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UNIFORM ESTIMATES FOR TRANSMISSION PROBLEMS WITH HIGH
CONTRAST IN HEAT CONDUCTION AND ELECTROMAGNETISM

GABRIEL CALOZ, MONIQUE DAUGE, VICTOR PERON

ABSTRACT. In this paper we prove uniform a priori estimates for traission problems
with constant coefficients on two subdomains, with a spegigbhasis for the case when
the ratio between these coefficients is large. In the mogtqfahe work, the interface
between the two subdomains is supposed to be Lipschitz. ¥tesfirdy a scalar transmis-
sion problem which is handled through a converging asyrnpsaries. Then we derive
uniform a priori estimates for Maxwell transmission praohlset on a domain made up of
a dielectric and a highly conducting material. The techaigubased on an appropriate
decomposition of the electric field, whose gradient parstgwated thanks to the first part.
As an application, we develop an argument for the convergehan asymptotic expansion
as the conductivity tends to infinity.

1. INTRODUCTION

The goal of our work is to derive uniform a priori estimates i@nsmission problems
in media presenting high contrast in their material prapsrtWe investigate in particular
the heat transfer equation

(1.1) divagrad ¢ = f
and the Maxwell equations given by Faraday’s and Ampeasis |
(1.2) curl E — iwpuoH =0 and  curlH + (iweg — 0)E =j.

Here, a represents the heat conductivity amdhe electrical conductivity. We assume
that these equations are set in a dom@imade up of two subdomairf3, and€)_ in
which the coefficienta andg take two different valueg:,, a_) and(o,, o_), respectively.
These equations are complemented by suitable boundarytiomsd Our interest is their
solvability together with uniform energy or regularity iesates, namely

e when the ratida_|/|a | tends to infinity in the case of edL.()
e wheno, = 0 (insulating or dielectric material) and = ¢ tends to infinity (highly
conducting material) in the case of ed.4).

We address different, though connected, issues for thesprivblems, namely the issue
of uniform piecewise regularityn Sobolev norms for solutions of equation {.1), and the
issue ofuniformL? estimatedor the electromagnetic fiel(E, H) solution of systemX(.2).
None of these questions have obvious answers, all the mace sie do not assume that
the interface: betweerf), and()_ is smooth.

Our whole analysis is valid under the only following assuimpbn the interface

(1.3) ¥ is a bounded Lipschitz surface Ry.
1
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In the Maxwell case, similar estimates as ours are obtaindd]j but under a stronger
regularity assumption oR. Our approach differs, being based on a decomposition of the
electric field given in §]. The gradient part of the decomposition is handled thratigh
uniform regularity estimates proved for equatidnij.

The paper is organized as follows. In sectibwe introduce the notations and give the
main results. In sectioB we prove uniform piecewisH > estimates for solutions of the
scalar interface probleml (1) with exterior Dirichlet or Neumann boundary conditions.
In section4 we prove uniform estimates for the electromagnetic fi@dH) solution of
the Maxwell system.2) when the conductivityr of the conducting part is high. We
conclude our paper in secti@by an application of the previous uniform estimates to the
convergence study of an asymptotic expansion as the cantlypyténds to infinity.

2. NOTATIONS AND MAIN RESULTS

Let © be a smooth bounded simply connected domaifinwith boundaryos?, and
) CC Q be a Lipschitz connected subdomairtpfwith boundary3®. We denote by,
the complementary @i _ in €2, see figurdl.

FIGURE 1. The domain and its subdomainQ, and{2_

We denote by ™ () the restriction of any functiom to 2, (©2_).

2.1. Scalar problem. We consider both Dirichlet and Neumann external boundangico
tions associated with equatioh.{) and introduce the functional spaces suitable for their
variational formulationp = H{(2) for Dirichlet andVy = {¢ € H'(Q)| [, ¢ dx = 0}

for Neumann. For any given functien= (a., a_) determined by the two constants on

2. and in either casé{ = Vy or V = 1p) the variational problem is: Fingd € V' such
that

(2.1) Yy eV, / a Vot - Vit dx +/ a_Vyo -V dx =
Q4

_/Qf@dx+(a+—a)/zgwds,

where the right-hand sidgf, ¢) satisfies the regularity assumption
(2.2) fel?(Q) and gel?X)
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and the extra compatibility conditions
(2.3) /fdx:O and/gdSZOifV:VN and /gds:OifV:VD.
Q P P

Our main result in the scalar case is the following piece\ldi%é a priori estimate, uniform
with respect to the ratip := a_(a)~!. It applies both to Dirichlet and Neumann boundary
conditions.

Theorem 2.1.Let us assume that, # 0. There exist a constapt > 0 independent of .
suchthatforalla_ € {z € C||z| > pola |}, the problem(2.1) with data( f, ¢g) satisfying
(2.2)-(2.3) has a unique solutiop € V/, which moreover is piecewid#*/> and satisfies
the uniform estimate

(2.4) le™ s, + lle7lz0- < Co(lasl I flloe + llgllos)
with a constant’,, > 0, independent af,, a_, f, andg.

This statement is proved in the next section using an asytogxpansion forp with
respect to the powers pf ! = a, (a_)~!. The estimateZ.4) will be a consequence of the
convergencef this series in the piecewid&/2-norm.

Remark2.1 The estimated.4) is uniform for fixeda, when|a_| tends to infinity. The
roles ofa, anda_ can be exchanged and an estimate similatd) proved. In fact, there
holds a more precise estimate whereanda_ play symmetric roles, see Propositi8r3s.

Remark2.2. In the Neumann case, the compatibility conditiods3( are necessary for the
right hand side of problen®(1) to be compatible for all values ¢f._, a ), because of the
factor (e, — a_) in front of the integral ort. If this factor is replaced by, then, under

the weaker conditions

(2.5) —/fdx+/gd3:0 if V=V and nothing ifV =15,
Q b

the problem 2.1) is still solvable forp large enough, see Propositidri

Remark2.3. The assumption that is Lipschitz is necessary: There exist non-Lipschitz
interfaces such that estimat2.4) does not hold. In two dimensions of space, such an
example is provided by the checkerboard configuration {€igy cf. [5, Theorem 8.1].

FIGURE 2. A non-Lipschitz interfac&
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Remark2.4. If the Lipschitz interface: is polyhedral there hold uniform piecewisg?®
estimates fos < sy with some2 < sy, < 2, cf. [14, Ch. 1,§1.5]:

(2.6) le™ lls.or + 07 s < Cop (las T flls—2i0 + ll9lli—z 5)-

This is a consequence of our proof in combination with alligistimates in polyhedral
domain, cf. p]. In particular, ifY contains some edge, thep < 2.

Remark2.5. If the interfaceX is smooth there hold uniform piecewisd?® estimates for
anys > 2:

(2.7) le™ lls.or + e s < Cop (las T flls—zi0 + ll9lli—z 5)-

This is again a consequence of our proof in combination wahdard elliptic estimates,
cf. [1] for instance.

2.2. Maxwell problem. We consider two types of boundary conditions to complement
the Maxwell harmonic equation&.Q) on 0<): Either the perfectly insulating conditions

(2.8a) E-n=0 and Hxn=0 on 09,
wheren denotes the outer normal vector, or the perfectly condgaonditions
(2.8b) Exn=0 and H-n=0 on 09Q.

In both cases, for the conductivity= (0, o), we can prove uniform a priori estimates for
the electromagnetic field as— oo provided the following condition on limit problems in
the dielectric parf), is valid:

Hypothesis 2.2.The angular frequency is not an eigenfrequency of the problem
curl E —iwpogH =0 and curl H + iwegE =0 in Qy

(2.9) Exn=0 and H-n=0 on X
(2.89 or (2.8b on 0.

Our main result for Maxwell equations is the following a priestimate, uniform as
o — oo. The right hand sidgis chosen to belong iH (div, ©2) or Hy(div, 2) where:

(2.10a) H(div,Q) ={u e L*(Q)| divuel*Q)} with L*Q)=L*Q)*
(2.10b) Hy(div,Q) = {u € H(div,Q) | u-n=0 on 0Q}.
Theorem 2.3. Under Hypothesi®.2, there are constants, and C' > 0, such that for

all 0 > o0y, the Maxwell problen{1.2) with boundary condition2.89 and dataj <
H,(div, Q) has a unique solutiofE, H) in L?(2)?, which satisfies:

(2.11) IEllo.c + [Hlloo + Vo [[Ello.o- < Cllillmiv.)-
A similar result holds for boundary conditiofi8.8b) and dataj € H(div, 2).

This theorem is proved in sectigh It is based in particular on a decomposition of the
electric field into a regular fieles in H!(Q2) and a gradient field@ ¢ for which Theorem
2.1will be used.
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3. PROOF OF UNIFORM SCALAR REGULARITY ESTIMATES

3.1. The problem. Under the assumptions of Theoréirl, we normalize the equations
by dividing bya,. Denoting the quotient_(a,)~! by p, and still denoting by the new
right hand side (i.e., the old one divided hy), we can write problem2.1) in the form of
the following transmission problem

( pAp~ = f- in Q_

Ap* = f* in Q,
(3.2) o~ = 7 on X
Onp™ —pOap~ = (1—p)g on X

[ (b.c.) on 0N

whereg, denotes the normal derivative (inner for, outer for(2, ). The external boundary
conditions (b.c.) are either Neumann or Dirichlet condisio

Our method of proof for Theore 1 consists in the determination of a series expansion
in powers ofp~* for ¢ solution of @.1): We are looking for solutions in the form of power
series

iﬁ p " in Qy
n=0

i o, p " in Q_.
n=0

Since the expansions are different according to the boyratarditions, we treat first the
Neumann case in subsecti8r? and the Dirichlet case in subsecti8r8. We prove com-
plementary results in subsecti@r.

(3.2) =

3.2. Neumann external b.c. Inserting the ansatZ3(2) in the system3.1), we get the
following families of problems, coupled by their conditean::

(3.3) {Acpo_ = 0 in Q.
Onpg = g on X
and
Agf = f+ in Q
(3.4) Ys = @ on ¥
Ohed = 0 on 99
and fork € N* (hered,, is the Kronecker symbol)
(3.5) {?‘p’; B 5’%{ Lo
Wy = —0,9+ 0w, ON X
and
Apf = 0 in Qp
(3.6) ¢r = @, on %

oy = 0 on 0Q.
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Thus we alternate the solution of a Neumann problenf2inand a mixed Dirichlet-

Neumann problem if2, . Since we have assumed thats a Lipschitz surface, we have a

precise and optimal functional framework to describe tlogsrators and their inverse.
We need the notations (< 2)

(3.7) HY(U,A) == {p e H(U) | Ap € L2(U)}.

Using [9, cor. 5.7] (see alsd3] for a similar context) with the fact that is Lipschitz, we
obtain the following equalities between space$nn

(3.8a) {p e HYQ,A), dup|, € LA(D)} = H:(Q_,A)
(3.8b) {p e HY(Q,A), |, e H(D)} = HI(Q_,A)
and on2,

(393.) {30 S Hl(QJmA)v 30‘2 S H1<2)7 &190’39 S LQ(aQ)} = H%(QJHA)
(39b) {90 S Hl(Q-HA)v an(plz < LQ(E)v (’0’89 € Hl(aﬁ)} = H%(Q-HA)

As a consequence of the previous equalities, the followefgdions for the resolvent
operatorgR _ andfR, make sense and define bounded operators:
e R_ is the resolvent of the Neumann problem¢en

(3.10) %,:{(F,G)eL?(Q,)xLQ(z)\ / Fdx+/

_ %

Gd:s:()}

— {@eH%(Q_,AH /(I)dx:O}

whered = R_(F, G) satisfiesA® = F'in Q_ andg,® = G on, and
e M. is the resolvent of the Dirichlet-Neumann problem(an

(3.11) N, : {(F, H) € 12(Q,) x Hl(z)} L H3(Q,,A)
where® = R, (F, H) satisfiesA® = F'inQ,, ® = H on¥ andd,® = 0 on 2.
A further consequence of equaliti€s§)-(3.9) is that the following trace operators make
sense and define bounded operators:
e <0 is the Dirichlet trace or from insideQ)_: ¢~ — ¢~ |x and is bounded
(3.12) T H2(Q_,A) — HYY)
e T! is the Neumann trace dn from inside(2,: ¢* — J,¢™|s and is bounded

(3.13) TLOHR(QL,A) —  LA(Y)

Note that none of the two operatd€$ or € is bounded ing(Qi, A) is replaced by the
larger spacéls ().
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3.2.1. Discussion of elementary problemBhe Neumann problenB(3) admits the solu-
tion o5 = MR_(0, g), since the compatibility conditiorf, ¢ ds = 0 holds by assumption.
We have the estimate

(3.14) 165 30 a) < C-llgllos

where(C'_ is the operator norm of the operatar .
Thusy; belongs td?(2_, A). Hence its trac&” ;= ¢ |5 belongs ta!(3). Next,

problem @.4) admits the solutionoy = R, (f*, g |s), andy; belongs toH? (2, A)
with the estimates

(3.15) 168 g3 0 a) < Co (17 o, + i ).

Here(', is the operator norm of the operatsr, .
Then we continue with problem8.6) and (3.6) in a similar way, the only point to
discuss being the compatibility condition in the Neumarobpegm G.5).

Lemma 3.1. The Neumann proble(3.5) is compatible.

Proof. Fork = 1, we must show that
(3.16) frdx+ / (—g + Onpg)ds =0.
Q_ P
According to 8.4), Ayl = f, in Q. andd,pi = 0 0ndS. Integrating by parts, we get

/6ng08L ds = frdx.
2 o

Thus, we deduce from hypothesis3) the compatibility condition3.16).
Fork > 2, let us assume that the tersj , was built. We must show that

(3.17) / Ol ds =0.
5

According to 8.6), Ay, , = 01in Q, andd,p, ; = 0 ondN. Integrating by parts i,
we get 3.17). O

Consequently, for alk > 1, the Neumann problen8(5) admits the solutiorp, :=
R_(6;f,—0kg + T i ). Theny, belongs toHz (Q_, A) with the estimates

318) ekl < C (OIS loas + lgllos) + 10neiillos ).
Finally problem 8.6) admits a unique solutiop;” € He (Q4, A) with the estimate

(3.19) 68l a) < Collei s

In (3.18 and @.19, the constanté’_ andC', are the same as i8(14 and 3.15.
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3.2.2. Uniform estimatesLet C° andC! > 0 be the operator norms of the Dirichlet and
Neumann traceS® and¥!, respectively cf.§.12 and @.13. We seta = C.C°C_C",
with the constantg’, in (3.19 andC'"_ in (3.14). According to 8.18 and @.19, we see
by an induction om € N* that

[y
(3.20) HE(@-4)
168 I 0.,

<am 1||so;||H%(Q N

Let p > 0 such thap,'a < 1. Then, for allp € C such thatp| PO, the series of general

termsp "y, etp "y converge respectively |H2(Q,,A) andH2 2(Q,,A). We denote
by ¢(,) the sum of these series. Moreover, normal convergence mageic with common
ratio |p

321) 1 s @ a) S

| ||go(p)||H§(Q+ p SO 1 6T g o) + 198 It i, )
According to 8.18 for £ = 1, and @3.14-(3.15 for k = 0,
(322) 67 a0 < C- (I loa- + lgllos + C'Cy (I f o, + C°Cglos) ).
With (3.14), (3.19), (3.21) and @.22), we deduce the uniform estimate fiar > po
(3.23) leiyllz . + leg)lls o < Cloo) (1fllog + llgllox)-

3.2.3. Proof of Theoren2.1in the Neumann caseBy constructiony,, is solution of the
problem B.1). Hence,) € H'(Q2). Setting

1
Plp) = Plo) —  J, 7o (x) dx

2 0t g a + 190 o a

we obtain a solutiop = <p’p of the variational problem2(1), which moreover satisfies
estimates.23), hence estimate2 (4).

It remains to prove that the solution of the variational peob (2.1) is uniquewhen
lp| = po. Letp, € V be solution of problem2.1) for such g and forf = 0, g = 0:

(3.24) Vi €V, / a, Vol vyt dx+/ a Ve, -V dx = 0.
Q. _

On the other hand, the power series construction yieldsidisok), of problem @.1) with
a- instead ofu.. and withf = ¢,, g = 0 (note that these data satisfy assumpti®g)):

(3.25) Vo eV, / E+V¢j-V¢+dx+/ a_Vi, - Ve dx = —/cp*de,
QL Q

Taking the conjugate oB(25 for ¢ = ¢, and @.24) for ¢ = 1),, we find

/go*@dx:o.
Q

Hence the uniqueness, which concludes the proof of The@rém
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3.3. Dirichlet external b.c. HereV = H}(©2). When we consider the boundary condition
¢ = 0 on 9o in problem B.1), a similar construction can be done. However, we need
a special care to treat the compatibility condition$lin. Starting from the same Ansatz
(3.2, we get

Ap, = 0 in Q_
(3.26) { Yo
8n()00 = g on X
and
Apg = [+ in Q,
(3.27) of = ¢y on X
o = 0 on o0
and fork = 1,2, ...
Ap, = 8 f~ in Q_
(3.28) { Pr e N
Onhpy, = —0,9+ 0w, , On X
and
(3.29) o = ¢ on X
oy =0 on 99.

3.3.1. Discussion of elementary problemiset ¢, < H%(Q_, A) be the solution of the
Neumann problen3(26) under the conditiorf,, ¢; dx = 0. Here we still keep a constant

to be adjusted; we call ;. Theny, = @, + ¢, will be determined once, is fixed and
(3.27) will give a uniquep; € H2 (2, A).

We consider now3.28 for & = 1, which is a Neumann problem with the compatibility
condition

f‘dx+/(—g+8ng08L)ds:O
Q_ >

and sincef;, gds = 0, it reads

(3.30) / Ot ds = — [ fdx.
2 Q_
But now we choosef = ¢} + ¢y where
Agg = fy in Q4
(3.31) % = % on X
o = 0 on 9.
and
(3.32) v o= 1 on X%

v o= 0 on Of.
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with

(3.33) co = (/ R ds+/ s dx // B ds.

Clearly gy € H%(Q+, A) is uniquely determined by3(31), ¢ by (3.32), and¢, by (3.33
sincefE Ont» ds # 0 (principle of maximum).

Thus we have completely determinggl = 3, +co € H2 (Q_, A) andy = @i +cot) €
H3 (€2, A). Moreover the choice af; gives the compatibility conditior8(30 of problem
(3.28 for k = 1.

Again we takep; = @y + 1 € H2(Q_, A), with 7 uniquely determined by3(28)
with & = 1 under the conditiorf;, ¢y dx = 0. Theny! = @f +c1v € H2(Q4, A), with
@7 uniquely determined by3(29 with ¢ = ¢, on¥ and

(3.34) 0 =— / Bapt ds / / Bt ds.
by by

We can continue this iterative process to construct theesemps{y, }r>o C H%(Q,, A)
and{<p }k>0 C H (Q+7 A)

3.3.2. Proof of Theoren2.1in the Dirichlet case.The absolute convergence of the series

> k>0 pFpin H (Q+, A) is obtained like in the Neumann case. The proof of the unique-
ness of solutions to problerd.Q) in the Dirichlet case is also similar to the Neumann case.

3.4. Complements. In this subsection we give some complementary results pshar
more general than those of Theorém.

3.4.1. Uniform estimates fop — ¢,. As a consequence of the boun8s20), we have

p—po=) np "
n=1

and we deduce the following estimate between the solutiah V' of the problem 2.1)
and the solutionp, of the limit problem ag tends to infinity.

Theorem 3.2. Let us assume that, # 0. There exist a constan > 0 independent
of a, such that for alla_ € {z € C||z| >
problem(2.1) with data( f, g) satisfying(2.2-(2.3 converges in the piecewi$®/? norm
to the solutionp, of the limit problem ag tends to infinity, with the uniform estimate

(3:35) ot —eillza, +ll¢™ —wollza. < Culol™ (lar I floo + llgllosx)
with a constant’,, > 0, independent Ozi+, a_, f,andg.

In this context, the above result gives sharper estimases[& where we find a charac-
terization of limit solutions and strong convergence ressidr similar (and more general)
problems.

Likewise, an estimate of the remainder at any order is valid:

K K
et =D @i s, +le™ =Y enp "z < Coolol ™ (lar] I flloa+llglos)
n=1 n=1
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3.4.2. Uniform estimates whem_ anda, play symmetric rolesThe framework of The-
orem2.1can be extended so that anda. play symmetric roles, and so that the contri-
butions of the norm§ f~||o.o_ and|| f*|lo,o, are optimally taken into account in the right
hand side of estimates. For this, we require the followirgyagotions

(3.36a) /fdx:/gds:o it V =Ty
Q by

(3.36b) ffdx= [ f~dx= / gds=0 if V=15 and |a_|> |a,]|
O, o >

(3.36¢) no condition  if V =1p and |a_| < |ay|.

Proposition 3.3. Let us assume that, # 0. There exist a constant > 0 such that for
all couples(a_, a) such that
ja_| = polas| or |ai| > pola_|

the problem(2.1) with data(f, g) satisfying(3.36 has a unique solutiop € V', which
moreover is piecewisd®/? and satisfies the uniform estimate

) 15 oo . 1 la
@3N l¢lla, + e lya < Cn :

_'_
o] [

T ngo,z)

with a constant’,, > 0, independent af,, a_, f, andg.

Proof. 1) Let us first prove estimat&37) in the Neumann case and when the modulus of
p = a_(a, )"l is large enough. After the change of défag) — (a;'f,g) as explained
at the beginning of subsecti@l, proving estimate3.37) reduces to show

(3-38) oy llzo, +llegyllzas < Cloo) (I I oo + 1/ gy + llgllos).

instead of 8.23 (note that the new factdp~| in front of || f~||o.o_ is equal tda.|/|a_]).
Estimate 8.39 is in fact a mere consequence of estimag&1) and 3.22, where we
take advantage of the presence of the fagtot| in front of the norm||¢; ||H%(Q A) of p;

in (3.21).
2) Still in the Neumann case, but when= a, (a_)~' is large enough, the sequence of
problems to be solved is now

(3.39) ohed = g on X

Ohpg = 0 on 909

Ap, = - in Q_
(3.40) { #o / .

©o = ¥ on X
and fork = 1,2, ...

Agi = oI in o

(3.41) Onpr = —0hg+0npr, ON X

o = 0 on 99N.
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{A(pk = 0 in Q_

(3.42) ,
Pk = ¢, on %

The compatibility of the right hand sides of problen®&39 and @.41) in 2, can be
checked by arguments similar to those used in the case when )~! is large § 3.2.1).
The estimate can be proved similarly.

3) Inthe Dirichlet case, ifa_| >> |a.|, under assumptior8(36hH, we see that in3.33),

we simply have
co = —/8.1@3(15/ /8n1/1ds.
P P

Thus f~ does not influence,, and we have estimates like i8.21) with the factor|p™!]|

in front of |]<p1‘HH%(Q_7A). We deduce estimat&.37) like in the Neumann case.

4) Finally, in the Dirichlet case, ifa_| << |a,|, none of the elementary problems is of
Neumann type. Hence no compatibility condition is requiaed we can prove estimate
(3.37) as previously. O

The compatibility conditions2.3) (and a fortiori 3.3639-(3.36h)) are not necessary for
the solvability of problemZ.1): For Neumann exterior boundary condition, the necessary
and sufficient condition is

_/Qfdx—i-(aJr—a)/ngs:O.

It depends on coefficients,. If we want to have the compatibility of the right hand side
for any value of the coefficients. we can either assum&.@) or replace the coefficient in
front of the integralf, by 1, defining the new problem

(3.43) Vb €V, /

Q4

(J,+V§0+‘ VEerX —+ /

Q

a_Vy - Vi dx = —/ fdx +/ g ds.
_ Q %
Proposition 3.4. If we assume the compatibility conditions
(3.44) —/fdx+/gds:0 if V.=Vy and nothing ifV = 1p,

Q %

then problem(3.43 is uniquely solvable if the modulus pf= a_(a, )~ is large enough
and its solution satisfies the uniform estimate

— -1
Itz o, + o720 < Crolasl ™ (Iflog + gllos) -

Remark3.1 We pay the weaker assumption on the data by a weaker estimag\ge
have the same estimate for solutions of probl8mJ as for solutions of problen®(1): In
problem @.1) the interface datum i§i, — a_)g (the coefficienta, — a_| tends to infinity
as|p| — oo) whereas the interface datum of probleB@) is g alone.

Proof. The construction of the terms of the series expansion idairas in the proof of
Theorem2.1 Now we havep, = 0 in the Neumann case, agg = c, in the Dirichlet
case. U
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4. PROOF OF UNIFORM ESTIMATES FORMAXWELL SOLUTIONS AT HIGH
CONDUCTIVITY

We consider now the harmonic Maxwell systetn?] at a fixed frequency satisfying
Hypothesi2.2. We are going to prove the following sequence of statements:

Lemma 4.1. Under Hypothesi&.2, there are constants, andC, > 0 such that ifoc > o
any solution(E, H) € L?(Q2)? of problem(1.2) with boundary conditior{2.89 and data
j € Hy(div, ) satisfies the estimate

(4.1) [Ello.c < Collillaiv.0)-
A similar statement holds for boundary conditiq@s8b) and dataj € H(div, Q2).

This lemma is the key for the proof of Theoréh8and is going to be proved in the next
subsection, using in particular our uniform estimates m gbalar case (this is the main
difference with the proof of Theorem 2.1 iri]). As a consequence of this lemma, we will
obtain estimates2(11):

Corollary 4.2. Leto > 0. Let(E, H) € L?(Q2)? be solution of probler(i.2) with boundary
condition(2.89 and dataj € Hy(div, Q2). If E satisfies estimatgt.1), then setting

Cr =14 (14 wpo)v Co+ (1 + wy/cott0)Co,
there holds
(4.2)  |E[log + [ curl E[log + || div(iwey — 0)Ellon + Vo [[Elloa. < Cilljllaiv.0)-
A similar estimate holds for boundary conditiof2s8b) and dataj € H(div, Q).
Finally, estimate4.1) implies existence and uniqueness of solutions.

Corollary 4.3. Leto > 0. We assume that estimgte 1) holds for any solutioflE, H) €

L2(92)? of problem(1.2)-(2.89 with j € Hy(div, Q). Then for anyj € Hy(div, 2), there
exists a unique solutio(E, H) € L?(2)? of problem(1.2)-(2.89. A similar result holds
for boundary condition$2.81) and dataj € H(div, Q).

The previous three statements clearly imply TheoBeBnTo prepare for their proofs, we
recall variational formulations in electric field for the Maell problem (.2) with bound-
ary condition 2.8b) or (2.89, cf. [13] for instance. Let
(4.33) H(curl, Q) = {u € L*(Q) | curlu € L*(Q)}

(4.3b) Hy(cur, ) = {fu e H(cuwr,2) | uxn=0 on 0Q}.

If (E,H) € L?*(Q2)? is solution of (.2)-(2.89, thenE € H(curl, 2) satisfies for alE’ €
H(curl, Q):

(4.4) /(curlE-curlE—mQE-E) dx—iua/ E-de:iy/j-gdx
Q Q

where we have set = w, /oo andv = wypy. If boundary conditionsZ.8b) are consid-
ered, therE € Hy(curl, Q) and @.4) holds for anyE’ € Hy(curl, Q).
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4.1. Proof of Lemma 4.1: Uniform L? estimate of the electric field. Reductio ad ab-
surdum: We assume that there is a sequéBge H,,) € L*(22)?, m € N, of solutions of

the Maxwell systemX.2)-(2.89 associated with a conductivity,, and a right hand side
jm c Ho(diV, Q)

(4.5a) curl E,, — iwpoH,, =0 in Q.
(4.5b) curl H,, + (iweg — g,,)Emn =13,, In
(4.5¢) H,xn=0 on 00,
satisfying the following conditions

(4.6a) O — 00 as m — oo,
(4.6b) |Emllon =1 Ym € N,
(4.6c) lim lE(@iv0) — 0 asm — oo.

Note that the external boundary conditiBp, - n = 0 on 0% is but a consequence of the
equation ¢.5b), the boundary conditior{ 59 and the conditiofj- n = 0 on 92 contained
in the assumption tha}, belongs taH(div, 2).

We particularize the electric variational formulatioh4) for the sequenc€E,,}: For
all E' € H(curl, Q):

4.7) /(CuﬂEm-CU_ﬂE—I{QEm-E) dx—il/am/ Em-de:iy/jm-de.
Q Q

ChoosingE’ = E,, in (4.7) and taking the real part, we obtain with the help of conditio
(4.6 the following uniform bound on the curls

(4.8) [curl By flo.o < &+ y/[limlloo-

4.1.1. Decomposition of the electric field and boundHr. We recall that we have as-
sumed that the domain is simply connected and has a smooth connected boundary. Re-
lying to Theorem 2.9 and Theorem 3.12 itj,[we obtain that for alh € N there exists a
uniquew,,, € H'(Q2)3 such that

(4.9) curlw,, = curlE,,, divw,,=01in @, and w,,-n=0 on 9.
Moreover, we have the estimate
(4.10) Winll1.0 < C| curl Ep,lloq,

whereC' is independent ofi. As a consequence of the equatityl w,,, = curl E,,, and the
simple connectedness Qf we obtain that there exists, € H'(Q2) such that

(4.12) E,=w,+Vy,.
We write equation4.5b) as
curl H,, + (iweg — a,,,) Wo, + Vor,) = j,-
Lety € H'(Q) be a test function. Multiplying the above equality ¥y and integrating
over(), we obtain, using thativ w,,, = 0:

(4.12) /(iwso—gm) wm-v@dx:—/divjmadx—am/wm-n}Z P ds.
Q Q b
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Note that the boundary valuesrl H,, - n = 0 andj,, - n = 0 on9f2 have been used here.
Thuse,, is solution of the Neumann problem defined by the variatieqalation 4.12).
Since

divj,, € L*(Q) and / divj,, dx = / jm -nds =0,
Q )
and
w,,-n€L*X) and /wm : "’2 ds = / divw,, dx =0,
= -

the Neumann problem defined b¥.12 satisfies the assumptions of Theor@m with
a_ = iweg — o, anda, = iweg. Therefore we have the following uniform estimate for
o, large enough (i.e. fom large enough, cf.4.69)

lemllz o, + lemlls o < Colll divinlloe + 1w - nllox).

Since||lw,, - n|o x is bounded byjw,, |1 o, the above inequality implies

(4.13) lemlls o) + lemllz o < Co(lldivi,lloo + [wnlle).
Finally (4.60, (4.9), (4.10 and @.13 implies that
(4.14) lemlls o) + lemllz o+ IWmllo < B

for a constanf3 > 0 independent ofn. With (4.11), (4.14) gives that the sequend&,, }
is bounded irHz on€2_ and€,:

IELl o, + IELll 0 < B.
Combining the above bound with @), we obtain the uniform bound
(4.15) IEL s 0, + IERll 0 + [l curl Exlloe < C.

4.1.2. Limit of the sequence and conclusiohhe domains$.. being bounded, the embed-
ding of Hz () in L2(.) is compact. Hence as a consequencetdfd, we can extract
a subsequence dfE,,} (still denoted by{E,,}) which is converging ifL?(f2). By the
Banach-Alaoglu theorem, we can assume that the sequeridg,, is weakly converging
in L?(2): We deduce that there B € L?(2) such that
curl E,,, — curl E in L2(Q)

(4.16) { E, —E in L2(Q).
A consequence of the strong convergenc&if2) and @.6b) is that||E|jon, = 1. Using
Hypothesis 2.2), we are going to prove th& = 0, which will contradict|E||, o = 1, and
finally prove estimate4.1).

Taking imaginary parts ir4.7) whenE,, is the test-function, then letting — +oc and
using @.69 we get||E||o o = 0. Hence,

(4.17) E=0 in Q_.
Let us introduce the space
Hy(curl, 24,%) :={u e H(cur,2;) | uxn=0 on X}.
In particular, ¢.17) implies thatE™ := E ]m belongs taH(curl, Q2 , 3).
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Let® € Hy(curl, 2., %). Then the extensiod, of by 0 on2_ defines an element of
H(curl, Q). We can use, as test function in4.7) and we obtain

/ (curl E,, - curl® — K°E,, ~5) dx = iy/ im - P dx.

Q. Q.

According to .16 and @.69, taking limits asm — +oo, we deduce from the previous
equalities

(4.18) / (curlE™ - curl ® — k’E" - @) dx =0,
Q4

i.e., Et € Hy(curl,Q,,Y) satisfies 4.18 for all ® € Hy(curl, 2., Y). Integrating by
parts we find (withd the tangential part ob on 0¢2)

(cwrlET, curl @)oo, = (curlcurl ET, @)y, — (curlE* x n, &1) 90.

Thus we have

curlcurl E" — k2EY = 0 in Qy
(4.19) E" xn = 0 on %
curl ET x n = 0 on 0f).
SettingH" := (iwp) ! curl ET, we obtain thaturl HY = —iweoE* and we deduce the

remaining boundary conditions
H" -n=0o0onYX and E'-n=0 on 90

from the previous relations. Hen¢E™, H™) € L2(2,)? is solution of problemZ.9). By
Hypothesi2.2, we deduce

E+ = 0 |n Q+.
Hence, with 4.17), we haveE = 0 in 2, which contradictE||, o = 1 and ends the proof
of Lemma4.1

4.2. Proof of Corollary 4.2. Let (E, H) € L*()? be a solution of the Maxwell problem
(1.2 with boundary conditionZ.89 and datg € H(div, {2). We assume that

(4.20) IEllo.c < Collillaaiv0)-
ThenE € H(curl, 2) is solution of the variational problerd @). Taking as test function
E itself, we obtain the identity

(4.22) /(CUI‘IE-CUI‘IE—/€2E-E) dx—iya/ E~de:iy/j~fdx.
Q Q

Taking the real part of4.21), we obtain
| cwrl E[[5 o = #*[[E[[5.o — v Tm(j, E)oq
hence, using inequality}(20 and Cauchy-Schwarz inequality,
(422) || curl E||07Q < (liCo + \/ VCQ ) ||j||H(div,Q)~
Then, taking the imaginary part o4.21),
UHE”(Q),Q_ = — Re(j, E)O,Qa
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hence,

(4.23) Vo [Elloo. <V Co llillniv.e)-

Taking the divergence of equationrl H + (iweg — o)E = j, we immediately obtain
(4.24) | div(iweg — a)Eljo.q = || divj||o.o-

Formulas 4.22 to (4.24) yield Corollary4.2

4.3. Proof of Corollary 4.3 Leto andw (i.e., ) be fixed. Let us introduce the piecewise
constant functiomr on 2

(4.25) a=1+—0.
wWEeq
With this notation, the sesquilinear form in the left handiesof @.4) becomes

(4.26) / (Curl E-curl E — k% E - E) dx.
Q
The proof of Corollary4.3relies on a classical regularization procedure: We consiae
functional space
Xt(a) = {E € H(curl, Q)| div(aE) € L*(Q2), E-n=00no0}.
Let s > 0 be a real number, which will be chosen later. Let us introdbeesesquilinear
forms A, andB: Xt(a) x Xt(a) — C

(4.27a) AJ(EE) = / (cwlE - curl E' + s div oE divaE') dx
Q

(4.27b) B(E,E) = /QE -E'dx.
Q

With a right hand sid¢ € Hy(div, §2), we associate a new right hand sjdelepending on
the parametes defined as an element Xfr(«)’ by

(4.28) jS(E’):/Q(j-E—%divj divaE')dx VE' € Xt(a).

The regularized variational formulation is: Filide X+ («) such that
(4.29) VE € Xt(a), A (E,E) — x’B(E,E) = ivj,(E).

As a consequence of,[Th. 7.2], we obtain that if
2

(4.30) " isnotan eigenvalue of the Neumann problem for the operaioraV,
S

then any solutioflE, H) € L?($2)? of problem (.2)-(2.89 with j € Hy(div, ) provides a
solution of problem4.29, and conversely, any solutidhof (4.29 provides a solution of
(1.2-(2.89 by settingH = (iwpu)~! curl E.

Thus, we choose so that ¢.30 holds.

Since the formA, is coercive onX+(a) and the embedding df?(Q2) in X+(a) is com-
pact, we obtain that the Fredholm alternative is valid: & Kernel of the adjoint problem
to (4.29

(4.31) FiNdE € Xt(a), VE € Xt(a), A E,E)—x’B(E,E')=0,
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is reduced td 0}, then problem4.29 is solvable.
We see that the assumption of Corolldr@implies that &.31) has only the zero solution,
and that the same holds for the direct problem

. / ! 2 A
. T\&), £y s ) - 9 — Y
(4.32) FindE € X1(a), VE € Xt(a), A, (E E)— x*B(E,E) =0

of course.
All this implies the unique solvability of probleni (2)-(2.89 with j € Hy(div, ©2).

5. APPLICATION: CONVERGENCE OF ASYMPTOTIC EXPANSION AT HIGH
CONDUCTIVITY

In the Maxwell case, see equatiodsd), let us introduce the parameter

(5.1) 5= ]

g
Thus, wherr — oo, 6 tends td). Note that the function defined in 4.25 can be written

(5.2) a=1o. +(1+ 51;)19_.

Several works are devoted to the interesting question ofamptotic expansion as— 0

of solutions of the Maxwell systeni (2) with complementing boundary conditions 6f
when the interfacel is smooth See [L5, 10, 11] for plane interface and eddy current
approximation, T] for impedance boundary conditions aridl] for perfectly insulating or
perfectly conducting boundary conditions.

In this section, we assume thatis a smooth surface, and we follow the approach of
[14]. In order to fix ideas, we take perfectly insulating bourydeondition .89 and
assume Hypothesid.2 for this condition. By Theoren2.3 there existsry such that the
conclusions of the theorem hold. From now on we assume that

(5.3) o >0, Q€. §< 3 with §o = /2.
0o

Letj € Hy(div,Q2) such thatf = 0in Q_. Then for allé < 4y, there exists a unique
solution to problem1.2)-(2.89, which we denote byE ), Hs)). Then it is possible to
construct series expansions in powers dbr the electric fieIdEzg) in the dielectric part

Q2 andE ; in the conducting pa._:

(5.4a) Ej(x) =Y §Ef(x)
j=0

(5.4b)  Eg(x) ~ Y 0B (x:0) with E; (x:6) = x(ys) W;(ys, %)

j=0
In (5.4b), y = (yg, y3) are “normal coordinates” to the surfaken a tubular neighborhood
U_ of ¥ in the conductor parf2_. In particular,y; represents the distance ¥ The
functiony — x(y3) is a smooth cut-off with support itY . and equal tal in a smaller
tubular neighborhood of. The functiondWV; areprofilesdefined on x R,. Moreover,
foranyj € N

(5.4c) Ef e H(cur, ;) and W; € H(cur, ¥ x Ry).
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There hold a similar series expansions in power&fof the magnetic field ).
The validation of the asymptotic expansi&x) consist in proving estimates for remain-
dersR,,.; defined as

(5.5) Rus=Eg— Y &E; in Q.
j=0

This is done by an evaluation of the right hand side when thevié# operator is applied
to R,,,s. By construction 4, Proposition 7.4], we obtain

(curlewl R} 5 — kP, RY 5 = 0 in Q
carlcurl R, s — w*a_R_.5 = j,..; in Q_
(5.6) [R5 X 0], = 0 on ¥
[curl R,..5 X n]2 = Bmus on X
([ cwrlR} s xn = 0 on 09Q.

Here, according to52), o, = 1 anda_ = 1 + i/, and[E x n]y denotes the jump of
E x n across:. The right hand sides (residugg); andg,,,.; are, roughly, of the ordey™.
The main result of this section is the following.

Theorem 5.1.Under Hypothesi&.2in the framework abové$), we assume that we have
for all m € N the following estimates for the residugs; andg,,,. s in (5.6)

(5.7) i sllze + Igmeslls s + [l ctrly g slls v < Crud™ ™,

whereC,,, > 0 is independent of, andm, € N independent ofn and . Then for all
m € Nandd € (0, dy], the remainderg,,. s (5.5 satisfy the optimal estimates

1 _ 1 — m
(58) HR:’H(SH(LQ-F + H curl R:’L;6”079+ + 02 ”Rm;(SH(LQ— + 02 H curl Rm;é”QQ— g C;né +1'

Proof. STEP 1. We cannot use Theoreth3 directly becauseurl curl R,,,.s — x?aR,,. s
does not define an element Hi(div, 2). We are going to introduce two correctds,. s
andD,, s satisfying suitable estimates and so that

[(Rm;(g — Cm;(g) X I’l]E = 0 on X
(5.9) [curl(Rm;(; —C5) X n]Z = 0 on X
curl(R,,.5 — Cis) X = 0 on 9f)
and
[Q(Rm;g—cm;(g—Dm;g) -n]z = 0 on X
(510) [(Rm;(g — Cm;(s — Dm;(g) X I’l}E = 0 on X
[CU_I"I(Rm;g —Cp.5 — Dps) X n]Z = 0 on X
curl(Ry.5 — Cpos — Dyis) X = 0 on 0N).
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STEP 1A. Construction ofC,,.;: We takeC,,.; = 0in ©2_ and use a trace lifting to define
C...s In Q. It suffices that

Clsxn = 0 on X%
(5.11) curl C:{M Xn = g, on X%
curl C:{M xn = 0 on 09 .

Denoting byCjs andCs the tangential and normal components(.'dj; 5 associated with a
system of normal coordinatgs= (y3,y3), and bygs the components of,,. ; the above
system becomes (cfL{,, Proposition 3.26])

Cjs = 0 on ¥
(5.12) 8305 — 8503 = g3 on X
830ﬁ — 8ﬁ03 = 0 on 0f).

It can be solved ifi?(£2, ) choosingCs; = 0 and a standard lifting of the first two traces
on ¥ andof? with the estimate

(5.13) 1€ sll20, < Cllgmsllys -

SteP 1B. Construction oD, s: Let us denotR,,.; — C,,,.s by S for short. Again, we
takeD,,.; = 0 and use a trace lifting to defir2; ;. It suffices that

D;}.;-n = [aS-n], on X
(5.14) D;.s xn = 0 on X
curlDf s xn = 0 on XU

In normal coordinates and associated components, thedéioos become, compare with

(5.12)

D, = [aS:n], on %
(5.15) Dg = 0 on X%

83Dﬁ — 8ﬁD3 = 0 on XU 89,
which can be solved ifi?(2..) (first determineDs, thenD;) with the estimate
(5.16) 1D} sllae. < Cll[aS - n]y sy

Since[ curlS x n]2 = 0, we find that, by construction
—k*[a8 - n]Z = [(curlcurl S — £*aS) - n

= —(curleurl CY 5 — °C5) ’2-n — Jmislg M

3

=curly g,,,.5 — j;l;é}z ‘n.
Hence
(5.17) 1S - n]gllss < || curls g slls s + i sl -
We deduce from assumptioB.7), and 6.13, (5.16), (5.17)
(5.18) 1€ sllz0. + D7 ll20, < CO™ ™,
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whereC may depend om. We set

(5.19) ﬁm;(g = Rp;5 — G5 — Diys @nd  3,,.5 := curl curl ﬁm;g — /@2gﬁm;5 )
Hence by construction,,. s € H(div, (2) with the estimates

(5.20) 1 Jm: sl B (div.0) < CO™™.

STEP 2. We can apply Theorer.3 to the coupleE,H) = (ﬁm;(g, (iwp) !t curl ﬁm;(;)
and, thanks toH.19, obtain
IRumssllo.0 + [l cwrl Rynssllo < CliF; sll e -
Combining this estimate witlb(18 and 6.20), we deduce
(5.21) IRm:sllo.0 + || curl Ry sljo.o < Co™™0,

whereC' may depend om.
STEP 3. In order to have an optimal estimate Ry, 5, we use $.21) for m + 1 + my. We
have

(5.22) [Rmt14mo;8ll0.0 + || Curl Ry mg; sllo.0 < comHt,

But we have the formula
m+1+mg ‘
(523) Rm;6 = Z o’ Ej + Rm+1+m0;6-
j=m+1
Using 6.40, we have for any € N
(5.24) 1E; [ Ex(eurt,y) + 5 1E; oo + 5%H curl E [jo.0 < C.
We finally deduce the wanted estima%ed) from (5.22 to (5.24). 0J

Remarks.1 As a consequence of the workd pnd [14], we find the existence of asymp-
totics of the form §.4) when the interfac& is smooth, if the right hand sideis smooth
and has its support in the dielectric p&rt. Moreover, estimatex(7) is true form, = 1,
cf. [14, Ch.7].

Remark5.2 If the interface has conical points, or is polyhedral, maifffodities are en-
countered for an asymptotic analysis. We refer 1g] [for an investigation of a scalar
transmission problem with high contrast in polygonal damai
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