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Abstract 
 

A difficult task of a sketch understanding system is that 
it should always try to balance between the drawing 
freedom and the complexity of recognition. Most online 
existing works are based on the assumption that people 
will not start to draw a new symbol before the last one has 
been finished. As obviously it is not always the case, we 
propose in this paper a method which relaxes this 
constraint. The proposed methodology relies on a two-
dimensional dynamic programming technique (2D-DP) 
allowing symbol hypothesis generation, which can 
correctly locate symbols even when they are drawn 
temporally overlapped with each other. A neural network 
classifier, embedded in the 2D-DP, is used to label each 
hypothesis. Besides, tolerant connectivity constraints are 
introduced to help increasing the performance as well as 
the efficiency. Experiments show that this novel approach 
achieves an accuracy of more than 90 percent. 

Keywords: Sketch understanding, electric circuit diagram, 
two-dimensional dynamic programming. 

1. Introduction 
It is a quite well-known proverb “a picture is worth a 

thousand words”, which means that sketches or graphics 
are more expressive compared with only texts or words. 
Besides, sketches are widely used in engineering and 
architecture fields. This is mainly due to the fact that a 
sketch is a convenient tool to catch rough idea, so that the 
designers can focus more on the critical issues rather than 
on the intricate details [1].  

The emergence of Tablet PCs, digital pens and papers, 
and electronic whiteboards allows to record such hand-
drawn sketches as online information. Again, with the 
development of human-computer interaction, artificial 
intelligence and some other technologies, there is an 
increased interest in sketch understanding. Lots of fields 
are concerned with sketches. In this paper, we focus 
especially on hand-drawn electric circuit diagrams. 

A difficult task of a sketch understanding system is that 
it should always try to balance between the drawing 
freedom and the complexity of recognition. Generally, the 

more freely the system can endure, the more difficult 
sketch understanding will be. As for the drawing issues, 
they can be divided into three different levels, i.e. sketch-
level variance, symbol-level variance and stroke-level 
variance. With respect to sketch-level, we mean symbols 
can be drawn in different order. Consider circuit diagrams 
for example, some would like to draw in the order of 
“connector-component-connector”, while others prefer to 
finish all the components at first, and then complement 
with the connectors. At the same time, symbols can even 
be drawn temporally overlapped with each other, which 
means that sometimes people start a new symbol before he 
or she finishes the last one. Furthermore, different user can 
draw the same symbol very differently; even for the same 
user, the drawing style will vary from time to time. At last, 
not only one stroke can contain several symbols, but also 
one symbol can be made up of many strokes, which we 
call the multi-symbol strokes and the multi-stroke symbols. 
All these uncertainties have made sketch understanding a 
great challenge. 

In order to solve the problems mentioned above, a 
successful sketch understanding system should at least 
have the following parts. First, stroke segmentation is used 
to divide strokes into smaller but more meaningful units, 
namely primitive segments; second, symbol hypothesis 
generation is included to try to group the segments in some 
specific way, so that each group can match to a symbol in 
a given domain; at last, a robust symbol recognition is 
needed so as to adapt to the great variability of different 
user drawing styles. 

The paper is organized as follows. We first discuss the 
related works in Section 2. In Section 3, we give a brief 
introduction of our approach, and some more detailed 
information is illustrated in Section 4. In Section 5, we 
discuss about the performance of our approach. Finally, 
the conclusion is proposed in Section 6. 

2. Related works 
At the early stage of sketch understanding, symbols are 

segmented manually by pressing a button or pausing for a 
long time before the start of a new symbol. More efforts 
are focused on the recognition of isolated symbols [10][4]. 



 

Right now, researchers are working on the automatic 
parsing of the continuous input, so that people can express 
their ideas more freely. Structural or syntactic methods are 
the most frequently used approaches in sketch 
understanding. Such methods represent objects in terms of 
their structure, such as constitutional components and their 
relationships. Hammond and Davis [6] propose a sketching 
language LADDER, which can automatically generate a 
sketch interface based on the user defined description of 
shapes in a given domain. The limitation lies on that their 
approach can only describe regular shapes without too 
much detail. Our system performs well even when symbols 
are drawn with over-traced strokes. Costagliola et al. [2] 
propose a Left-Right based parsing approach. The rank 
value of each candidate is computed by combining the 
accuracy of both stroke types and relations. So it has the 
disadvantage of the dependence on preprocessing. Our 
approach is inspired from their work to introduce tolerance 
in relationship measurement. But our symbol recognizer is 
more robust to noises and errors produced by segmentation. 

Sim-U-Sketch is a sketch-based interface for Simulink 
package [8]. The system provides a hierarchical “mark-
group-recognize” sketch understanding architecture, and a 
domain-independent, trainable symbol recognizer that can 
learn new definitions from a single prototype. Their 
approach is not suitable for electric circuit diagram in that 
it is guided from marker symbols.  

Gennari et al. [5] employ ink density to enumerate 
candidate symbols, and domain knowledge is introduced to 
prune away invalid symbols. But their work is based on 
the assumption that the user finishes drawing one symbol 
before drawing a wire or another component, while our 
approach can correctly locate symbols even when they are 
drawn temporally overlapped with each other.  

Segzin and David [12] [13] make use of the temporal 
information and present a parsing technique based on 
multi-scale models. Compared with other methods, its 
main advantage is the high efficiency. And the 
disadvantage is that it depends too much on the drawing 
style.  

Saund et al. [11] present a system that uses Gestalt laws 
to locate salient objects. Their approach concerns only the 
grouping of strokes and no symbol recognition is included. 
It seems to be more suitable for the recognition of texts 
instead of diagrams. 

3. System overview 
3.1. The Intuition 

Sketch is generally made up of some basic elements, 
namely symbols in a given domain. The problem is that 
while scribing, all the strokes are input continuously. 
People will not pause between symbols, or when pausing, 
it does not always mean the start of a new symbol. Besides, 
there is no any prior knowledge about the constitution of 

the sketch, which is the main difference between the 
recognition of a sketch and that of the isolated symbols. So 
we can not simply match the input with some predefined 
templates. 

In terms of strokes, we mean the sequence of points that 
is recorded between a pen-down and pen-up. Due to the 
noisy and inaccuracy inherence, before parsing we first 
divide strokes into perceptually salient segments. A 
symbol hypothesis is a set of segments grouped together 
under some hypothesis generation approach. For each of 
these hypotheses, symbol recognition is performed, and a 
cost as well as a label is assigned. The bigger the cost is, 
the less likely the hypothesis can be a real symbol. 
Therefore, if we consider Γ to be all the possible ways to 
do segment grouping, then sketch understanding aims at 
finding the one at the minimum expense. It can be 
formulized as Eq. 1, where L is one of the possible parsing 
solutions.  

arg min( | , )
L

cost Sketch L
∈Γ

∑                      (1) 

3.2. Flow Chart 
There are two kinds of strategies to do sketch 

understanding. One is the immediate feedback, which 
means once a stroke is drawn, sketch understanding will 
start. The advantage of such strategy is that user can view 
the recognition results in real-time. But it will, to some 
extent distract the user during the design task [7]. Again, 
due to the lack of complete drawing context, such methods 
always need to add constraints to the drawing style of 
some specific symbol. In this paper, we adopt another 
strategy, i.e. lazy feedback, which means sketch 
understanding starts only after the whole sketch has been 
finished. We believe that the global context can help to 
increase the performance and decrease the ambiguity, 
while at the same time do not interfere with the users. 
Furthermore, this strategy is well suited for digital pen and 
paper solution, where no immediate feedback is available 
for the user. 

Figure 1 gives an illustration of the overall process of 
our sketch understanding technique. Raw strokes are 
firstly sent to the pre-processor to be divided into segments. 
Next, we use a two-dimensional dynamic programming 
(2D-DP) approach to manage segment grouping. But only 
those that can pass the validity test are valid hypotheses. 
The validity testifier is used to eliminate those groupings 
having other segments falling inside. This is based on the 
assumption that symbols will not be drawn spatially 
overlapped with each other. Later sketch understanding 
goes on two paths. We check first if the hypothesis can be 
recognized as a connector, and if the connectivity 
constraints of a connector are satisfied. For those that are 
not connectors, we will pass them to a Neural Network 
(NN) Classifier, and examine the connectivity according to 
the label given by the classifier. Besides recognition cost, 



 

there is also a connectivity cost to set to what extent the 
hypothesis fulfills the connectivity of a symbol. We use a 
tolerance to measure connectivity constraints, because we 
found the binary classification is prone to errors. Both the 
recognition cost and the connectivity cost are combined 
together to affect the decision of the 2D-DP. 
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Figure 1. Flow chart of the understanding system. 

4. Method in details 

4.1. Stroke Segmentation 
As the sequential coordinates are collected, they are 

segmented into lines and arcs using an HMM-based stroke 
fragmentation technique. We build a model that can 
represent an arbitrary stroke made up of lines and arcs, and 
segmentation is done through looking for the optimal path 
with the highest probability. As the model is domain-
independent, it can be easily adapted to other areas. 
Besides, we take into account both the local and global 
information, so the approach can handle smooth curves 
properly. More details are available in [3]. 

Before generating the symbol hypotheses, we also 
introduced pre-grouping to help decreasing the searching 
space of 2D-DP. It is accomplished by merging small and 
overlapped segments. 

4.2. Symbol Hypothesis Generation 
We need to search on the segments to generate symbol 

hypotheses. If the sketch is of a large size, the searching 
space will be quite important, thus resulting in a great 
computational complexity. The characteristic of online 
sketch understanding is that besides geometrical 
information of the strokes, we also have the temporal 
information that can be utilized to simplify the problem. If 
symbols are not allowed to be drawn temporally 
overlapped with each other (as is stated in previous works 
[5] [12] [13]), 1D-DP can solve the problem properly. But 

in practice, we found that it is not always the case. 
Therefore, we introduced a 2D-DP approach. 

2D-DP is different from 1D-DP in that it can generate 
hypothesis with inconsecutive elements. With respect to 
the grouping of primitives, 1D-DP can only generate 
hypothesis like {Si, Si+1, Si+2,…}, with i being a temporal 
index, while 2D-DP can also generate hypotheses like {Si, 
Si+k, Si+k+1,…} where k > 1. In this case, we say there is a 
time-jump. One main problem of using 2D-DP is the 
computational complexity. This is because the introduction 
of jumps will increase greatly the total number of 
hypotheses. Consider a sketch with N segments after pre-
processing, the total number of hypotheses of 2D-DP will 
be 2N-1. Hence, for each symbol hypothesis, we add the 
following restrictions:  

(1) The maximum number of segments should be less 
than a fixed number. It has been set to 10 in the 
proposed experiments. This is based on the 
observation that most symbols in circuit diagrams are 
of simple structures. For example, many people draw 
a capacitor with only two lines. Resistor seems to be 
the one with the maximum number of segments, but 
we observed that 10 should be enough for most 
circumstances. 

(2) Up to 2 jumps are allowed. A larger number of jumps 
would increase the searching space greatly. The 
example shown in Figure 2 is composed of a 
transistor symbol corresponding to the segment 
sequence (S2, S3, S5, S7, S8), thus having two time 
jumps. With a pure 1D hypothesis generation scheme, 
it would not be possible to recover such a symbol.   

 

Figure 2. An example of how people draw a transistor 
with jumps. 

(3) The distance between segments should be less than a 
threshold. Since if two segments are too far away 
from one another, it is less likely that they belong to 
the same symbol. As for implementation, this 
threshold is dynamically computed according to the 
sketch. 

Consider a sketch with 50 segments, without any 
constraints, 2D-DP will generate O(1015) hypotheses. 
Under constraint (1), the total number of hypothesis can be 
decreased to C(50,10)=50!/(10!*(50-10)!)=O(107); the 
same result can be achieved with constraint (2). In terms of 
constraint (3), it depends. If segments of a symbol are all 
close to each other in a given domain, this constraint will 
help a lot. Furthermore, we can also restrict the total 
number of hypotheses directly. 



 

4.3. Symbol Recognition 
Connectors and circuit components are handled 

differently. A group of segments is a connector if all the 
following constraints are fulfilled. 

 Number of segments should be less than 3. We found 
that people seldom draw a connector in many 
segments. Also, this requirement can help to avoid 
compressed resistors and inductors to be mis-
recognized as connectors . 

 The minimum square error to fit a line should not 
exceed a threshold.  

 There should not be a big gap inside the 
approximated result, to prevent that the two wires 
connected with both sides of a capacitor are merged 
together. 

 The connectivity constraint of a connector should be 
satisfied.  

Indications that a symbol hypothesis is a circuit 
component include the following:  

 It does not meet the requirements of a connector. 
 The NN classifier can match the group to a 

component with a relative high recognition score. In 
our system, only those with a normalized recognition 
score greater than 0.65 are taken as actual 
components, outputs of the NN being normalized 
with a softmax function between 0 and 1. 

 The hypothesis has fulfilled the connectivity 
constraint of the component labeled by the NN 
classifier. 

Our approach differs from [5] in both the symbol 
hypothesis generation strategy and the introduction of 
tolerant connectivity constraint. Connectivity is always 
used accessorily as error correction measurements, where 
only some heuristic rules are presented. But here as most 
hypotheses are invalid groupings and NN classifier has 
poor performance for these outlier samples, so 
connectivity constraint is an important measurement to 
decrease errors, as well as increase the efficiency of the 
2D-DP. 

4.4. Connectivity Constraints 
NN classifier can tell to how much extent the input can 

match with one of the predefined symbols, but has less 
capability to reject outliers. Also, the minimum square 
approximation can figure out whether the input can be a 
perfect line, but cannot distinguish a line, which would be 
a part of a symbol, from a real connector.  

In this paper, we introduce the connectivity constraint 
measurement to help to solve this problem. In terms of 
connectors, we assume that there should be at least two 
symbols connected with both sides. These symbols can be 
either connectors or circuit components. While as for 

components, based on their types and orientations, we 
have defined 13 different connectivity constraints, shown 
in Table 1. 

Table 1. Type of component connectivity constraints. 

No. Component type Constraints 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

groundings to the left 
groundings to the right 
h_capacitors 
groundings to the top 
groundings to the bottom 
v_capacitors 
transistors to the top 
transistors to the bottom 
transistors to the left 
transistors to the right 
h_resistors or inductors 
v_resistors or inductors 
alternating current 
voltages 

left only 
right only 
left & right (s) 
top only 
bottom only 
top & bottom (s) 
top, left & right 
bottom, left & right
left, top & bottom 
right, top & bottom
left & right (l) 
top & bottom (l) 
(left & right) or 
(top & bottom) 

Here, all the constraints are concerning connectors. If 
we consider for example constraint of type 3, we mean 
there should be at least two horizontal connectors 
connected at both left and right side of horizontal 
capacitors, where a horizontal capacitor is a symbol with 2 
parallel vertical line segments. We separate type 11 from 
type 3, because as for capacitors, people generally draw 
two connectors connected at the middle of its bounding 
box. Hence during computation, we calculate the distance 
from the endpoint of the connector to the middle point of 
the bounding box of the symbol; while people usually 
draw resistors or inductors with connectors in a single 
stroke, therefore the connectivity constraint is not as strict 
as for those capacitors.  

The computation of the connectivity cost is shown in Eq. 
2, where n is the number of connectivity needed, di is the 
ith minimum distance according to the rules, and we use a 
scalar s to normalize all these distances. This s value is 
computed during preprocessing of the global sketch from 
the histogram of the distances between consecutive 
extrema points in both x and y.  

2

1

1_
n i

i

d

s
Cost Connectivity

n =

=
⎛ ⎞∑⎜ ⎟
⎝ ⎠

                   (2) 

This connectivity cost will be combined with a 
recognition cost to define the global cost as introduced in 
Eq. 3. When dealing with connector hypothesis – left 
branch of flow chart presented in Figure 1, the recognition 
cost is based on the least square approximation error of the 
considered points with a straight line. Negative costs have 
been considered for perfect connectors, so that 2D-DP can 
get the solution with as many connectors as possible. 
Concerning component hypothesis – right branch of Figure 



 

1, as the value of the winning output of the NN classifier is 
not so reliable, the corresponding recognition cost will be 
set to 0, meaning that only the connectivity constraints will 
guide the 2D-DP, however they are computed based on the 
label proposed by the symbol recognizer. The ultimate cost 
for each hypothesis is calculated based on Eq. 3. Here, w is 
a weighting factor, which has been set experimentally. In 
our experiment, w is selected as 1.9.  

_ _Cost Cost Recognition w Cost Connectivity= + ×    (3) 

5. System evaluation 

5.1. NN Classifier Training 
To train the classifier, several issues have been 

considered, so the recognition engine can take into account 
whether or not a shape can vary according to scale, flip 
and rotation. In the experiments reported here, we have 
defined 9 electrical circuit components shown in Table 2. 
Further, they are divided into 26 classes according to the 
orientations and different connectivity requirements. A 
training database of such isolated symbols has been 
collected. It involved 11 people, who have drawn each 4 to 
5 symbols of each type, with more or less application. 
Finally, there are a total of 451 isolated symbols used to 
train the classifier.  

Table 2. Electric circuit components used in our 
experiment. 

Resistor Inductor Capacitor 

 
  

  
AC voltage DC voltage Current 

 

 

 

 

 

 
Earth ground Chassis ground Transistor 

      
 

5.2. Diagram collection 
To test the performance of the global system, we asked 

10 subjects to draw a series of electric circuits. Note that 
only one of them is also involved in sample collection of 
the NN classifier training. Samples are collected using the 
Anoto digital pen and paper, so that they can draw as 
freely as usual. Each of them is asked to copy 10 diagrams 
and the information is stored as a series of 2D coordinates. 
All the schemes are selected from two electrical textbooks, 
and the subjects are not told about how the system works. 
As the samples are drawn on the paper, modification is not 
allowed. However, if they are aware of any big mistakes, 
they will have to redraw a new one. 

It is very interesting to notice that people draw quite 
differently. Some would like to start from left to right, and 

others prefer to draw from top to bottom. Although most 
participants draw symbol by symbol, they do jump from 
time to time. Among the 100 diagrams we have collected, 
31 sketches have time-jumps inside, where 15 are caused 
by transistors. Sometimes, people even jump more then 2 
times when scribing a symbol.  

During sample collection, we found that due to the 
problem of the sampling devices partial information has 
been lost. Also, there are some noisy strokes while people 
are pausing. All these make it a real big challenge to 
traditional approaches. In addition to the data collection 
process, we have manually segmented and labeled the 
sketches to define the ground truth. 

5.3. Measurements 
The accuracy of a specific class is defined as the 

average of the precisions of all instances, so as to make it 
to be size independent. Similarly, the accuracy of each 
user can be defined in the same way. The precision of one 
symbol instance is computed at point-level, namely the 
number of points that are correctly labeled divided by the 
number of points labeled in the ground truth, shown in Eq. 
4. Figure 3 provides an illustration. Here, some part of a 
resistor is mis-classified as vertical connector (strokes in 
yellow). Therefore, the precision of the resistor is 
computed as the number of points located in red divided 
by the number of points located both in yellow and in red. 
After getting precisions of all the instances, precision of 
the class is achieved as Eq. 5.  

_ _ __
_ _

no points correctly labeledprecision instance
no points groundtruth

=   (4) 

1

1_ _ ( )
n

i
precision class precision instance i

n =

= ×∑     (5) 

 

Figure 3. An illustration of the computation of symbol -
level precision. 

5.4. Performance Evaluation 
The recognition results are presented in Figure 4. We 

have achieved an average symbol-level accuracy of more 
than 90% (See Figure 4a). Only for capacitors, transistors 
and ac-voltages, the precisions are less than 90%. The 
performance varies between users (See Figure 4b), and we 
found this is also due to the mis-recognition of capacitors 
and ac-voltages. In terms of ac-voltage, errors are mostly 
included by the NN classifier, as it is likely to mis-
recognize ac-voltages to currents. As for capacitors, if the 
user tends to draw the two poles too close, our 



 

connectivity constraints will fail to distinguish it from 
connectors.  
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(b) User-level precision. 

Figure 4. Recognition results. 

Out of the 100 samples, 17 are left unrecognized, among 
which 2 are due to stroke segmentation errors. Since if we 
mis-segment a connector, there will be no required 
connectivity constraints, and the 2D-DP will fail. Most 
failures are owing to the scribing errors, such as forgetting 
to draw a stroke of a symbol and etc. In such circumstance, 
there will be an error result provided, but they are not 
included in the performance evaluation. Also, there are 2 
schemes where the users do not respect the standard 
connectivity constraint of transistors, which is another 
cause of the recognition failure. We argue that this is based 
on the consideration of the efficiency instead of the 
limitation of our approach. 

6. Conclusion 
In this paper, we present a sketch understanding 

technique that can automatically extract symbols from the 
continuous stream of strokes. Unlike the previous works, 
we do not insist that symbols should be drawn one by one. 
The 2D-DP based symbol hypothesis generation approach 
can correctly locate symbols even when they are drawn 
temporally overlapped with each other. The introduction of 
tolerant connectivity measurement helps to increase the 
performance, and avoid errors that might be included due 
to the lack of reject capability of NN classifier to the 
outliers. The preliminary experiment has achieved an 
accuracy of more than 90 percent. 

In the future, we plan to solve problems when there is 
no result provide by the 2D-DP and conduct a more 
convictive evaluation of the proposed approach.  
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