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Abstract : A synthesis of all the analytical expressions of 
the interaction energy, force components and torque 
components is presented. It allows the analytical 
calculation of all the interactions when the magnetizations 
are in any direction. 

The 3D analytical expressions are difficult to obtain, 
but the torque and force expressions are very simple to 
use.  

1. Introduction 
The analytical expressions are a very powerful and a 

very fast method to calculate magnetic interactions. It is 
why the analytical expressions of all the interactions, 
energy, forces and torques between two cuboïdal magnets 
are very important results [1] – [7]. Many problems can be 
solved by the addition of element interactions. The 
simpler shape of elementary volume is the parallelepiped, 
with its cuboïdal volume. It is why many 3D calculations 
can be made by the way of 3D interactions between two 
elementary magnets of cuboïdal shape.  

Until a recent time, only the force components 
between two magnets with their magnetization direction 
parallel to one edge of the parallelepipeds have been 
analytically solved [1]. Two new results have been 
recently obtained: 
- the torque between two magnets [8], 
- the force components and torque when the directions of 
the magnetization are perpendicular [9] – [12].  

 
Figure 1: basic geometrical disposition 

 
Consequently, by combining parallel and 

perpendicular magnetization directions, the interaction 
energy and all the components of force and torque can be 
calculated by fully analytical expressions, for any 
magnetization direction, and for any relative position 

between the two magnets. The only two hypotheses are 
that the magnets own a cuboïdal shape (Figure 1), and 
they are uniformly magnetized. 

To complete the results, the field and induction 
analytical calculation are given in Annex by using the 
same parameters. 

2. The basic mathematical model 
The interactions between two parallelepiped magnets 

are studied. Their edges are respectively parallel (Fig. 1). 
The magnetizations J and J’ are supposed to be rigid and 
uniform in each magnet. The dimensions of the first 
magnet are 2a x 2b x 2c, and its polarization is J. Its center 
is O, the origin of the axes Oxyz. For the second magnet, 
the dimensions are 2A x 2B x 2C, its polarization is J’, and 
the coordinates of its centre O’ are (α, β, γ). The side 2a is 
parallel to the side 2A, and so on. The magnet dimensions 
are given on Table 1.  

Table 1: Magnet dimensions and position 
Axis Ox Oy Oz 
First Magnet (J) 2a 2b 2c 
Second Magnet (J’) 2A 2B 2C 
Second Magnet Position O’ α β γ 
The magnetization directions shown on Figure 2 

correspond to the case when the polarizations J and J’ 
have the same direction, parallel to the side 2c. Note that 
the calculation stays valid when they are in opposite 
direction; only the expression sign is reversed. The 
polarizations J and J’ are supposed to be rigid and uniform. 
They can be replaced by distributions of magnetic charges 
on the poles. It is the coulombian representation of the 
magnetization. 

Their density σ is defined by nJ
rr

⋅=σ . On the 
example of Figure 2, since J is perpendicular to the 
surfaces 2a x 2b and oriented to the top, these faces wear 
the density σ = +J on the upper face (North Pole), and σ = 
-J on the lower face (South Pole). All the analytical 
calculations have been made by successive integrals. We 
have determined the scalar potential created by one 
charged surface. From this scalar potential, the induction 
components can be obtained by derivation. For the whole 
magnets, we have calculated the interaction energy. The 
forces and the torques can be deduced by linear and 
angular derivation. The most difficult analytical 
calculation is the interaction energy in 3D. It is made by 
four successive integrations. The first one gives a 
logarithm function. In the second one, you have two 
logarithm and two arc-tangent functions. The last one 
owns many complex functions based on logarithm and 
arc-tangent functions. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Magnet configuration 
 with parallel magnetization directions 

3. Interaction energy calculation for parallel 
magnetization directions 

The interaction energy in a system of two magnets with 
parallel magnetization directions (Fig. 2) is given by: 
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The obtained expressions of the interaction energy are: 
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4. Force calculation for parallel magnetization 
directions 

From the interaction energy, the force components can 

be obtained by EdagrF
rr

−= . Consequently the force 
components are: 
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The components Fx, Fy and Fz are respectively given by 
using fx, fy and fz: 
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5. Interaction energy calculation for 
perpendicular magnetization directions 

With applying the same procedure to magnets with 
perpendicular magnetization (Fig. 3), we obtain for 
energy: 
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Figure 3 – Magnet configuration with perpendicular 
magnetization direction 

The obtained expressions of the interaction energy are: 
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The four secondary variables U,V,W,r are the same 

6. Force calculation for perpendicular 
magnetization directions 

From the gradient of energy the force components are: 
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The components Fx, Fy and Fz are respectively given by 
using fx, fy and fz: 
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7. Inclined magnetization 
When one of the two magnetization directions is 

inclined (Fig.4), it can be decomposed as the sum of 
parallel and perpendicular case. The whole energy and the 
forces can be calculated by addition of the interactions 
between the magnetization components.  

All the energy and force components can be obtained 
with the previous expressions. 
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Figure 4 – Inclined case configuration 

8. Torque component calculation for parallel 
magnetization directions 

  
 
 
 
 
 
 
 
 
 
 

Fig. 5: Torque components and corner position 
 

The first magnet of centre O is supposed to be fixed. 
The second magnet is submitted to a torque T for a 
movement around its centre O’, which components are tx, 
ty and tz (Fig. 5). 

By starting directly from the magnet dimensions and 
positions, the torque is given by: 
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9. Torque component calculation for 
perpendicular magnetization directions, and 
inclined magnetization 

For the torque calculation, it is important to observe the 
energy expression. The interaction energy E depends on 
the value of the polarization of each magnet and on a 
geometrical analytical expression which is only function 
of the magnet corner position. Consequently each corner 
wears a part of the global interaction energy. The scalar 
value of the energy of each corner Ec can be easily 
calculated; the global interaction energy on the magnet is 
the sum of the 8 contributions of the magnet corners. On 
Fig 4 each corner is defined by its coordinates for the Ec 
calculation, for example (1,0,0) means j=1, l=0 and q=0. 

The torque expressions can be derived from the force 
components, exactly from the corner force Fc. The result 
can be written as a vector product: 
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For all the cases (for any magnetization direction in the 
space, and for any relative position between the two 
magnets) the torque can be obtained by the same method. 
The only two hypotheses remain that the magnets own a 
cuboïdal shape, and they are uniformly magnetized. 

10.  Stiffnesses 
In many systems, the operation is characterized by the 

force variation or by the torque variation. As example in a 
magnetic coupling, the angular stiffness Kq is an 
important parameter. In a permanent magnet radial 
bearing, the restoring force is proportional to the radial 
displacement and the proportionality coefficient is the 
radial stiffness Kr. 

All these stiffnesses can be easily calculated from the 
force and torque analytical expressions. The stiffnesses 
are the first derivates as function of the linear or angular 
displacement; they can be easily expressed by analytical 
formulation. 

11. Conclusion 
All the analytical expressions of the interaction energy 

between two cuboïdal magnets and all the force 
components and torque components are given in the paper. 
The only hypotheses are that the magnets own a 
parallelepiped shape with parallel edges. All the 
interactions between two elementary magnets represented 
by the 6 components (force Fx, Fy, Fz and torque tx, ty and 
tz) can be calculated by simple analytical expressions.  

Many problems can be solved by these results. The 
simpler shape of elementary volume is the parallelepiped, 
with its cuboïdal volume. By the superposition of 3D 
interactions between elementary magnets, many 3D 
calculations can be made. These results allow calculating 
not only the direct interaction of permanent magnets, but 
also many other devices including soft magnetic materials, 
and currents. As example, iron yokes can be taken into 
account by image effect. 
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Annex: Magnetic induction created by a 
permanent magnet 

Let us consider a rectangular surface 2a x 2b, wearing a 
uniform pole density σ (Fig. A1). We will calculate the 
scalar potential in the point P, which coordinates are (X, Y, 
Z). 

The scalar potential V is given by: 
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After two analytical integrations, we obtain: 
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Figure A1 – Geometrical disposition for the potential 
 and the field calculation 

From the analytical expression of the scalar potential, 
the magnetic field H can be easily calculated by 
derivation. 
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By adding the field created by the two surfaces, we 
obtain the field created by a cuboïdal magnet (Fig. A2). 

 
 
 
 
 
 
 
 
 
 

Figure A2 – Magnetic induction created by a magnet 
The geometric parameters are shown on Fig. A2. 

Intermediary variables are:  

axU i
i )1(−−= ;   byV j

j )1(−−=  and czW k
k )1(−−=  

           
222

kji WVUr ++=
        

The magnetic field and induction components are given 
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