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Abstract— Usually, the bipedal robots use knee joints with
only one degree of freedom. However, several biomechanical
researches have proved the human knee joint is a very complex
articulation with more than one degree of freedom. Indeed, in
the sagittal plain the human knee articulation allows a rolling
and a sliding of the thigh on the shin. Moreover, we can use for
a bipedal robot a closed structure, which gives an additional
degree of freedom in translation for the knee joint in the
sagittal plane. Therefore, the aim of this paper is to study two
different bipedal robots. One with single axis knee joints and
an other with four-bar knee joints. These bipeds are defined
in the sagittal plain and are composed of two shins, two thighs
and a trunk but they have no feet or arms. In the two cases,
we use a parametric optimization method to produce reference
cyclic trajectories in order to compare the energy consumption
of the bipedal robots. A Poincaré return map is defined for
the walking gaits of the bipedal robots in order to study the
influence of the two different knees on their orbital stability.

I. INTRODUCTION

Lot of papers are devoted to the definition of reference

walking trajectories for bipedal robots in two or three dimen-

sions, [1], [2], [3], [4], [5]. These works proved the possibil-

ity to define by optimization more efficient trajectories from

the point of view of energy consumption for a bipedal robot.

However, the necessary energetic autonomy of the bipedal

robots could be obtained by a better comprehension of the

human’s lower limbs. Indeed, most biomechanical researches

have been interested on the study of the human knee joint

[6], [7], [8], [9]. There studies defined precisely the different

movements of the knee. The main characteristic of this

articulation is a very complex joint, which is composed of

non-matching surfaces, with six degrees of freedom [10].

This articulation allows rolling and sliding movements of

the femur on the shin in the sagittal plane. In opposition,

most bipedal robots, like HRP-2 [11], Rabbit [12], Wabian-

2 [13], have knee joints with only one degree of freedom.

We can note G. Gini et al. in [14] have developed an

anthropomorphic leg for the robot LARP with a new type

of knee, which allows a rolling and a sliding of the femur

on the shin. Moreover F.Wang et al., [15], have developed a

bipedal robot with two different legs. The first with a single

axis knee joint and the second with a parallel knee structure.

This simple structure called four-bar knee, reproduce a part

of the human knee movement. Indeed, this structure allows a

coordinated movement of rotation and translation of the thigh

on the shin, but prevent the dislocation of the knee joint as

the cruciate ligaments for the human knee [6], [16], [17].
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So the interests of this structure are a polycentric center of

rotation like in the human knee joint, a higher foot clearance

for a smaller flexion angle than a single axis knee and

a better reaction force of the ground to keep the stability

during a walking gate. So we purpose to prove the interest

of a complex knee joint in term of energy consumption for

a planar bipedal robot. We choose to study two different

planar bipedal robots. One with revolute knee joints and the

other with four-bar knees. The mass and inertial properties

of the different segments are chosen to correspond to the

human characteristics [7]. The two robots are composed of

a trunk, two shins and two thighs but have no feet or arms.

We use these very simple robots to center the study on the

energetic consumption of the knee joint. In each case, we

pose a parametric optimization problem to obtain walking

cyclic gait. The steps are composed of single support phases

separated by an impulsive impact. The reference trajectories

for the actuated joints are defined like polynomial functions

of an unactuated angle, which is the orientation of the

support leg versus the inertial frame, to solve the problem

of under actuation of the bipedal robot in single support

phase. The four-bar knee is not a new structure. But the main

contribution of this paper is the study of the energetic interest

of the 4-bar for the knee joint versus to a revolute joint

by using of an optimization method. Moreover a criterion

of stability with the Poincaré return map [12] is computed

to study the influence of the four-bar knee on the orbital

stability.

So, we will be presented in section II the different bipedal

robots. Section III presents the structure and physical data

of the two bipedal robots. In section IV, the problem of

the trajectory optimization is addressed. Numerical tests

are analyzed in section V. Finally, section VI offers our

conclusions and perspectives.

II. PRESENTATION OF THE DIFFERENT ROBOTS

The first bipedal robot, figure (1), is a planar bipedal robot

with point feet. All joints are revolute and have only one

degree of freedom. The second bipedal robot, figure (2),

uses four-bar knees. These knees are composed of a closed

structure that allows a synchronized movement of the knee

in translation and rotation. The dimensions of both biped are

chosen to respect the human’s characteristics. The lengths,

masses and inertia moments for the segments of the bipeds

are computed from a table of anthropomorphic data (see

[7]), obtained by W. Dempster in [18]. For the biped with

four-bar knee joints the whole mass is 67 kg, its height is

1.62 m. The masses and the lengths of its five links are:

m1 = m4 = 3.48 kg, m2 = m3 = 7.5 kg, m5 = 43.35 kg.
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The length of the shins are l1 = l4 = 0.497 m (between the

ankle and the base of the 4 bar-knee structure), the length

of the thighs are l2 = l3 = 0.497 m, and the length of the

trunk is l5 = 0.625 m. The distances between the knee joint

and the center of mass of the shin are: s1 = s4 = 0.215 m;

between the hip joint and the center of mass of thigh: s2 =
s3 = 0.215 m; between the hip joint and the center of mass

of the trunk: s5 = 0.386 m. The inertia moments around

the mass center of each links are: I1 = I4 = 0.058 kg.m2,

I2 = I3 = 0.145 kg.m2, I5 = 2.137 kg.m2. The length of

the different parts of the four-bar knee are la = 0.0425 m,

lb = 0.03m, lc = 0.025m, ld = 0.051m, le = 0.004m (see

figure (3)) and the masses are mb = 0.25 kg, md = 0.35 kg.

For the second bipedal robot with revolute knee joints,

we use the same characteristics of weight and length of the

different bodies but to compare the results between the two

robots we need to change a few numbers of values to take

into account the dimension of the four-bar structure. So, the

length of the shins are l1 = l4 = 0.501 m and the mass of

the thighs are m2 = m3 = 8.1 kg.

III. BIPED MODEL

This part is devoted to the definition of a dynamic model

for each robot in single support phase. First, we present

the dynamic model of the robot with a single axis knee

and the model of the impulsive impact. Finally, we present

the differences with the bipedal robot using a four-bar knee

structure.

A. Model of the biped with single axis knee joints
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Fig. 1. Diagram of the planar bipedal robot with single axis knee joints:
generalized coordinates, applied torques.

1) Dynamic model: To define the dynamic model of the

planar biped, which is depicted in figure (1), let us introduce

vector Θa = (θ1, θ2, θ3, θ4)
∗1 of the actuated angles and the

unactuated angle q1 corresponding to the angle between the

1Notation ∗ means transposition

vertical axis and the shin. We use the vector Θ = (Θ∗

a, q1)
∗

to define the dynamic model of the bipedal robot. The two

Cartesian coordinates xh, zh are the abscissa and the ordinate

of the hip joint. The vector Γ = (Γ1,Γ2,Γ3,Γ4)
∗ regroups

the applied torques in the joints and Rj = (Rjx, Rjz), the

ground reaction applied to the point foot j. If we consider

that the fixed leg tip is linked on the ground with a pivot

joint, we can calculate the dynamic model of the bipedal

robot such as,

A(Θa)Θ̈ + C(Θ, Θ̇)Θ̇ +G(Θ) = DΓΓ (1)

As the kinetic energy of the planar biped is invariant under

a rotation of the world frame [19], the 5x5 positive inertia

matrix A = A(Θa) is independent of variable q1 which

defines the orientation of the biped. C(Θ, Θ̇) is the 5x5

matrix of the centrifugal and Coriolis forces and G(Θ) is the

5x1 vector of the gravity forces. DΓ is a 5x4 fixed matrix

constituted of zeros and units.

This formulation of the dynamic model is valid only if

the stance leg tip does not take off and there is no sliding

during the swing phase. In consequence, the contact point of

the stance leg tip with the ground is considered as a pivot

joint. Then, the vertical component of the ground reaction in

the stance leg tip has to be positive and the ground reaction

must be inside the friction cone. The ground reaction in the

stance leg tip can be calculated by applying the fundamental

dynamic principle in the center of mass of the biped:
(

R1x

R1z

)

+

(

R2x

R2z

)

= m

(

ẍg

z̈g

)

+m

(

0
g

)

(2)

Here, m is the biped’s mass, ẍg and z̈g are the components

of the acceleration for its center of mass. During the single

support phase, reaction R2 of the ground on the balance

leg tip is null. Then, this equation allows directly to get the

reaction force R1 of the ground in single support.

2) Model of the impulsive impact: The impact model is
deduced from the dynamic model in double support, when
we assume that the acceleration of the bipedal robot and
the reaction forces are Dirac delta-functions. The dynamical
model in double support can be written:

Ae(Θa)Ẍ+Ce(X, Ẋ)Ẋ+Ge(X) = DΓe+J
∗

R1
R1+J

∗

R2
R2 (3)

Here, X = [θ1, θ2, θ3, θ4, q1, xh, zh]∗ where xh, zh are the

coordinates of the hip joint. Matrices J∗

R1 and J∗

R2 are the

transposed jacobian matrices in leg tips 1 and 2. These

matrices and DΓ allow to take into account the ground

reaction and torques in the dynamic model. The impact is

assumed inelastic without rebound. That is why the velocity

of the swing foot impacting the ground is zero after impact.

Two cases are possible after an impact: the rear foot takes

off the ground or both feet remain on the ground.

In the first case, the vertical component of the velocity of

the taking-off leg tip just after an impact must be directed

upwards and the impulsive ground reaction in this leg tip

equals zeros (R1 = 0). In the second case, the velocity of

the rear leg tip has to be zero just after impact. The ground

produces impulsive forces in both leg tips. Then, the vertical
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component of the impulsive ground reaction in the rear leg

tip (as in the foreleg tip) has to be directed upwards. In [2]

S. Miossec has studied the problem of the impact for the

same type of planar bipedal robot without feet and proved a

swing leg with zero velocity just before impact is the only

valid solution to obtain a finite time double support phase.

There is no impact, the reaction forces on the two leg tips

are zero and the velocity of the two leg tips after impact

is null. Then, only walking cyclic gaits with single support

phases and impacts are considered. Thus, the impact model

is (see [20])

Ae(Θa)(Ẋ+ − Ẋ−) = JRIR (4)

JR
∗Ẋ+ = 0 (5)

These relations form a matrix system which helps to deter-

mine the impulse forces IR and the velocity vector of the

biped after impact Ẋ+ in function of the velocity vector of

the biped just before the impact Ẋ−.

B. Modelling of the robot with four-bar knee joints

This part is devoted to the definition of a dynamic model

for the robot with four-bar knees. The most important part in

this section is the study of the four-bar structure (see figure

(3)). So, we will present the dynamic model of this robot and

the kinematic constraints which limit the number of degrees

of freedom of the robot.

x ,zh h

θ3

θ2

θ1

θ4

-q1

S

q4

Γ3

S

Γ2

Γ1

Γ4

Fig. 2. Diagram of the bipedal robot with a four-bar knee joint in sagittal
plane : relative coordinates, applied torques.

1) Dynamic model of the robot with four-bar knees:

We have introduced for the robot with single axis knees,

the relative angles between the different parts of the robot,

but for the robot with four-bar knees, it is necessary to add

four angles to represent the robot. So, to define the dynamic

model of this robot, we introduce vector Θa = (θ1, θ2, θ3, θ4)
of the actuated angle and qg = (qg11

, qg12
, qg21

, qg22
)∗ which

is the vector of the absolute angles of the four-bar for both

knee. Θ = [Θa, q1, qg]
∗ is the vector of the articular variables

of the planar biped.

-q1

q2

-qg11

-qg12

la

lb

lc

ld

leα1

Fig. 3. Detail of the four-bar knee joint on the stance leg

So, with this notation the dynamic model of this biped is:

A(Θa)Θ̈ + C(Θ, Θ̇)Θ̇ +G(Θ) = DΓΓ (6)

2) Computation of the DΓ matrix: For the robot with

four-bar knees, the angles which are actuated on the knees

are not θ1 and θ4 like in the single axis case but the angles

note α1 and α2 for the legs 1 and 2 respectively (see figure

(3) for leg 1). With our choice of notation for the dynamic

model, matrix DΓ is different from in section III-A. It is

necessary to use the virtual work principle [2] to obtain

this matrix. So we present in this part, the principle of

the computation. Let us introduce the virtual work of the

actuators for this robot with our notation:

δW = δα1δΓ1 + δθ2δΓ2 + δθ3δΓ3 + δα2δΓ4

with:

δα1 = δθ1 − δq1 + δqg12
(7)

δα2 = δθ4 − δq4 + δqg22
(8)

Here, δαi and δθi are the virtual articular displacements of

the angles αi and θi. q4, which is the absolute angle of the

swing leg’s shin, is not a variable of Θ, but we can obtain

the following relation between q4 and Θ:

δα2 = δθ1 − δq1 − δθ2 + δθ3 + δqg22
(9)

and we have:

DΓ =
∂

∂δΓ

(

∂δW

∂δΘ

)
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Finally :

DΓ =





























1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0
−1 0 0 −1
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1





























(10)

3) Kinematic constraints on the four-bar knees: An im-

portant difference between the first robot is on the kinematic

constraints. Indeed, we can see with the previous notation

the robot has nine degrees of freedom, but four actuators.

If we want to reduce the degree of under actuation at one,

it is necessary to choose four equations of constraints. For

each knee, we have introduced two new variables but the

constraints of closing of the loop give two equations for each

knee.

−la cos(q1) − lb sin(qg11
) + lc cos(q2) + ld sin(qg12

) = 0

−la sin(q1) + lb cos(qg11
) + lc sin(q2) − ld cos(qg12

) = 0

−la cos(q4) − lb sin(qg21
) + lc cos(q3) + ld sin(qg22

) = 0

−la sin(q4) + lb cos(qg21
) + lc sin(q3) − ld cos(qg22

) = 0

With these four equations, it is possible to obtain the

variables qg11
, qg12

, qg21
, qg22

in function of q1, q2, q3, q4.

Moreover, if we derived these four equations we can com-

pute velocities and accelerations of qg11
, qg12

, qg21
, qg22

in

function of the others. So Finally, this robot has just one

degree of under actuation.

IV. OPTIMIZATION

In this section, we present a methodology to design a

parametrized family of cyclic reference trajectories for the

two planar bipedal robots. In each case, the evolution of

the articulations is defined like polynomial functions of an

unactuated angle, which changes monotonically during the

step. Moreover, in order to determine a particular solution of

motion which minimizes the mechanical energy consump-

tion, a parametric optimization process under constraints is

presented.

A. Definition of actuated joints trajectories

The biped with its stance point feet is underactuated in

single support phase. The degree of underactuation equals

one. To take into account this problem and to ensure the

biped reaches its final desired configuration at the impact,

the reference trajectories of the actuated joints θj , j = 1
to 6 are polynomial functions of the unactuated generalized

variable q1, figures (1) and (2). Indeed, different researches

[21], [22], [23] conclude this angle is always monotonically

during a single support phase for most of walking gaits.

So, this angle could be used instead of time for the bipedal

robot. The order of these polynomial functions equals three

to prescribed the initial and final values for the joint variables

and their velocities.

θj(q1) = a0 + a1q1 + a2q
2
1 + a3q

3
1 for j=1 to 6. (11)

Here, the coefficients ai, for i = 0 to 3, are calculated

with the parameters θji
, q1i

, θ̇ji
, q̇1i, θjf

, q1f
, θ̇jf

and q̇1f .

Moreover, we can define the velocities such as:

θ̇j =
∂θj(q1)

∂q1
q̇1 for j=1 to 6 (12)

and the acceleration :

θ̈j =
∂θj(q1)

∂q1
q̈1 +

∂2θj(q1)

∂q12
q̇21 for j=1 to 6. (13)

This method is only valid if the behavior of the angle q1 is

monotonous. So, its derivative q̇1 has to be strictly negative

here. Indeed, if we denote σ as the angular momentum

around the fixed point S of the stance foot, we can define

the equation:

σ = q̇1f(q1) (14)

where f(q1) is determined by the fifth line of equation (1)

which corresponds to the angle q1 such as:

f(q1) = Aq1
(Θa)

∂Θ(q1)

∂q1
(15)

∂f(q1)

∂q1
= Aq1

(Θa)
∂2Θ(q1)

∂q21
+ Cq1

(Θ, Θ̇)
∂Θ(q1)

∂q1
(16)

where Aq1
and Cq1

are the fifth lines of the inertia matrix

and the Centrifugal vector corresponding to the generalized

coordinate q1. Moreover, the gravity is only the external force

which creates a moment, so the angular momentum changes

according to the equation:

σ̇ = −mg(xg − xS) (17)

where xg and xS are the horizontal positions of the center of

gravity of the biped and the contact point respectively. So,

we can define the relationship:

σ̇ =
∂σ

∂q1
q̇1 =

∂σ

∂q1

σ

f(q1)
=

1

2

∂σ2

∂q1

1

f(q1)
(18)

which gives:

∂σ2

∂q1
= −2mg(xg − xS)f(q1) (19)

The integration of this relation gives:

σ2 − σ2(0) = −2mg

∫ q1

q1i

(xg − xS)f(q1)dq1 (20)

So, we can introduce the variable Φ(q1) such as:

Φ(q1) = σ2 − σ2(0) = q̇1
2f2(q1) − q̇1

2
i f

2(q1i
) (21)

Finally, we obtain:

q̇1
2 =

Φ(q1) + q̇1
2
i f

2(q1i
)

f2(q1)
(22)
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which gives the dynamic of q1:

q̇1 = ±

√

Φ(q1) + q̇1
2
i f

2(q1i
)

f(q1)
(23)

but q1 is a monotone decreasing function, so q̇1 < 0.

Moreover, such as σ < 0, f(q1) has to be positive to satisfy

the constraints of movement and we can conclude [24]:

q̇1 = −

√

Φ(q1) + q̇1
2
i f

2(q1i
)

f(q1)
(24)

Similarly the dynamic q̈1 is:

q̈1 =
d

dt

(

σ

f(q1)

)

(25)

So, we have:

q̈1 =
σ̇f(q1) − σḟ(q1)

f2(q1)
(26)

which leads:

q̈1 = −
mg(xg − xS) + q̇21

∂f(q1)
∂q1

f(q1)
(27)

Introducing, the square velocity (q̇1
+)2, it is possible to

define a linear Poincaré return map Qn+1 = P (Qn) [25].

The fixed point Q∗ = P (Q∗) is asymptotically stable if and

only if:
dP

dQn

≤ 1 (28)

which leads to [12]:
∣

∣

∣

∣

σ+(q1i
)

σ−(q1f
)

∣

∣

∣

∣

=
|σ+(q1i

)|

|σ−(q1f
)|

= δ ≤ 1 (29)

where σ−(q1i
) and σ+(q1f

) are the angular momentum of

the biped in the stance leg tip just before and just after

impact. So, we search to decrease the criterion δ to improve

the stability of the gait.

In conclusion, we can calculate a reference trajectory, from

the parameters Θai
, q1i

, Θaf
, q1f

, Θ̇ai
, q̇1i

, Θ̇af
, q̇1f

, in

function of q1, q̇1 and q̈1 and, with the direct dynamic model

(1), the needed torques to realize this trajectory. To obtain a

walking cyclic gait composed of single supports and impacts

we can reduce the number of parameters. For that we take

into account the exchange of legs between two steps with the

relations into the different parameters. Indeed, the resolution

of the impact and the inversion of the legs between two steps

allow to reduce the number of parameters. Moreover, we can

solve the inverse geometrical model of the leg in the limit

configuration of the end of step to reduce of one the set of

parameters.

B. The problem of trajectories optimization

In this section, we will present a parametric optimization

process to obtain the best solution of parameters, which

minimizes the energy consumption of the trajectory. We

use the SQP method (Sequential Quadratic Programming)

[26], [27] with the fmincon function of Matlab c© which

allows to solve a problem of optimization under linear and

non linear constraints. So, we have to define a criterion, the

parameters of the optimization and different technological

and physical constraints to obtain a walking gait.

1) The criterion: Many criteria can be used to produce

an optimal trajectory. In [28] the authors used a criterion to

minimize the effort of control. K. Mombaur in [29] proposed

to consider the stability like a criterion of optimization. To

obtain a trajectory, which minimizes the energy cost, we use

a criterion proportional to the mechanical energy to cover

the distance d:

CW =
1

d

∫ q1f

q1i

4
∑

n=1

|Γiθ̇n|dq1 (30)

Indeed if we suppose the actuator can not restore the energy,

the mechanical energy for the gait is the integral of the

absolute value of the joint mechanical power.

2) The constraints of the optimization problem: To obtain

a physical gait we need to introduce lot of constraints. We

define two types of constraints:

• The necessary constraints which ensure a valid walking

gait. The first constraint is linked to the existence of q̇1
and q̈1. So we set the constraint:

φ(q1) + f(q1i
)2q̇21i

> 0 (31)

with :

f(q1) > 0 (32)

The secondary constraint ensures the support leg tip

does not take off or slide on the ground. So, the ground

reaction force is inside a friction cone, defined by the

friction coefficient f :
{

max(−f.Rz −Rx) ≤ 0
max(−f.Rz +Rx) ≤ 0

(33)

Moreover, we can introduce a constraint on the ground

reaction at the impact:

fIRz
> |IRx

| (34)

The third constraint allows ensuring the non penetration

of the swinging point feet in the ground. For that we

define a polynomial function for the minimum altitude

of the swing leg tip in function of its horizontal position:

z(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 (35)

Here the coefficients of the polynomial function are

chosen to satisfy the equation:

z(0) = 0 z(d) = 0 z(d
2 ) = h ż(0) = 0 ż(d) = 0

where h is the maximum value of the polynomial

function at the middle of the step. So the altitude of

the transfer leg tip has to be greater or equal to the

function z(x).
• The unnecessary constraints which ensure a technologi-

cal realistic gait. First we introduce mechanical stops on
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the angles Θ. Moreover, we can limit the torques with a

constraint, which sets a template of the maximum torque

of the motor in function of the velocity.

V. RESULTS

In this part we present the result of simulation obtained

for the two planar bipedal robots. In each case, we compare

the energy consumption in function of the walking rate.

Moreover we compare the criterion of stability δ introduced

in the previous part. Finally we explain the difference on the

energy consumption by comparison of the power uses on the

knee support leg.
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Fig. 4. Evolution of the criterion in function of the walking rate for both
bipedal robots: biped with single axis knees (dashed line), robot with four-
bar knees (straight line).

Figure (4) gives the evolution of the optimal criterion for

the different structures of the knee. The energy cunsomption

is less with a biped equiped with four-bar knees than with

single joint revolute knees. In the same time, figure (5) gives

the evolution of the criterion of stability δ in function of the

walking rate and shows the four-bar knee structure decreases

the stability.
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Fig. 5. Evolution of the stability in function of the walking rate for both
bipedal robots: biped with single axis knees (dashed line), robot with four-
bar knees (straight line).

In order to explain the difference of energy consumption

between the two bipedal robots, we study the mechanical

energy produced on the knee of the supporting leg in both

cases. Let us introduce the mechanical power produced on

the support leg with the four-bar knee:

PW1
= |Γ1α̇1|

and the mechanical power produced on the single axis knee’s

support leg:

PW1
= |Γ1θ̇1|

So, we can compare the mechanical energy, which is the

integral of the mechanical power for the two robots.
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Fig. 6. Energy uses by the knee support leg actuator in function of the
walking rate for the robot with four-bar knees (straight line), and for the
robot with single axis knees (dashed line).

Figure (6) gives the evolution of the mechanical energy, on

knee support leg for both biped in function of the walking

rate. We can see the mechanical power developed on the

knee support leg is always lower for a four-bar structure.

118



Moreover, to understand the effect of the four-bar knee on the

energy consumption, we introduce criterion ψ, which depicts

the ratio between the mechanical power used by an actuator

and the total mechanical power:

ψi =

∫ q1f

q1i

PWi
dq1

CW

(36)

Figures (7) and (8) give the evolution of the criterion ψ for

the knee support leg actuator and the hip support leg actuator

in function of the walking rate for the two bipeds.
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Fig. 7. Evolution of criterion ψ of the knee support leg joint for the robot
with four-bar knees (straight line) and for the robot with single axis knee
joints (dashed line) in function of the walking rate.
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Fig. 8. Evolution of criterion ψ of the hip support leg joint for the robot
with four-bar knees (straight line) and for the robot with single axis knee
joints (dashed line) in function of the walking rate.

So, for a bipedal robot with single revolute knee joints

the energy consumption of the support leg is always greater

than 60% of the total energy consumption. For a biped with

four-bar knees, the energy consumption is always lower than

60% of the total energy consumption. There is an important

reduction of the energy consumption of the knee and the hip

of the stance leg. We can see figure (9), for the robot with

four-bar knees, the template torques/joint velocities is clearly

oversized. The physical characteristics of the motors, weigth,

inertia, length should be less for a four-bar knee.
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Fig. 9. Representation of the template of the maximum torque used for
the knee joint. Evolution of the knee support leg torque in function of the
articular velocity for the robot with four-bar knees (straight line) and for
the robot with single axis knees (dashed line) for a step at 1m/s.

Figure (10), we introduce a criterion on the evolution of

the vertical position of the center of mass of the bipedal robot

with:

∆H = max(zg) − min(zg) (37)

The evolution of criterion ∆H is in function of the walking

rate for both biped. We can see the four-bar knee reduces

the vertical excursion of the center of mass that induces a

reduction of the potential energy during the gait.
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Fig. 10. Evolution of the vertical excursion of the center of mass in function
of the walking rate for the biped with four-bar knees (straight line) and for
the biped with single axis knees (dashed line).

From the profiles of the norm of the impulsive ground

reaction, figure (11), we can conclude the four-bar knee

reduces the impact forces. This result may be explained by

the flexibility given by the four-bar structure.
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Fig. 11. Evolution of the norm of the impulsive ground reaction force in
function of the walking rate for the biped with four-bar knees (straight line)
and for the biped with single axis knees (dashed line).

VI. CONCLUSION

In this paper we have studied two types of knee joints

for a planar bipedal robot without feet. Due to the fact

there is no feet, these bipeds are underactuated in single

support phase. A single axis articulation, which uses on the

most bipedal robots and a four-bar knee, which composes

of a parallel structure. In both case, we have defined a

parametric optimization problem to obtain a walking cyclic

step for an under actuated bipedal robot. The steps are

composed of single support phases and impulsive impacts.

By solving of this optimization problem we have study the

energy consumption of the biped for the two different knee

joints. With the help of the definition of reference trajectories

and this underactuated property we can see the influence of

both structures on the orbital stability for the two bipeds.

The main advantage of the four-bar knee joint is to reduce

the energy consumption but decreases the stability than a

single axis joint. Furthermore, the four-bar knee reduces

the vertical excursion of the body center of mass, and then

minimizes the potential energy, and decreases the impulsive

forces at the impact. In perspective of this work, an extension

of this study in 3D could be done and a study of the effect of

the four-bar knee on the foot clearance in the case of bipeds

with feet.
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