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Abstract

This paper reviews the functional aspects of statistical learning theory. The main point under con-
sideration is the nature of the hypothesis set when no prior information is available but data. Within this
framework we first discuss about the hypothesis set: it is a vectorial space, it is a set of pointwise defined
functions, and the evaluation functional on this set is a continuous mapping. Based on these principles an
original theory is developed generalizing the notion of reproduction kernel Hilbert space to non hilbertian
sets. Then it is shown that the hypothesis set of any learningmachine has to be a generalized reproducing
set. Therefore, thanks to a general “representer theorem”,the solution of the learning problem is still a
linear combination of a kernel. Furthermore, a way to designthese kernels is given. To illustrate this
framework some examples of such reproducing sets and kernels are given.

1 Some questions regarding machine learning

Kernels and in particular Mercer or reproducing kernels play a crucial role in statistical learning theory
and functional estimation. But very little is known about the associated hypothesis set, the underlying
functional space where learning machines look for the solution. How to choose it? How to build it? What
is its relationship with regularization? The machine learning community has been interested in tackling
the problem the other way round. For a given learning task, therefore for a given hypothesis set, is there
a learning machine capable of learning it? The answer to sucha question allows to distinguish between
learnable and non-learnable problem. The remaining question is: is there a learning machine capable of
learning any learnable set.
We know since [13] that learning is closely related to the approximation theory, to the generalized spline
theory, to regularization and, beyond, to the notion of reproducing kernel Hilbert space (r.k.h.s). This
framework is based on the minimization of the empirical costplus a stabilizer (i.e. a norm is some Hilbert
space). Then, under these conditions, the solution to the learning task is a linear combination of some
positive kernel whose shape depends on the nature of the stabilizer. This solution is characterized by strong
and nice properties such as universal consistency.
But within this framework there remains a gap between theoryand practical solutions implemented by
practitioners. For instance, inr.k.h.s, kernels are positive. Some practitioners use hyperbolic tangent
kernel tanh(w⊤

x + w0) while it is not a positive kernel: but it works. Another example is given by
practitioners using non-hilbertian framework. The sparsity upholder uses absolute values such as

∫
|f |dµ

or
∑

j |αj |: these areL1 norms. They are not hilbertian. Others escape the hilbertian approximation
orthodoxy by introducing prior knowledge (i.e. a stabilizer) through information type criteria that are not
norms.
This paper aims at revealing some underlying hypothesis of the learning task extending the reproducing
kernel Hilbert space framework. To do so we begin with reviewing some learning principle. We will stress
that the hilbertian nature of the hypothesis set is not necessary while the reproducing property is. This leads
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us to define a non hilbertian framework for reproducing kernel allowing non positive kernel, non-hilbertian
norms and other kinds of stabilizers.
The paper is organized as follows. The first point is to establish the three basic principles of learning.
Based on these principles and before entering the non-hilbertian framework, it appears necessary to recall
some basic elements of the theory of reproducing kernel Hilbert space and how to build them from non
reproducing Hilbert space. Then the construction of non-hilbertian reproducing space is presented by
replacing the dot (or inner) product by a more general duality map. This implies distinguishing between
two different sets put in duality, one for hypothesis and theother one for measuring. In the hilbertian
framework these two sets are merged in a single Hilbert space.
But before going into technical details we think it advisable to review the use ofr.k.h.s in the learning
machine community.

2 r.k.h.s perspective

2.1 Positive kernels

The interest ofr.k.h.s arises from its associated kernel. As it were, ar.k.h.s is a set of functions entirely
defined by a kernel function. A Kernel may be characterized asa function fromX × X to IR (usually
X ⊆ Rd). Mercer [11] first establishes some remarkable propertiesof a particular class of kernels: positive
kernels defining an integral operator. These kernels have tobelong to some functional space (typically
L2(X × X ), the set of square integrable functions onX × X ) so that the associated integral operator is
compact. The positivity of kernelK is defined as follows:

K(x, y) positive ⇔ ∀f ∈ L2, 〈〈K, f〉L2 , f〉L2 ≥ 0

where〈., .〉L2 denotes the dot product inL2. Then, because it is compact, the kernel operator admits a
countable spectrum and thus the kernel can be decomposed. Based on that, the work by Aronszajn [2] can
be presented as follows. Instead of defining the kernel operator from L2 to L2 Aronszajn focuses on the
r.k.h.s H embeded with its dot product〈., .〉H . In this framework the kernel has to be a pointwise defined
function. The positivity of kernelK is then defined as follows:

K(x, y) positive ⇔ ∀g ∈ H, 〈〈K, g〉H , g〉H ≥ 0 (1)

Aronszajn first establishes a bijection between kernel andr.k.h.s. Then L. Schwartz [16] shows that this
was a particular case of a more general situation. The kerneldoesn’t have to be a genuine function. He
generalizes the notion of positive kernels to weakly continuous linear application from the dual setE∗ of a
vector spaceE to itself. To share interesting properties the kernel has tobe positive in the following sense:

K positive ⇔ ∀h ∈ E∗ ((K(h), h)E,E∗ ≥ 0

where(., .)E,E∗ denotes the duality product betweenE and its dual setE∗. The positivity is no longer
defined in terms of scalar product. But there is still a bijection between positive Schwartz kernels and
Hilbert spaces.

Of course this is only a short part of the story. For a detailedreview onr.k.h.s and a complete literature
survey see [3, 14]. Moreover some authors consider non-positive kernels. A generalization to Banach sets
has been introduced [4] within the framework of the approximation theory. Non-positive kernels have been
also introduced in Krĕin spaces as the difference between two positive ones ([1] and [16] section 12).

2.2 r.k.h.s and learning in the literature

The first contribution ofr.k.h.s to the statistical learning theory is the regression splinealgorithm. For an
overview of this method see Wahba’s book [20]. In this book two important hypothesis regarding the ap-
plication of ther.k.h.s theory to statistics are stressed. These are the nature of pointwise defined functions
and the continuity of the evaluation functional1. An important and general result in this framework is the

1These definition are formaly given section 3.5, definition 3.1 and equation (3)
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so-called representer theorem [9]. This theorem states that the solution of some class of approximation
problems is a linear combination of a kernel evaluated at thetraining points. But only applications in one
or two dimensions are given. This is due to the fact that, in that work, the way to buildr.k.h.s was based
on some derivative properties. For practical reason only low dimension regressors were considered by this
means.
Poggio and Girosi extended the framework to large input dimension by introducing radial functions through
regularization operator [13]. They show how to build such a kernel as the green functions of a differential
operator defined by its Fourier transform.
Support vector machines (SVM) perform another important link between kernel, sparsity and bounds on
the generalization error [19]. This algorithm is based on Mercer’s theorem and on the relationship between
kernel and dot product. It is based on the ability for positive kernel to be separated and decomposed
according to some generating functions. But to use Mercer’stheorem the kernel has to define a compact
operator. This is the case for instance when it belongs toL2 functions defined on a compact domain.
Links between green functions, SVM and reproducing kernel Hilbert space were introduced in [8] and [17].
The link betweenr.k.h.s and bounds on a compact learning domain has been presented ina mathematical
way by Cucker and Smale [5].

Another important application ofr.k.h.s to learning machines comes from the bayesian learning commu-
nity. This is due to the fact that, in a probabilistic framework, a positive kernel is seen as a covariance
function associated to a gaussian process.

3 Three principles on the nature of the hypothesis set

3.1 The learning problem

A supervised learning problem is defined by a learning domainX ⊆ IRd whered denotes the number of
explicative variables, the learning codomainY ⊆ IR and an dimensional sample{(xi, yi), i = 1, n}: the
training set.

Main stream formulation of the learning problem considers the loading of a learning machine based on
empirical data as the minimization of a given criterion withrespect to some hypothesis lying in a hypothesis
setH. In this framework hypotheses are functionsf fromX toY and the hypothesis spaceH is a functional
space.

HypothesisH1 : H is a functional vector space

Technically a convergence criterion is needed inH, i.e. H has to be embedded with a topology. In the
remaining, we will always assumedH to be a convex topological vector space.

Learning is also the minimization of some criterion. Very often the criterion to be minimized contains two
terms. The first one,C, represents the fidelity of the hypothesis with respect to data whileΩ, the second
one, represents the compression required to make a difference between memorizing and learning. Thus the
learning machine solves the following minimization problem:

min
f∈H

C(f(x1), ..., f(xn),y) + Ω(f) (2)

The fact is, while writing this cost function, we implicitlyassume that the value of functionf at any point
xi is known. We will now discuss the important consequences this assumption has on the nature of the
hypothesis spaceH.

3.2 The evaluation functional

By writing f(xi) we are assuming that functionf can be evaluated at this point. Furthermore if we want
to be able to use our learning machine to make a prediction fora given inputx, f(x) has to exist for all
x ∈ X : we want pointwise defined functions. This property is far from being shared by all functions. For
instance functionsin(1/t) is not defined in 0. Hilbert spaceL2 of square integrable functions is a quotient
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space of functions defined only almost everywhere (i.e. not on the singletons{x}, x ∈ X ). L2 functions
are not pointwise defined because theL2 elements are equivalence classes.

To formalize our point of view we need to defineIRX as the set of all pointwise defined functions from
X to IR. For instance whenX = IR all finite polynomials (including constant function) belong to IRX . We
can lay down our second principle:

HypothesisH2 : H is a set of pointwise defined function (i.e. a subset ofIRX )

Of course this is not enough to define a hypothesis set properly and at least another fundamental prop-
erty is required.

3.3 Continuity of the evaluation functional

The pointwise evaluation of the hypothesis function is not enough. We want also the pointwise convergence
of the hypothesis. If two functions are closed in some sense we don’t want them to disagree on any point.
Assumet is our unknown target function to be learned. For a given sample of sizen a learning algorithm
provides a hypothesisfn. Assume this hypothesis converges in some sense to the target hypothesis. Actu-
ally the reason for hypothesisfn is that it will be used to predict the value oft at a givenx. For anyx we
wantfn(x) to converge tot(x) as follows:

fn
H
−→ t =⇒ ∀x ∈ X , fn(x)

IR
−→ t(x)

We are not interested in global convergence properties but in local convergence properties. Note that it
may be rather dangerous to define a learning machine without this property. Usually the topology onH is
defined by a norm. Then the pointwise convergence can be restated as follow:

∀x ∈ X , ∃Mx ∈ IR+ such that|f(x) − t(x)| ≤ Mx ||f − t||H (3)

At any pointx, the error can be controlled.
It is interesting to restate this hypothesis with the evaluation functional

Definition 3.1 the evaluation functional

δx : H −→ IR
f 7−→ δxf = f(x)

Applied to the evaluation functional our prerequisite of pointwise convergence is equivalent to its continu-
ity.

HypothesisH3 : the evaluation functional is continuous onH

Since the evaluation functional is linear and continuous, it belongs to the topological dual ofH. We will
see that this is the key point to get the reproducing property.

Note that the continuity of the evaluation functional does not necessarily imply uniform convergence. But
in many practical cases it does. To do so one additional hypothesis is needed, the constantsMx have to
be bounded:supx∈X Mx < ∞. For instance this is the case when the learning domainX is bounded.
Differences between uniform convergence and evaluation functional continuity is a deep and important
topic for learning machine but out of the scope of this paper.

3.4 Important consequence

To build a learning machine we do need to choose our hypothesis set as a reproducing space to get the
pointwise evaluation property and the continuity of this evaluation functional. But the Hilbertian structure
is not necessary. Embedding a set of functions with the property of continuity of the evaluation functional



5

has many interesting consequences. The most useful one in the field of learning machine is the existence
of a kernelK, a two-variable function with generation property2:

∀f ∈ H, ∃ℓ ∈ IN, (αi)i=1,ℓ such thatf(x) ≈

ℓ∑

i=1

αiK(x, xi)

I being a finite set of indices. Note that for practical reasonsf may have a different representation.
If the evaluation set is also a Hilbert space (a vector space embedded with a dot product) it is a repro-

ducing kernel Hilbert space (r.k.h.s). Although not necessary,r.k.h.s are widly used for learning because
they have a lot of nice practical properties. Before moving on more general reproducing sets, let’s review
the most important properties ofr.k.h.s for learning.

3.5 IR
X the set of the pointwise defined functions onX

In the following, the function space of the pointwise definedfunctionsIRX = {f : X → IR} will be seen
as a topological vector space embedded with the topology of simple convergence.
IRX will be put in duality withIR[X ] the set of all functions onX equal to zero everywhere except on a
finite subset{xi, i ∈ I} of X . Thus all functions belonging toIR[X ] can be written in the following way:

g ∈ IR[X ] ⇐⇒ ∃{αi} , i = 1, n such thatg(x) =
∑

i

αi1Ixi
(x)

were the indicator function1Ixi
(x) is null everywhere except onxi where it is equal to one.

∀x ∈ X 1Ixi
(x) = 0 if x 6= xi and1Ixi

(x) = 1 if x = xi

Note that the indicator function is closely related to the evaluation functional since they are in bijection
through:

∀f ∈ IRX , ∀x ∈ X , δx(f) =
∑

y∈X

1Ix(y)f(y) = f(x)

But formally,
(
IRX

)′
= span{δx} is a set of linear forms whileIR[X ] is a set of pointwise defined functions.

4 Reproducing Kernel Hilbert Space (r.k.h.s)

Definition 4.1 (Hilbert space) A vector spaceH embedded with the positive definite dot product〈., .〉H is
a Hilbert space if it is complete for the induced norm‖f‖2

H = 〈f, f〉H (i.e. all Cauchy sequences converge
in H).

For instanceIRn, Pk the set of polynomials of order lower or equals tok, L2, ℓ2 the set of square sumable
sequences seen as functions onIN are Hilbert spaces.L1 and the set of bounded functionsL∞ are not.

Definition 4.2 (reproduction kernel Hilbert space (r.k.h.s)) A Hilbert space(H, 〈., .〉H) is a r.k.h.s if
it is defined onIRX (pointwise defined functions) and if the evaluation functional is continuous onH (see
the definition of continuity equation 3).

For instanceIRn, Pk as any finite dimensional set of genuine functions arer.k.h.s. ℓ2 is also ar.k.h.s.
The Cameron-Martin space defined example 8.1.2 is ar.k.h.s while L2 is not because it is not a set of
pointwise functions.

Definition 4.3 (positive kernel) A function fromX × X to IR is a positive kernel if it is symmetric and if
for any finite subset{xi}, i = 1, n ofX and any sequence of scalar{αi}, i = 1, n

n∑

i=1

n∑

j=1

αiαjK(xi, yj) ≥ 0

2this property means that the set of all finite linear combinations of the kernel is dense inH. See proposition 4.1 for a more precise
statement.
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This definition is equivalent to Aronszajn definition of positive kernel given equation (1).

Proposition 4.1 (bijection betweenr.k.h.s and Kernel) Corollary of proposition 23 in [16] and theorem
1.1.1 in [20]. There is a bijection between the set of all possible r.k.h.s and the set of all positive kernels.

Proof.
⇒ from r.k.h.s to Kernel. Let(H, 〈., .〉H) be ar.k.h.s. By hypothesis the evaluation functionalδx is a continuous

linear form so that it belongs to the topological dual ofH. Thanks to the Riesz theorem we know that for each
x ∈ X there exists a functionKx(.) belonging toH such that for any functionf(.) ∈ H:

δx(f(.)) = 〈Kx(.), f(.)〉H

Kx(.) is a function fromX ×X to IR and thus can be written as a two variable functionK(x, y). This function
is symmetric and positive since, for any real finite sequence{αi}, i = 1, ℓ,

Pℓ

i=1 αiK(x, xi) ∈ H, we have:

‖
Pℓ

i=1 αiK(., xi)‖
2
H = 〈

Pℓ

i=1 αiK(., xi),
Pℓ

j=1 αjK(., xj)〉H

=
ℓ

X

i=1

ℓ
X

j=1

αiαjK(xi, xj)

⇐ from kernel tor.k.h.s. For any couple(f(.), g(.)) of IR[X ] (there exist two finite sequences{αi}i = 1, ℓ
and {βj}, j = 1, m and two sequence ofX points {xi}i = 1, ℓ, {yj}, j = 1, m such thatf(x) =
Pℓ

i=1 αℓ
i=11Ixi(x) andg(x) =

Pm

j=1 βj1Iyj (x)) we define the following bilinear form:

〈f(.), g(.)〉[X ] =
ℓ

X

i=1

m
X

j=1

αiβjK(xi, yj)

LetH0 = {f ∈ IR[X ]; | 〈f(.), f(.)〉[X ] = 0}. 〈., .〉[X ] defines a dot product on the quotient setIR[X ]/H0. Now
let’s defineH as theIR[X ] completion for the corresponding norm.H is ar.k.h.s with kernelK by construction.

Proposition 4.2 (from basis to Kernel) LetH be ar.k.h.s. Its kernelK can be written:

K(x, y) =
∑

i∈I

ei(x) ei(y)

for all orthonormal basis{ei}i∈I of H, I being a set of indices possibly infinite and non-countable.

Proof. K ∈ H implies there exits a real sequence{αi}i∈I such thatK(x, .) =
P

i∈I
αiei(x). Then for allei(x)

element of the orthonormal basis:

〈K(., y), ei(.)〉H = ei(y) because ofK reproducing property
and 〈K(., y), ei(.)〉H = 〈

P

j∈I
αjej(.), ei(.)〉H

=
P

j∈I
αj〈ej(.), ei(.)〉H

= αi because{ei}i∈I is an orthonormal basis

by identification we haveαi = ei(y).

Remark 4.1 Thanks to this results it is also possible to associate to anypositive kernel a basis, possibly
uncountable. Consequenty to proposition 4.1 we now how to associate ar.k.h.s to any positive kernel and
we get the result because every Hilbert space admit an orthonormal basis.

The fact that the basis is countable or uncountable (that thecorrespondingr.k.h.s is separable or not) has
no consequences on the nature of the hypothesis set (see example 8.1.7). Thus Mercer kernels are a particlar
case of a more general situation since every Mercer kernel ispositive in the Aronszajn sense (definition
4.3) while the converse is false. Consequenty, when possible functionnal formulation is preferible to kernel
formulation of learning algorithm.
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5 Kernel and kernel operator

5.1 How to build r.k.h.s?

It is possible to buildr.k.h.s from a L2(G, µ) Hilbert space whereG is a set (usualyG = X ) andµ a
measure. To do so, an operatorS is defined to mapL2 functions onto the set of the pointwise valued
functionsIRX . A general way to define such an operator consists in remarking that the scalar product
performs such a linear mapping. Based on that remark this operator is built from a familyΓx of L2(G, µ)
functions whenx ∈ X in the following way:

Definition 5.1 (Carleman operator) Let Γ = {Γx, x ∈ X} be a family ofL2(G, µ) functions. The asso-
ciated Carleman operatorS is

S : L2 −→ IRX

f 7−→ g(.) = (Sf)(.) = 〈Γ(.), f〉L2 =

∫

G

Γ(.) f dµ

That is to say∀x ∈ X , g(x) = 〈Γx, f〉L2 . To make apparent the bijective restriction ofS it is convenient
to factorize it as follows:

S : L2 −→ L2/Ker(S)
T

−→ Im(S)
i

−→ IRX (4)

whereL2/Ker(S) is the quotient set,T the bijective restriction ofS andi the cannonical injection.

This class of integral operators is known as Carleman operators [18]. Note that this operator unlike Hilbert-
Schmidt operators need not be compact neither bounded. But whenG is a compact set or whenΓx ∈
L2(G × G) (it is a square integrable function with respect to both of its variables)S is a Hilbert-Schmidt
operator. As an illustration of this property, see the gaussian example onG = X = IR in table 1. In that
caseΓx(τ) 6∈ L2(X × X )3.

Proposition 5.1 (bijection between Carleman operators andthe set ofr.k.h.s) - Proposition 21 in
[16] or theorems 1 and 4 in [14]. LetS be a Carleman operator. Its image setH = Im(S) is a r.k.h.s. If
H is a r.k.h.s there exists a measureµ on some setG and a Carleman operatorS onL2(G, µ) such that
H = Im(S).

Proof.

⇒ ConsiderT the bijective restriction ofS defined in equation (4).H = Im(S) can be embedded with the induced
dot product defined as follows:

∀g1(.), g2(.) ∈ H2, 〈g1(.), g2(.)〉H = 〈T−1g1, T
−1g2〉L2

= 〈f1, f2〉L2 whereg1(.) = Tf1 andg2(.) = Tf2

With respect to the induced norm,T is an isometry. To proveH is ar.k.h.s, we have to check the continuity of
the evaluation functional. This works as follows:

g(x) = (Tf) (x)
= 〈Γx, f〉L2 ≤ ‖Γx‖L2 ‖f‖L2

≤ Mx ‖g(.)‖H

with Mx = ‖Γx‖L2 . In this frameworkH reproducing kernelK verifiesSΓx = K(x, .). It can be built based
onΓ:

K(x, y) = 〈K(x, .), K(y, .)〉H
= 〈Γx, Γy〉L2

⇐ Let {ei}, i ∈ I be aL2(G, µ) orthonormal basis and{hj(.)}, j ∈ J an orthonormal basis ofH. We admit
there exists a couple (G,µ) such that card(I) ≥ card(J) (take for instance the counting measure on the suitable

3 To clarify the not so obvious notion of pointwise defined function, whenever possible, we use the notationf when the function is
not a pointwise defined function andf(.) denotesIRX functions. HereΓx(τ) is a pointwise defined function with respect to variable
x but not with respect to variableτ . Thus, whenever possible, the confusing notation(τ) is omitted.
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Name Γx(u) K(x, y)
Cameron Martin 1I{x≤u} min (x, y)

Polynomial e0(u) +

d∑

i=1

xiei(u) x
⊤
y + 1

Gaussian 1/Zexp−
(x−u)2

2 1/Z ′exp−
(x−y)2

4

Table 1: Examples of Carleman operator and their associatedreproducing kernel. Note that functions
{ei}i=1,d are a finite subfamily of aL2 orthonormal basis.Z andZ ′ are two constants.

set). DefineΓx =
P

j∈J hj(x)ej as aL2 family. LetT be the associated Carleman operator. The image of this
Carleman operator is ther.k.h.s span byhj(.) since:

∀f ∈ L2, (Tf)(x) = 〈Γx, f〉L2

= 〈
X

j∈J

hj(x)ej,
X

i∈I

αiei〉L2 becausef =
X

i∈I

αiei

=
X

j∈J

hj(x)
X

i∈I

αi〈ej , ei〉L2

=
X

j∈J

αjhj(x)

and family{hi(.)} is orthonormal sincehi(.) = Tei.

To put this framework at work the relevant functionΓx has to be found. Some examples with popular
kernels illustrating this definition are shown table 1.

5.2 Carleman operator and the regularization operator

The same kind of operator has been introduced by Poggio and Girosi in the regularization framework [13].
They proposed to define the regularization termΩ(f) (defined equation 2) by introducing a regularization
operatorP from hypothesis setH to L2 such thatΩ(f) = ‖Pf‖2

L2. This framework is very attractive since
operatorP models the prior knowledge about the solution defining its regularity in terms of derivative or
Fourier decomposition properties. Furthermore the authors show that, in their framework, the solution of
the learning problem is a linear combination of a kernel (a representer theorem). They also give a method-
ology to build this kernel as the green function of a differential operator. Following [2] in its introduction
the link between green function andr.k.h.s is straightforward when green function is a positive kernel.
But a problem arises when operatorP is chosen as a derivative operator and the resulting kernel is not
derivable (for instance whenP is the simple derivation, the associated kernel is the non-derivable function
min(x, y)). A way to overcome this technical difficulty is to consider things the other way round by defin-
ing the regularization term as the norm of the function in ther.k.h.s built based on Carleman operatorT .
In this case we haveΩ(f) = ‖f‖H = ‖T−1g‖2

L2. Thus sinceT is bijective we can define operatorP as:
P = T−1. This is no longer a derivative operator but a generalized derivative operator where the derivation
is defined as the inverse of the integration (P is defined asT−1).

5.3 Generalization

It is important to notice that the above framework can be generalized to nonL2 Hilbert spaces. A way to
see this is to use Kolmogorov’s dilation theorem [7]. Furthermore, the notion of reproducing kernel itself
can be generalized to non-pointwise defined function by emphasizing the role played by continuity through
positive generalized kernels called Schwartz or hilbertian kernels [16]. But this is out of the scope of our
work.
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6 Reproducing kernel spaces (RKS)

By focusing on the relevant hypothesis for learning we are going to generalize the above framework to
non-hilbertian spaces.

6.1 Evaluation spaces

Definition 6.1 (ES)
LetH be a real topological vector space (t.v.s.) on an arbitrary setX , H ⊂ IRX . H is an evaluation space
if and only if:

∀x ∈ X ,
δx : H −→ IR

f 7−→ δx(f) = f(x)
is continuous

ES are then topological vector spaces in whichδt (the evaluation functional att) is continuous,i.e. belongs
to the topological dualH∗of H.

Remark 6.1 Topological vector spaceIRX with the topology of simple convergence is by construction an
ETS (evaluation topological space).

In the case of normed vector space, another characterization can be given:

Proposition 6.1 (normed ES or BES)
Let (H, ‖.‖H) be a real normed vector space on an arbitrary setX , H ⊂ IRX . H is an evaluation kernel
space if and only if the evaluation functional:

∀x ∈ X , ∃Mx ∈ IR, ∀f ∈ H, |f(x)| ≤ Mx‖f‖H

if it is complete for the corresponding norme it is a Banach evaluation space (BES).

Remark 6.2 In the case of a Hilbert space, we can identifyH∗ andH and, thanks to the Riesz theorem,
the evaluation functional can be seen as a function belonging toH: it is called the reproducing kernel.

This is an important point: thanks to the Hilbertian structure the evaluation functional can be seen as a
hypothesis function and therefore the solution of the learning problem can be built as a linear combination
of this reproducing kernel taken different points. Representer theorem [9] demonstrates this property when
the learning machine minimizes a regularized quadratic error criterion. We shall now generalize these
properties to the case when no hilbertian structure is available.

6.2 Reproducing kernels

The key point when using Hilbert space is the dot product. When no such bilinear positive functional is
available its role can be played by a duality map. Without dotproduct, the hypothesis setH is no longer
in self duality. We need another setM to put in duality withH. This second setM is a set of functions
measuring how the information I have at pointx1 helps me to measure the quality of the hypothesis at point
x2. These two sets have to be in relation through a specific bilinear form. This relation is called a duality.

Definition 6.2 (Duality between two sets)Two sets(H,M) are in duality if there exists a bilinear form
L onH×M that separatesH andM (see [10] for details on the topological aspect of this definition).

Let L be such a bilinear form onH ×M that separate them. Then we can define a linear applicationγH
and its reciprocalθH as follows:

γH : M −→ H∗ θH : Im (γH) −→ M
f 7−→ γHf = L(., f) g = L(., f) 7−→ θHg = f

whereH∗ (resp.M∗) denotes the dual set ofH (resp.M).

Let’s take an important example of such a duality.
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Hilbertian case General case
(
IRX

)′

i∗
%%K

K

K

K

K

K

K

K

K

κ

��

H′ Riesz
= H

i
$$J

J

J

J

J

J

J

J

J

IRX

(
IRX

)′

i∗

��

j∗
//

κ

��

M′

θM

!!B
B

B

B

B

B

B

B

B

H′

θH
##G

G

G

G

G

G

G

G

G

H

i

��

M
j

// IRX

K(s, t) = 〈K(s, .), K(., t)〉H K(s, t) = LH (κ∗(δs), κ(δt))

Figure 1: illustration of the subduality map.

Proposition 6.2 (duality of pointwise defined functions)Let X be any set (not necessarily compact).
IRX andIR[X ] are in duality

Proof. Let’s define the bilinear applicationL as follows:

L : IRX × IR[X ] −→ IR
`

f(.), g(.) =
X

i∈I

αi1Ixi(.)
´

7−→
X

i∈I

αif(xi) =
X

x∈X

f(x)g(x)

Another example is shown in the two following functional spaces:

L1 =

{

f
∣
∣
∣

∫

X

|f | dµ < ∞

}

and L∞ =

{

f
∣
∣
∣ ess sup

x∈X
|f | < ∞

}

where for instanceµ denotes the Lebesgue measure. Theses two spaces are put in duality through the
following duality map:

L : L1 × L∞ −→ IR

f, g 7−→ L(f, g) =

∫

X

f g dµ

Definition 6.3 (Evaluation subduality) Two setsH andM form an evaluation subduality iff:

- they are in duality through their duality mapγH,

- they both are subsets ofIRX

- the continuity of the evaluation functional is preserved through:

Span(δx) = γIRX

((
IRX

)′
)

⊆ γH(M) and γIRX

((
IRX

)′
)

⊆ θH(H)

The key point is the way of preserving the continuity. Here the strategy to do so is first to consider two sets
in duality and then to build the (weak) topology such that thedual elements are (weakly) continuous.

Proposition 6.3 (Subduality kernel) A unique weakly continuous linear applicationκ is associated to
each subduality. This linear application, called the subduality kernel, is defined as follows:

κ :
(
IRX

)′
−→ IRX

∑

i∈I δxi
7−→ i ◦ θM ◦ j∗(

∑

i∈I δxi
)

wherei andj∗ are the canonical injections fromH to IRX and respectively from
(
IRX

)′
toM′ (figure 1).
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Duality Evaluation subduality
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��
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Figure 2: illustration of the building operators for reproducing kernel subduality from a duality(A, B).

*

j

Γy

Λx

Proof. for details see [10].
We can illustrate this mapping detailing all performed applications as in figure 1:

(
IRX

)′ see 3.5
−→ IR[X ] j∗

−→ M′ θM−→ H
i

−→ IRX

δx 7−→ 1I{x} 7−→ L(Kx, .) 7−→ Kx(.) 7−→ K(x, .)

Definition 6.4 (Reproducing kernel of an evaluation subduality) Let (H,M) be an evaluation subdu-
ality with respect to mapLH associated with subduality kernelκ. The reproducing kernel associated with
this evaluation subduality is the function of two variablesdefined as follows:

K : X × X −→ IR
(x, y) 7−→ K(x, y) = LH (κ∗(δy), κ(δx))

This structure is illustrated in figure 1. Note that this kernel no longer needs to be definite positive. If
the kernel is definite positive it is associated with a uniquer.k.h.s. However, as shown in example 8.2.1
it can also be associated with evaluation subdualities. A way of looking at things is to defineκ as the
generalization of the Schwartz kernel whileK is the generalization of the Aronszajn kernel to non hilbertian
structures. Based on these definitions the important expression property is preserved.

Proposition 6.4 (generation property) ∀f ∈ H, ∃(αi)i∈I such that f(x) ≈
∑

i∈I αiK(x, xi) and
∀g ∈ M, ∃(αi)i∈I such thatg(x) ≈

∑

i∈I αiK(xi, x)

Proof. This property is due to the density of Span{K(., x), x ∈ X} in H. For more details see [10] Lemma 4.3.

Just liker.k.h.s, another important point is the possibility to build an evaluation subduality, and of course
its kernel, starting from any duality.

Proposition 6.5 (building evaluation subdualities) Let (A, B) be a duality with respect to mapLA. Let
{Γx, x ∈ X} be a total family inA and{Λx, x ∈ X} be a total family inB. LetS (reps.T ) be the linear
mapping fromA (reps.B) to IRX associated withΓx (reps.Λx) as follows:

S : A −→ IRX T : B −→ IRX

g 7−→ Sg(x) = LA (g, Λx) f 7−→ Tf(x) = LA (Γx, f)

ThenS andT are injective and(S(A), T (B)) is an evaluation subduality with the reproducing kernelK
defined by:

K(x, y) = LA(Γx, Λy)

Proof. see [10] Lemma 4.5 and proposition 4.6
An example of such subduality is obtained by mapping the(L1, L∞) duality toIRX usinginjectiveopera-
tors defined by the familiesΓx(τ) = 1I{x<τ} andΛy(τ) = 1I{y<τ}:

T : L1 −→ IRX

f 7−→ Tf(x) = (Γx, f)L∞,L1 =
∫

1I{x<τ}f(τ) dτ
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and
S : L∞ −→ IRX

g 7−→ Sg(y) = (g, Λy)L∞,L1 =
∫

g(τ)1I{y<τ} dτ

In this caseH = Im(T ), M = Im(S) andK(y, x) =

∫

Λ(y, τ)Γ(x, τ) dτ = min(x, y). We define the

duality map betweenH andM through:

LX (g1, g2) = LX (Sf1, T f2) = L(f1, f2)

See example 8.2.1 for details.

All useful properties ofr.k.h.s – pointwise evaluation, continuity of the evaluation functional, representa-
tion and building technique – are preserved. A missing dot product has no consequence on this functional
aspect of the learning problem.

7 Representer theorem

Another issue is of paramount practical importance: determining the shape of the solution. To this end
representer theorem states that, whenH is ar.k.h.s, the solution of the minimization of the regularized cost
defined equation (2) is a linear combination of the reproducing kernel evaluated at the training examples
[9, 15]. When hypothesis setH is a reproducing space associated with a subduality we have the same
kind of result. The solution lies in a finiten-dimensional subspace ofH. But we don’t know yet how to
systematically build a convenient generating family in this subspace.

Theorem 7.1 (representer)Assume(H,M) is a subduality of IRX with kernelK(x, y). Assume the
stabilizerΩ is convex and differentiable (∂Ω denotes its subdifferential set).
If ∂Ω(

∑
αiK(xi, x)) ⊆ {

∑
βiδxi

} ∈ H∗ then the solution of cost minimization lies in an-dimensional
subspace ofH.

Proof. Define aM subsetM1 =
˘

Pn

i=1 αiK(xi, .)
¯

. Let H2 ⊂ H be theM1 orthogonal in the sense of the
duality map (i.e. ∀f ∈ H2,∀g ∈ M1 L(f, g) = 0). Then for allf ∈ H2, f(xi) = 0, i = 1, n. Now letH1 be the
complement vector space defined such that

H = H1 ⊕ H2 ⇔ ∀f ∈ H ∃f1 ∈ H1 andf2 ∈ H2 such thatf = f1 + f2

The solution of the minimizing problem lies inH1 since:

- ∀f2 ∈ H2, C(f2) = constant

- Ω(f1 + f2) ≥ Ω(f1) + (∂Ω(f1), f2)M,H
(thanks to the convexity ofΩ)

- and∀f2 ∈ H2, ; (∂Ω(f1), f2)M,H
= 0 by hypothesis

By constructionH1 an-dimensional subspace ofH.

The nature of vector spaceH1 depends on kernelK and on regularizerΩ. In some cases it is possible to
be more precise and retrieve the nature ofH1. Let’s assume regularizerΩ(f) is given.H may be chosen
as the set of function such thatΩ(f) < ∞ . Then, if it is possible to build a subduality(H,M) with kernel
K such that

E = Vect{K(xi, .)}
︸ ︷︷ ︸

H1

⊕ ( Vect{K(., xi)})
⊤

︸ ︷︷ ︸

M⊤
1

and if the vector space spaned by the kernel belongs to the regularizer subdifferential∂Ω(f):

∀f ∈ H1, ∃g ∈ M1 such thatg ∈ ∂Ω(f)

then solutionf∗ of the minimization of the regularized empirical cost is a linear combination of the kernel:

f∗(x) =

n∑

i=1

αiK(xi, x)
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An example of such result is given with the following regularizer based on thep-norm onG = [0, 1]:

Ω(f) =

∫ 1

0

(f ′)
p

dµ

The hypothesis set is Sobolev spaceHp (the set of functions defined on[0, 1] whose generalized derivative
is p-integrable) put in duality withHq (with 1/p + 1/q = 1) through the following duality map:

L(f, g) =

∫ 1

0

f ′g′ dµ

The associated kernel is just like in Cameron Martin caseK(x, y) = min(x, y). Some tedious derivations
lead to:

∀h ∈ H L(h, ∂Ω(f)) =

∫ 1

0

h′ p(f ′)p−1 dµ

Thus the kernel verifiesp(K(., y)′)p−1 ∝ K(x, .)

This question of the representer theorem is far from being closed. We are still looking for a way to derive
a generating family from the kernel and the regularizer. To go more deeply into general and constructive
results, a possible way to investigate is to go throughΩ Fenchel dual.

8 Examples

8.1 Examples in Hilbert space

The examples in this section all deal with r.k.h.s included in aL2 space.

1. Schmidt ellipsoid:
Let (X , µ) be a measure space,{ei, i ∈ I} a basis ofL2(X , µ) I being a countable set of indices.
Any sequence{αi, i ∈ I,

∑

i∈I α2
i < +∞} defines a Hilbert-Schmidt operator onL2(X , µ) with

kernel functionΓ(x, y) =
∑

i∈I αiei(x)ei(y), thus a reproducing kernel Hilbert space with kernel
function:

∀(x, y) ∈ X 2, K(x, y) =
∑

i∈I

α2
i ei(x)ei(y)

The closed unit ballBH of ther.k.h.s verifies

BH = T (BL2) =

{

f ∈ L2, f =
∑

i∈I

fiei,
∑

i∈I

(
fi

αi

)2

≤ 1

}

and is then a Schmidt ellipsoid inL2. An interesting discussion about Schmidt ellipsoids and their
applications to sample continuity of Gaussian measures maybe found in [6].

2. Cameron-Martin space:
Let T be the Carleman integral operator onL2([0, 1]µ) (µ is the Lebesgue measure) with kernel
function

Γ(x, y) = Y (x − y) = 1I{y≤x}

it defines a r.k.h.s with reproducing kernelK(x, y) = min(x, y). The space(H ; 〈., .〉H) is the
Sobolev space of degree 1, also called the Cameron-Martin space.

{
H = {f absolutely continuous, ∃f ′ ∈ L2([0, 1]), f(x) =

∫ x

0
f ′dµ}

〈f, g〉H = 〈f ′, g′〉L2
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3. A Carleman but non Hilbert-Schmidt operator:
Let T be the integral operator onL2(IR, µ) (µ is the Lebesgue measure) with kernel function

Γ(x, y) = exp− 1
2 (x−y)2

It is a Carleman integral operator, thus we can define a r.k.h.s (H ; 〈., .〉H) = Im(T ), butT is not a
Hilbert-Schmidt operator.H reproducing kernel is:

K(x, y) =
1

Z
exp− 1

4 (x−y)2

whereZ is a suitable constant.

4. Continuous kernel:
This example is based on theorem 3.11 in [12]. LetX be a compact subspace ofIR, K(., .) a con-
tinuous symmetric positive definite kernel. It defines ar.k.h.s (H ; 〈., .〉H) and any Radon measure
µ of full support is kernel-injective. Then, for any suchµ, there exists a Carleman operatorT on
L2(X , µ) such that(H ; 〈., .〉H) = Im(T ).

5. Hilbert space of constants:
Let (H ; 〈., .〉H) be the Hilbert space of constant functions onIR with scalar product〈f, g〉H =
f(0)g(0). It is obviously ar.k.h.s with reproducing kernelK(., .) ≡ 1. For any probability measure
µ on IR let:

∀f ∈ L2(IR, µ), T f =

∫

IR

f(s)µ(ds)

ThenH = T (L2(IR, µ)) and∀f, g ∈ H, 〈f, g〉H = 〈f, g〉L2 .

6. A non-separabler.k.h.s - theL2 space of almost surely null functions:
Define the positive definite kernel function onX ⊂ IR by ∀s, t ∈ X , K(s, t) = 1I{s=t}. It defines
a r.k.h.s (H ; 〈., .〉H) and its functions are null except on a countable set. Define a measureµ on
(X ,B) whereB is the Borelσ-algebra onX by µ(t) = 1 ∀t ∈ X . µ verifies:µ({t1, · · · , tn}) = n
andµ(A) = +∞ for any non-finiteA ∈ B. The kernel function is then square integrable andH is
injectively included inL2(X ,B, µ). Moreover,K(s, t) =

∫

X
K(t, u)K(u, s)dµ(u) with K Carle-

man integrable andT = IdL2 (note that the identity is a non-compact Carleman integral operator).
Finally, (H ; 〈., .〉H) = L2(X ,B, µ).

7. Separabler.k.h.s :
Let H be a separabler.k.h.s . It is well known that any separable Hilbert space is isomorphic to
ℓ2. Then there existsT kernel operatorIm(T ) = H . It is easy to construct effectively such aT :
let {hn(.), n ∈ N} be an orthonormal basis ofH and defineT kernel operator onℓ2 with kernel
Γx → {hn(x), n ∈ N}(∈ l2). ThenIm(T ) = H .

8.2 Other examples

Applications to non-hilbertian spaces are also feasible:

1. (L1, L∞) - “Cameron-Martin” evaluation subduality:
Let T be the kernel operator onL1([0, 1]µ) (µ is the Lebesgue measure) with kernel function

Γ(t, s) = Y (t − s) = 1I{s≤t}, Γ(t, .) ∈ L∞

it defines an evaluation duality(H1; H∞) with reproducing kernel

∀(s, t) ∈ X 2, K(s, t) = min(s, t)
{

H1 = {f absolutely continuous, ∃f ′ ∈ L1([0, 1]), f(t) =
∫ t

0 f ′(s)ds}
‖f‖H1 = ‖f ′‖L1

and {

H∞ = {f absolutely continuous, ∃f ′ ∈ L∞([0, 1]), f(t) =
∫ t

0 f ′(s)ds}
‖f‖H∞

= ‖f ′‖L∞
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2.
(

IRX , IR[X ]
)

:

We have seen thatIRX endowed with the topology of simple convergence is an ETS. However,IRX

endowed with the topology of almost sure convergence is never an ETS unless every singleton ofX
has strictly positive measure.

9 Conclusion

It is always possible to learn without kernel. But even if it is not visible, one is hidden somewhere! We have
shown, from some basic principles (we want to be able to compute the value of a hypothesis at any point
and we want the evaluation functional to be continuous), howto derive a framework generalizingr.k.h.s to
non-hilbertian spaces. In our reproducing kernel dualities, all r.k.h.s nice properties are preserved except
the dot product replaced by a duality map. Based on the generalization of the hilbertian case, it is possible
to build associated kernels thanks to simple operators. Theconstruction of evaluation subdualities without
Hilbert structure is easy within this framework (and rathernew). The derivation of evaluation subdualities
from any kernel operator has many practical outcome. First,such operators on separable Hilbert spaces
can be represented by matrices, and we can build any separabler.k.h.s from well-knownℓ2 structures (like
wavelets in aL2 space for instance). Furthermore, the set of kernel operators is a vector space whereas
the set of evaluation subdualities is not (the set ofr.k.h.s is for instance a convex cone), hence practical
combination of such operators are feasible. On the other hand, from the bayesian point of view, this result
may have many theoretical and practical implications in thetheory of Gaussian or Laplacian measures and
abstract Wiener spaces.

Unfortunately, even if some work has been done, a general representer theorem is not available yet. We
are looking for an automatic mechanism designing theshapeof the solution of the learning problem in the
following way:

f(x) =
m∑

i=1

αiK(xi,x) +
k∑

j=1

βjϕj(x)

where KernelK, number of componentm and functionsϕk(x), j = 1, k are derivated from regularizerΩ.
The remaining questions being: how to learn the coefficientsand how to determine cost function?
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