & \text{if } 4 < q < \infty, \\
\frac{4 - k}{6k} & \text{if } q = \infty.
\end{cases}
\]

This was done in [16] with a slightly different formulation.

Proof of Proposition 1.3. — By Theorem 1.1, we have to prove that the operator

\[
T f(x) = N^{\frac{1}{4}} \Psi(x) 1_{[N,N+1]}(-\Delta)f(x),
\]

is continuous from \(L^2(\mathbb{R}) \) to \(L^2(\mathbb{R}) \) with norm independent of \(N \geq 1 \). By the usual \(TT^* \) argument, it is enough to show the result for \(TT^* \).

The kernel of \(T \) is \(K(x, y) = N^{\frac{1}{4}} \Psi(x)F_N(x - y) \) where

\[
F_N(u) = \frac{1}{2\pi} \int e^{iu\xi} 1_{[\sqrt{N},\sqrt{N+1}]}(|\xi|) d\xi = 4 \cos(D_Nu) \sin(C_Nu) u,
\]

with \(C_N = (\sqrt{N+1} - \sqrt{N})/2 \) and \(D_N = (\sqrt{N+1} + \sqrt{N})/2 \).

The kernel of \(TT^* \) is given by

\[
\Lambda(x, z) = \int K(x, y)K(z, y) dy,
\]

and by Parseval and (2.5)

\[
\Lambda(x, z) = N^{\frac{1}{2}} \Psi(x)\Psi(z) \int F_N(x - y)F_N(z - y) dy \\
= \frac{1}{4} N^{\frac{1}{2}} \Psi(x)\Psi(z) \int e^{i(x-z)\xi} 1_{[\sqrt{N},\sqrt{N+1}]}(|\xi|) d\xi \\
= \pi N^{\frac{1}{2}} \Psi(x)\Psi(z) \cos(D_N(x - z)) \sin(C_N(x - z)) \frac{\sin(C_N(x - z))}{x - z}.
\]

Now, since \(C_N \lesssim 1/\sqrt{N} \) and \(|\sin(x)| \leq |x| \), we deduce that \(|\Lambda(x, z)| \leq C|\Psi(x)||\Psi(z)| \) (independent of \(N \geq 1 \)), and \(TT^* \) is continuous for \(\Psi \in L^2(\mathbb{R}) \).

Acknowledgements. — The author would like to thank D. Robert for many enriching discussions and the anonymous referee for valuable suggestions which improved this paper.
References

