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Abstract: This paper deals with the strong state observability analysis for Networked Systems which
are composed of interconnected subsystems that exchange data over communication networks. More
precisely, we interest to determine which data or measurements must arrive via the network to a
subsystem in order to ensure that a local observer can estimate its state vector. The proposed approach
is based on a graph-theoretic approach and assumes only the knowledge of the system’s structure. It is
suited to study large scale distributed systems because based on classical and well-known graph theory
algorithms, which have polynomial complexity orders.
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1. INTRODUCTION

Networked Control systems (NCS) are in general composed of
a large number of interconnected devices or subsystems that
exchange data through communication networks. Examples in-
clude industrial automation, building supervision, automotive
control, . . . NCSs provide many advantages such as modular
and flexible system design, fast implementation, distribution.
The observability of the internal state of each subsystem is
one of the main properties which is strongly linked to the
configuration of the distributed subsystems and to the data they
exchange. Indeed, even if the global system is observable, when
we subdivide it into several subsystems, the latter may be not
structurally observable and in this case, it may be impossible to
achieve the state estimation with a local observer. This can be
quite awkward since the state estimate is useful in the control
law synthesis, supervision, fault detection and so on. Thus, an
analysis of the observability of the distributed system, in func-
tion of the informations exchanged on the network, is important
for the observer design and so in the general conception of the
system. Many studies use unknown input observers to deal with
the observation of decentralized systems even if it is not in the
context of Networked Control Systems. In this way, in the early
70’s, Sanders et al. [1974] propose, under some decoupling
assumptions, the design of a filter for interconnected dynamical
systems in which the information pattern is decentralized. In
Saif and Guan [1992], the authors propose a method for the
design of decentralized reduced state estimator for large scale
systems composed by interconnected systems using unknown
input observers under some "matching condition". Also on the
basis of unknown input observers, in Hou and Müller [1994],
decentralized state function observer are designed for large
scale interconnected systems. In the latter papers as in most oth-
ers, the proposed approaches to address the observability or on
decentralized systems deal with algebraic and geometric tools.
The use of such tools requires the exact knowledge of the state
space matrices characterizing the system’s model. However, in
many modeling problems, only zero entries of these matrices,
which are determined by the physical laws, are fixed while

the remaining entries are not precisely known. To study the
properties of these systems in spite of poor knowledge we have
on them, the idea is that we only keep the zero/non-zero entries
in the state space matrices. Thus, we consider models where
the fixed zeros are conserved while the non-zero entries are re-
placed by free parameters. The analysis of such systems, called
structured systems, requires a low computational burden which
allows one to deal with large scale systems. Many studies on
structured systems are related to the graph-theoretic approach to
analyse some system properties such as controllability, observ-
ability or the solvability of several classical control problems
including disturbance rejection, input-output decoupling, . . . .
These works are reviewed in the survey (Dion et al. [2003])
from which it results that the graph-theoretic approach provides
simple, efficient and elegant solutions.
In this context, the state and input observability conditions
provided in Boukhobza et al. [2007] for a linear systems with
unknown inputs are a good point of departure to enhance the
observability of Networked Control Systems. Besides, we ad-
dress the problem of measurement allocation over the network.
The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, a digraph representation
of Networked Control systems is given in Section 3. The main
result is enounced in Section 4. Finally, a conclusion ends the
paper.

2. PROBLEM STATEMENT

In this paper, we consider networked systems having the nu-
merically non-specified following model:

ΣΛ :
{

ẋ = Aλx + Bλu
y = Cλx + Dλu

(1)

where x ∈ Rn, u ∈ Rq and y ∈ Rp are respectively the state
vector, the unknown input vector and the output vector. Aλ,
Bλ, Cλ and Dλ represent matrices which elements are either
fixed to zero or assumed to be nonzero free parameters noted
λi. These parameters forms a vector Λ = (λ1, . . . , λh)T ∈ Rh.



If all parameters λi are numerically fixed, we obtain a so-called
admissible realization of structured system ΣΛ. We say that
a property is true generically if it is true for almost all the
realizations of structured system ΣΛ. Here, “ for almost all the
realizations ” is to be understood as “ for all parameter values
(Λ ∈ Rh) except for those in some proper algebraic variety in
the parameter space ”. The proper algebraic variety for which
the property is not true is the zero set of some nontrivial
polynomial with real coefficients in the h system parameters
λ1, λ2, . . . , λh.
Consider that ΣΛ is a networked distributed system constituted
of several subsystems ΣR

i , i = 1, . . . , N . Each subsystem
satisfies to a model of the form:

ΣR
i





ẋi = Aλ
i xi + Bλ

i ui +

N∑
j=1,j 6=i

(
Aλ

i,jxj + Bλ
i,juj

)

yi = Cλ
i xi + Dλ

i ui

(2)

where for i = 1, . . . , N , xi ∈ Rni , yi ∈ Rmi and ui ∈ Rpi

represent respectively the state vector, the local measurement
vector and the local input vector of subsystem ΣR

i . Obviously,
the whole state vector of system ΣΛ is constituted by the aggre-
gation of the state vectors of subsystems ΣR

i , i = 1, . . . , N
i.e. x = (xT

1 , . . . , xT
N )T . Similarly, the whole input vector

is u = (uT
1 , . . . , uT

N )T and the whole output vector is y =(
yT
1 , . . . , yT

N

)T . If a state or an input component of subsystem
ΣR

j acts on the dynamics of another subsystem ΣR
i (i 6= j), we

consider this component "as an unknown input" for subsystem
ΣR

i . Even if its dynamics has a known expression in the global
model, it won’t be implemented in the local observers used to
reconstruct the state vector of each subsystems. In fact, this
consideration is more pertinent and realistic from a practical
point of view because implementing the whole system’s model
in each local observer can be, on the one hand, tedious and
unpracticable and on the other hand does not allow to benefit
from advantages of the subdivision of a large scale system into
several smaller subsystems. Moreover, as we are interested in
the observability problem, by the term "output" we mean here
measurements. Otherwise, without loss of generality and for the
sake of homogeneity, all the inputs are assumed to be unknown.
Concerning the control input components, which are known,
they are considered to be measured.
In the framework of this paper, the subsystems can exchange
some informations through a network We consider without loss
of generality that the measurements arriving to each subsystem
ΣR

i are related to other subsystems ΣR
j (i 6= j) and can be

modeled in the most general form as:

ỹi =
N∑

j=1,j 6=i

C̃λ
i,jxj(t) + D̃λ

i,juj(t)

The aim is to study the generic strong state observability
(Trentelman et al. [2001]) of structured subsystems constituting
ΣΛ. This property is necessary and sufficient to ensure that the
state components can be deduced from only the knowledge of
the available measurements. First, we recall the definition of
the generic strong state observability in the case of a structured
linear system:
Definition 1. Structured linear system ΣΛ is generically strongly
observable if, for almost all its realizations, y(t) = 0 for t ≥ 0
implies x(t) = 0 for t ≥ 0 whatever the unknown inputs u(t).

Roughly speaking, the generic strong observability means that
it is possible to the express the state of ΣΛ in function of the

available measurements and their time derivatives.
In the framework of networked systems, we are interested in
the generic strong observability of the state of each subsystem
ΣR

i , i = 1, . . . , N , and we consider two cases. In the first
one, we assume that there are no external measurements arrive
through the network to ΣR

i . So, subsystem ΣR
i can only use its

own measurement vector yi to estimate or reconstruct its state
components. We call this case the decentralized autonomous
observation scheme. In the second case, we assume that subsys-
tem ΣR

i is linked to the network and can use the measurement
vectors yi and ỹi to reconstruct its state components. We call
this case the decentralized interconnected observation scheme.
In order to handle these notions of local strong observability
in the two previously described cases, we associate to each
subsystem Σi

R, the following system:

ΣRA
i





ẋi = Aλ
i xi + Bλ

i ui +

N∑
j=1,j 6=i

B̃λ
i,j ũj

yi = Cλ
i xi + Dλ

i ui

(3)

where for i, j = 1, . . . , N , j 6= i, unknown input ũj =
(xT

j , uT
j ) represents the interactions due to other subsystems

and so matrix B̃λ
i,j = (Aλ

i,j Bλ
i,j). System ΣRA

i is equivalent
to system Σi

R by considering that vectors xj and uj , j 6= i
are unknown inputs for subsystem ΣR

i . We define now the state
strong observability, relatively to these considered observation
schemes, as follows:
Definition 2. Consider linear structured system ΣΛ constituted
of several subsystems ΣR

i , i = 1, . . . , N .
We say that that state vector xi(t) is generically locally strongly
observable in a decentralized autonomous observation scheme
if for system ΣRA

i , having yi(t) = 0 for t ≥ 0 implies
xi(t) = 0, ∀t ≥ 0 whatever the unknown inputs ui(t) and
ũj(t), j 6= i.
Similarly, state xi(t) is generically strongly observable in a
decentralized interconnected observation scheme if for system
ΣRA

i , having yi(t) = 0 and ỹi(t) = 0 for t ≥ 0 implies that
xi(t) = 0, ∀t ≥ 0 whatever the unknown inputs ui(t) and
ũj(t), j 6= i.

The aim of this paper is firstly to characterize graphically the
strong observability of the each subsystems ΣR

i for both the
considered observation schemes. Then, assuming that each sub-
system is strongly observable if it is not submitted to external
physical actions from other subsystems, we study the problem
of data distribution over the network.

3. GRAPH REPRESENTATION OF STRUCTURED
LINEAR SYSTEMS

3.1 Digraph definition for structured linear system

To structured system ΣΛ constituted by subsystems ΣR
i , i =

1, . . . , N , we associate a digraph noted G(ΣΛ) which is
constituted by a vertex set V and an edge set E . More

precisely, V =
N⋃

i=1

(
Xi ∪Ui ∪Yi ∪ Ỹi

)
, where Xi =

{xi,1, . . . ,xi,ni
} is the set of state vertices for subsystem i,

Ui = {ui,1, . . . ,ui,qi
} is the set of input vertices for subsys-

tem i, Yi = {yi,1, . . . ,yi,pi
} is the set of output vertices for

subsystem i, Ỹi = {ỹi,1, . . . , ỹi,p̃i
} is the set of output vertices

associated to the measurements arriving through the network to



subsystem i. The edge set is

E =
N⋃

i=1

(
Ai-edges ∪ Bi-edges ∪ Ci-edges ∪ Di-edges

⋃N
j=1,j 6=i

(
Ai,j-edges∪Bi,j-edges∪C̃i,j-edges∪D̃i,j-edges

))
,

where
Ai-edges =

{
(xi,j,xi,k) |Aλ

i (k, j) 6= 0
}

,
Bi-edges =

{
(ui,h,xi,`) | Bλ

i (`, h) 6= 0
}

,
for j 6= i, Ai,j-edges =

{
(xj,`,xi,h) | Aλ

i,j(h, `) 6= 0
}

,
Bi,j-edges =

{
(uj,`,xi,h) | Bλ

i,j(h, `) 6= 0
}

,
Ci-edges =

{
(xi,h,yi,`) | Cλ

i (`, h) 6= 0
}

,
Di-edges =

{
(ui,h,yi,`) | Dλ

i (`, h) 6= 0
}

,

for j 6= i, C̃i,j-edges =
{

(xj,`, ỹi,h) | C̃λ
i,j(h, `) 6= 0

}

and D̃i,j-edges =
{

(uj,`, ỹi,h) | D̃λ
i,j(h, `) 6= 0

}
.

Here, M(i, j) is the (i, j)th element of matrix M and (v1,v2)
denotes a directed edge from vertex v1 ∈ V to vertex v2 ∈ V .
Example 3. Consider the following structured distributed sys-
tem constituted of three subsystems:
Subsystem 1:

Aλ
1 =




0 λ1 0 0 0 0

0 0 0 0 0 0

0 0 λ2 0 0 0

0 0 0 0 0 λ3

0 0 0 0 λ4 0

0 λ5 0 0 0 0


, Aλ

1,2 =




0 0 0

λ6 0 0

0 0 0

0 0 0

0 0 0

0 0 0


, Aλ

1,3 =




0 0

0 λ7

0 0

0 0

0 0

0 0


,

Bλ
1 =




0

λ8

0

0

0

0


, Bλ

1,2 =




0

0

0

0

0

λ9


, Cλ

1 =

(
λ10 0 λ11 0 0 0

0 0 0 λ12 λ13 0

0 0 λ14 0 0 0

)
,

Bλ
1,3 = 0 and Dλ

1 = 0.
Subsystem 2:

Aλ
2 =

(
0 λ15 0

0 0 0

0 0 λ16

)
, Aλ

2,1 = A2,3 = 0, Bλ
2 =

(
0

λ17

λ18

)
, Bλ

2,1 = Bλ
2,3 =

0, Cλ
2 =

(
λ19 0 0

0 0 λ20

)
and Dλ

2 =

(
0

λ21

)
.

Subsystem 3:

Aλ
3 =

(
0 λ22

0 0

)
, Aλ

3,1 = 0, Aλ
3,2 =

(
0 0 λ23

0 0 λ24

)
, Bλ

3 =

(
0

λ25

)
,

Bλ
3,1 = Bλ

3,2 = 0, Cλ
3 =

(
λ26 0

0 0

)
and Dλ

3 =

(
0

λ27

)
.

To such a model, we associate the digraph of figure 1. For a
sake of simplicity in this example, the set of output vertices
associated to the measurements Ỹ arriving through the network
to each subsystem are not represented.

3.2 Notations and definitions

• Two edges e1 = (v1,v′1) and e2 = (v2,v′2) are v-disjoint if
v1 6= v2 and v′1 6= v′2. Some edges are v-disjoint if they are
mutually v-disjoint.
• Path P containing vertices vr0 , . . . ,vri is denoted P =
vr0 → vr1 → . . . → vri , where (vrj ,vrj+1

) ∈ E for
j = 0, 1 . . . , i− 1. We say that P covers vr0 , vr1 ,. . . , vri .• A path is simple when every vertex occurs only once in this
path. Some paths are disjoint if they have no common vertex.
Path P is a Y-topped path if its end vertex belongs to Y.
Let V1 and V2 denote two subsets of V .
• The cardinality of V1 is noted card (V1).
• θ

(V1,V2

)
is the maximal number of v-disjoint edges from V1

to V2.

 

y1,1

x2,3

x1,2

y2,1

x1,3

y3,1

u1,1y2,2

u2,1 x1,1

x2,1

x3,1x3,2u3,1

x2,2

y1,3

x1,4

x1,5

y1,2

x1,6

y3,2

Figure 1. Digraph associated to Example 3

• A path P is said a V1-V2 path if its begin vertex belongs to
V1 and its end vertex belongs to V2. If the only vertices of P
belonging to V1∪V2 are its begin and its end vertices, P is said
a direct V1-V2 path.
•A set of ` disjoint V1-V2 paths is called a V1-V2 linking of size
`. The linkings, which consist of a maximal number of disjoint
V1-V2 paths, are called maximum V1-V2 linkings. We define by
ρ (V1,V2) the size of these maximum V1-V2 linkings.

• Vess(V1,V2)
def
=

{
v ∈ V |v is covered by every maximum

V1-V2 linking
}

.
• S ⊆ V is a separator between sets V1 and V2 if every
path from V1 to V2 contains at least one vertex in S. We call
minimum separators between V1 and V2 any separators having
the smallest size. According to Menger’s Theorem, the latter is
equal to ρ (V1,V2).
• There exist two uniquely determined minimum separators
between V1 and V2 noted So(V1,V2) such that:
- So(V1,V2) is the set of begin vertices of all direct Vess(V1,V2)-
V2 paths, where Vess(V1,V2)∩ V2 is considered, in the present
definition, as input vertices. Vertex subset So(V1,V2) is called
the minimum output separator.
- Si(V1,V2) is the set of begin vertices of all direct V1-
Vess(V1,V2) paths, where Vess(V1,V2) ∩ V2 is considered,
in the present definition, as input vertices. Vertex subset
Si(V1,V2) is called the minimum input separator.

4. MAIN RESULTS

We first recall hereafter the graphic conditions which ensure
the generic strong observability of a classical structured linear
systems Boukhobza et al. [2007]:
Proposition 1. Structured linear system ΣΛ is generically
strongly observable iff in its associated digraph G(ΣΛ)
Cond1. θ

(
X ∪U,X ∪Y

)
= n + θ

(
U,X ∪Y

)
;

Cond2. every state vertex is the begin vertex of a Y-topped
path;
Cond3.

{
xi | ρ

(
U ∪ {xi},Y

)
= ρ

(
U,Y

)}
⊆ Vess(U,Y ∪X).

4.1 Strong observability conditions for networked systems

Let us now consider that the structured linear system ΣΛ is a
distributed system and constituted of several subsystems ΣR

i ,
i = 1, . . . , N . We apply the previous result in order to obtain
the strong observability conditions of a given subsystem ΣR

i
for both decentralized autonomous and decentralized intercon-
nected observation schemes. We can consider for subsystem



ΣR
i that the unknown input set is constituted by its own un-

known input set plus all the state and unknown components
related to the other subsystems ΣR

j , j = 1, . . . , i − 1, i +
1, . . . , N which act on ΣR

i . Let us denote by Ũi =
{
v ∈

N⋃

j=1,j 6=i

(Uj ∪Xj) such that θ({v},Xi) 6= 0
}

and Ūi = Ũi ∪

Ui. Thus, when we study subsystem ΣR
i , we consider in G(ΣΛ)

that all the edges ending by an element of Ũi are removed. This
digraph is similar to the one of ΣRA

i .
When we deal with the autonomous scheme, only the measure-
ments done on ΣR

i are available for the local observer dedicated
to ΣR

i . Thus, we deduce from Proposition 1:
Proposition 2. Consider structured system ΣΛ represented by
digraph G(ΣΛ) and constituted by subsystems ΣR

i , i =
1, . . . , N . Subsystem ΣR

i is generically strongly observable in
an autonomous scheme iff in its associated digraph Gi

Cond1. θ
(
Xi ∪ Ūi,Xi ∪ Yi

)
= ni + θ

(
Ūi ∪ Xi,Xi ∪ Yi

)
(maximal matching condition).
Cond2. every state vertex in Xi is the begin vertex of a Yi-
topped path (output connectivity condition);
Cond3.

{
x` ∈ Xi | ρ

(
Ūi∪{x`},Yi

)
= ρ

(
Ūi,Yi

)}
⊆ Vess(Ūi,Yi)

(length condition).

Concerning the subsystems of Example 3, we have:
Subsystem 1 has 6 state components (n1 = 6). It is sub-

mitted to one internal unknown input: u1,1 and three exter-
nal inputs: x2,1, u2,1 from Subsystem 2 and x3,2 from Sub-
system 3 and so Ū1 =

{
u1,1, x2,1, u2,1, x3,2

}
, X1 ={

x1,1, x1,2, x1,3, x1,4, x1,5, x1,6

}
, Y1 =

{
y1,1, y1,2, y1,3

}
.

We have that θ
(
Ū1,X1 ∪ Y1

)
= 2 and θ

(
Ū1 ∪ X1,X1 ∪

Y1

)
= 7 6= n1 + θ

(
Ū1,X1 ∪ Y1

)
= 8. Thus, the max-

imal matching condition is not satisfied and Subsystem 1 is
not generically strongly observable in an autonomous obser-
vation scheme. Note that the output connectivity condition is
satisfied. Finally, we have that u2,1, x1,1, x1,2, x1,4, y1,1

and y1,2 constitute Vess(Ū1,Y1). On the other hand, ρ
(
Ū1 ∪

{x1,5},Y1

)
= ρ

(
Ū1 ∪ {x1,6},Y1

)
= ρ

(
Ū1,Y1

)
= 2. Yet,

neither x1,5 nor x1,6 are essential. Thus, the length condition
is also not satisfied.
Subsystem 2 is not submitted to inputs from other subsys-
tems. For such subsystem, X2 =

{
x2,1, x2,2, x2,3

}
, Y2 ={

y2,1, y2,2

}
and Ū2 = U2 =

{
u2,1

}
. We have that

θ
(
Ū2,X2 ∪ Y2

)
= 2 and θ

(
Ū2 ∪ X2,X2 ∪ Y2

)
= 4 =

n2 + θ
(
Ū2,X2 ∪Y2

)
. Thus, the maximal matching condition

is satisfied. Furthermore, the output connectivity condition is
also satisfied. Finally, ρ

(
U2,Y2

)
= 1 and Vess(Ū2,Y2) ={

u2,1

}
but ρ

(
U2 ∪ {x2,1},Y2

)
= ρ

(
U2 ∪ {x2,2},Y2

)
= 2,

which implies that the length condition is also satisfied. There-
fore Subsystem 2 is generically strongly observable in an au-
tonomous scheme.
Subsystem 3 is submitted to one internal input: u3,1 and one
external input from Subsystem 2: x2,3. X3 =

{
x3,1, x3,2

}
,

Y3 =
{
y3,1, y3,2

}
, Ū3 =

{
u3,1, x2,3

}
. On the one hand,

θ
(
Ū3,X3 ∪Y3

)
= 2 and θ

(
Ū3 ∪X3,X3 ∪Y3

)
= 4 = n3 +

θ
(
Ū3,X3 ∪ Y3

)
. Thus, the maximal matching condition is

satisfied. Furthermore, the output connectivity condition is also
satisfied. Moreover, ρ

(
Ū3,Y3

)
= 2 and Vess(Ū3,Y3) ={

u3,1, x2,3, x3,1, y3,1, y3,2

}
. Yet, ρ

(
Ū3∪{x3,2},Y3

)
= 2

and x3,2 /∈ Vess(Ū3,Y3). Thus, the length condition is not
satisfied and Subsystem 3.
In the next part of the paper we will interest in determining what
external measurements must be transmitted via the network
to a subsystem in order to make it strongly observable in a
distributed interconnected observation scheme. At this aim, we
first give the conditions of strong observability for this scheme:
Proposition 3. Consider structured system ΣΛ represented by
digraph G(ΣΛ) and constituted by subsystems ΣR

i , i =
1, . . . , N . Subsystem ΣR

i is generically strongly observable
in an interconnected (I.C.) scheme iff in its associated digraph
Gi(ΣΛ)
Cond1. θ

(
Xi∪Ūi,Xi∪Yi∪Ỹi

)
= ni +θ

(
Ūi,Xi∪Yi∪Ỹi

)
(I.C. maximal matching condition).
Cond2. every state vertex in Xi is the begin vertex of a Yi-
topped path (output connectivity condition);
Cond3.

{
x` ∈ Xi | ρ

(
Ūi ∪ {x`},Yi ∪ Ỹi

)
= ρ

(
Ūi,Yi ∪

Ỹi

)} ⊆ Vess(Ūi,Yi ∪ Ỹi) (I.C. length condition).

Consider Example3, and assume that the measurement ỹ3,1 =
x2,3 is transmitted to Subsystem 3. In this case, Vess(Ū3,Y3∪
Ỹ3) =

{
u3,1, x2,3, y3,2

}
and so the I.C. length condition

is satisfied. Hence, Subsystem 3 is generically strongly ob-
servable in an interconnected scheme when it receives via the
network the measurement ỹ3,1 = x2,3.

4.2 Necessary external measurements transmitted via network
for the strong observability

Let us assume that each subsystem is strongly locally observ-
able or in other words that subsystems{

ẋi(t) = Aλ
i xi(t) + Bλ

i ui(t)
yi(t) = Cλ

i xi(t) + Dλ
i ui(t)

i = 1, . . . , N

are strongly observable. If it is not the case, we must add
some local measurements. This aspect has been already treated
(Boukhobza and Hamelin [2009]) and have no major relevance
for the present study because is not related to networked sys-
tems. In this case, the following conditions are true:
• θ

(
Xi ∪Ui,Xi ∪Yi

)
= ni + θ

(
Ui,Xi ∪Yi (local maximal

matching condition).
• every state vertex in Xi is the begin vertex of a Yi-topped
path (output connectivity condition);
•

{
x` ∈ Xi | ρ

(
Ui ∪{x`},Yi

)
= ρ

(
Ui,Yi

)}
⊆ Vess(Ui,Yi) (local

length condition).
Note that all subsystems of Example 3 satisfy the conditions
above and are strongly observable if they are not submitted to
external inputs.
The aim of this subsection is to study what are the measure-
ments which must be transmitted to subsystem ΣR

i in order
to recover the strong observability in the distributed intercon-
nected observation scheme. More precisely, we start from a
subsystem which has enough local sensors in order to guar-
antee that it is strongly observable if it is not submitted to the
physical interactions from other subsystems. Our objective is to
provide, for each subsystem, the set of external measurements
represented by Ỹi which allow to recover the conditions of
Proposition 3, knowing that the output connectivity condition
is already satisfied since each subsystem is strongly locally
observable. To answer to this question, our proposed procedure
consists of two steps which correspond one by one to conditions
Cond1. and Cond3. of Proposition3.



4.3 Transmitted external measurements for the I.C. maximal
matching condition

The first objective of the measurement Ỹi arriving to subsystem
ΣR

i is to obtain θ
(
Xi ∪ Ūi,Xi ∪Yi ∪ Ỹi

)
= ni + θ

(
Ūi,Xi ∪

Yi ∪ Ỹi

)
. This maximal matching condition is also equivalent

to have ∀V1 ⊆ Xi ∪ Ūi

θ
(
V1,Xi ∪Yi ∪ Ỹi

)
=

card (V1 ∩ X̄i) + θ
(
V1 ∩ Ūi,Xi ∪Yi ∪ Ỹi

) (4)

When the latter condition is not satisfied for some vertex subset
V1, we say that there is dilation in the digraph of the sys-
tem. The aim of transmitted measures at this first stage is to
eliminate all these dilations. As in Commault et al. [2008],
we also use the Dulmage-Mendelsohn decomposition. Hence,
we define a bipartite graph in order to localize the dilations
occurring in the digraph of subsystem ΣR

i . This bipartite graph
is noted Bi(ΣΛ) = (V +, V −,W ), where V + and V − are
two disjoint vertex subsets and W is the edge set. More pre-
cisely, V + = X+

i ∪ Ū+
i and V − = Y−

i ∪ X−
i , with

X+
i = {x+

i,1, x+
i,2, . . . , x+

ni,i
}, Ū+

i = {ū+
i,1, ū+

i,2, . . . , ū+
q̄i,i
},

X−
i = {x−i,1, x−i,2, . . . , x−i,n}, Y−

i = {y−i,1, y−i,2, . . . , y−i,p}.
Edge set W is defined such that (v+

i ,v−j ) ∈ W iff there
exists an edge (vi,vj) in the associated digraph G(ΣΛ). A
matching in a bipartite graph Bi(ΣΛ) = (V +, V −, W ) is
an edge set M ⊆ W such that all the edges of M are dis-
joint . A matching is maximal if it has a maximal cardinality
which is equal to θ

(
V +, V −)

which is equal by construc-
tion of the digraph to θ

(
Xi ∪ Ūi,Xi ∪ Yi

)
. Then, the fact

that condition Cond1. of Proposition 3 is not satisfied i.e.
θ
(
V+,V−)

< card (X+
i ) + θ

(
Ū+

i ,V−)
, implies that some

additional measurement vertices Ỹi are needed to complete
V−. This number is less or equal to card (V+)− θ

(
V+,V−)

.
In addition to determining the exact number of required trans-
mitted measurements, another problem is to precise as finely as
possible because obviously transmitting any data does not allow
to recover the maximal matching condition. At this aim,let us
associate to each maximal matching M , a non bipartite digraph
noted BM (ΣΛ) = (V+,V−, W̄ ) where (v1,v2) ∈ W̄ ⇔
(v1,v2) ∈ W or (v2,v1) ∈ M .
We denote by ∂+M (resp. ∂−M) the set of vertices in V+

(resp. in V−) covered by the edges of M and we note
S+

0 = V+ \ ∂+M. Then, we use the following algorithm:
# Find a maximal matching M in B(ΣΛ),
# V̄+

0 = S+
0 ∪{v ∈ V+, ∃ a path in BM (ΣΛ) from S+

0 to v}
# V+

0 = V̄+
0 \{v ∈ V̄+

0 ∩Ū+, @ a path in BM (ΣΛ) from S+
0 ∩

X+
i to v or from v to S+

0 ∩X+
i }

# V−
0 = {v ∈ V−, ∃ a path in BM (ΣΛ) from V+

0 to v}.
It is important to note that the obtained subsets V+

0 and V−
0

are the same whatever the choice of the maximal matching M
(Dulmage and Mendelsohn [1958], Murota [1987]). Using the
previous algorithm, we have:
Proposition 4. Consider structured system ΣΛ represented by
digraph G(ΣΛ) and constituted by subsystems ΣR

i , i =
1, . . . , N . To recover the maximal matching condition, for sub-
system ΣR

i the minimal number of additional measures trans-
mitted by the network, noted Ỹi, is equal to γ = card

(
V+

0

)−
card

(
V−

0

)
. These additional measurements γ concern un-

known inputs in V+
0 ∩ Ũ+

i such that we obtain a maximal
matching of size card (V+

0 ) between V+
0 and V−

0 ∪ Ỹi.

Proof: the proof is similar to the one given in Commault et al.
[2008], Boukhobza and Hamelin [2009].

a
Let us now illustrate the previous settings by considering Sub-
system 1 of Example 3. The bipartite graph associated to such
system is presented in Figure 2.
# Select a maximal matching M in this bipartite graph, which

 x1,5
- y1,2

-

u2,1
+

x1,4
-

x1,5
+

x1,1
-

x1,2
+x1,6

+

x1,2
-

x3,2
+ u1,1

+ x2,1
+

x1,6
-

x1,4
+

y1,3
- y1,1

-

x1,3
+ x1,1

+

x1,3
-

Figure 2. Bipartite graph associated to Subsystem 1 of Example 3

can be: M =
{

(x+
1,3, x−1,3), (x+

1,1, y−1,1), (x+
1,5, x−1,5), (x+

1,4, y−1,2),

(u+
2,1, x−1,4), (x+

1,2, x−1,6), (x+
3,2, x−1,2)

}
. In this case,

S+
0 = {x+

1,6, u+
1,1, x+

2,1}.
# V̄+

0 = {u+
2,1, x+

1,6, x+
3,2, u+

1,1, x+
2,1}

# V+
0 = {u+

2,1, x+
1,6}.

# V−
0 = {x1,4

−}.
Since card (V+

0 ) − card (V−
0 ) = 1, only one transmitted

measurement is sufficient to guarantee the maximal matching
condition. Moreover, the only possibility is to transmit u2,1 as
it is the only external variable to Subsystem 1 in V+

0 . Note that
in this case, the length condition has been also recovered by
the transmission of u2,1 even if this subsystem is submitted to
other external inputs.

It can be useful to specify more precisely the additional mea-
surements transmitted to the considered subsystem to recover
the I.C. maximal matching condition. At this aim, let us define
by B̄(ΣΛ) the non-directed graph corresponding to B(ΣΛ) and

V0
def
= V+

0 ∪ V−
0 . We call V0-path every simple path of

B̄(ΣΛ) which covers only vertices of V0. For each V0-path
P , we define a vertex subset ϑ(P ) such that ϑ(P ) = {v ∈
V +

0 , such that P covers v}. Finally, we say that a V0-path P
is maximal, if there does not exist a V0-path P ′ such that
ϑ(P ) ⊂ ϑ(P ′). To recover the maximal matching condition,
it is necessary to have:

for each maximal V0-path P , θ
(
ϑ(P ), Ỹ−

i

) 6= 0 (5)
Moreover to recover the maximal matching condition, it is
necessary to have, for each maximal V0-path P :

θ
(
V+

0 , Ỹ−
i ∪V−

0

)− θ
(
V+

0 \ ϑ(P ), Ỹ−
i ∪V−

0

)
> 0 (6)

Conditions (5) and (6) ensure that there is at least one measure-
ment in each subset ϑ(P ) ∩ Ũi. Indeed, ϑ(P ) satisfy, by con-
struction θ

(
ϑ(P ),V−

0

)
= card

(
ϑ(P )

)− 1 and so necessitates
the transmission of one measurement to recover the maximal
matching condition.

4.4 Transmitted external measurements for the I.C. length
condition

Assume that condition Cond1. of Proposition 3 is now verified.
Hence, we may have transmit some measurements to subsystem
ΣR

i to the system in order to satisfy I.C. maximal matching
condition. In this case, we can consider in the sequel that all
the vertices associated to the measured external inputs of ΣR

i
are removed from Ūi and from the digraph as well as all the



edges beginning by these vertices.

Let us denote by ∆i
def
=

{
x` ∈ Xi | ρ

(
Ūi ∪ {x`},Yi

)
=

ρ
(
Ūi,Yi

)}
. If Condition Cond1. of Proposition 3 is satis-

fied then it is easy to see that ρ
(
Ūi,Yi

)
= θ

(
Ūi,Yi

)
. We

can deduce that, whatever the transmitted measurements rep-
resented by vertex subset Ỹi, we have Vess(Ūi,Yi ∪ Ỹi

) ∩
Xi ⊆ Vess(Ūi,Yi

) ∩Xi. Consequently, if an element x` is in
∆i but not in Vess(Ūi,Yi), then adding measures Ỹi anywhere
on Ũi, we cannot obtain that xi ∈ Vess(Ūi,Yi ∪ Ỹi

)
. Hence,

the only way to ensure condition Cond3. of Proposition 3 is
to remove from ∆i all the elements which do not belong to
Vess(Ūi,Yi).
According to this fact, to recover condition Cond3. of Proposi-
tion 3, it is necessary and sufficient to transmit some measure-
ments Ỹi, such that, for each x` ∈ ∆i \Vess(Ūi,Yi), we have
ρ
(
Ūi∪{x`},Yi∪Ỹi

)
> ρ

(
Ūi,Yi∪Ỹi

)
. Considering virtually

x` as an input vertex, a necessary and sufficient condition to
guarantee inequality ρ

(
Ūi ∪ {x`},Yi ∪ Ỹi

)
> ρ

(
Ūi,Yi ∪

Ỹi

)
is that the added measurements Ỹi concern only input

vertices covered by any direct Ūi ∪ {x`}-Si(Ūi ∪ {xi},Yi)
path which has a nonzero length (Commault and Dion [2007]).
But there can exist some edges arriving to x` since the latter is
not really an input vertex. Thus, the only other measurements
which can guarantee inequality ρ

(
Ūi ∪ {x`},Yi ∪ Ỹi

)
>

ρ
(
Ūi,Yi∪Ỹi

)
are also the ones done on any direct Ūi∪{xk}-

Si(Ūi ∪ {xi},Yi) where xk is such that ρ({xk}, {x`}) =
ρ({x`}, {xk}) = 1. Finally, since Ỹi represent measurements
transmitted via the network concerning other subsystems, they
concern only the unknown input vertices Ũi. Thus, considering
x` or all the xk such that ρ({xk}, {x`}) = ρ({x`}, {xk}) = 1,
the elements of Ũi which covered by any direct Ūi ∪ {x`}-
Si(Ūi ∪ {xi},Yi) path are the same than the ones covered
by any direct Ūi ∪ {xk}-Si(Ūi ∪ {xi},Yi) path. Thus, it is
necessary and sufficient to consider virtually all the vertices
belonging to ∆i \ Vess(Ūi,Yi) as input vertices.
Let us define, for each x` ∈ ∆i \ Vess(Ūi,Yi), vertex subset

δ`
def
=

{
uj ∈ Ũi, uj is the begin vertex of some direct Ūi ∪

{x`} − Si(Ūi ∪ {xi},Yi) path, such that ρ
(
Ūi ∪ {x`},Yi ∪

Ỹi

)
> ρ

(
Ūi \ {uj},Yi

)}
. We can state:

Proposition 5. Consider structured system ΣΛ represented by
digraph G(ΣΛ) and constituted by subsystems ΣR

i , i =
1, . . . , N . Assume that each subsystem is strongly locally ob-
servable. To recover the I.C. length condition of Proposition
3, for subsystem ΣR

i , the measurements transmitted by the
network, noted Ỹi must concern all the external components in

VU
def
=

⋃

x`∈∆i\Vess(Ūi,Yi)

δ` such that VU ⊆ So(Ūi,Yi∪Ỹi).

Proof: The proof is immediate from the previous settings.
a

5. CONCLUSION

An important problem that must be considered when dealing
with control over network, is the validity of some properties
as the observability. For network distributed systems, an al-
ternative to the centralized observation scheme, which can be

quite complicated to realize when we deal with a large scale
system, is to consider a decentralized distributed observation
scheme or a completely autonomous observation scheme. The
first scheme corresponds to the case when the subsystem is
connected to the network and receive some informations from
the other subsystems. The second scheme is related to the case
when the subsystem have only its own measurements to recon-
struct a part of the state and input components as in a network
cut for example. In this paper, we propose first an analysis tool
to study the generic strong observability of network distributed
structured linear systems in both distributed interconnected and
distributed autonomous schemes. In a second part of the pa-
per, we give a procedure of measurement distribution through
the network. More precisely, for any given subsystem ΣR

i , we
indicate quite precisely, which external measurement must be
transmitted through the network from the other subsystem in
order to ensure the strong observability of ΣR

i in a decentralized
interconnected observation scheme.
Our approach is based on a graph-theoretic approach,and needs
few information about the system. The provide results are very
easy to check by means of well-known combinatorial tech-
niques and simply by hand for small systems. Indeed, from
a computational point of view, our proposed approach needs
few information about the system and is quite easy to check
by means of well-known combinatorial techniques or simply
by hand for small systems. Indeed, it uses classical program-
ming techniques like Ford-Fulkerson algorithm to compute the
input separators in a digraph and Dulmage-Mendelsohn decom-
position of a bipartite graph. These algorithms are free from
numerical difficulties and lead polynomial complexity order
implementations.
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