
HAL Id: hal-00422358
https://hal.science/hal-00422358v1

Submitted on 6 Oct 2009 (v1), last revised 8 Oct 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building upon Fast Multipole Methods to Detect and
Model Organizations

Pierrick Tranouez, Antoine Dutot

To cite this version:
Pierrick Tranouez, Antoine Dutot. Building upon Fast Multipole Methods to Detect and Model Orga-
nizations. DCDIS Series B: Applications & Algorithms, 2009, 16 (4), pp.489 - 500. �hal-00422358v1�

https://hal.science/hal-00422358v1
https://hal.archives-ouvertes.fr


Building upon Fast Multipole Methods to detect and model 
organizations 

Pierrick Tranouez
1,2

 and Antoine Dutot
1
 

 

1 
LITIS 

Université du Havre 

UFR Sciences et Techniques 

25 rue Ph. Lebon - BP 540 

76058 Le Havre Cedex – France 

{Pierrick.Tranouez, Antoine.Dutot}@litislab.eu 

2 
MTG - UMR IDEES 

Université de Rouen 

IRED 

7 rue Thomas Becket 

76821 Mont Saint Aignan Cedex – France 

 

KEYWORDS 

Organization detection, structure management, multiscale, 

N body systems, hierarchical tree code approximations 

ABSTRACT 

Many models in natural and social sciences are comprised 

of sets of interacting entities whose intensity of interaction 

decreases with distance. This often leads to structures of 

interest in these models composed of dense packs of 

entities. Fast Multipole Methods are a family of methods 

developed to help with the calculation of a number of 

computable models such as described above. We propose a 

method that builds upon FMM to detect and model the 

dense structures of these systems. 

INTRODUCTION 

We study in this paper dynamic systems composed of many 

interacting entities. We are interested in their modeling, 

simulation, in the way they evolve and organize 

themselves. 

Among these theoretical systems, a class of them is used as 

models for different natural science systems. In this class, 

systems verify the following properties: 

1. Entities follow an analytical model 

2. Each entity interacts with all the others. 

3. The strength of the interactions decreases with the 

distance separating the entities implied in the 

relationship 

It is to this class that N-Body problems in physics belong to 

for example. 

Property 2 makes computing a simulation through the 

iterative calculations of the model in 1 costly, in 𝑂 𝑛2  for 

𝑛 entities. There are mathematical techniques to accelerate 

this computing, such as Fast Fourier Transform or Fast 

Multipole Methods. We will deal in this paper with 

hierarchical methods such as FMM. 

Furthermore, systems of the class described above have 

also some remarkable properties in their organizations. As 

interactions intensity decrease with the distance and these 

interactions are often of an attractive nature, aggregate or 

clusters often emerge of their simulation, and play 

important parts as structures and organizations of the 

simulation. 

We give in this article a method that detects and manages 

such organizations in this class of models, in connection 

with an FMM simulation (or hierarchical tree code 

approximations in general). 

KERNELS AND FAST MULTIPOLE METHODS 

The Introduction may give the impression that our 

organization-handling scheme works in only very restricted 

cases, but systems verifying these properties often appear in 

scientific literature [Beatson and Greengard]. 

Physics examples 

Provided N bodies of mass 𝑚𝑖  a description of the 

gravitational field in 𝑥𝑗  is Newton law [Newton 1686]: 

𝑔 𝑥𝑗  =  𝒢𝑚𝑖

𝑥𝑖 − 𝑥𝑗

 𝑥𝑗 − 𝑥𝑖 
3

𝑁

𝑖=1
𝑖≠𝑗

 

Where 𝒢 is the gravitational constant. 

Similarly for N bodies of charge q, Coulomb law [Coulomb 

1785] describes the electrostatic field in 𝑥𝑗 : 



𝐸 𝑥𝑗  =  𝒦𝑚𝑖

𝑥𝑖 − 𝑥𝑗

 𝑥𝑗 − 𝑥𝑖 
3

𝑁

𝑖=1
𝑖≠𝑗

 

Where 𝒦 is the electrostatic constant. 

In both of these, each body interacts with all the other, with 

an intensity that is inversely linear to the square of the 

distance. It is the same for Biot-Savart law, relative to both 

magnetism (under) and fluid dynamics [Leonard 1980]: 

𝐵 𝑥 =
1

𝑐
 𝐽 𝑦 

𝑥 − 𝑦

 𝑥 − 𝑦 3
𝑑𝑦 

Where 𝐽 𝑦  is the current density in 𝑦. 

The same can be written for diffusion, of heat for instance. 

For all of these, structures of close entities play an 

important part. In gravitation, on different time scale they 

are the galaxies, solar systems, stars, planets. In magnetism, 

hydrodynamics and aerodynamics, congruence leads to 

vortexes or coils of different sizes, ranging from turbulence 

to the Gulf Stream or the red spot of Jupiter. In the Sun, 

congruence of plasma matter lead to sunspots and solar 

flare, and combined with fluids and gravity to coronal mass 

ejections. 

Life sciences examples 

Many living systems can be described the same way 

[Simon 1996] [Frontier and Pichot-Viale 1998], with 

hierarchical spatial organizations. One of these models is 

the boids [Reynolds 1987]. We will apply our method to 

this model, so we will describe it in some depth. 

Boids are entities moving in a 2D or 3D space. They are 

ruled by quite simple rules, Cohesion, Separation and 

Alignment. Cohesion describes how boids try to fly in the 

direction of surrounding boids. Separation describes how 

boids are repulsed by other boids if these are really close. 

Alignment describes how boids try to fly in the same 

direction as the boids that environs them. A more formal 

description is: 

Let j be a boid situated in the point 𝑥𝑗  of an affine space. 

Let 𝜂(𝑗)  be its neighboring space, ie the set of boids not 

further from j than a certain limit at a given time t, 

excluding j itself.  

Let 𝑣𝑡
𝑗
 be the speed of 𝑗 at time 𝑡. All the 𝑥𝑘  below should 

be written 𝑥𝑡
𝑘  but are conventionally simplified to easy up 

the reading. 

We define:  

𝑐𝑡+1
𝑗

=  
𝑥𝑖

 𝑥𝑖 − 𝑥𝑗 
2

𝑖∈𝜂 𝑗  

− 𝑥𝑗  

𝑠𝑡+1
𝑗

=  
 𝑥𝑗 − 𝑥𝑖 

 𝑥𝑖 − 𝑥𝑗 
3

𝑖∈𝜂 𝑗  

 

𝑎𝑡+1
𝑗

=  
𝑣𝑡

𝑖

𝑐𝑎𝑟𝑑 𝜂 𝑗   𝑥𝑖 − 𝑥𝑗 
2

𝑖∈𝜂 𝑗  

 

Which we combine: 

𝑣𝑡+1
𝑗

= 𝛼𝑣𝑡
𝑗

+ 𝛽𝑐𝑡+1
𝑗

+ 𝛾𝑠𝑡+1
𝑗

+ 𝛿𝑎𝑡+1
𝑗

 

Where 𝛼, 𝛽, 𝛾, 𝛿 are coefficients used to balance the 

different components of the speed. 

This is for one species of boids. If different species of boids 

are considered, another stronger inter-species Separation is 

furthermore implemented to represent a tendancy to flock 

to their species and flee others [Dutot 2005]. Each species 

member speed is only influenced by its co-members as far 

as Alignment, Cohesion and intra species Separation are 

concerned. Each species can also have their own 

coefficients 𝛼, 𝛽, 𝛾 and 𝛿. 

Hierarchical methods to accelerate the computing 

The computing of the relation above is of a complexity of 

the order of the square of the number of entities/bodies 

involved. This can be costly as the size of the simulation 

increases. 

An often used technique to improve this is is to recursively 

divide the simulation space in a tree. The root of the tree 

encompasses the whole space. Its children are regular 

subdivision of the space, for example in 4 equal surfaces. 

The process is repeated recursively. We use an adaptive 

subdivision, which means regions of space containing many 

entities are more divided that sparser ones. The entities are 

associated to the leaves of the tree, which is adapted at each 

simulation step. 

The degenerated kernel relations described above are then 

computed. For that, the contribution of close entities is 

added exactly, while the contribution of further entities is 

averaged at the level of the leaf it belongs to. The exact 

economy is difficult to compute precisely as it depends on 

the structure of the tree, but it can be brought back to an 

average of 𝑂(𝑁𝑙𝑜𝑔𝑁) or even 𝑂(𝑁) [Beatson and 

Greengard] for 𝑁 entities in the simulation. Furthermore, 

the loss of precision can be bound. 

We originally used FMM in [Tranouez 2005] in a fluid 

flow simulation [Tranouez et al. 2005]. We discovered at 

the time that the tree used for the poles visually 

summarized the organizations appearing during the 

simulation (groups of vortexes of different shapes and sizes 

in this case). We therefore created an algorithm that 

formalized this visual discovery. We will now describe this 

method, on a boids application. 

THE METHOD 

Relationship between n-trees and organizations 

As said above, the hierarchical subdivision of space can be 

represented by a tree whose root is the whole considered 

space and branches and leaves are subdivisions of this 



space. The space is subdivided so that there is a constant, 

predefined, maximum number of entities (which, per 

analogy with the N-body problem, we will call bodies) in 

each subspace. 

We call cell a node of the tree and its associated subspace. 

Depending on the way the space is decomposed, the 

number of sub cells varies. Often 2D spaces are cut in four 

cells yielding 4-trees or “quadtrees”, and 3D spaces are 

decomposed in eight cells, producing 8-trees or “octrees”. 

The number of bodies per leaf cell is variable. Some 

methods can put only one body per cell, others put several 

bodies in one cell. Bodies are only “present” in the leaf 

spaces, and super cells aggregate the data of their sub cells. 

It is necessary to subdivide a cell when the maximum 

number of bodies per cell is reached, and n cells merge into 

one when there is less than the maximum number of bodies 

per cell in all the n cells. Therefore, this subdivision is 

adaptive, and changes during time. 

We call a “level” all the cells of the tree at a given depth in 

the tree. The nature of the subdivision yields many 

subdivided cells where there are many bodies.  The 

intuition of the method is that it is easy to identify dense 

groups of bodies (that is places where interactions are 

stronger) by looking at a representation of the subdivided 

space (figure 1). 

 

Figure 1 : The space subdivision, with and without bodies. 

Each cell contains a maximum of 3 bodies. 

Finding organizations with the n-tree 

Our method relies on the use of the n-tree to detect 

organizations, therefore sharing the use of this tree both for 

the FMM and for the organization detection. 

The main idea is to consider only the lower levels of the 

tree as shown on figures 2 and 3, and then to cut this set of 

cells in groups of adjacent cells. The tree in figure 3 

represents the subdivided space of the figure 2. There are at 

most three bodies per cell here. The search for 

organizations begins by considering only the lower levels 

of the tree. That is, cutting the bottom of the tree (here 

under the horizontal dotted line). In this restricted set of 

cells, we remove all cells that do not contain bodies (in grey 

on the figure). Notice that this selects only “leaf” cells. This 

set must then be cut in groups of adjacent cells. These 

groups can be considered a good approximation of searched 

organizations. 

 

Figure 2 : Two organizations A and B and the subdivided 

space 

 

Figure 3 : The A and B organizations in the n-tree 

In two dimensions, one can also see the subdivisions of 

space as being higher in a third dimension. The more space 

is subdivided, the higher a point in space is. As subdivision 

matches body density, the denser the bodies are the higher 

is their third coordinate. The idea is then to cut this 

representation and consider only the cut parts to search for 

dense groups of bodies, as shown on Figure 4. 

 

Figure 4 : Conceptual representation of the method. 



Algorithm 

The organization detection algorithm does not work directly 

on the n-tree, but on a set of cells C corresponding to some 

levels of the n-tree. They correspond to all the cells of the 

tree that are deeper than a given depth d. 

In this set, we keep only the leaf cells, as only these cells 

“contain” bodies. 

The algorithm will then try to cut this set in groups of 

adjacent cells. We will consider these groups as 

organizations. Adjacent cells are cells that share a face, an 

edge or a point (Figure 5). 

 

Figure 5 : Adjacent cells delimit organizations 

The creation of the groups can be done easily with a 𝑂(𝑛2) 

algorithm, with 𝑛 the number of cells in C. Consider one 

cell 𝑐 taken at random in C and remove it from C. Consider 

all the other cells of C and check if they share a face, edge 

or point with 𝑐. If they do, put them in the same group and 

remove them from C. 

When there are no more cells of C adjacent to 𝑐, and if  C 

still contains cells, create another group, choose randomly 

another cell 𝑐’ and restart the procedure. Do this until C is 

empty. 

Algorithm GroupCells( C ) returns G 
C: set of cells 
G: set of sets of cells 
c: cell 
g: set of cells 
While not C.isEmpty do 
 g <- new group 
 c <- C.removeRandom 
 G.add( g ) 
 g.add( c ) 
 ForAll cell d in C do 
  If d.shareFaceOrEdgeOrPoint( g )  
  then 
   C.remove( d ) 
   g.add( d ) 
  EndIf 
 EndForAll  
EndWhile 
 

However, the group creation can be achieved faster by 

using the n-tree. It is not necessary to explore the entire set 

C to find adjacent cells. Instead, it is possible to explore the 

tree. 

To find the adjacent cells of a cell c taken at random in C 

and removed from it, start from the root cell and look for all 

child cells that could intersect or contain an area around the 

cell c. Do this recursively until you reach leaf cells. Only in 

this restricted set of cells, search for adjacent cells. Restart 

this procedure for each newly found cell until no more 

adjacent cell is found. 

Algorithm GroupCells2( C ) returns G 
C: set of cells 
G: set of sets of cells 
c, n: cell 
g, h: set or cells 
While not C.isEmpty do 
 g <- new group 
 h <- new group 
 c <- C.removeRandom 
 G.add(g) 
 g.add(c) 
 h.add( neighborsOf( tree.getRoot, c, C, area ) ) 
 While not h.isEmpty do 
  ForAll cell d in h do 
   If d.shareFaceOrEdgeOrPoint( g ) 
   Then 
    C.remove( d ) 
    h.remove( d ) 
    g.add( d ) 
    h.add( neighborsOf( tree.getRoot, d, 
C, area ) )  
   Else 
    h.remove( d ) 
   EndIf 
  EndForAll 
 EndWhile 
EndWhile 
 
Method NeighborsOf( n, c, C, tree, area ) returns h 
c, n: cell 
C, h: set of cells 
tree: n-tree 
area: float 
If not n.isLeaf then 
 ForAll cell d in n.subCells do 
  If n.containsOrOverlap( area, c ) then 
   h.add( NeighborsOf( d, c, C, area ) ) 
  EndIf 
 EndForAll 
Else 
 If C.contains( n ) then 
  h.add( n ) 
 EndIf  
EndIf 
 

The difficulty in this method is that it is difficult to compute 

which cells are intersecting with the area around a leaf cell. 

A simple approximation can be to use a cube or square 

instead of a sphere or disk around the considered cell. 

RESULTS 

The results presented here are in two dimensions. This 

allows an easy representation of the levels. On each figure, 

a boid simulation is shown on the left and the space 

subdivision is shown on the right. 

The boid simulation uses several species that repulse one 

another and form groups of high interaction. The space 

subdivision is in two dimensions, with a third dimension 

showing the depth in the quadtree. Levels close to the root 

are in darker and near the leaves are lighter. The cut 

threshold has been set to 5 levels, and levels higher than 

this have been colored in red, they show the organizations 

detected. The maximum number of bodies per cell is ten. 

The Figure 6 shows the boid simulation at different time 

steps. 



 

 

Figure 6 : Left, the boids in different colors. Right, the 

organizations detected, in red
1
 

                                                           
1
 The last two screenshots of Figure 6 depict the same 

results as the first three. Some readers have preferred this 

representation, others the flat one. 

FUTURE WORK 

The organizations detected are well matched to what a 

human observer perceives. Nonetheless, evidence that is 

more objective must be used to validate their interest. For 

that, we will use two methods. 

For the first method we will need to transform our set of 

boids into a complete weighted graph, where the vertices 

will be the boids, the edges the interaction between the 

boids, and the weight of an edge the distance between the 

boids corresponding to the vertices of this edge. The 

modularity of the detected organization can then be 

computed. 

The second method is computing the fuzzy kappa index of 

the simulation spaces with and without the organizations 

[Hagen-Zanker 2006]. This method was invented to 

compare actual maps to ones generated by cellular 

automata methods. It should be no problem to use it here. 

These two methods are currently being implemented. 

CONCLUSION 

We presented an organization detection method based on 

the reuse of the n-tree of fast multipole methods. Such 

methods are used in a wide range of problems. It offers a 

fast algorithm that uses the calculations of another one to 

speed up its computation. The detected groups of bodies are 

close approximation of the real organizations. 

REFERENCES 

Beatson R. and Greengard L. A short course on fast multipole 

methods, http://math.nyu.edu/faculty/greengar/. Link is alive on 

01/18/08. 

Coulomb C.-A. 1785, Premier Mémoire sur l’Électricité et le 

Magnétisme, Paris 

Dutot A., 2005, Distribution dynamique adaptative à l'aide de 

mécanismes d'intelligence collective, PhD thesis, Le Havre 

University 

Frontier S., Pichot-Viale D.., Écosystèmes, Dunod, 1998. 

Hagen-Zanker A., 2006, Map comparison methods that 

simultaneously address overlap and structure, Journal of 

Geographical Systems, Springer, vol. 8(2), pages 165-185, July. 

Leonard A. 1980, « Vortex methods for flow simulation », 

Journal of Computational Physics, vol. 37, 1980, p. 289-335. 

Newton I., 1686 Philosophiae Naturalis Principia Mathematica, 

London. 

Reynolds, C. W., 1987. "Flocks, Herds, And Schools: A 

Distributed Behavioural Model". Computer Graphics. Vol. 21, 

No.4. 

Simon H. 1996, The Sciences of the Artificial (3rd Edition) MIT 

Press 

Tranouez Pierrick 2005, Penicillo haere, nam scalas aufero, PhD 

thesis, Le Havre University 

http://math.nyu.edu/faculty/greengar/
http://en.wikipedia.org/w/index.php?title=The_Sciences_of_the_Artificial&action=edit


Tranouez P., Bertelle C. and Olivier D. 2005, « Changing levels of 

description in a fluid flow simulation”, EPNADS 2005 


