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UNIFORM ESTIMATES FOR TRANSMISSION PROBLEMS WITH HIGH
CONTRAST IN HEAT CONDUCTION AND ELECTROMAGNETISM

GABRIEL CALOZ, MONIQUE DAUGE, VICTOR PERON

ABSTRACT. In this paper we prove uniform a priori estimates for traission problems
with constant coefficients on two subdomains, with a spesigbhasis for the case when
the ratio between these coefficients is large. In the modtqiahe work, the interface
between the two subdomains is supposed to be Lipschitz. ¥fesfirdy a scalar transmis-
sion problem which is handled through a converging asynpsatries. Then we derive
uniform a priori estimates for Maxwell transmission prahlset on a domain made up of
a dielectric and a highly conducting material. The techaicgibased on an appropriate
decomposition of the electric field, whose gradient parsigmated thanks to the first part.
As an application, we develop an argument for the convergehan asymptotic expansion
as the conductivity tends to infinity.

1. INTRODUCTION

The goal of our work is to derive uniform a priori estimates ti@nsmission problems
in media presenting high contrast in their material prapsrtWe investigate in particular
the heat transfer equation

(1.1 divagradp = f
and the Maxwell equations given by Faraday’s and Ampeesis |
(1.2) curl E —iwpoH =0 and  curl H + (iweg — o)E =7

Here, a represents the heat conductivity amdhe electrical conductivity. We assume
that these equations are set in a dom@imade up of two subdomairf3, and)_ in
which the coefficienta andgo take two different valueg:,, a_) and(o,, o_), respectively.
These equations are complemented by suitable boundarytiomsd Our interest is their
solvability together with uniform energy or regularity iesates, namely

e when the ratida_|/|a | tends to infinity in the case of edL.(l)
e wheno, = 0 (insulating or dielectric material) and. = ¢ tends to infinity (highly
conducting material) in the case of ed).4).

We address different, though connected, issues for thesprivblems, namely the issue
of uniform piecewise regularityn Sobolev norms for solutions of equation {.1), and the
issue ofuniformL? estimategor the electromagnetic fiel(E, H) solution of system.2).
None of these questions have obvious answers, all the maee sie do not assume that
the interfaces betweert), and()_ is smooth.

Our whole analysis is valid under the only following assuimpbn the interface

(1.3) Y. is a bounded Lipschitz surface R¥.
1
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In the Maxwell case, similar estimates as ours are obtaindd]; but under a stronger
regularity assumption oR. Our approach differs, being based on a decomposition of the
electric field given in P]. The gradient part of the decomposition is handled thratigh
uniform regularity estimates proved for equatidnij.

The paper is organized as follows. In sectibwe introduce the notations and give the
main results. In sectio we prove uniform piecewisH: estimates for solutions of the
scalar interface probleni (1) with exterior Dirichlet or Neumann boundary conditions.
In section4 we prove uniform estimates for the electromagnetic fidH) solution of
the Maxwell system.2) when the conductivityy of the conducting part is high. We
conclude our paper in secti@by an application of the previous uniform estimates to the
convergence study of an asymptotic expansion as the canitjptgnds to infinity.

2. NOTATIONS AND MAIN RESULTS

Let Q be a smooth bounded simply connected domaifirwith boundaryd<, and
). CC Q) be a Lipschitz connected subdomairtpfwith boundary3®. We denote b2,
the complementary di_ in €2, see Figurd.

o)

FIGURE 1. The domair? and its subdomainQ, and)_

We denote by ™ () the restriction of any functiom to Q. (©2_).

2.1. Scalar problem. We consider both Dirichlet and Neumann external boundanglico
tions associated with equatioh.{) and introduce the functional spaces suitable for their
variational formulationVp = H{(€2) for Dirichlet andVy = {¢ € H'(Q) | [, ¢ dx = 0}

for Neumann. For any given functien= (a, a_) determined by the two constarnts on

Q. and in either casé{ = Vy or V = V) the variational problem is: Fing € V such
that

(2.1) Yy eV, / a, Vot - Vitdx +/ a_Vyo~ -V dx =
Q4

7 _/Qf@dx+(a+—a_)/zg¢d37

where the right-hand sidgf, ¢) satisfies the regularity assumption
(2.2) fel?(Q) and gel*%)
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and the extra compatibility conditions
(2.3) /fdx:O and/gdSZOifV:VN and /gds:OifV:VD.
Q % %

Our main result in the scalar case is the following pieceWi$é a priori estimate, uniform
with respect to the ratip := a_(a, ). It applies both to Dirichlet and Neumann boundary
conditions.

Theorem 2.1.Let us assume that. # 0. There exist a constapt > 0 independent ai
such thatforalla_ € {z € C||z| > pola |}, the problem(2.1) with data( f, ¢g) satisfying
(2.2)-(2.3) has a unique solutiop € V/, which moreover is piecewidé*/> and satisfies
the uniform estimate

(2.4) Itz 0, + e lz0 < Co(lacl 1 log + lgllos)

with a constant’,, > 0, independent af,, a_, f, andg.

This statement is proved in the next section using an asyopxpansion fory with
respect to the powers of ! = a (a_)~t. The estimated.4) will be a consequence of the
convergencef this series in the piecewid¢*’2-norm. The dependence pf andC,, on
the overall configuration is discussed in Remarkafter the proof.

Remark2.1 The estimated.4) is uniform for fixeda, when|a_| tends to infinity. The
roles ofa, anda_ can be exchanged and an estimate similatd) proved. In fact, there
holds a more precise estimate whereanda_ play symmetric roles, see Propositidr3s.

Remark2.2 In the Neumann case, the compatibility conditiods3( are necessary for the
right hand side of problen®(1) to be compatible for all values ¢f._, a. ), because of the
factor (a; — a_) in front of the integral ort. If this factor is replaced by, then, under

the weaker conditions

(2.5) —/fdx+/gd$:0 if V=Vy and nothing ifV =1p,
Q %

the problem 2.1) is still solvable forp large enough, see Propositidri.

Remark2.3. The assumption that is Lipschitz is necessary: There exist non-Lipschitz
interfaces such that estimate.4) does not hold. In two dimensions of space, such an
example is provided by the checkerboard configuration (gl cf. [5, Theorem 8.1].

o<

FIGURE 2. A non-Lipschitz interfac&
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Remark2.4. If the Lipschitz interface: is polyhedra) there hold uniform piecewisg?®
estimates for any exponest? < s < sy, with some2 < sy, < 2, cf. [14, Ch. 1,§1.5]:

(2.6) lo* sy + 1l oo < Cops (lar] 1 f 20 + 9z 5)-

This is a consequence of our proof (see Ren®aikin combination with elliptic estimates
in polyhedral domain, cf.g]. In particular, if3 contains some edge, thep < 2.

Remark2.5. If the interfaceX is smooth there hold uniform piecewisH?® estimates for
anys > 2:

2.7 lo* sy + 1l lsas < Cops (lae] 7 1 f 20 + llgll—z ).

This is again a consequence of our proof in combination wehdard elliptic estimates,
cf. [1] for instance.

2.2. Maxwell problem. We consider two types of boundary conditions to complement
the Maxwell harmonic equations.@) on 0$2: Either the perfectly insulating conditions

(2.8a) E-n=0 and Hxn=0 on 09,
wheren denotes the outer normal vector, or the perfectly condgatonditions
(2.8b) Exn=0 and H-n=0 on 09.

In both cases, for the conductivity= (0, o), we can prove uniform a priori estimates for
the electromagnetic field @as— oo provided the following condition on limit problems in
the dielectric parfl, is valid:

Hypothesis 2.2.The angular frequency is not an eigenfrequency of the problem
curl E —iwpogH =0 and  curl H + iwegE =0 in

(2.9) Exn=0 and H-n=0 on X
(2.89 or (2.8b on 0f).

Our main result for Maxwell equations is the following a priestimate, uniform as
o — oo. The right hand sidgis chosen to belong iR (div, 2) or Hy(div, ©2) where:

(2.10a) H(div,Q) = {u c L*(Q) | divuecL*(Q)} with L*Q)=L1L*Q)*
(2.10b) Hy(div,Q) = {fu € H(div,Q) | u-n=0 on 0Q}.
Theorem 2.3. Under Hypothesi®.2, there are constants, and C' > 0, such that for

all o > o9, the Maxwell problen{1.2) with boundary condition(2.89 and dataj €
H,(div, Q) has a unique solutiofE, H) in L?(2)2, which satisfies:

(2.11) IElloe + [IHllo + Vo [[Elloo < Cllillmiv.0)-
A similar result holds for boundary conditiofi®.8) and dataj € H(div, Q).

This theorem is proved in secti@h It is based in particular on a decomposition of the
electric field into a regular fielsv in H'(2) and a gradient field& for which Theorem
2.1will be used.
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3. PROOF OF UNIFORM SCALAR REGULARITY ESTIMATES

3.1. The problem. Under the assumptions of Theorérl, we normalize the equations
by dividing bya,. Denoting the quotient_(a, )~ by p, and still denoting byf the new
right hand side (i.e., the old one divided by), we can write problem2.1) in the form of
the following transmission problem

( pAp~ = f- in Q_
Apt - ft in Q.
(3.2) ©~ = on X
Onp™ — poap™ = (L—p)g on X
(b.c.) on 0N

whereo, denotes the normal derivative (inner for, outer for(2, ). The external boundary
conditions (b.c.) are either Neumann or Dirichlet condisio

Our method of proof for Theore 1 consists in the determination of a series expansion
in powers ofp~! for ¢ solution of 3.1): We are looking for solutions in the form of power
series

iwi p " in Qy
n=0

f: o, p " in Q_.
n=0

Since the expansions are different according to the boyratarditions, we treat first the
Neumann case in subsecti8r2 and the Dirichlet case in subsecti8r8. We prove com-
plementary results in subsecti@m.

(3.2) =

3.2. Neumann external b.c. Inserting the ansatz3(2) in the system 3.1), we get the
following families of problems, coupled by their conditean>::

(3.3) { A(pg_ = 0 in Q_
Oy = g on X
and
Apg = f* in Q,
(3.4) ¢s = ¥ on X
oned = 0 on 99
and fork € N* (heres! is the Kronecker symbol)
(3.5) { gw,;_ = &f i 0
o, = —0,9+0p;_, ON X
and
Apfy = 0 in Q
(3.6) ©f = ¢, on %

o = 0 on 99.
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Thus we alternate the solution of a Neumann problenf2inand a mixed Dirichlet-

Neumann problem if2., . Since we have assumed thats a Lipschitz surface, we have a

precise and optimal functional framework to describe tlogsrators and their inverse.
We need the notatiors (< 2)

(3.7) H5(U,A) :=={p e H*(U) | Ap € L*(U)}.

Using [9, cor. 5.7] (see alsd3] for a similar context) with the fact that is Lipschitz, we
obtain the following equalities between spaces$Xn

(3.8a) {p e H(Q, A), dupl, € L2(D)} = H2(Q_,A)

(3.8b) {pe HY(Q_,A), |, e H(D)} = HI(Q_,A)

and on(2,

(3.92)  {peHY (. A), |, € H(D), dup|,, € L2(OQ)} = H:(Q.,A)
(3.9b)  {p e HY(2, A), duply € LA(D), 0|, € H(OQ)} = H:(Q.,A)

As a consequence of the previous equalities, the followafgdions for the resolvent
operatorgi _ andfi, make sense and define bounded operators:
e 71_ is the resolvent of the Neumann problemten

(3.10) 9 : {(F, G) e L2(Q) x L2(%) | Fdx+/Gds - o}
Q_ by

N {@eH%(Q_,AH /cpdx:o}

Q_

where® = R_(F, G) satisfiesA® = F'in 2_ andd,® = G on ¥, and
e N, is the resolvent of the Dirichlet-Neumann problem(an

(3.11) N, : {(F, H) € 12(Q,) % Hl(z)} s H3(Q,,A)
where® = R, (F, H) satisfiesA® = F'in Q,, ® = H onX andg,® = 0 on o 2.
A further consequence of equaliti€s§)-(3.9) is that the following trace operators make

sense and define bounded operators:
e TV is the Dirichlet trace oix from insideQ2_: o~ — ¢~ |y and is bounded

(3.12) T H2(Q_,A) — HY(D)
e T! isthe Neumann trace dn from inside(2,: ¢* — J,¢™ s and is bounded
(3.13) TLH (O, A) — LAY

Note that none of the two operatc8 or T' is bounded ifz (€2, A) is replaced by the
larger spacéls (€2.).
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3.2.1. Discussion of elementary problemBhe Neumann problen8(3) admits the solu-
tion o5 = M_(0, g), since the compatibility conditiof, ¢ ds = 0 holds by assumption.
We have the estimate

(3.14) 195 Iy 0y < C-lgllos

where(C'_ is the operator norm of the operatér .
Thusy;, belongs td12(Q_, A). Hence its trac&” ; = ¢, |5 belongs tdi!(3). Next,

problem @.4) admits the solutionoy = R, (f*, ¢;|s), andy; belongs toHz (2, A)
with the estimates

(3.15) 168 g ) < C (17 o, + i ).

HereC', is the operator norm of the operat#r, .
Then we continue with problem$8.6) and @.6) in a similar way, the only point to
discuss being the compatibility condition in the Neumarobpgm @.5).

Lemma 3.1. The Neumann proble(3.5) is compatible.

Proof. Fork = 1, we must show that
(3.16) frdx+ / (—g+ Onpg)ds = 0.
Q_ %
According to 8.4), Apd = f4 in 2, andd,pd = 0 on 9. Integrating by parts, we get

/8,,@3 ds = fidx.
> Q,

Thus, we deduce from hypothesis ) the compatibility condition3.16).
Fork > 2, let us assume that the ter) , was built. We must show that

(3.17) / Onpi_ ds = 0.
2

According to 8.6), Ay, = 01in Q, andd,p; ; = 0 0nIQ. Integrating by parts if2,
we get 8.17). O

Consequently, for alk > 1, the Neumann problenB(5) admits the solutionp; :=
M_(5Lf,—0Lg + Tt ). Theny, belongs tdiz (Q_, A) with the estimates

318)  leillyzq a < C (OIS loas + lgllos) + 10neiillos ).
Finally problem 8.6) admits a unique solutiop;” € He (4, A) with the estimate

(3.19) i gz o, o) S Celler s

In (3.18 and B.19, the constant§’_ andC, are the same as i8(14 and 3.15.
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3.2.2. Uniform estimatesLet C° andC' > 0 be the operator norms of the Dirichlet and
Neumann traceS? and¥!, respectively cf. .12 and 3.13. We seta = C .C°C_C",
with the constantg’, in (3.195 andC"_ in (3.14). According to 8.18 and @.19, we see
by an induction om € N* that

[
(3.20) HE@-4)
lenllys @, a)

Sl P

< C+Coan_1 HSOl_ ||H%(Q A)

Let pp > 0 such thap,'a < 1. Then, for allp € C such thatp| > PO, the series of general
termsp "y, etp " converge respectively iH2(Q_,A) andH2 (2, A). We denote
by ¢(,) the sum of these series. Moreover, normal convergence ragfeic with common
ratio |p~*|a, bounded b)pgla. Hence

< C'+C0 —Po |/)_1‘ H@l H

— -1
+
H(‘O(P)HH%(QJrA po—a H3 (Q_,A) +lleg HH?(Q A

According to 8.18 for £ = 1, and @.14)-(3.15 for k = 0,

(322) 61 s < C (I ooz + lgllos + C'Co (I, + C°Clglos) ).
With (3.14), (3.19), (3.2 and @3.22), we deduce the uniform estimate fpf > p,
(3.23) let s, + e llsa < Coo) (IFllos + lgllos)-

3.2.3. Proof of Theoren?.1in the Neumann caseBy constructionp, is solution of the
problem 8.1). Hence(, € H'(2). Setting
1
o) =90 g [ P (x)dx
€2 Ja

we obtain a solutiop = <p’p of the variational problem2( 1), which moreover satisfies
estimates3.23, hence estimate2 (4).

It remains to prove that the solution of the variational peaot (2.1) is uniguewhen
lp| = po- Letp, € V be solution of problemZ.1) for such ap and forf = 0, g = 0:

(3.24) Vi eV, / a, Vol - Vitdx + / a_V, - Vi~ dx = 0.
Q4

On the other hand, the power series construction yieldsutisok), of problem @.1) with
a- instead ofu. and withf = ¢,, g = 0 (note that these data satisfy assumptig)):

(3.25) Vyp eV, / 6+V¢j-V¢+dx+/ a_ Vo Ve dx = —/<p*¢dx,
Q4 0

Taking the conjugate of3(25 for ¢ = ¢, and @.24) for ¢ = 1, we find

/go*@dx:o.
Q

Hence the uniqueness, which concludes the proof of The@rém
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Remark3.1 From the above proof, we can see that the consianasdC,, depend only
on the four operator norms®, C* (trace operators® (3.12 and¥’ (3.13), C_ andC,
(resolvent operator®t_ (3.10 andfR, (3.11). The extension of the estimatez.4) to
different sets of Sobolev indices, cf. Remagkd and2.5, depends on the boundedness of
the four operators (the orthogonality conditions are usided for the last two ones):

TO(QL) — R, T HN(Q) — HTEY),

R HT2(O.) x H2(D) — HY(Q.), Ryt H2(Q)) x H2(X) — H¥(Q,).
In particular, none of them is bounded for= 2, so we cannot set= 2 in estimate 2.6).

3.3. Dirichlet external b.c. HereV = H}(©2). When we consider the boundary condition
o = 0 ondf in problem @.1), a similar construction can be done. However, we need
a special care to treat the compatibility condition$lin. Starting from the same Ansatz
(3.2, we get

Ap, = 0 in Q_
(3.26) { 7o !

Onpg = g on X
and

Apg = f+ in Q,
(3.27) { o = g on X

g = 0 on o0
and fork = 1,2, ...

Apr = 6Lf- in Q_

3.28
(3:29) {8.1@; = 09+l , on X
and
(3.29) { of = ¢. on X

of =0 on 99N

3.3.1. Discussion of elementary problemiset ¢; € Hz(€2_, A) be the solution of the
Neumann problen3(26) under the conditioyfgi ¢, dx = 0. Here we still keep a constant
to be adjusted; we call #f,. Theny, = @, + ¢, will be determined once, is fixed and
(3.27) will give a uniquep; € H2 (2, A).

We consider now3.28 for & = 1, which is a Neumann problem with the compatibility
condition

/f‘dX+/E(—g+0nso(T)dS=0

and sincef;, gds = 0, it reads

(3.30) / Onpd ds = — f~dx.
> a_
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But now we choose] = ¢f + coi) where

Agy = fy in Q
(3.31) &5 = ¢ on ¥

o0 = 0 on 0.
and

Ay = 0 in Q.
(3.32) { v o= 1 on X

v = 0 on Of).
with

(3.33) Co = —(/Eanséé ds+/Q f—dx) / /Zan¢ds.

Clearly pf € H%(Q+, A) is uniquely determined by3(31), v by (3.32), andc, by (3.33
since [ a1 ds # 0 (principle of maximum).

Thus we have completely determinggl = ¢, +co € H%(Q_, A)andyd = @f +cotp €
H3 (€2, A). Moreover the choice af, gives the compatibility conditior8(30 of problem
(3.28 for k = 1.

Again we takep, = @] +¢; € H%(Q_,A), with ¢ uniquely determined by3(28)
with & = 1 under the conditiorf;, @7 dx = 0. Theny{ = @f + ;v € H2(Q4, A), with
@7 uniquely determined by3(29 with ¢{ = ¢, on and

(3.34) 6 =— / Bapt ds / / B ds.
by X

We can continue this iterative process to construct theesems{ ¢, }r-0 C H2(Q_, A)
and{¢; o C H2 (4, A).

3.3.2. Proof of Theoren?2.1in the Dirichlet case.The absolute convergence of the series
> k>0 pFpin H%(Qi, A) is obtained like in the Neumann case. The proof of the unique-
ness of solutions to problerd.(l) in the Dirichlet case is also similar to the Neumann case.

3.4. Complements. In this subsection we give some complementary results pshanr
more general than those of Theorém.

3.4.1. Uniform estimates fop — ¢,. As a consequence of the boun8s20), we have

p—vo=> onp "
n=1
and we deduce the following estimate between the solutiah V' of the problem 2.1)

and the solutionp, of the limit problem ag tends to infinity.

Theorem 3.2.Let us assume that, # 0. There exist a constani > 0 independent
of a; such that for alla_ € {z € C||z| > polas|}, the unique solutiop € V' of the
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problem(2.1) with data( f, g) satisfying(2.2)-(2.3) converges in the piecewi$&’/? norm
to the solutionp, of the limit problem ag tends to infinity, with the uniform estimate

(3:35) ot —willsa, +ll¢™ —wallsa. < Culol™ (lar I floo + llgllox)
with a constant’,, > 0, independent aof,, a_, f, andg.

In this context, the above result gives sharper estimases[&hwhere we find a charac-
terization of limit solutions and strong convergence ressfdr similar (and more general)
problems.

Likewise, an estimate of the remainder at any order is valid:

K K
et =D @iz +le™ = enr "z < Coolol ™ (lar] I Flloc +llgllox)
n=0 n=0

3.4.2. Uniform estimates whem_ anda.. play symmetric rolesThe framework of The-
orem2.1can be extended so that anda. play symmetric roles, and so that the contri-
butions of the norm§ f~||oo_ and||f*|/o,o, are optimally taken into account in the right
hand side of estimates. For this, we require the followirgyagotions

(3.36a) /fdx:/gds:O it V=T
Q b}

(3.36h) / f+dx:/ f—dx:/gds: 0 if V="V and|a_|> |a.]|
Qy Q_ b
(3.36¢) no condition  if V =Vp and |a_| < |ay|.

Proposition 3.3. Let us assume that, # 0. There exist a constant, > 0 such that for
all couples(a_, a, ) such that

| > polas] or Jaz| > pola_|

the problem(2.1) with data(f, g) satisfying(3.36) has a unique solutiop € V, which
moreover is piecewisd®/? and satisfies the uniform estimate

1/ oo [If Moo,
o] [

@3N lefllya, +1e l3a < Cn +lglos)

with a constant’,, > 0, independent af,, a_, f, andg.

Proof. 1) Let us first prove estimat&37) in the Neumann case and when the modulus of
p = a_(a, )" is large enough. After the change of défag) — (a;'f,g) as explained
at the beginning of subsecti@l, proving estimate3.37) reduces to show

(3:38)  llofyllsq, +1legllza < Cleo) (oI loos + 1/ llogs + llgllox),

instead of 8.23 (note that the new factdp~!| in front of || f~||o.o_ is equal tda|/|a_]).
Estimate 8.39 is in fact a mere consequence of estimag21) and (3.22, where we
take advantage of the presence of the fagtot| in front of the norml|; ”H%(Q, A) of o7

in (3.2).
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2) Still in the Neumann case, but when= a, (a_)~"! is large enough, the sequence of
problems to be solved is how

(3.39) { Ohod = g on X%
Ohod = 0 on 09
Ap, = - in Q_
(3.40) { %o / .
©o = ¥ on X
and fork = 1,2, ...
Agt = &Lt in O,
(3.41) {8.1@}5 = —0Lg+bwpr, ON T
ol = 0 on 0.
Ap, = 0 in Q_
(3.42) { Yk )
¢, = ¢, on X

The compatibility of the right hand sides of problen®&39 and @.41) in 2, can be
checked by arguments similar to those used in the case when )~! is large § 3.2.1).
The estimate can be proved similarly.

3) Inthe Dirichlet case, ifa_| >> |ay
we simply have

, under assumptior8(36h, we see that in3.33),

coz—/ﬁnaﬁgds//ﬁnwds.
> >

Thus f~ does not influence,, and we have estimates like i8.21) with the factor|p™!]|
in front of ||<p1_||H%(Q A We deduce estimat8.37) like in the Neumann case.

4) Finally, in the Dirichlet case, ifa_| << |a,|, none of the elementary problems is of
Neumann type. Hence no compatibility condition is requiaed we can prove estimate
(3.37) as previously. 0J

The compatibility conditions2.3) (and a fortiori 3.3639-(3.36h)) are not necessary for
the solvability of problemZ.1): For Neumann exterior boundary condition, the necessary
and sufficient condition is

_/Qfdx+(a+—a_)/2gd$:0.

It depends on coefficients,. If we want to have the compatibility of the right hand side
for any value of the coefficients. we can either assum2.(@d) or replace the coefficient in
front of the integra[[Z by 1, defining the new problem

(343) Yy €V, / ay V- V@erij/Q a_ Ve - Vi dx = —/Qfﬁdx +/Egﬂds.

Q4
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Proposition 3.4. If we assume the compatibility conditions
(3.44) —/fdx+/gds:0 if V=V and nothing ifV =1p,
Q %

then problen(3.43 is uniquely solvable if the modulus pf= a_(a, )~ is large enough
and its solution satisfies the uniform estimate

- -1
le™llsa, + el a- < Coolas]™ (1fllog + llgllos) -

Remark3.2 We pay the weaker assumption on the data by a weaker estimate\ge
have the same estimate for solutions of probl8mJ as for solutions of problen®(1): In
problem @.1) the interface datum ig:, — a_)g (the coefficienfa, — a_| tends to infinity
as|p| — oo) whereas the interface datum of probleBi4d is g alone.

Proof. The construction of the terms of the series expansion idairas in the proof of
Theorem2.1 Now we havep, = 0 in the Neumann case, agg = c, in the Dirichlet
case. U

4. PROOF OF UNIFORM ESTIMATES FORMAXWELL SOLUTIONS AT HIGH
CONDUCTIVITY

We consider now the harmonic Maxwell systein?j at a fixed frequency satisfying
Hypothesi2.2. We are going to prove the following sequence of statements:

Lemma 4.1. Under Hypothesi&.2, there are constants, andCy > 0 such that ifoc > o
any solution(E, H) € L?*(2)? of problem(1.2) with boundary conditior{2.89 and data
j € Ho(div, Q) satisfies the estimate
(4.) [Ello2 < Collillaaiv,)-
A similar statement holds for boundary conditiq@s8b) and dataj € H(div, Q2).

This lemma is the key for the proof of Theoréh8and is going to be proved in the next
subsection, using in particular our uniform estimates m dbalar case (this is the main

difference with the proof of Theorem 2.1 ii]]. As a consequence of this lemma, we will
obtain estimates2(11):

Corollary 4.2. Leto > 0. Let(E, H) € L?(Q)? be solution of probler(i.2) with boundary
condition(2.89 and dataj € Hy(div, 2). If E satisfies estimatgt.1), then setting
Cr =14 (14 wpo)v Co+ (1 + wy/cott0)Co,
there holds
(4.2)  |[E[lo0 + [[ curl Eflo.0 + || div(iwey — @)Ello0 + Vo [[Elloo < Cilljlleiv.0)-
A similar estimate holds for boundary conditiof2s8b) and dataj € H(div, 2).
Finally, estimate4.1) implies existence and uniqueness of solutions.

Corollary 4.3. Leto > 0. We assume that estimgte 1) holds for any solutioflE, H) €

L2(Q2)? of problem(1.2)-(2.89 with j € Hy(div, ). Then for anyj € Hy(div, 2), there
exists a unique solutio(E, H) € L?(2)? of problem(1.2)-(2.89. A similar result holds
for boundary condition$§2.8h) and dataj € H(div, 2).
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The previous three statements clearly imply TheoBeBnTo prepare for their proofs, we
recall variational formulations in electric field for the Maell problem (.2) with bound-
ary condition 2.8b) or (2.89, cf. [13] for instance. Let

(4.3a) H(curl, Q) = {u € L*(Q) | curlu € L*(Q)}
(4.3b) Hy(curl, Q) = {u € H(curl,2) | uxn=0 on 0Q}.

If (E,H) € L?(Q)? is solution of (.2)-(2.89, thenE € H(curl, ) satisfies for alE’ €
H(curl, Q):

(4.4) /(curlE-curlE—mQE-E) dx—iua/ E-de:w/jfdx
Q _ Q

where we have set = w,/Eg1o andv = wpy. If boundary conditionsZ4.8b) are consid-
ered, therE € Hy(curl, ©2) and @.4) holds for anyE’ € Hy(curl, ).

4.1. Proof of Lemma 4.1: Uniform L? estimate of the electric field. Reductio ad ab-
surdum: We assume that there is a sequeBgeH,,) € L?(Q2)2, m € N, of solutions of

the Maxwell systemX.2)-(2.89 associated with a conductivity,, and a right hand side
im € Ho(div, Q):

(4.5a) curl E,, — iwpoH,, =0 in Q.
(4.5b) curl H,, + (iweg — 0,,)Ern =, In Q,
(4.5¢) H, xn=0 on 00,

satisfying the following conditions

(4.6a) O — 00 as m — oo,
(4.6b) |Emlloo =1 vm € N,
(46C) ||ijH(diV,Q) — 0 as m — Q.

Note that the external boundary conditiBp, - n = 0 on 952 is but a consequence of the
equation 4.5b), the boundary conditior4(5¢ and the conditiofj- n = 0 on 02 contained
in the assumption thg}, belongs taH(div, 2).

We particularize the electric variational formulatioh4) for the sequenc€E,,}: For
all E' € H(curl, Q):

4.7) /(curlEm-curlE—szm~E) dx—iyam/ Em-de:w/jm-de.
Q Q

ChoosingE’ = E,, in (4.7) and taking the real part, we obtain with the help of conditio
(4.6b) the following uniform bound on the curls

(4.8) lewlEnllon < 5+ /¥ llimlloo-
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4.1.1. Decomposition of the electric field and boundHn. We recall that we have as-
sumed that the domain is simply connected and has a smooth connected boundary. Re-
lying to Theorem 2.9 and Theorem 3.12 it},[we obtain that for alh € N there exists a
uniquew,, € H'(Q)? such that

(4.9 curlw,, = curlE,,, divw,,=01in Q. and w,,-n=0 on 0.
Moreover, we have the estimate
(4.10) w10 < C| curl Ep,llo.q,

whereC' is independent ofn. As a consequence of the equalityrl w,, = curl E,, and
the simple connectedness@fwe obtain that there exists,, € H*(2) such that

(4.11) E.=W,+Ven,.
We write equation4.5b) as
curl Hy,, + (iweg — a,,,) (Won, + Vo) = jon-

Lety € H'(Q2) be a test function. Multiplying the above equality ¥y and integrating
over(2, we obtain, using thativw,, = 0:

(4.12) /(iwao—gm) Vo, Vi dx = —/divjmﬂdx—am/wm-n‘2 P ds.
Q Q »

Note that the boundary valuesrl H,, - n = 0 andj,, - n = 0 on 952 have been used here.
Thusy,, is solution of the Neumann problem defined by the variatienalation 4.12).
Since
divj,, € L*(Q) and / divj,,dx = / jy,-nds=0,
Q o0
and

w,,-n€L*X) and /wm-n‘Z ds:/ divw,, dx =0,
s

the Neumann problem defined b¥.12 satisfies the assumptions of Theor@m with
a_ = iweg — 0, @nda, = iwey. Therefore we have the following uniform estimate for
o, large enough (i.e. fom large enough, cf.4.69)

lemlls o, +llemllz o < Co(lldiviyllog + W - nllos).
Since||lw,, - n|o x is bounded byjw,, |, o, the above inequality implies

(4.13) lemllza, +llenllz o < Co(lldiviylloe + [wWnllie)-
Finally (4.60, (4.9), (4.10 and @.13 implies that
(4.14) lemllz o, + lomllz o + [Wallie < B

for a constanf3 > 0 independent ofn. With (4.11), (4.14) gives that the sequend&,, }
is bounded itz on)_ and€,:

IES g, + Enllg. < B.
Combining the above bound witA.@), we obtain the uniform bound
(4.15) IES 10, + 1ERlls o + | curlEploq < C.
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4.1.2. Limit of the sequence and conclusiohhe domains$).. being bounded, the embed-
ding of Hz () in L2(.) is compact. Hence as a consequencetdfd, we can extract
a subsequence dfE,,} (still denoted by{E,,}) which is converging inL?(2). By the
Banach-Alaoglu theorem, we can assume that the sequenidg,, is weakly converging
in L?(92): We deduce that there B < L?(92) such that

curl E,, — curlE  in L3(Q)
E, —E in 12(0).

A consequence of the strong convergenc&iff2) and @.6b) is that||E|jo, = 1. Using
Hypothesis 2.2), we are going to prove th& = 0, which will contradict|| E||, , = 1, and
finally prove estimate4.1).

Taking imaginary parts ird(7) whenE,, is the test-function, then letting — +o0o and
using @.69 we get||E[|oo_ = 0. Hence,

(4.17) E=0 in Q_.
Let us introduce the space
Hy(curl, Q%) :={u e H(curl,2,) | uxn=0 on X}.
In particular, ¢.17) implies thatE™ := E \m belongs taH(curl, 2, X).

Let® € Hy(curl, ©2,,3). Then the extensiof, of & by 0 on(2_ defines an element of
H(curl, Q). We can use, as test function in4.7) and we obtain

/ (curlEm-curla—szm~E) dx:iy/ jm~5dx.
Q4 Q4

(4.16)

According to ¢.16) and @.69, taking limits asm — +o00, we deduce from the previous
equalities

(4.18) / (curlE™ - curl ® — k’E" - @) dx =0,
Q4

i.e., E" € Hy(curl,Q,,Y) satisfies 4.18 for all ® € Hy(curl, 2., ). Integrating by
parts we find (withd+ the tangential part ob on 02)

(curl E*, curl @)oo, = (curlcurl E¥, @)oo, — (curl E™ x n, @1)90.

Thus we have

curlcurlET — k2ET = 0 in Q,
(4.19) Et xn = 0 on X
curlET x n = 0 on 0.
SettingH™ := (iwpuo) ! curl ET, we obtain thaturlH" = —iwe,E™ and we deduce the

remaining boundary conditions
H" -n=0onY% and E"-n=0 on 09

from the previous relations. Hen¢E* , H*) € L?(Q, )% is solution of problemZ.9). By
Hypothesi2.2, we deduce
E+ - 0 |n Q+.
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Hence, with 4.17), we haveE = 0 in 2, which contradictE||, o = 1 and ends the proof
of Lemma4.1

4.2. Proof of Corollary 4.2. Let (E,H) € L?*(Q)? be a solution of the Maxwell problem
(1.2 with boundary conditionZ.89 and datg € H(div, {2). We assume that

(4.20) IE[loe < Collillmaiv.0)-

ThenE € H(curl, ©2) is solution of the variational problerd @). Taking as test function
E itself, we obtain the identity

(4.21) /(CUIIE-CU_I'IE—KJQE-E) dx—iua/ E-de:iu/j-ﬁdx.
Q

_ Q
Taking the real part of4.21), we obtain

| curl E[l§ o = £*[|E[I o — v Tm(j, E)o

hence, using inequality}(20 and Cauchy-Schwarz inequality,

(4.22) | curl Efjpq < (/-cC’O + () ) 3l H(div,0)-
Then, taking the imaginary part of.21),
UHEH?),Q, = — Re(j, E)o,m
hence,
(4.23) Vo [Ellog- < v Collillnaiv.e)-
Taking the divergence of equationrl H + (iweg — o)E = j, we immediately obtain
(4.24) | div(iweg — a)Eljo.q = || divj||o.o-

Formulas 4.22 to (4.24) yield Corollary4.2.

4.3. Proof of Corollary 4.3 Leto andw (i.e., ) be fixed. Let us introduce the piecewise
constant functiomx on 2

(4.25) a=1+—c.
With this notation, the sesquilinear form in the left hardiesof @.4) becomes
(4.26) / (curl E - curl E' — k% E - E') dx.

Q

The proof of Corollary4.3relies on a classical regularization procedure: We consiue
functional space

Xt(a) = {E € H(curl, Q)| div(aE) € L*(Q2), E-n=00no0}.
Let s > 0 be a real number, which will be chosen later. Let us introdheesesquilinear
forms A; andB: X1(a) x X1(a) = C

(4.27a) AJ(E,E) = / (curlE - curl E' + s div aE divaE') dx
Q

(4.27b) B(E,E') = /QE - E dx.
Q
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With a right hand sid¢ € Hy(div, §2), we associate a new right hand sjdelepending on
the parametes defined as an element ¥fr(«)’ by

(4.28) js(E’):/Q(j-E—%divj divaE') dx VE' € X1(a).

The regularized variational formulation is: Filide X+ («) such that
(4.29) VE € Xt(a), A(EE)—k*B(E,E) =ivj,(E).

As a consequence of,[Th. 7.2], we obtain that if

2
(4.30) " isnotan eigenvalue of the Neumann problem for the operdioraV,
S

then any solutioflE, H) € L?(2)? of problem (.2)-(2.89 with j € Hy(div, ) provides a
solution of problem4.29, and conversely, any solutidhof (4.29 provides a solution of
(1.2-(2.89 by settingH = (iwpu)~! curl E.

Thus, we choose so that ¢.30 holds.

Since the formA; is coercive orXt(a) and the embedding df?((2) in X+ («) is com-
pact, we obtain that the Fredholm alternative is valid: § Kernel of the adjoint problem
to (4.29

(4.31) FiNdE' € X7(a), VE€ Xr(a), A, (E E)—x?B(E,E) =0,

is reduced td 0}, then problem4.29 is solvable.
We see that the assumption of Corolldr@implies that 4.31) has only the zero solution,
and that the same holds for the direct problem

(4.32) FINdE € X1(a), VE € Xt(a), AL (E,E)—x’B(E,E) =0,

of course.
All this implies the unigque solvability of problemi (2)-(2.89 with j € Hy(div, 2).

5. APPLICATION: CONVERGENCE OF ASYMPTOTIC EXPANSION AT HIGH
CONDUCTIVITY

In the Maxwell case, see equatiodsd), let us introduce the parameter

(5.1) 5= 250
g

Thus, wherr — oo, § tends ta). Note that the functiom defined in 4.25 can be written

(5.2) a=1o +(1+ %)1Q

Several works are devoted to the interesting question ofgmptotic expansion as— 0

of solutions of the Maxwell systeni (2) with complementing boundary conditions 6f
when the interfacel is smooth See [L5, 10, 11] for plane interface and eddy current
approximation, T] for impedance boundary conditions anidl] for perfectly insulating or
perfectly conducting boundary conditions.
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5.1. Assumptions. We assume that is a smooth surface, and we follow the approach
of [14]. In order to fix ideas, we take perfectly insulating bourydemndition .89 and
assume Hypothesid.2 for this condition. By Theoren2.3 there existsry such that the
conclusions of the theorem hold. From now on we assume that

WEp

0

Letj € Hy(div,2) such thatj = 0in Q_. Then for all§ < &y, there exists a unique
solution to problem1.2)-(2.89, which we denote byE ), H)). Then it is possible to
construct series expansions in powers dbr the electric fieIdE?;;) in the dielectric part

Q4 andE(‘(s) in the conducting par®_:

(5.4a) Ej(x) =~ > FEf(x)
j=0

(5.4b)  Ej(0)~ Y FE;(xi0) with Ej(x:0) = x(ys) W;(ys 5).

: )
320

In (5.4b), y = (yg, y3) are “normal coordinates” to the surfaken a tubular neighborhood
U_ of X in the conductor parf)_. In particular,y; represents the distance ¥o The
functiony — x(y3) is a smooth cut-off with support itY_ and equal tal in a smaller
tubular neighborhood af. The functionsWV; areprofilesdefined on: x R_. Moreover,
foranyj € N

(5.4¢) E; € H(cur,2,) and W; e H(curl, X x Ry).

There hold a similar series expansions in powers foir the magnetic fieldH ;).
The validation of the asymptotic expansi&x) consist in proving estimates for remain-
dersR,,.; defined as

m

(5.5) Rus =Eg —» &E; in Q.

J=0

This is done by an evaluation of the right hand side when thevi# operator is applied
to R,,.s. By construction 14, Proposition 7.4], we obtain

(curlewrl R} 5 — k*ay Ry 5 = 0 in Q4
curlcurl R .5 — k*a_R s = jo..s in Q_
(5.6) [Ryis x 0] = 0 on X
[curl Rp..s X n]Z = 8Bms on X
[ curl R} 5 xn = 0 on 09Q.

Here, according to52), o, = 1 anda_ = 1 + i/, and[E x n]y denotes the jump of
E x n across:. The right hand sides (residugg) ; andg,,,.; are, roughly, of the ordey™.
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5.2. Convergence result. The main result of this section is the following.

Theorem 5.1.Under Hypothesi&.2in the framework above (secti@nl), we assume that
we have for alln € N the following estimates for the residugs; andg,,. ; in (5.6)

(5.7) limallz + €msll s + 1| urly Epslla 5 < Cond™ ™,

whereC,,, > 0 is independent of, andm, € N independent ofn andd. Then for all
m € Nandd € (0, o], the remainderg,,. s (5.5 satisfy the optimal estimates

Lo 1 _ m
(5.8) Ry sllog, + [l curl Ry sllog, + 07 2[R, slloo + 02 curl R, slloo < CF,8™

Proof. Here we denote by, various constants which may dependrarbut not ond.
STEP 1. We cannot use Theore3 directly becauseurl curl R,,..s — x*aR,,. s does not
define an element di (div, €2). We are going to introduce two correctdts, s andD,,,. s
satisfying suitable estimates and so that

[(Rm;g — Cm;(;) X I’I]E = 0 on X
(59) [Curl(Rm;(; — Cm;(;) X l’l]2 = 0 on X
curl(R,.5 — Cpi5) X = 0 on 9f)
and
[Q(Rm;g—cm;(g—Dm;g) -n]z = 0 on X
(510) [(Rm;(g — Cm;(g — Dm;(g) X I’I}E = 0 on X
[curl(Rm;g —Cp.5 — Dps) X n]Z = 0 on X
curl(Ry.5 — Cpos — Dyis) X = 0 on 0N .

STEP 1A. Construction ofC,,.;: We takeC,,.; = 0 in Q_ and use a trace lifting to define
C..;s In Q4. It suffices that

C,.s%xn = 0 on ¥
(5.11) carlClsxn = g 5 on X
carlClsxn = 0 on 0Q.

Denoting byCs andC; the tangential and normal componentscdj; s associated with a
system of normal coordinatgs= (yz,ys), and bygs the components of,,. ; the above
system becomes (cfL{,, Proposition 3.26])

Cjs = 0 on ¥
(512) 8306 — 8603 = g3 on X
8305 — 8503 = 0 on 0f).

It can be solved if?(©2 ) choosingC; = 0 and a standard lifting of the first two traces
on X andof? with the estimate

(5.13) 1€ ollz0, < Cligmlly.s -
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Step 1B. Construction oD, s: Let us denotR,,.; — C,,,.5 by S for short. Again, we
takeD,,.; = 0 and use a trace lifting to defir2 ;. It suffices that

D, n = [aS-n], on X
(5.14) D,.;xn = 0 on X%
carlD, s xn = 0 on XU

In normal coordinates and associated components, thed@ioos become, compare with

(5.12)

D; = [aS-n], on %
(5.15) Dy = 0 on X

83D/3 — 85D3 = 0 on X U oS,
which can be solved ifi?(2..) (first determineDs, thenD;) with the estimate
(5.16) 1D} sll20. < Cll[aS -]yl

Since| curl S x n] = 0, we find that, by construction
—k’[aS - n], = [(curlcurl S — £*aS) - n|
= —(cwlewlC} 5 — &*Cl ) [ n — sy n
=curly g,,.s — j;;é‘z ‘n.
Hence
(5.17) [0S nlgllss < llewls gl + linslao
We deduce from assumptioB.(), and 6.13, (5.16, (5.17)
ICrsll201 + [1Dpsll20, < Cnd™ ™.

Since by constructiof,,,. ; = D,,.; = 0and|[C,,; x n
estimate implies

(5.18)  ||Chsllo + |l curl Csllo. + [[Dmsslloq + || curl Dy sllo.o < Crprd™ ™.
We set

¢ = [Dm;s x n] = 0, the above

(5.19a) Rin:s = Rys — Conis — Dincs
and

(5.19b) Im.s -= curlcurl ﬁm;(g — I{2gﬁm;5 )
Hence by constructio,,. ; € H(div, 2) with the estimates
(5.20) 170 sl E(div,0) < Crd™ ™.

STEP 2. We can apply Theorerd.3 to the coupleE,H) = (ﬁm;(g, (iwp) !t curl ﬁm;g)
and, thanks to5.190, obtain

IR sllo.0 + [ curl Ry sllo.e < O[3, sl mraiv.) -
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Combined with §.20), this gives

(5.21) IRm:sllo.c0 + || curl Ry sl0.0 < Crad™ ™.
Together with $.18 and £.199, this estimate gives finally
(5.22) ||Rm;5||07Q + || curl Rm;(SHO’Q < Commme,

STEP 3. In order to deduce the optimal estimaied] for R,,,. 5, we use .22 for m + 1 +
mg, Which yields
(5.23) IR 11mossllo.e + || curl Ry 1 mg: 5100 < Crnd™ 1.

But we have the formula
m~+1+mg

(5.24) Riis = Y. 0Ej+ Rusivmos:

j=m+1

Moreover by definition theE;r do not depend on and theE; are profiles: Using.4b
we find that for anyj € N

(5.25) 072 |ES log + 02 curl Ef [lon < ClIW, (e s )

Combining with .49, we obtain for anyj € N

(5.26) IE} w00 + 677 [Ef oo + 87 cunl E [lo0 < C.

We finally deduce the wanted estima%ed) from (5.23 to (5.26). O

Remark5.1 As a consequence of the workd pnd [14], we find the existence of asymp-
totics of the form $.4) when the interfac&: is smooth, if the right hand sides smooth
and has its support in the dielectric p&t. Moreover, estimatex(7) is true form, = 1,
cf. [14, Ch.7].

Remark5.2 If the interface has conical points, or is polyhedral, maifffcdities are en-
countered for an asymptotic analysis. We refer 1g] [for an investigation of a scalar
transmission problem with high contrast in polygonal damai
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