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Abstract

This paper deals with the partial state and input observability analysis for structured linear systems with an

application to distributed systems. The proposed method is based on a graph-theoretic approach and assumes

only the knowledge of the system’s structure. More precisely, we express, in simple graphic terms, necessary

and sufficient conditions for the strong observability of a state or an input component. These results are

then directly applied to study the observability of a distributed system in some different configurations. In

fact, we define two configurations called decentralized interconnected observation scheme and decentralized

autonomous observation scheme, for which we check whether or not any given part of the states or the inputs

of a considered subsystem is strongly observable. All the provided conditions are easy to verify because they

are based on comparison of integers and on finding paths in a digraph.

Key words: State and input observability, structured linear systems, distributed systems, graph theory.

1 Introduction

The problem of reconstructing any desired part of the states and/or the unknown inputs is also of a

great interest in control law synthesis, fault detection and isolation, fault tolerant control, supervision

. . . . Indeed, in many applications, the estimation of only a part of the states and the unknown inputs

of the system is necessary to design for example a control law (unmeasured state feedback), a fault

detection scheme or a reduced observer. This is also the case, for example, when we want to study the

state reconstructubility in the context of a system submitted to faults or non negligible disturbances

or in the case where we have to estimate the fault intensity or amplitude in order to appreciate the



gravity of a malfunction on the system, to design a fault tolerant controller, reject some disturbances

or in order to reconfigure the controller in function of the intensity of faults occurring on the system

or to know whether or not the state is (or remains) observable when the system is faulty.

In this respect, many works [5, 6, 15, 19, 28, 29] are focused on the design of full or reduced state

observers for linear systems with unknown inputs. Otherwise, the issue of simultaneously observing

the whole state and the unknown input has been investigated in [10,18]. In this context, a preliminary

step to the observer design is the analysis of the state and input observability. Among the most im-

portant works dealing with the state and/or input observability, we can cite [1, 2, 9, 14, 27] which deal

with algebraic or geometric frameworks. In particular, in [9] the author gives the definitions of strong

detectability and strong observability and the conditions for existence of observers that estimate a

functional of the state and unknown inputs.

Otherwise, many studies deal with the observation of decentralized systems. In this way, in the early

70’s, [26] propose, under some decoupling assumptions, the design of a filter for interconnected dy-

namical systems in which the information pattern is decentralized. More recently, in [25], under some

“matching conditions”, the authors propose a method for the design of a decentralized reduced state

estimator using unknown input observers for large scale systems composed by interconnected sys-

tems. Also on the basis of unknown input observers. In [11], a decentralized state function observer is

designed for large scale interconnected systems. Three kinds of interconnections are considered and

the design of the state function local observer is done under the solvability of some matrix algebraic

equations.

In the latter papers as in most other, the studies on the state or/and input observability or on decen-

tralized systems deal with algebraic and geometric tools. The use of such tools requires the exact

knowledge of the state space matrices characterizing the system’s model. However, in many model-

ing problems, only zero entries of these matrices, which are determined by means of physical laws,

are fixed while the remaining entries are not precisely known. To study the properties of these systems

in spite of poor knowledge we have on them, the idea is that we only keep the zero/non-zero entries

in the state space matrices. Thus, we consider models where the fixed zeros are conserved while the

non-zero entries are replaced by free parameters. There is a huge amount of interesting works in the

literature using this kind of models called structured models. The analysis of such systems requires a

low computational burden which allows us to deal with large scale systems. Many studies on struc-

tured systems are related to the graph-theoretic approach to analyse some system properties such as

controllability, observability or the solvability of several classical control problems including distur-

2



bance rejection, input-output decoupling, . . . [8]. It results from these works that the graph-theoretic

approach provides simple and elegant solutions.

However, the well-known graphic observability conditions for linear structured systems recalled

in [8, 23, 24] cannot be applied to systems with unknown inputs. Otherwise,in [3], graphic necessary

and sufficient conditions for the input and state observability are given. Nevertheless, these condi-

tions concerns only the whole state and input observability and cannot be applied to know either or

not a particular state or an input component is strongly observable. Consequently, for the partial state

and input observability, these results are not applicable. Besides, authors of [4] express, in graphic

terms, necessary and sufficient conditions for the observability of any given part of a descriptor sys-

tem states. These results are obviously applicable to the partial state and input observability analysis

of linear systems. Nevertheless, the proposed conditions are quite complicated and not efficient from

a computational point of view.

In this context, the purpose of this paper is to use a graph-theoretic approach for providing necessary

and sufficient conditions which ensure that some particular input and/or state components are generi-

cally strongly observable. More exactly, we characterize, for a structured linear system, the set of all

the strongly observable state and input components. Next, we use this result to provide necessary and

sufficient conditions for the generic observability of structured distributed systems according to their

configuration.

Distributed systems are in general composed of a large number of interconnected devices or subsys-

tems. In the last decades, these subsystems can exchange data through communication networks that

can be dedicated to the application or not. Examples include industrial automation, building super-

vision, automotive control, . . . . Distributed systems provide many advantages such as modular and

flexible system and controller designs. However, from an observation point of view, the fact that all

the measurements done on the system are not transmitted to all the subsystems can be annihilate the

global observability property. In fact, the observability of the state and the reconstructibility of the

input components of each subsystem are ones of the main properties which are strongly linked to

the data exchanged by the subsystems constituting the considered distributed system and its network

configuration. In fact, the observability of each subsystem is linked to the system’s subdivision, which

redefine the unknown inputs for each subsystem, and to the measurements arriving through the net-

work to each subsystem. Thus, starting from an observable global system is observable, we can obtain,

when we subdivide it, non observable subsystems because of unknown inputs which can appear on

these subsystems consecutively to the subdivision. This can be true even if all the inputs of the system

3



are measured when these measures are not all transmitted through the network to all the subsystems.

Hence, an observability analysis of distributed systems, for different network configurations and as

function of the information exchanged in the network, is important for the observer design and more

generally for the system design. This analysis, for each subsystem, amounts to study the observability

of a given part of the states and, necessarily in the most general case, the unknown inputs of linear

systems. This is the objective of the second part of the paper.

Note finally that our method is mainly focused on the analysis stage and we do not deal with the

observer design problem.

The paper is organised as follows: after Section 2, which is devoted to the problem formulation, a

digraph representation of structured systems is given in Section 3. The main results are presented in

Section 4 which is mainly subdivided into two parts. At first, the partial state and input observability

conditions are given. Next, we treat the analysis of the strong observability in the context of structured

distributed systems. Finally, some concluding remarks end the paper.

2 Problem statement

In this paper, we treat numerically non-specified systems on the form:

ΣΛ :





ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rq and y(t) ∈ Rp are respectively the state vector, the unknown in-

put vector and the output vector. A, B, C and D represent matrices which elements are either

fixed to zero or assumed to be free nonzero parameters noted λi. These parameters form a vector

Λ = (λ1, . . . , λh)
T ∈ Rh. If all parameters λi are numerically fixed, we obtain a so-called admissible

realization of structured system ΣΛ. We say that a property is true generically if it is true for almost

all the realizations of structured system ΣΛ. Here, “ for almost all the realizations ” is to be under-

stood as “ for all parameter values (Λ ∈ Rh) except for those in some proper algebraic variety in the

parameter space ”. The proper algebraic variety for which the property is not true is the zero set of

some nontrivial polynomial with real coefficients in the h system parameters λ1, λ2, . . . , λh.

In a first part of this paper, we study the generic partial state and input strong observability for struc-

tured system ΣΛ. The notion of and state input strong observability is related to both the strong ob-

servability and the left invertibility properties [27] and it is similar to the right-hand side observability
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in the context of descriptor systems [12]. It guarantees that the considered inputs and states part can

be expressed only as function of the outputs and their derivatives and so that it is reconstructible using

a generalized observer [13].

More precisely, we are interested in the generic strong observability of any given part of the states or

the inputs which can be defined as follows:

Definition 1 Consider structured system ΣΛ, we say that a state component xi(t) (respectively an

input component uj(t)) is generically strongly observable if y(t) = 0, ∀t ≥ 0 implies xi(t) = 0,

∀t ≥ 0 (respectively uj(t) = 0, ∀t > 0).

Roughly speaking, the generic strong observability of a state component xi(t) (respectively an in-

put component uj(t)) means that a change in xi(0) (respectively uj(0
+)) is necessarily reflected in a

change of the measurements.

The first objective of the paper is to give graphic conditions to analyse, for structured system ΣΛ,

the question whether or not state component xi(t) or input component uj(t) is generically strongly

observable.

In a second stage, we assume that the structured linear system ΣΛ is a decentralized interconnected

system. It is then constituted of several subsystems Σi
R, i = 1, . . . , N . This subdivision of (Σ) into

subsystems (Σi), i = 1, . . . , N will not be discussed in this note but it may be based on geographical

repartition of the equipments for example.

The fact is that the global system is distributed and so decomposed into subsystems, each of which

being in charge of a local control/observation/supervision/FDI/FTC unit. Some of the information

collected by each unit is transmitted via the network. This problem concerns for example complex

systems, controlled through a network of controllers. Each controller node is dedicated to a subset of

components, and communicates with the others. Since the components are physically interconnected,

the local control/observation/supervision system must take the transmitted informations into account.

In the paper framework, without loss of generality, we consider distributed system so that each sub-

system consists in a part of the plant and its dedicated control node. It is then represented by a state

vector which is a part of the whole state vector of the global system. Moreover, an input vector is asso-

ciated with the subsystem. These inputs act implicitly (directly or not) on the subsystem. Otherwise,

some measurements are taken locally on each subsystem. Obviously, there exist physical interactions

on different subsystems. These interactions are equivalent to say that some of the state or input com-

ponents related to subsystem j may intervene on the dynamics of the state components of subsystem
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i. On the other hand, the measurements taken on the subsystem i can be explicitly sensitive to the

state or input components related to other subsystems. In this case it contains a linear combination

of state and input components of subsystem j. Thus, in general, and without loss of generality, each

subsystem satisfies a model of the form:

Σi
R :





ẋi(t) = Aix
i(t) + Biu

i(t) +
N∑

j=1,j 6=i

Ai,jx
j(t) +

N∑

j=1,j 6=i

Bi,ju
j(t)

yi(t) = Cix
i(t) + Diu

i(t) +
N∑

j=1,j 6=i

Ci,jx
j(t) +

N∑

j=1,j 6=i

Di,ju
j(t)

(2)

where for i = 1, . . . , N , xi(t) ∈ Rni , yi(t) ∈ Rpi and ui(t) ∈ Rqi are respectively the state, the mea-

surements and the input vectors of subsystem Σi
R. For i, j = 1, . . . , N , j 6= i, matrices Ai, Bi, Ai,j ,

Bi,j , Ci, Di, Ci,j and Di,j represent matrices of appropriate dimensions whose elements are either

fixed to zero or assumed to be free nonzero parameters. The whole state vector is denoted by x(t) =

((x1(t))T , . . . , (xN(t))T )T , the whole input vector is denoted by u(t) = ((u1(t))T , . . . , (uN(t))T )T

and the whole output vector is denoted by y =
(
(y1(t))T , . . . , (yN(t))T

)T
. Even if a state component

of a subsystem acts on the dynamics of another subsystem, but we do not consider this state compo-

nent "as an unknown input" since its dynamics has a known expression. The term "inputs" is only

reserved to the variables ui
k(t) with unknown dynamics (there is no expression of u̇i

k(t) in the global

system’s model).

Obviously, as we interest to an observation problem, by the term "output" we mean here measure-

ments, which cannot be considered as inputs of other subsystems, so we do not address a problem

of "cascade systems". Otherwise, without loss of generality and for the sake of homogeneity, all the

inputs are assumed to be unknown and for control input components which are known or equivalently,

from a theoretical point of view, measured. This means that we associate a virtual output equation of

the form yi
k′ = ui

k to these known inputs. Since, we address an observability analysis problem and not

a controller design one, this is not a violation the normal practice of sensor location in a controlled

system, because we can restrict all our reasoning to the notion of measured and unmeasured variables.

In the framework of this paper, the subsystems exchange some informations through a

network as it is the case for the networked control systems. Thus, some measurements

can arrive to subsystem Σi
R from the other subsystems. These measurements are repre-

sented by vector denoted ỹi(t) which is necessarily a sub-vector of the measurement vector
(
(y1(t))T , . . . , (yi−1(t))T , (yi+1(t))T , . . . , (yN(t))T

)T
.

We are interested in the generic strong observability of only a given part of the states and the in-
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puts of each subsystem Σi
R, i = 1, . . . , N , and we consider two cases. In the first one, we assume

that subsystem Σi
R is linked to the network and can use the measurement vectors yi(t) and ỹi(t) to

reconstruct a given part of its state and input components. We call this case the decentralized intercon-

nected observation scheme. In the second case, we assume that there are no external measurements

arriving through the network to Σi
R. So, subsystem Σi

R can only use its own measurement vector yi(t)

to reconstruct a given part of its states and inputs. We call this case the decentralized autonomous ob-

servation scheme. The latter case can represent a network cut for example. We define now the strong

observability of a state or an input component, relatively to these considered observation schemes, as

follows:

Definition 2 Consider linear structured system ΣΛ constituted of several subsystems Σi
R, i =

1, . . . , N . For i ∈ {1, . . . , N}, we say that state component xi
k(t), k ∈ {1, . . . , ni} (respectively

input component ui
j(t), j ∈ {1, . . . , qi}) is generically strongly observable in a decentralized inter-

connected observation scheme if having yi(t) = 0 and ỹi(t) = 0 for t ≥ 0 implies that xi
k(t) = 0,

∀t ≥ 0 (respectively ui
j(t) = 0, ∀t > 0).

Similarly, we say that state component xi
k(t) (respectively input component ui

j(t)) is generically

strongly observable in a decentralized autonomous observation scheme if having yi(t) = 0 for t ≥ 0

implies xi
k(t) = 0, ∀t ≥ 0 (respectively ui

j(t) = 0, ∀t > 0).

Roughly speaking, a state or an input component of subsystem Σi
R is observable in a decentralized

interconnected (respectively autonomous) observation scheme when it can be expressed only as func-

tion of yi(t) and ỹi(t) (respectively only as function of yi(t)) and their derivatives.

The main difference between the so-called decentralized and the autonomous observation schemes

is that in the latter case, the considered subsystem can only use its own measurement vector yi(t)

and its derivatives to reconstruct some desired unknown variables. On the other hand, in the inter-

connected observation scheme, the subsystem can use its own measurement yi(t) but also the ones

arriving through the network denoted ỹi(t). The latter may regroup only a part and not the totality of

the measurements available on the whole system. That is why, in our study, for the sake of generality,

we do not assume that all the subsystems share the same measurement vector ỹi(t). Note that studying

the observability in any of the two considered decentralized schemes can be reduced to two particular

cases of a partial state and input observability study.

The two considered observation schemes are called decentralized because they correspond to the case

where each subsystem has its own local observer. We do not deal in this paper with a centralized

observation case which is equivalent to study the whole input and state observability of a structured
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linear system as it is done using a graph theoretic approach in [3]. The structural observability of a

distributed system is then a property which is related to the structure of the global system, to its subdi-

vision and to the information (measurements) available for each subsystem. Hence, this notion which

express a sensitivity of the measurements w.r.t. to a change in some initial state or input component

is based on the assumption that the global dynamics of the system is known and available for all the

subsystems. In the following example, we show first that a global system can be observable while

one of its subsystems is not. Next, we illustrate the importance of the global model knowledge for the

observability study in distributed schemes.

Example 1 Consider the simple distributed system constituted by the two following subsystems:

Σ1
R :





ẋ1(t) =

(
0 λ1

0 0

)
x1(t) +

(
0 λ2

0 0

)
x2(t)

y1(t) =
(

λ3 0
)

x1(t)
, Σ2

R :





ẋ2(t) =

(
λ4 0
λ5 λ6

)
x2(t)

y2(t) =
(

λ7 0
)

x2(t)

First, note that the global system is obviously generically observable in a centralized observa-

tion scheme. Nevertheless, subsystem Σ2
R is not generically observable in autonomous observation

scheme. Indeed, it is not possible to express x2
2(t) only as function of y2

1(t)(t) and its derivatives.

Concerning subsystem Σ1
R, x1

1 is obviously observable. The objective now is to know if x1
2(t) is gener-

ically strongly observable. Simple calculations allow to write x1
2(t) =

ẏ1(t)

λ3λ1

− (λ4 + λ5)ÿ
1(t)− y1(3)

λ4λ6λ1

.

We can then conclude that x1
2(t) is generically strongly observable. To establish the relation above,

we obviously use equations ẋ2
1(t) = λ4x

2
1(t) and ẋ2

2(t) = λ5x
2
1(t) + λ6x

2
2(t) termed from model Σ2

R

but not the output equation y2(t) = λ7x
2
1(t). Indeed, it is not possible to express x1

2(t) as function of

y1(t) and its derivatives without using the dynamics of x2(t).

This example shows two important things. The first is that a system may be observable while one or

more of its subsystems are not observable. Next, we illustrate the importance to use the knowledge

of the global model (only dynamics part) to establish the observability of some state or input com-

ponents of a subsystem. Thus, the dimension of an observer which estimate the state of a subsystem

may be greater than the dimension of this subsystem. Finally, it is important to note that using the

knowledge of the global system’s dynamics to establish the observability is different from considering

a centralized observation scheme. Indeed, in this example, we use the x2(t) dynamics to establish the

observability of x1
1(t) but we do not use the output equation y2(t).
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As it is shown in the above example, checking the observability as it is specified in Definition 2 im-

plies the possible use of the global dynamical equations of the system. Indeed, in such definition, the

unknown input of the ith subsystem is the whole input vector u(t) and not the state components of

the other subsystems xj(t), j 6= i. To make this property meaningful in a practical sense, it is then

necessary to assume that, for each subsystem, the reconstruction of the state and the unknown input

components may employ any useful dynamical equation given in the global model of the system and

not only a reduced model defined by the equations of the considered subsystem. Due to the actual

high performances of the calculators used to implement practically different observers and estima-

tors, we can assume, that the global dynamics of the whole system’s state components is available

for all the subsystems and can be used as a common knowledge. In this context, in both the studied

cases, we assume that we can implement locally for each subsystem an “extended” observer i.e. an

observer which is designed on the basis of the needed part of the whole system dynamics. It implies

that the state dimension of a local observer may be bigger than the state dimension of the considered

subsystem. Obviously, the main drawback of assuming in Definition 2, the unknown input for all the

subsystems represented by u(t), is that it makes, perhaps, quite necessary the implementation a large

part of the global model of the system in each local observer. Note that, depending on the measured

variables and on the transmitted measures, only a part of the global system’s dynamics may be suffi-

cient to the local observers to reconstruct the desired states and components.

When we deal with a large scale or a complex system, this drawback can become severe. This is why,

at the end of the paper, we consider the case where for the ith subsystem, the state components of

all the other subsystems are considered as unknown inputs. We obtain two new observation schemes

called reduced interconnected and reduced autonomous observation schemes.

Note finally that analysing the observability property in any of all these observation schemes (central-

ized, interconnected, reduced) can be done by applying only one theoretical result that is the graphical

characterization of the partial strong state and input observability.

Therefore, the aim of the paper is to give graphical conditions to answer the question whether or not

a given state or input component is strongly observable for a linear structured system ΣΛ and next for

any of the considered observation schemes in the case of distributed systems. In this respect, the next

section is dedicated to the definition of a graphical representation of linear structured systems and to

some notations.
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3 Graphical representation of structured linear systems

For the sake of simplicity, we consider at first the case of a simple linear structured system ΣΛ. The

following definitions are adapted to the case of distributed systems in subsection 4.3.

The directed graph or digraph G(ΣΛ) (1) associated with ΣΛ is constituted by a vertex set V and an

edge set E i.e. G(ΣΛ) = (V , E). The vertices are associated with the state, the unknown input and the

output components of ΣΛ whereas the edges represent links between these variables. More precisely,

V = X ∪ Y ∪ U, where X = {x1, . . . ,xn} is the set of state vertices, Y = {y1, . . . ,yp} is the

set of output vertices and U = {u1, . . . ,uq} is the set of unknown input vertices. The edge set is

E = A-edges∪B-edges∪C-edges∪D-edges, with A-edges = {(xj,xi) | A(i, j) 6= 0}, B-edges =

{(uj,xi) | B(i, j) 6= 0}, C-edges = {(xj,yi) | C(i, j) 6= 0}, D-edges = {(uj,yi) | D(i, j) 6= 0},

where M(i, j) is the (i, j)th element of matrix M and (v1,v2) denotes a directed edge from ver-

tex v1 ∈ V to vertex v2 ∈ V .

Hereafter, we illustrate the proposed digraph representation with an example.

Example 2 The system defined by the following matrices is represented by the digraph in Figure 1.

A =




λ1 0 0 0 0 0 0 0 0 0

λ2 0 0 0 0 0 0 0 0 0

0 λ3 0 λ4 0 0 0 0 0 0

0 0 λ5 0 0 0 0 0 0 0

0 0 0 λ6 0 λ7 λ8 0 0 0

0 0 λ9 λ10 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 λ11 0

0 0 0 0 0 0 0 λ12 0 0




, B =




0 0 0

0 0 λ13

λ14 λ15 0

0 0 0

0 0 0

0 0 0

0 λ16 0

0 λ17 0

0 0 0

0 0 0




, C =




0 0 0 0 λ18 0 0 0 0 0

0 0 0 0 λ19 0 0 0 λ20 0

0 0 0 0 0 0 λ21 0 0 λ22

0 0 0 0 0 0 0 λ23 0 0


 and

D =




0 0 0

0 0 0

0 0 0

0 λ24 0


.

It can be shown that the graphical representation is quite intuitive. The vertices are associated with

 

Figure 1. Digraph associated with system of Example 2
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the state, the unknown input and the output components o whereas the edges represent links between

these variables. Indeed, for example, ẋ3 = λ3x2 + λ4x4 + λ14u1 + λ15u2 is graphically represented

by edges starting from vertices x2, x4, u1 and u2 and arriving to vertex x3.

Let us now give some useful definitions and notations.

• Two edges e1 = (v1,v
′
1) and e2 = (v2,v

′
2) are v-disjoint if v1 6= v2 and v′1 6= v′2. Note that e1 and

e2 can be v-disjoint even if v′1 = v2 or v1 = v′2.

Some edges are v-disjoint if they are mutually v-disjoint.

• We denote path P containing vertices vr0 , . . . , vri by P = vr0 → vr1 → . . . → vri , where

(vrj ,vrj+1
) ∈ E for j = 0, 1, . . . , i − 1. We say that P covers vr0 , vr1 , . . . , vri . A path is simple

when every vertex occurs only once in this path.

• A cycle is a path of the form vr0 → vr1 → . . . → vri → vr0 , where all vertices vr0 , vr1 , . . . , vri

are distinct.

• Some paths (resp. cycles) are disjoint if they have no common vertex. A set of disjoint cycles is

called a cycle family.

• Path P is an Y-topped path if its end vertex is an element of Y. An Y-topped path family consists

of disjoint simple Y-topped paths.

• The union of a Y-topped path family and a cycle family is disjoint if they have no vertices in com-

mon. If such union contains path or a cycle which covers a vertex v it is said to cover v.

Let V1 and V2 denote two subsets of V . The cardinality of V1 is noted card(V1). V1 \ V2 denotes the

set of elements in V1 which are not in V2 i.e. V1 \ V2 = {v ∈ V1 such that v /∈ V2}
• A path P = vr0 → vr1 → . . . → vri is said a V1-V2 path if vr0 ∈ V1 and vri ∈ V2. Moreover, if

the only vertex of P which belongs to V1 is vr0 and the only vertex of P which belongs to V2 is vri ,

P is called a direct V1-V2 path.

• A set of ` disjoint V1-V2 paths is called a V1-V2 linking of size `. The linkings which consist of a

maximal number of disjoint V1-V2 paths are called maximum V1-V2 linkings. We define by ρ [V1,V2]

the size of these maximum V1-V2 linkings.

• µ [V1,V2] is the minimal number of vertices covered by a maximum V1-V2 linking.

• θ [V1,V2] is the maximal number of v-disjoint edges which start in V1 and end in V2.

• The set of all essential vertices for the maximum V1-V2 linkings, noted Vess(V1,V2), is defined by

Vess(V1,V2)
def
={v ∈ V |v is included in every maximum V1-V2 linking}.

• Subset S(V1,V2) ⊆ V is a separator between sets V1 and V2, if every path from V1 to V2 contains

at least one vertex in S(V1,V2) ⊆ V . We call minimum separators between V1 and V2 any separators
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having the smallest size. There is an uniquely determined minimum separator between V1 and V2

noted So(V1,V2), called minimum output separator [30] and which is the set of start vertices of all

direct Vess(V1,V2)−V2 paths, where Vess(V1,V2)∩V2 is considered, in the present definition, as input

vertices.

In Example 2, ρ [U,Y] = 2 and θ [U,Y] = 1. Furthermore, there exist several maximum linkings:

{u1 → x3 → x4 → x5 → y1; u2 → y4}, {u1 → x3 → x4 → x6 → x5 → y1; u2 → x8 → y4} , . . .

According to the fact that the first maximum linking is the “shortest one”, we have that µ [U,Y] = 7.

Furthermore, Vess(U,Y) = {x3, x5, u2} and So(U,Y) = {x5, u2}.

We give now the following important definition [3]:

Definition 3 For each vertex subset V such that Y ⊆ V ⊆ X ∪ U ∪ Y, we define the following

vertex subsets:

•X1(V)
def
=

{
xi ∈ X \V | ρ

[
U ∪ {xi},V

]
> ρ

[
U,V

]}
;

•Υ1(V)
def
= V \ Vess(U,V);

• β1(V) is the maximal number of vertices of X1(V)∪ So
(
U,V

)
\V covered by a disjoint union of

- a So
(
U,V

)
\V-Υ1(V) linking of maximal size,

- a Υ1(V)-topped path family and

- a cycle family covering only elements of X1(V).

• β0(V)
def
= µ

[
U, So

(
U,V

)]
− ρ

[
U, So

(
U,V

)]
;

• β(V)
def
= β1(V) + β0(V) + card

(
V \Y

)
.

In fact, the subdivision corresponds to a particular decomposition of the matrix pencil of the system

similar to the one suggested in [31] but it is here explicitly defined. Moreover, it is well-adapted to the

application of the two main theorems of [30] characterizing the generic rank of the matrix pencil of a

structured system in the two particular cases of a square system and a particular rectangular system.

To illustrate the previous definition, in the case of the system described in Example 2, we have,

X1(Y) = {x7, x8, x9, x10}, Υ1(Y) = Y, So(U,Y) = {x5}, β0(Y) = 4 − 1. Moreover, the

maximal number of state and input vertices covered by the disjoint union of two {x5} ∪ U1(Y)-

Υ1(Y) paths and a Υ1(Y)-topped path family which does not cover x9 is 4: u2 → x8 → x10 → y3

and x5 → y1. So, β1(Y) = 5 and then β(Y) = 5 + (4− 1) + 0 = 8.
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4 Main results

4.1 Partial strong observability analysis

Considering structured linear system ΣΛ, this first subsection is devoted to the exact characterization

of the set of all the strongly observable input and state components. At this aim, we have recourse to

the computation of the generic dimension of the strongly observable subspace in the extended state

and input space (xT , uT )T . As we shall see below, this dimension is related to function β.

In order to simplify the graph by eliminating some unobservable inputs, let us consider, for each

vertex subset V such that Y ⊆ V ⊆ X ∪ U ∪ Y, the input vertex subset Ū(V) ⊆ U such that

card(Ū(V)) = ρ
[
U,V

]
= ρ

[
Ū(V),V

]
and µ

[
Ū(V),V

]
= µ

[
U,V

]
. Note that Ū(V) always ex-

ists but is not necessarily unique.

Using the results of [7], where authors treat the disturbance rejection problem, we have that input

components included in U \ Ū(Y) can be rendered unobservable using the Ū(Y) components i.e.

there exist inputs associated with the vertices included in Ū(Y) such that output y(t) is not sensitive

to the input components associated with U \ Ū(Y). Hence, the input components associated with

vertices U \ Ū(Y) are not strongly observable and so, for the sake of simplicity, we restrict our ob-

servability study only to the input components associated with Ū(Y).

Let us denote by B̄ (resp. D̄) the sub-matrix of B (resp. D) associated with Ū(Y) i.e. matrix

B̄ (resp. D̄) is constituted by the concatenation of columns Bj (resp. Dj) of B (resp. D) where

uj ∈ Ū(Y). Let us denote by q the cardinality of Ū(Y) and the pencil matrix of system (A, B̄, C, D̄)

by P (s) =




A− sIn B̄

C D̄


.

Regarding P (s) as a rational matrix, we call its rank the normal-rank [30] and we denote this nor-

mal rank by n-rank(P (s)). Thus, for each realization of ΣΛ, we can compute the n-rank of P (s).

This rank will have the same value for almost all parameter values λ ∈ Rh [24, 30]. This so-called

generic n-rank of P (s) will be denoted by g_n-rank(P (s)). The generic rank of matrix P (s), de-

noted g_rank(P (s)), is quite different as it depends on s. Hence, g_rank(P (s)) = r, ∀ s ∈ Cmeans

that for almost all parameter values λ ∈ Rh, rank(P (s)) = r, ∀ s ∈ C.

The system defined by matrices (A, B̄, C, D̄) is generically input and state observable iff

g_rank(P (s)) = n + q̄ or in other words iff P (s) has generically full column rank. Otherwise, if

all the state and input components are the start vertices of Y-topped paths and as ρ
[
Ū(Y),Y

]
=

card(Ū(Y)) = q̄, using the results of [30], we have that the generic normal rank of P (s) is equal to
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n+ q̄. Thus, g_rank(P (s0)) < n+ q̄ is equivalent [27] to the existence of a nonzero vector
(
xT

0 , uT
0

)T

such that the output y(t) resulting from the input u(t) = u0e
s0t and the initial condition x(0) = x0

is zero and so that there exists a linear combination of the extended state and input components that

is not strongly observable. Consequently, the generic dimension of the strongly observable subspace

in the extended state and input space (xT (t), uT (t))T is equal to n + card(Ū(Y)) − g_ninv,z, where

g_ninv,z denotes the generic number of invariant zeros of P (s), defined as the complex solutions of

inequality g_rank(P (s)) < n + q̄ [27].

Before giving a necessary and sufficient condition for the strong observability of a state or an input

component, we give hereafter a graphical characterization of g_ninv,z.

Obviously, to compute g_ninv,z, we can use the results provided in [31] which complete the ones pre-

sented in [30]. However, on the one hand, the subdivision of the studied system into three subsystems

suggested in [31] is not necessary to study the observability because of the simplification induced by

considering as input vertices Ū(Y) instead of U.

The following lemma gives a graphical characterization of g_ninv,z:

Lemma 1 Consider structured system ΣΛ represented by digraph G(ΣΛ). We have that n + q̄ −
g_ninv,z = β(Y), where g_ninv,z is the generic number of invariant zeros of P (s).

Proof: Let us first complete the subdivision presented in Definition 3:

•Υ0(V)
def
= V \Υ1(V);

•U0(V)
def
=

{
ui ∈ Ū(V) | θ

[
{ui},X1(V) ∪Υ1(V)

]
= 0

}
;

•U1(V)
def
= Ū(V) \U0(V);

•Xs(V)
def
=

(
So(U,V) ∩X

)
\V;

•X0(V)
def
= X̄ \

(
X1(V) ∪Xs(V) ∪V

)
;

In [3], the subdivision of the system described above is introduced. Mainly, it some particular proper-

ties: Vess

(
Ū(V),V

)
= Vess

(
U0(V),V

)
∪U1(V), θ

[
Xs(V),X1(V) ∪Υ1(V)

]
= card

(
Xs(V)

)
,

So

(
Ū(V),V

)
= Xs(V) ∪Υ0(V) ∪U1(V) and θ

[
X0(V) ∪Υ0(V),X1(V) ∪Υ1(V)

]
= 0.

Consider a vertex set V such that Y ⊆ V ⊆ X ∪U ∪Y and assume that the measurements of the

system are extended to the components associated withV. The latter equalities allow us to study the

input and state observability of such extended system ΣΛ by considering independently two systems:

- a square system denoted Σ0, defined by input U0(V), state X0(V) and output Xs(V) ∪Υ0(V),

- a system denoted Σ1, defined by input U1(V) ∪Xs(V), state X1(V) and output Υ1(V).
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The particularity of the proposed subdivision is that the input and state observability of ΣΛ can be

done by studying separately Σ0 and Σ1 [3].

Mainly, we have that there is no edge from X0(Y)∪U0(Y) to X1(Y)∪Υ1(Y) and So(U0(Y),Y) =

Xs(Y) ∪Υ0(Y). Thus, we can write ΣΛ as:





ẋ0(t) = A0,0x0(t) + A0,sxs(t) + A0,1x1(t) + B0,0u0(t) + B0,1u1(t)

ẋs(t) = As,0x0(t) + As,sxs(t) + As,1x1(t) + Bs,0u0(t) + Bs,1u1(t)

ẋ1(t) = A1,sxs(t) + A1,1x1(t) + B1,1u1(t)

υ0(t) = C0,0x0(t) + C0,sxs(t) + C0,1x1(t) + D0,0u0(t) + D0,1u1(t)

υ1(t) = C1,sxs(t) + C1,1x1(t) + D1,1u1(t)

(3)

where x0(t), xs(t), x1(t), y0(t), y1(t), υ0(t) and υ1(t) represent the variables associated with vertex

subsets X0(Y), Xs(Y), X1(Y), U0(Y), U1(Y), Υ0(Y) and Υ1(Y) respectively.

For the sake of simplicity, let us define n0 = card(X0(Y)), ns = card(Xs(Y)), n1 = card(X1(Y)),

q0 = card(U0(Y)), q1 = card(U1(Y)), p0 = card(Υ0(Y)) and p1 = card(Υ1(Y)).

Starting from system (3), with some appropriate permutations on the rows and columns of P (s), we

can transform P (s) into

P̃ (s) =




A0,0 − sIn0 A0,s B0,0 A0,1 B0,1

As,0 As,s − sIns Bs,0 As,1 Bs,1

C0,0 C0,s D0,0 C0,1 D0,1

0 A1,s 0 A1,1 − sIn1 B1,1

0 C1,s 0 C1,1 D1,1




Since the edges associated with A1,s link Xs(Y) to X1(Y) and the edges associated with C1,s link

Xs(Y) to Υ1(Y), we have that g_rank




A1,s

C1,s


 = θ

[
Xs(Y),X1(Y) ∪Υ1(Y)

]
. According to State-

ment St3 of Lemma 6 in [3], g_rank




A1,s

C1,s


 = ns and so the number of invariant zeros of P (s) is
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equal to the number of invariant zeros of Pe(s), where

Pe(s) =




A0,0 − sIn0 A0,s B0,0 A0,1 B0,1 0

As,0 As,s − sIns Bs,0 As,1 Bs,1 0

C0,0 C0,s D0,0 C0,1 D0,1 0

0 Ins 0 0 0 0

0 0 0 A1,1 − sIn1 B1,1 A1,s

0 0 0 C1,1 D1,1 C1,s




Let us denote P0(s)
def
=




A0,0 − sIn0 A0,s B0,0

As,0 As,s − sIns Bs,0

C0,0 C0,s D0,0

0 Ins 0




and P1(s)
def
=




A1,1 − sIn1 B1,1 A1,s

C1,1 D1,1 C1,s


.

Matrices P0(s) and P1(s) can be seen respectively as the pencil matrices of the square system denoted

Σ0 and the system denoted Σ1, which has generically full column n-rank even after the deletion of

an arbitrary row [3].

From [30], as ρ
[
U0(Y),Υ0(Y) ∪Xs(Y)

]
= card(U0(Y)), g_n-rank(P0(s)) is equal to the num-

ber of rows (or columns) of P0(s) since it is a square matrix. Furthermore, since ρ
[
U1(Y) ∪

Xs(Y),Υ1(Y)
]

= card(U1(Y)∪Xs(Y)), we have also g_n-rank(P1(s)) is equal to the number of

columns of P1(s). Thus, counting the zeros with their multiplicities, the number of invariant zeros of

Pe(s) is equal to the sum of the number of invariant zeros of P0(s) and the number of invariant zeros

of P1(s). On the one hand, applying Theorem 5.1 of [30], we have that the number of invariant zeros

of P0(s) is equal to n0 + ns + q0 − µ
[
U0(Y),So(U0(Y),Y)

]
+ ρ

[
U0(Y),So(U0(Y),Y)

]
− ns.

Note that the presence of the latter term ns is due to the fact that the output of system Σ0 is ys(t)

and not xs(t). On the other hand, from Theorem 5.2 of [30], the number of invariant zeros of P1(s) is

equal to n1 + ns + q1 minus the maximal number of vertices of X1(Y) ∪Xs(Y) ∪U1(Y) covered

by a disjoint union of:

- a Xs(Y) ∪U1(Y)-Υ1(Y) linking of size ρ
[
Xs(Y) ∪U1(Y),Υ1(Y)

]
,

- a Υ1(Y)-topped path family and

- a cycle family covering only elements of X1(Y).

Therefore, using notations of Definition 3, the number of invariant zeros of Pe(s) and also of P (s)

is equal to n0 + q0 + n1 + ns + q1 − β0(Y) − β1(Y) = n + q̄ − β0(Y) − β1(Y). Thus, the

generic dimension of the strongly observable subspace of ΣΛ in the extended state and input space

is equal to n + q̄ − g_ninv,z = β1(Y) + µ
[
U0(Y),So(U0(Y),Y)

]
− ρ

[
U0(Y),So(U0(Y),Y)

]
=
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β1(Y) + β0(Y) = β(Y). ¤

The previous lemma allows us to write that the generic dimension of the strongly observable sub-

space in the extended state and input space (xT (t), uT (t))T is equal to β(Y). The necessary and

sufficient strong observability conditions can be deduced immediately from this Lemma. Indeed, if

β(Y) < n+ q then ΣΛ is not generically input and state observable and it may be interesting to know

which state component xi (resp. input component uj) is generically strongly observable. At this aim,

we compare β(Y ∪ {xi}) (resp. β(Y ∪ {uj})) to β(Y). Indeed, this amounts to compare the generic

dimension of the strongly observable subspace in the extended state and input space (xT (t), uT (t))T

of ΣΛ to the generic dimension of the strongly observable subspace in the extended state and input

space (xT (t), uT (t))T of the same system ΣΛ with an additional sensor which measures the compo-

nent xi(t) (resp. uj(t)). In fact, adding to the system a sensor, which measures the state component

xi(t) (resp. input component uj(t)) is equivalent to add in the digraph an output vertex yp+1 and an

edge (xi,yp+1) (resp. (uj,yp+1)). For the new system obtained by adding of yp+1, the computation

of the generic dimension of the strongly observable subspace in the extended state and input space

(xT , uT )T can be made by using function β(Y ∪ {yp+1}). Nevertheless, this requires an effective re-

draw of the digraph to add effectively an output vertex yp+1 and an edge (xi,yp+1) (resp. (uj,yp+1)).

For the sake of simplicity, we have chosen to work on an unique digraph. Thus, we do not add any

vertex or edge in the digraph, but we consider vertex xi (resp. uj) as an output. Thus, it is easy to de-

duce from Lemma 1 that β(V) = β1(V) + µ
[
U0(V),So(V)

]
− ρ

[
U0(V),So(V)

]
+ card

(
V \Y

)
,

for V = Y ∪{xi} (resp. V = Y ∪{uj}) represents the generic dimension of the strongly observable

subspace in the extended state and input space (xT , uT )T for the new system obtained adding of a

measurement on xi (resp. uj). Hence, we have:

Proposition 1 Consider structured system ΣΛ represented by digraph G(ΣΛ). Let Vobs
def
=

{v ∈ X ∪U, β(Y ∪ {v}) = β(Y)}. State component xi(t) (respectively input component uj(t)) is

strongly observable iff xi ∈ Vobs (resp. uj ∈ Vobs).

Proof: Obviously, a state component xi(t) is strongly observable iff an additional measure of this

state component does not change the generic dimension of the strongly observable subspace. Using

notations of Definition 3, this implies that state component xi(t) (resp. input component uj(t)) is

strongly observable iff β(Y) = β(Y ∪ {xi}) (resp. β(Y) = β(Y ∪ {uj})) and the proposition

follows. ¤
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4.2 Computational aspects

From a computational point of view, the previous main result of the paper is based on Proposition

1 which requires the computation of function β. The latter needs first a system decomposition as

specified in Definition 3. This decomposition is done using n + 1 computations of maximal linkings

between two vertex subsets. The computation of a maximal size linking has a complexity order equal

to O(W 2 ·M0.5) using a transformation of the digraph into a flow graph [20], where M = (n+q)(n+

q) + (n + q)p is the maximal number of edges and W = n + p + q is the number of vertices in the

digraph. The computation of function µ is done using the primal-dual algorithm [16]. The complexity

of such algorithm is O(W 3 · M). Next, the computation of β1 is done after a transformation of the

digraph by evaluating the maximal number of vertices covered by a maximal size linking. We can do

this computation with a complexity order equal to O(W 3 ·M).

Finally, in the worst case, the overall complexity order to list all the strongly observable state and input

components is equal to O(W 4 ·M). If we assume, without loss of generality, that n > p and n ≥ q,

then the complexity order is O(n6). Even if they can still be optimized, the proposed algorithms do

not have an exponential complexity. Hence, they are suited to large scale systems.

The second part of this paper, which is devoted to the distributed systems observability analysis, is

based on the results provided above. It is important to notice that the latter have many other fields of

application.For example, in the case of systems submitted to faults, it is interesting to see whether or

not the state is (or remains) observable when the system is faulty. Denoting by F the fault vertices

(as input vertices), the state is strongly observable w.r.t. to the fault iff β(Y) = ρ [F,Y ∪X] + n.

This result is quite simple to deduce from Proposition 1. Thus, the presented result on the partial

observability is a point of departure of many studies concerning the generic observability or other

structural properties of structured linear systems with unknown inputs.

4.3 Application to distributed systems

Consider now that the structured linear system ΣΛ is a decentralized system. It is then constituted of

several subsystems Σi
R, i = 1, . . . , N . Each subsystem satisfies a model of the form (2). For both the

decentralized interconnected and decentralized autonomous observation schemes, we want to know

if the available measurements contain enough information to ensure the strong observability (or the

reconstructibility) of a given set of state and input components. Naturally, as it is mentioned in Section
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2, even if all the measurements taken on the system are not necessarily available for each subsystem,

we assume that locally, each observer can integrate the whole dynamics provided by the system’s

model. This implies that, for each subsystem, we do not consider, as in many other works, the state

components of the other subsystems as unknown inputs. In fact, in our reasoning, the unknown inputs

are only represented by vectors ui(t), i = 1, . . . , N .

Hereafter, we begin by defining the digraph representing ΣΛ when the latter is constituted by N

subsystems of the form (2). This digraph is only an adaptation of the one defined in Section 3 to

the distributed systems framework. In fact, a structured system ΣΛ constituted by subsystems Σi
R,

i = 1, . . . , N is represented by a digraph noted G(ΣΛ) which is constituted by a vertex set V and

an edge set E . More precisely, V =
N⋃

i=1

(
Xi ∪Ui ∪Yi ∪ Ỹi

)
, where Xi =

{
xi

1, . . . ,x
i
ni

}
is the set

of state vertices of subsystem Σi
R, Ui =

{
ui

1, . . . ,u
i
qi

}
is the set of input vertices of subsystem Σi

R

Yi =
{
yi

1, . . . ,y
i
pi

}
is the set of output vertices of subsystem Σi

R. We denote by Ỹi ⊆ Y \Yi the set

of output vertices associated with the measurements arriving through the network to subsystem Σi
R.

The edge set is

E =
N⋃

i=1

(
Ai-edges∪Bi-edges∪Ci-edges∪Di-edges

N⋃

j=1,j 6=i

(
Ai,j-edges∪Bi,j-edges∪Ci,j-edges∪

Di,j-edges
))

, where Ai-edges =
{
(xi

`,x
i
h) |Ai(h, `) 6= 0

}
, Bi-edges =

{
(ui

`,x
i
h) | Bi(h, `) 6= 0

}
,

Ci-edges =
{
(xi

`,y
i
h) | Ci(h, `) 6= 0

}
, Di-edges =

{
(ui

`,y
i
h) | Di(h, `) 6= 0

}
and for j 6= i,

Ai,j-edges =
{
(xj

`,x
i
h) | Ai,j(h, `) 6= 0

}
, Bi,j-edges =

{
(uj

`,x
i
h) | Bi,j(h, `) 6= 0

}
, Ci,j-edges =

{
(xj

`,y
i
h) | Ci,j(h, `) 6= 0

}
, and Di,j-edges =

{
(uj

`,y
i
h) | Di,j(h, `) 6= 0

}
.

The definitions and notations given previously in Section 3 are obviously applicable to the distributed

systems’ case. Applying now conditions of Proposition 1 to a distributed system, we have:

Corollary 1 Consider structured system (ΣΛ) represented by digraph G(ΣΛ) and constituted by sub-

systems Σi
R, i = 1, . . . , N . The components associated with a vertex subset ∆i ⊆ Xi ∪ Ui of

subsystem i is generically input and state observable in

- a decentralized interconnected observation scheme iff

β
(
∆i ∪Yi ∪ Ỹi

)
= β

(
Yi ∪ Ỹi

)

- a decentralized autonomous observation scheme iff

β
(
∆i ∪Yi

)
= β

(
Yi

)

Moreover, subsystem i is generically strongly observable in
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- a decentralized interconnected observation scheme iff

β
(
Xi ∪Yi ∪ Ỹi

)
= β

(
Yi ∪ Ỹi

)

- a decentralized autonomous observation scheme iff

β
(
Xi ∪Yi

)
= β

(
Yi

)

This corollary allows us to characterize the components which are strongly observable in each of

the two considered observation schemes. The following example illustrates the simplicity and the

applicability of the previous corollaries.

Example 3 The considered example is treated in [21] and is based on the system originally pre-

sented in [17]. It deals with a linearized model of a four-tank system. A scheme of this process is

shown in [17] and is depicted in Figure 2 below.

The system has two inputs (pump throughput) which can be manipulated to control the water level

 
Figure 2. Four-tank system

in the tanks. The two pumps are used to transfer water from a basin into four overhead tanks. The

two tanks at the upper level (Tank 3 and Tank 4) drain freely into the two tanks at the bottom level

(Tank 1 and Tank 2) and the liquid levels in these bottom two tanks are measured by pressure sensors.

The piping system is designed such that each pump affects the liquid levels of both measured tanks. A

portion of the flow from one pump is directed into one of the lower level tanks and the rest is directed

to the overhead tank that drains into the other lower level tank. The state variables are the four levels

in the tanks and the speed of the flow that goes to the upper tank from each pump.

The system is divided into two symmetric subsystems. Each one is constituted by two tanks and their

control input. For the first subsystem, we denote by x1
1(t) the liquid level in the bottom left tank, x1

2(t)
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the liquid level in the upper left tank, x1
3(t) the speed of the flow that goes to the upper left tank from

the left pump, u1(t) the control signal related to the left pump. Similarly, for the second subsystem,

we denote by x2
1(t) the liquid level in the bottom right tank, x2

2(t) the liquid level in the upper right

tank, x2
3(t) the speed of the flow that goes to the upper right tank from the left pump and u2(t) the

control signal related to the right pump. The measurements are the levels of two bottom tanks and

their control input signals. The associated digraph is depicted in Figure 3.

We present only the computations on the first subsystem, knowing that they are exactly the same for

 

1u

2u 1
1y

1
2y

2
1y

2
2y

1
1x1

2x

1
3x

2
1x

2
2x

2
3x

Figure 3. Digraph associated with four-tanks system

the second one. Some simple computations allow us to write that in a decentralized autonomous obser-

vation scheme X1
1(Y

1) = ∅ and X1
0(Y

1) = {x1
1, x1

2, x1
3}. As Vess(U,Y1) = {u1

1, u2
1, x2

3, x1
2, x1

1}
does not contain x1

3, then, the state of subsystem 1 is not strongly observable. Let us determine the

strongly observable state components of the first subsystem in a decentralized autonomous observa-

tion scheme. Yet, β(Y1) = β(Y1 ∪ {x1
1}) = 3 and β(Y1 ∪ {x1

2}) = β(Y1 ∪ {x1
3}) = 5. So, we can

deduce that only state component x1
1(t) is strongly observable. Note that an additional measurement

on x1
2(t) or x1

3(t) allows to recover the strong observability of the first subsystem in a decentralized

autonomous observation scheme.

Furthermore, if one of the two measurements y2
1(t) or y2

2(t) is transmitted via the network to the first

subsystem, the state of the first subsystem becomes strongly observable. Indeed, in this case, we have

that X1
1(Y

1) = X1 and θ
[
U ∪X,X1 ∪Y1 ∪ Ỹ1

]
= 6 = 3 + θ

[
U ∪X2,X ∪Y1 ∪ Ỹ1

]
= 3 + 3.

This guarantees that all the state components of the first subsystem satisfy the conditions given in

Proposition 1.

Now, let us consider briefly the case where it is not possible to implement the global model of the

system in the local observers related to each subsystem. It amounts to consider for the ith subsystem all

the state components of the other subsystems as unknown inputs. To deal with such case, we consider
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a reduced graph Gi
R(ΣΛ), where all the vertices xj

k, j 6= i and k = 1, . . . , nj are transformed into

input vertices and where all edges ending with these vertices are removed. The strong observability

conditions of a state or an input component in a reduced observation scheme are then deduced from

Corollary 1:

Corollary 2 Consider structured system (ΣΛ) represented by digraph Gi
R(ΣΛ) defined above. The

components associated with a vertex subset ∆i ⊆ Xi ∪ Ui of subsystem i are generically strongly

observable in

- a reduced interconnected observation scheme iff

β
(
∆i ∪Yi ∪ Ỹi

)
= β

(
Yi ∪ Ỹi

)

- a reduced autonomous observation scheme iff

β
(
∆i ∪Yi

)
= β

(
Yi

)

Obviously, function β is computed on digraph Gi
R(ΣΛ) by considering as Ue

def
= U ∪ X \ Xi input

vertex subset.

5 Concluding remarks

In this paper, we first give, in graphical terms, necessary and sufficient conditions which ensure the

strong observability of a state and/or an input component for a structured linear system. Next, we ap-

ply these conditions to study the generic observability of any given part of the states and the unknown

inputs for network decentralized structured linear systems in both interconnected and autonomous

schemes. Indeed, an important problem that has to be considered when dealing with control over net-

work, is the validity of some properties like the observability. For network decentralized systems, an

alternative to the centralized observation scheme, which can be quite complicated to consider when

we deal with a large scale system, is to use a decentralized interconnected observation scheme or

a completely decentralized autonomous observation scheme. The first one corresponds to the case

where some subsystems are connected to the network and receive some information from the other

subsystems. The second one is related to the case where all the subsystems have only their own mea-

surement to reconstruct a part of the states and inputs.

All the proposed conditions need few information about the system and are easy to check by means
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of well-known combinatorial techniques and simply by hand for small systems. That makes our ap-

proach particularly suited for large-scale systems as it is free from numerical difficulties.

Another outlook to the proposed study is that we can easily deal with the optimisation of sensor lo-

cation to achieve the strong observability of the system. It is also possible to easily determine which

measurements are useful to transmit through the network to each subsystem in order to ensure the

observability at less of some important variables. Finally, since the observability of a state or input

component depends also on the subdivision of the system into subsystems, the present work can be

used to design a tool in order to find the most pertinent decomposition from the observability point of

view and further taking into account other structural properties.
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