
HAL Id: hal-00422338
https://hal.science/hal-00422338

Submitted on 6 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hand-drawn Electric Circuit Diagram Understanding
Using 2D Dynamic programming

Guihuan Feng, Zhengxing Sun, Christian Viard-Gaudin

To cite this version:
Guihuan Feng, Zhengxing Sun, Christian Viard-Gaudin. Hand-drawn Electric Circuit Diagram Un-
derstanding Using 2D Dynamic programming. International Conference on Frontiers in Handwriting
Recognition, ICFHR’2008, Aug 2008, Montréal, Canada. pp.493-498. �hal-00422338�

https://hal.science/hal-00422338
https://hal.archives-ouvertes.fr

Hand-drawn Electric Circuit Diagram Understanding Using 2D
Dynamic Programming

Guihuan Feng Zhengxing Sun Christian Viard-Gaudin
State Key Laboratory for

Novel Software Technology,
Nanjing University, China
fgh@graphics.nju.edu.cn

State Key Laboratory for
Novel Software Technology,
Nanjing University, China

szx@nju.edu.cn

IRCCyN/UMR CNRS 6597
Ecole Polytechnique de l’Université

de Nantes, France
christian.viard-gaudin@univ-nantes.fr

Abstract

A difficult task of a sketch understanding system is that
it should always try to balance between the drawing
freedom and the complexity of recognition. Most online
existing works are based on the assumption that people
will not start to draw a new symbol before the last one has
been finished. As obviously it is not always the case, we
propose in this paper a method which relaxes this
constraint. The proposed methodology relies on a two-
dimensional dynamic programming technique (2D-DP)
allowing symbol hypothesis generation, which can
correctly locate symbols even when they are drawn
temporally overlapped with each other. A neural network
classifier, embedded in the 2D-DP, is used to label each
hypothesis. Besides, tolerant connectivity constraints are
introduced to help increasing the performance as well as
the efficiency. Experiments show that this novel approach
achieves an accuracy of more than 90 percent.

Keywords: Sketch understanding, electric circuit diagram,
two-dimensional dynamic programming.

1. Introduction
It is a quite well-known proverb “a picture is worth a

thousand words”, which means that sketches or graphics
are more expressive compared with only texts or words.
Besides, sketches are widely used in engineering and
architecture fields. This is mainly due to the fact that a
sketch is a convenient tool to catch rough idea, so that the
designers can focus more on the critical issues rather than
on the intricate details [1].

The emergence of Tablet PCs, digital pens and papers,
and electronic whiteboards allows to record such hand-
drawn sketches as online information. Again, with the
development of human-computer interaction, artificial
intelligence and some other technologies, there is an
increased interest in sketch understanding. Lots of fields
are concerned with sketches. In this paper, we focus
especially on hand-drawn electric circuit diagrams.

A difficult task of a sketch understanding system is that
it should always try to balance between the drawing
freedom and the complexity of recognition. Generally, the

more freely the system can endure, the more difficult
sketch understanding will be. As for the drawing issues,
they can be divided into three different levels, i.e. sketch-
level variance, symbol-level variance and stroke-level
variance. With respect to sketch-level, we mean symbols
can be drawn in different order. Consider circuit diagrams
for example, some would like to draw in the order of
“connector-component-connector”, while others prefer to
finish all the components at first, and then complement
with the connectors. At the same time, symbols can even
be drawn temporally overlapped with each other, which
means that sometimes people start a new symbol before he
or she finishes the last one. Furthermore, different user can
draw the same symbol very differently; even for the same
user, the drawing style will vary from time to time. At last,
not only one stroke can contain several symbols, but also
one symbol can be made up of many strokes, which we
call the multi-symbol strokes and the multi-stroke symbols.
All these uncertainties have made sketch understanding a
great challenge.

In order to solve the problems mentioned above, a
successful sketch understanding system should at least
have the following parts. First, stroke segmentation is used
to divide strokes into smaller but more meaningful units,
namely primitive segments; second, symbol hypothesis
generation is included to try to group the segments in some
specific way, so that each group can match to a symbol in
a given domain; at last, a robust symbol recognition is
needed so as to adapt to the great variability of different
user drawing styles.

The paper is organized as follows. We first discuss the
related works in Section 2. In Section 3, we give a brief
introduction of our approach, and some more detailed
information is illustrated in Section 4. In Section 5, we
discuss about the performance of our approach. Finally,
the conclusion is proposed in Section 6.

2. Related works
At the early stage of sketch understanding, symbols are

segmented manually by pressing a button or pausing for a
long time before the start of a new symbol. More efforts
are focused on the recognition of isolated symbols [10][4].

Right now, researchers are working on the automatic
parsing of the continuous input, so that people can express
their ideas more freely. Structural or syntactic methods are
the most frequently used approaches in sketch
understanding. Such methods represent objects in terms of
their structure, such as constitutional components and their
relationships. Hammond and Davis [6] propose a sketching
language LADDER, which can automatically generate a
sketch interface based on the user defined description of
shapes in a given domain. The limitation lies on that their
approach can only describe regular shapes without too
much detail. Our system performs well even when symbols
are drawn with over-traced strokes. Costagliola et al. [2]
propose a Left-Right based parsing approach. The rank
value of each candidate is computed by combining the
accuracy of both stroke types and relations. So it has the
disadvantage of the dependence on preprocessing. Our
approach is inspired from their work to introduce tolerance
in relationship measurement. But our symbol recognizer is
more robust to noises and errors produced by segmentation.

Sim-U-Sketch is a sketch-based interface for Simulink
package [8]. The system provides a hierarchical “mark-
group-recognize” sketch understanding architecture, and a
domain-independent, trainable symbol recognizer that can
learn new definitions from a single prototype. Their
approach is not suitable for electric circuit diagram in that
it is guided from marker symbols.

Gennari et al. [5] employ ink density to enumerate
candidate symbols, and domain knowledge is introduced to
prune away invalid symbols. But their work is based on
the assumption that the user finishes drawing one symbol
before drawing a wire or another component, while our
approach can correctly locate symbols even when they are
drawn temporally overlapped with each other.

Segzin and David [12] [13] make use of the temporal
information and present a parsing technique based on
multi-scale models. Compared with other methods, its
main advantage is the high efficiency. And the
disadvantage is that it depends too much on the drawing
style.

Saund et al. [11] present a system that uses Gestalt laws
to locate salient objects. Their approach concerns only the
grouping of strokes and no symbol recognition is included.
It seems to be more suitable for the recognition of texts
instead of diagrams.

3. System overview
3.1. The Intuition

Sketch is generally made up of some basic elements,
namely symbols in a given domain. The problem is that
while scribing, all the strokes are input continuously.
People will not pause between symbols, or when pausing,
it does not always mean the start of a new symbol. Besides,
there is no any prior knowledge about the constitution of

the sketch, which is the main difference between the
recognition of a sketch and that of the isolated symbols. So
we can not simply match the input with some predefined
templates.

In terms of strokes, we mean the sequence of points that
is recorded between a pen-down and pen-up. Due to the
noisy and inaccuracy inherence, before parsing we first
divide strokes into perceptually salient segments. A
symbol hypothesis is a set of segments grouped together
under some hypothesis generation approach. For each of
these hypotheses, symbol recognition is performed, and a
cost as well as a label is assigned. The bigger the cost is,
the less likely the hypothesis can be a real symbol.
Therefore, if we consider Γ to be all the possible ways to
do segment grouping, then sketch understanding aims at
finding the one at the minimum expense. It can be
formulized as Eq. 1, where L is one of the possible parsing
solutions.

arg min(| ,)
L

cost Sketch L
∈Γ

∑ (1)

3.2. Flow Chart
There are two kinds of strategies to do sketch

understanding. One is the immediate feedback, which
means once a stroke is drawn, sketch understanding will
start. The advantage of such strategy is that user can view
the recognition results in real-time. But it will, to some
extent distract the user during the design task [7]. Again,
due to the lack of complete drawing context, such methods
always need to add constraints to the drawing style of
some specific symbol. In this paper, we adopt another
strategy, i.e. lazy feedback, which means sketch
understanding starts only after the whole sketch has been
finished. We believe that the global context can help to
increase the performance and decrease the ambiguity,
while at the same time do not interfere with the users.
Furthermore, this strategy is well suited for digital pen and
paper solution, where no immediate feedback is available
for the user.

Figure 1 gives an illustration of the overall process of
our sketch understanding technique. Raw strokes are
firstly sent to the pre-processor to be divided into segments.
Next, we use a two-dimensional dynamic programming
(2D-DP) approach to manage segment grouping. But only
those that can pass the validity test are valid hypotheses.
The validity testifier is used to eliminate those groupings
having other segments falling inside. This is based on the
assumption that symbols will not be drawn spatially
overlapped with each other. Later sketch understanding
goes on two paths. We check first if the hypothesis can be
recognized as a connector, and if the connectivity
constraints of a connector are satisfied. For those that are
not connectors, we will pass them to a Neural Network
(NN) Classifier, and examine the connectivity according to
the label given by the classifier. Besides recognition cost,

there is also a connectivity cost to set to what extent the
hypothesis fulfills the connectivity of a symbol. We use a
tolerance to measure connectivity constraints, because we
found the binary classification is prone to errors. Both the
recognition cost and the connectivity cost are combined
together to affect the decision of the 2D-DP.

label, connectivity cost

recognition cost

valid hypothesis

symbol hypothesis

segments

raw strokes
Preprocessor

Hypothesis
Generator

Validity Testifier

Connector
Recognizer

Connectivity
Testifier

recognition cost
Connectivity

Testifier

Cost Generator

Neural Network
Classifier

Figure 1. Flow chart of the understanding system.

4. Method in details

4.1. Stroke Segmentation
As the sequential coordinates are collected, they are

segmented into lines and arcs using an HMM-based stroke
fragmentation technique. We build a model that can
represent an arbitrary stroke made up of lines and arcs, and
segmentation is done through looking for the optimal path
with the highest probability. As the model is domain-
independent, it can be easily adapted to other areas.
Besides, we take into account both the local and global
information, so the approach can handle smooth curves
properly. More details are available in [3].

Before generating the symbol hypotheses, we also
introduced pre-grouping to help decreasing the searching
space of 2D-DP. It is accomplished by merging small and
overlapped segments.

4.2. Symbol Hypothesis Generation
We need to search on the segments to generate symbol

hypotheses. If the sketch is of a large size, the searching
space will be quite important, thus resulting in a great
computational complexity. The characteristic of online
sketch understanding is that besides geometrical
information of the strokes, we also have the temporal
information that can be utilized to simplify the problem. If
symbols are not allowed to be drawn temporally
overlapped with each other (as is stated in previous works
[5] [12] [13]), 1D-DP can solve the problem properly. But

in practice, we found that it is not always the case.
Therefore, we introduced a 2D-DP approach.

2D-DP is different from 1D-DP in that it can generate
hypothesis with inconsecutive elements. With respect to
the grouping of primitives, 1D-DP can only generate
hypothesis like {Si, Si+1, Si+2,…}, with i being a temporal
index, while 2D-DP can also generate hypotheses like {Si,
Si+k, Si+k+1,…} where k > 1. In this case, we say there is a
time-jump. One main problem of using 2D-DP is the
computational complexity. This is because the introduction
of jumps will increase greatly the total number of
hypotheses. Consider a sketch with N segments after pre-
processing, the total number of hypotheses of 2D-DP will
be 2N-1. Hence, for each symbol hypothesis, we add the
following restrictions:

(1) The maximum number of segments should be less
than a fixed number. It has been set to 10 in the
proposed experiments. This is based on the
observation that most symbols in circuit diagrams are
of simple structures. For example, many people draw
a capacitor with only two lines. Resistor seems to be
the one with the maximum number of segments, but
we observed that 10 should be enough for most
circumstances.

(2) Up to 2 jumps are allowed. A larger number of jumps
would increase the searching space greatly. The
example shown in Figure 2 is composed of a
transistor symbol corresponding to the segment
sequence (S2, S3, S5, S7, S8), thus having two time
jumps. With a pure 1D hypothesis generation scheme,
it would not be possible to recover such a symbol.

Figure 2. An example of how people draw a transistor
with jumps.

(3) The distance between segments should be less than a
threshold. Since if two segments are too far away
from one another, it is less likely that they belong to
the same symbol. As for implementation, this
threshold is dynamically computed according to the
sketch.

Consider a sketch with 50 segments, without any
constraints, 2D-DP will generate O(1015) hypotheses.
Under constraint (1), the total number of hypothesis can be
decreased to C(50,10)=50!/(10!*(50-10)!)=O(107); the
same result can be achieved with constraint (2). In terms of
constraint (3), it depends. If segments of a symbol are all
close to each other in a given domain, this constraint will
help a lot. Furthermore, we can also restrict the total
number of hypotheses directly.

4.3. Symbol Recognition
Connectors and circuit components are handled

differently. A group of segments is a connector if all the
following constraints are fulfilled.

 Number of segments should be less than 3. We found
that people seldom draw a connector in many
segments. Also, this requirement can help to avoid
compressed resistors and inductors to be mis-
recognized as connectors .

 The minimum square error to fit a line should not
exceed a threshold.

 There should not be a big gap inside the
approximated result, to prevent that the two wires
connected with both sides of a capacitor are merged
together.

 The connectivity constraint of a connector should be
satisfied.

Indications that a symbol hypothesis is a circuit
component include the following:

 It does not meet the requirements of a connector.
 The NN classifier can match the group to a

component with a relative high recognition score. In
our system, only those with a normalized recognition
score greater than 0.65 are taken as actual
components, outputs of the NN being normalized
with a softmax function between 0 and 1.

 The hypothesis has fulfilled the connectivity
constraint of the component labeled by the NN
classifier.

Our approach differs from [5] in both the symbol
hypothesis generation strategy and the introduction of
tolerant connectivity constraint. Connectivity is always
used accessorily as error correction measurements, where
only some heuristic rules are presented. But here as most
hypotheses are invalid groupings and NN classifier has
poor performance for these outlier samples, so
connectivity constraint is an important measurement to
decrease errors, as well as increase the efficiency of the
2D-DP.

4.4. Connectivity Constraints
NN classifier can tell to how much extent the input can

match with one of the predefined symbols, but has less
capability to reject outliers. Also, the minimum square
approximation can figure out whether the input can be a
perfect line, but cannot distinguish a line, which would be
a part of a symbol, from a real connector.

In this paper, we introduce the connectivity constraint
measurement to help to solve this problem. In terms of
connectors, we assume that there should be at least two
symbols connected with both sides. These symbols can be
either connectors or circuit components. While as for

components, based on their types and orientations, we
have defined 13 different connectivity constraints, shown
in Table 1.

Table 1. Type of component connectivity constraints.

No. Component type Constraints
1
2
3
4
5
6
7
8
9
10
11
12
13

groundings to the left
groundings to the right
h_capacitors
groundings to the top
groundings to the bottom
v_capacitors
transistors to the top
transistors to the bottom
transistors to the left
transistors to the right
h_resistors or inductors
v_resistors or inductors
alternating current
voltages

left only
right only
left & right (s)
top only
bottom only
top & bottom (s)
top, left & right
bottom, left & right
left, top & bottom
right, top & bottom
left & right (l)
top & bottom (l)
(left & right) or
(top & bottom)

Here, all the constraints are concerning connectors. If
we consider for example constraint of type 3, we mean
there should be at least two horizontal connectors
connected at both left and right side of horizontal
capacitors, where a horizontal capacitor is a symbol with 2
parallel vertical line segments. We separate type 11 from
type 3, because as for capacitors, people generally draw
two connectors connected at the middle of its bounding
box. Hence during computation, we calculate the distance
from the endpoint of the connector to the middle point of
the bounding box of the symbol; while people usually
draw resistors or inductors with connectors in a single
stroke, therefore the connectivity constraint is not as strict
as for those capacitors.

The computation of the connectivity cost is shown in Eq.
2, where n is the number of connectivity needed, di is the
ith minimum distance according to the rules, and we use a
scalar s to normalize all these distances. This s value is
computed during preprocessing of the global sketch from
the histogram of the distances between consecutive
extrema points in both x and y.

2

1

1_
n i

i

d

s
Cost Connectivity

n =

=
⎛ ⎞∑⎜ ⎟
⎝ ⎠

 (2)

This connectivity cost will be combined with a
recognition cost to define the global cost as introduced in
Eq. 3. When dealing with connector hypothesis – left
branch of flow chart presented in Figure 1, the recognition
cost is based on the least square approximation error of the
considered points with a straight line. Negative costs have
been considered for perfect connectors, so that 2D-DP can
get the solution with as many connectors as possible.
Concerning component hypothesis – right branch of Figure

1, as the value of the winning output of the NN classifier is
not so reliable, the corresponding recognition cost will be
set to 0, meaning that only the connectivity constraints will
guide the 2D-DP, however they are computed based on the
label proposed by the symbol recognizer. The ultimate cost
for each hypothesis is calculated based on Eq. 3. Here, w is
a weighting factor, which has been set experimentally. In
our experiment, w is selected as 1.9.

_ _Cost Cost Recognition w Cost Connectivity= + × (3)

5. System evaluation

5.1. NN Classifier Training
To train the classifier, several issues have been

considered, so the recognition engine can take into account
whether or not a shape can vary according to scale, flip
and rotation. In the experiments reported here, we have
defined 9 electrical circuit components shown in Table 2.
Further, they are divided into 26 classes according to the
orientations and different connectivity requirements. A
training database of such isolated symbols has been
collected. It involved 11 people, who have drawn each 4 to
5 symbols of each type, with more or less application.
Finally, there are a total of 451 isolated symbols used to
train the classifier.

Table 2. Electric circuit components used in our
experiment.

Resistor Inductor Capacitor

AC voltage DC voltage Current

Earth ground Chassis ground Transistor

5.2. Diagram collection
To test the performance of the global system, we asked

10 subjects to draw a series of electric circuits. Note that
only one of them is also involved in sample collection of
the NN classifier training. Samples are collected using the
Anoto digital pen and paper, so that they can draw as
freely as usual. Each of them is asked to copy 10 diagrams
and the information is stored as a series of 2D coordinates.
All the schemes are selected from two electrical textbooks,
and the subjects are not told about how the system works.
As the samples are drawn on the paper, modification is not
allowed. However, if they are aware of any big mistakes,
they will have to redraw a new one.

It is very interesting to notice that people draw quite
differently. Some would like to start from left to right, and

others prefer to draw from top to bottom. Although most
participants draw symbol by symbol, they do jump from
time to time. Among the 100 diagrams we have collected,
31 sketches have time-jumps inside, where 15 are caused
by transistors. Sometimes, people even jump more then 2
times when scribing a symbol.

During sample collection, we found that due to the
problem of the sampling devices partial information has
been lost. Also, there are some noisy strokes while people
are pausing. All these make it a real big challenge to
traditional approaches. In addition to the data collection
process, we have manually segmented and labeled the
sketches to define the ground truth.

5.3. Measurements
The accuracy of a specific class is defined as the

average of the precisions of all instances, so as to make it
to be size independent. Similarly, the accuracy of each
user can be defined in the same way. The precision of one
symbol instance is computed at point-level, namely the
number of points that are correctly labeled divided by the
number of points labeled in the ground truth, shown in Eq.
4. Figure 3 provides an illustration. Here, some part of a
resistor is mis-classified as vertical connector (strokes in
yellow). Therefore, the precision of the resistor is
computed as the number of points located in red divided
by the number of points located both in yellow and in red.
After getting precisions of all the instances, precision of
the class is achieved as Eq. 5.

_ _ __
_ _

no points correctly labeledprecision instance
no points groundtruth

= (4)

1

1_ _ ()
n

i
precision class precision instance i

n =

= ×∑ (5)

Figure 3. An illustration of the computation of symbol -
level precision.

5.4. Performance Evaluation
The recognition results are presented in Figure 4. We

have achieved an average symbol-level accuracy of more
than 90% (See Figure 4a). Only for capacitors, transistors
and ac-voltages, the precisions are less than 90%. The
performance varies between users (See Figure 4b), and we
found this is also due to the mis-recognition of capacitors
and ac-voltages. In terms of ac-voltage, errors are mostly
included by the NN classifier, as it is likely to mis-
recognize ac-voltages to currents. As for capacitors, if the
user tends to draw the two poles too close, our

connectivity constraints will fail to distinguish it from
connectors.

0.75

0.8

0.85

0.9

0.95

1

1.05

conn resi indu capa tran acvo dcvo curr eart chas

 (a) Symbol-level precision.

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

(b) User-level precision.

Figure 4. Recognition results.

Out of the 100 samples, 17 are left unrecognized, among
which 2 are due to stroke segmentation errors. Since if we
mis-segment a connector, there will be no required
connectivity constraints, and the 2D-DP will fail. Most
failures are owing to the scribing errors, such as forgetting
to draw a stroke of a symbol and etc. In such circumstance,
there will be an error result provided, but they are not
included in the performance evaluation. Also, there are 2
schemes where the users do not respect the standard
connectivity constraint of transistors, which is another
cause of the recognition failure. We argue that this is based
on the consideration of the efficiency instead of the
limitation of our approach.

6. Conclusion
In this paper, we present a sketch understanding

technique that can automatically extract symbols from the
continuous stream of strokes. Unlike the previous works,
we do not insist that symbols should be drawn one by one.
The 2D-DP based symbol hypothesis generation approach
can correctly locate symbols even when they are drawn
temporally overlapped with each other. The introduction of
tolerant connectivity measurement helps to increase the
performance, and avoid errors that might be included due
to the lack of reject capability of NN classifier to the
outliers. The preliminary experiment has achieved an
accuracy of more than 90 percent.

In the future, we plan to solve problems when there is
no result provide by the 2D-DP and conduct a more
convictive evaluation of the proposed approach.

Acknowledgement
We thank the anonymous reviewers for their valuable

feedback.
This research is jointly supported by French ANR grant

CIEL 06-TLOG-009, and the Program for New Century
Excellent Talents in University of China (Project
No.NCET-04-0460)

References
[1] C. Calhoun, T.F. Stahovich, T. Kurtoglu and L.B. Kara,

''Recognizing multi-stroke symbols''. Proceedings of the
AAAI Spring Symposium on Sketch Understanding, Palo
Alto, USA, 2002, pp.15-23.

[2] G. Costagliola, V. Deufemia, G. Polese and M. Risi, ''A
parsing technique for sketch recognition system'',
Proceedings of the IEEE Symposium on Visual Languages
and Human Centric Computing, Rome, Italy, 2004, pp.19-
26.

[3] G. Feng, ''HMM-based stroke fragmentation'', Technical
Report, Ecole Polytechnique de l’Université de Nantes,
2007.

[4] M.J Fonseca, C. Pimentel and J.A. Jorge, ''Cali-an online
scribble recognizer for calligraphic interfaces''. Proceedings
of the AAAI Spring Symposium on Sketch Understanding,
Palo Alto, USA, 2002, pp. 51-58.

[5] L.M. Gennari, L.B. Kara and T.F. Stahovich, ''Combining
geometry and domain knowledge to interpret hand-drawn
diagrams'', Computers & Graphics, 29 (2005), pp.547-562.

[6] T. Hammond and R. Davis, ''LADDER, a sketching
language for user interface developers'', Computers &
Graphics, 29 (2005), pp.518-532.

[7] J. Hong, J. Landay, A.C. Long and J. Mankoff, ''Sketch
recognizers from the end-user’s, the designer’s, and the
programmer’s perspective'', Proceedings of the AAAI
Spring Symposium on Sketch Understanding, Palo
Alto,USA, 2002, pp.73-77.

[8] L.B. Kara and T.F. Stahovich, ''Hierarchical parsing and
recognition of hand-sketched diagrams'', Proceedings of the
17th annual ACM Symposium on User Interface Software
and Technology, Santa Fe, USA, 2004, pp.13-22.

[9] J. Landay and B. Myers, ''Sketching interfaces: towards
more human interface design'', IEEE Computer 34 (3),
pp.56-64, 2001.

[10] D. Rubine, ''Specifying gestures by example'', Computer
Graphics 25(4), pp.329-337, 1991.

[11] E. Saund, J. Mahoney, D. Fleet, D. Larner and E. Lank,
''Perceptual organization as a foundation for intelligent
sketch editing'', Proceedings of the AAAI Spring Symposium
on Sketch Understanding, Palo Alto，USA, 2002, pp. 118-
25.

[12] T.M. Sezgin and R. Davis, ''Temporal sketch recognition in
interspersed drawings'', Proceedings of Eurographics
Workshop on Sketch-based Interfaces and Modeling,
Riverside, USA, 2007, pp.1-8.

[13] T.M. Sezgin and R. Davis, ''Sketch interpretation using
multiscale models of temporal patterns'', IEEE Computer
Graphics and Applications. 27 (1), pp.28-37, 2007.

	Index
	ICFHR 2008 Home
	Conference Info
	Conference Committees
	Program Committee Members & Reviewers
	Welcome from the Conference Chair & Co-Chair
	Message from the Technical Program Chairs
	ICFHR08 Keynotes
	ICFHR08 Sponsors

	Sessions
	Tuesday, 19 August 2008
	S1.1-Offline Recognition
	S1.2-Classification / Decision Theory
	PS.1-Poster Session I
	S1.3-Historical Document Processing
	S1.4-Forensics

	Wednesday, 20 August 2008
	S2.1-Segmentation
	S2.2-Arabic Related
	S2.3-Multilingual Recognition
	PS.2-Poster Session II
	S2.4-Applications

	Thursday, 21 August 2008
	S3.1-Writer Identification
	S3.2-Online Recognition
	S3.3-Classification / Decision Theory
	PS.3-Poster Session III

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	Handwriting Recognition Techniques
	Preprocessing and Segmentation Techniques
	Classifiers and their Combinations
	Multiple Sources and Multiple Experts
	Innovative Approaches in Handwriting Recognition
	Soft Computing for Handwriting Processing and Understan ...
	Systems and Architectures
	Error Reduction and Performance Enhancement
	Writer Verification and Identification
	Motor Models for Writing and Drawing
	Human Reading Models and Psychological Aspects
	Document and Image Retrieval Techniques
	Handwritten Annotations in Documents
	Forensic Studies and Security Issues
	Multimedia Systems
	WWW Applications
	PDA and Remote Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Guihuan Feng
	Zhengxing Sun
	Christian Viard-Gaudin

