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Analytical Calculation of Cuboidal Magnet Interactions in 3D
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Topics : Analyses of EM field and force field — Metl: Permanent Magnets

Abstract : A synthesis of all the analytical expressions of between the two magnets. The only two hypotheses ar

the interaction energy, force components and torquehat the magnets own a cuboidal shape (Figurert), a

components is presented. It allows the analyticalthey are uniformly magnetized.

calculation of all the interactions when the magpagions To complete the results, the field and induction

are in any direction. analytical calculation are given in Annex by usitig
The 3D analytical expressions are difficult to dfpta same parameters.

but the torque and force expressions are very sit®l 5 The pasic mathematical model

use. . The interactions between two parallelepiped magnets
1. Introduction are studied. Their edges are respectively pardlgl 1).

The analytical expressions are a very powerful@and The magnetizations J and J’ are supposed to leb aiil
very fast method to calculate magnetic interactidhs uniform in each magnet. The dimensions of the first
why the analytical expressions of all the intei@us magnet are 2a x 2b x 2¢, and its polarization lis &enter
energy, forces and torques between two cuboidahetag is O, the origin of the axes Oxyz. For the secomdjmet,
are very important results [1] — [7]. Many problecas be  the dimensions are 2A x 2B x 2C, its polarizat®d’j and
solved by the addition of element interactions. Thethe coordinates of its centre O’ artef§, v). The side 2ais
simpler shape of elementary volume is the pargips, parallel to the side 2A, and so on. The magnet dgioas
with its cuboidal volume. It is why many 3D caldidas are given on Table 1.

can be made by the way of 3D interactions betwaen t Table * Magnet dimensions and position
elementary magnets of cuboidal shape. Axis Ox Oy Oz

Until a recent time, only the force components | First Magnet (J) 2a 24 2¢
between two magnets with their magnetization dioect Second Magnet (J’) 2A 2B 2C
parallel to one edge of the parallelepipeds havenbe | Second Magnet Position O] « B Y
analytically solved [1]. Two new results have been The magnetization directions shown on Figure 2
recently obtained: correspond to the case when the polarizations JJand
- the torque between two magnets [8], have the same direction, parallel to the side Zitehat
- the force components and torque when the dinegttd  the calculation stays valid when they are in opjosi
the magnetization are pezrpendicular [9] -[12]. direction; only the expression sign is reversede Th

polarizations J and J’ are supposed to be rigidugifdrm.
They can be replaced by distributions of magndtarges
on the poles. It is the coulombian representatibthe
magnetization.

Their densityo is defined by? = J[ | On the
example of Figure 2, since J is perpendicular te th
surfaces 2a x 2b and oriented to the top, thess faear
the densitys = +J on the upper face (North Pole), and
-J on the lower face (South Pole). All the anabftic
calculations have been made by successive inteikas
have determined the scalar potential created by one
charged surface. From this scalar potential, tdedtion
components can be obtained by derivation. For thelev
magnets, we have calculated the interaction enditgg.
forces and the torques can be deduced by linear and
angular derivation. The most difficult analytical
calculation is the interaction energy in 3D. lmgade by
four successive integrations. The first one gives a
logarithm function. In the second one, you have two
logarithm and two arc-tangent functions. The lasé o
owns many complex functions based on logarithm and
arc-tangent functions.

Figure 1: basic geometrical disposition

Consequently, by combining parallel and
perpendicular magnetization directions, the intéoac
energy and all the components of force and torginebe
calculated by fully analytical expressions, for any
magnetization direction, and for any relative gosit
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5. Interaction energy calculation for
perpendicular magnetization directions
With applying the same procedure to magnets with

> perpendicular magnetization (Fig. 3), we obtain for
. energy:

v
N

~

o)

Figure 2 — Magnet configuration -
with parallel magnetization directions i 2A

3. Interaction energy calculation for parallel |
magnetization directions ;

The interaction energy in a system of two magnéts w ,’)HJ@
parallel magnetization directions (Fig 2) is givmn b R N7

SRR P fdy [dx [dy([L1d
= e Sy fav ox oo ar

with T =V@ X=X +(B+Y =y +(y+(-) C—(-1°0)”

The obtained expressions of the interaction enargy Figure 3 — Magnet configuration with perpendicular
J Jaldld magnetization direction
z‘z ‘2 ‘E ‘z ‘z :( ])'+1+k+'+p+q 1,0(U“ AV ,V\{)q, r) The obtained expressions of the interaction enargy
71§ i=0 j=0k=01=0 p=0q=0 JU' +ikH +pH
Wlth ZZZZZZ( YU Vo Wy )

/I =0 j =0k =01 =0 p=0g=0

2 _ 2 2 _ 2
WUV W) =win(r ~u) +wln(r V) W|th
V(VZ-3U2 WW? -3U2
+UVW Dg_l(u\xj %(U 2 2o ZWZ) t//(U,V,W,r)=Mln(w+r)+Mln(\/+r)
. u 4 24 UV L(VW

Bhe_s;icznci;rx va(lngti)ides are: + 6(3/ tg ( m)+3N tg (WE}U tg (U @D

i~ - v VW
V :ﬂ-l-(—l)lB—(—l)kb +UVW|n(‘U+r)+ 3

ki

= y+(=D)°C - (-1)Pc The four secondary variablésV,W,rare the same

. UZ+VZ+W2 6. Force calculation for perpendicular

with N ; magnetization directions
4. Force calculation for parallel magnetization From the gradient of energy the force componers ar
directions I e

__q\itjtkH+ptq i V
4y i:OjZOk:OIZOpZOq:O( Y ¢(U”’ Kb "

be obtained bylE =-grad E Consequently the force ~ The components,FF, and F; are respectively given by

From the interaction energy, the force componeats ¢

components are: usinggy, ¢y ande;:
il @, (U, V,W,r)=-VW In(r ~U) +VU In(r +W)+WU In(r +V)
(_])|+]+kﬂ+p+q.¢(uij VW, Lo r _ gtg _1[ VW j_ ﬁtg _1[UW ] NE _1[ ]
4 1= k=0 = p=0a0 2 ua) 2 vir) 2

The components,FF, and F; are respectively given by, u.v.w, r)—wln(r +W)=UW In(r -U)-UV Og° [ ]
usingey, ¢y, ande,:

2 1

1
2
1
W?) uv 2
aU, VWr)—TIn(r -U)+UVIn( -V) +VWig? wi s Ud

@,(U,V,W,r) = ﬁ—)nr+v) UV In(r -u)- UWDg[ J >

2 7. Inclined magnetization

When one of the two magnetization directions is
inclined (Fig.4), it can be decomposed as the sdim o
parallel and perpendicular case. The whole enendytize
forces can be calculated by addition of the intéoas
between the magnetization components.

All the energy and force components can be obtained
with the previous expressions.

b2-w

g U VW)= ; 2)in(r—v)+UV|n(r— )+UWEtg(U\é)+§VDi

@U,V,W,r) =-UWIn(r —U)-VWIn( -V) +uwng{%j -Wit
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Iy J NI 9. Torque component calculation for
J — — — £ perpendicular magnetization directions, and
-

inclined magnetization

Z — For the torque calculation, it is important to atveethe
— —|_ energy expression. The interaction energy E depends
E, the value of the polarization of each magnet andaon
X | f f geometrical analytical expression which is onlydtimn
of the magnet corner position. Consequently eacheco
Figure 4 — Inclined case configuration wears a part of the global interaction energy. $talar
; value of the energy of each corney &an be easily
8. ;Oargﬁgtézwgsg?rztcgaolﬁslatlon for parallel calculated; the global i_nter_action energy on thgmed is
the sum of the 8 contributions of the magnet canén
Fig 4 each corner is defined by its coordinatestierg
calculation, for example (1,0,0) means j=1, I=0 gr0.

(100 The torque expressions can be derived from theeforc
1,01 components, exactly from the corner forge Fhe result
Y can be written as a vector product:
(0,01) - .
Ty A-D") (Fe(ila)

=ZZZ B(-1)' || F(j.l.q)
" r, | le(-0T) (F,(.a)

For all the cases (for any magnetization directiothe
Fig. 5: Torque components and corner position space, and for any relative pOSition between the tw
magnets) the torque can be obtained by the santeothet
The first magnet of centre O is supposed to bedfixe The only two hypotheses remain that the magnets awn
The second magnet is submitted to a torque T for acuboidal shape, and they are uniformly magnetized.
movement around its centre O’, which components,are .
7, and, (Fig. 5). 10. Stiffnesses
By starting directly from the magnet dimensions and  In many systems, the operation is characterizeithdy

positions the torque is given by: force variation or by the torque variation. As exéenn a
r 111 magnetic coupling, the angular stiffness, K an
E E EZZZ( D'ﬂwwq E(U.J, Vi W, ) important parameter. In a permanent magnet radial
7R i0j=0k=01=0p=000 bearing, the restoring force is proportional to thdial
For each torque component the expression is giyen b displacement and the proportionality coefficienttfie
( 1c? -we)+ 2-1) va)ln(r -v) radial stiffness K
All these stiffnesses can be easily calculated fthen
U(( )CV+( )BW)'n(r—U) force and torque analytical expressions. The siiffes

u( (-1Fcw+ (1) Bv)mg_l(uv) L(_(_l)qcv_z(_l)i BW) are the first derivates as function of the lineaaogular

2 displacement; they can be easily expressed by tigaly
( CEﬁv Wz) AUW)In(r _v) formulation.

+v(( 1°cu +(-1)'A w)in(r -V) 11. Conclusion

r All the analytical expressions of the interactiowe gy
] d ] .
+V(( few-(-1)'A U) [WDJ 5((—1)CDU+2(—1) AW) between two cuboidal magnets and all the force
components and torque components are given inaperp
I, —*(“ B -w?)+ 2-1) AUV)in(r -U) The only hypotheses are that the magnets own a
, . parallelepiped shape with parallel edges. All the
( ) ALE -we)+ (-1) Ay -w ))'”(r -V) interactions between two elementary magnets repiese

uv 1 i by the 6 components (force, F, F, and torquer,, 7, and
W)_E((_l) B +(-1) AW’)Dj 7,) can be calculated by simple analytical expression

N E (—1)’UW)[ﬂg'1(
Many problems can be solved by these results. The

with always: v . simpler shape of elementary volume is the paraipt,
Uy=a+(D'A-(-D'a with its cuboidal volume. By the superposition d 3
V, = B+(-1) B-(-1)*b interacti'ons between elementary magnets, many 3D
calculations can be made. These results allow lzdiog
g =V +(DC-(-D)°c not only the direct interaction of permanent magnbtit
also many other devices including soft magneticeniaits,
andr = U P +v,§+wWz and currents. As example, iron yokes can be takem i

account by image effect.
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Annex: Magnetic
permanent magnet

Let us consider a rectangular surface 2a x 2b,ingar
uniform pole densityo (Fig. A1). We will calculate the
scalar potential in the point P, which coordinates(X, Y,
2).

The scalar potential V is given by:

AT, °g HF il
By using the cartesian coordinates, it is equiviaien
b a 1
W2 (y-y)P + 2

induction created by a

V= dx

pe

H =-grad (V)
H can be expressed as:
—ZZ( 1) £(Ui,Vj,W)
o i=0 j=0
4 UV
g,=I(-v) & =Inc-U) £=19 (g

By adding the field created by the two surfaces, we
obtain the field created by a cuboidal magnet (&&).

v

@c/// / 1/

Figure A2 — Magnetic induction created by a magnet
The geometric parameters are shown on Fig. A2.
Intermediary variables are:

U, =X_(_1)ia; = y_(_l)jb ande =Z—(—1)kC

r=,u? +V12 + W2
The magnetic field and induction components aremgiv

by :

H=
Ay i =
g ShShY i+j+k
B=y,H :fZZZ( DUV W)
V) e

l.D1H oo

Incheon, Korea
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