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ABSTRACT

It is a well known fact that the time-frequency domain is very well adapted for representing audio signals. The
main two features of time-frequency representations of many classes of audio signals are sparsity (signals are
generally well approximated using a small number of coefficients) and persistence (significant coefficients are not
isolated, and tend to form clusters). This contribution presents signal approximation algorithms that exploit
these properties, in the framework of hierarchical probabilistic models.

Given a time-frequency frame (i.e. a Gabor frame, or a union of several Gabor frames or time-frequency
bases), coefficients are first gathered into groups. A group of coefficients is then modeled as a random vector,
whose distribution is governed by a hidden state associated with the group.

Algorithms for parameter inference and hidden state estimation from analysis coefficients are described. The
role of the chosen dictionary, and more particularly its structure, is also investigated. The proposed approach
bears some resemblance with variational approaches previously proposed by the authors (in particular the vari-
ational approach exploiting mixed norms based regularization terms).

In the framework of audio signal applications, the time-frequency frame under consideration is a union of
two MDCT bases or two Gabor frames, in order to generate estimates for tonal and transient layers. Groups
corresponding to tonal (resp. transient) coefficients are constant frequency (resp. constant time) time-frequency
coefficients of a frequency-selective (resp. time-selective) MDCT basis or Gabor frame.

Keywords: Audio signals, time-frequency, sparse and structured approximation, hierarchical models

1. INTRODUCTION

Given a separable Hilbert space, and a dictionary (i.e. essentially a complete set of vectors) in this Hilbert
space, a vector in this space is said to be sparsely represented in the dictionary when it may be expanded as a
linear combination of the elements of the dictionary; in such a way that only a small percentage of the expansion
coefficients is nonzero (or numerically significant). Sparsity has become a key concept in many domains of
modern signal processing.

Audio signals, in particular musical signals, are known to possess such a sparsity property when an appropriate
time-frequency dictionary is used (see for example [1] for a review). This is mainly a consequence of the way most
audio signals are produced, i.e. involving resonating physical systems. This results in sounds that can naturally
be decomposed as sums of (possibly delayed, damped, chirped...) sinusoids (see [2, 3] and references therein),
together with additional components such as transients (sharply time-localized) and stochastic-like components.
However, such elementary buiding blocks cannot be cast as time-frequency atoms in the general sense, as they
are in some sense more macroscopic objects. In addition, there is already a vast variability within such a
class building blocks, which makes it difficult to parameterize it (see however [4] for an example in particular
situations).
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In such situations, it makes sense to turn to simpler building blocks, (sound atoms), and gather them into
more macroscopic sound objects, that could be called sound molecules. A sound molecule can roughly be defined
as a linear combination of atoms, with variable coefficients. The underlying models are therefore hierarchical
models, in which both groups and coefficients for a given group are to be modeled. Given such models, the
problem is to find sparse signal expansions with respect to a given dictionary of atoms, that respect the molecule
organizations.

Several approaches can be followed for such a sparse regression problem. Since they often lead to simple and
efficient algorithms, variational approaches are currently very popular, and can be adapted to such a situation
in various ways (see for example [5–9] and references therein). Pursuit methods also provide simple algorith-
mic approaches, that can also be adapted to the hierarchical situation (see [10, 11]). In this paper, we shall
focus on explicit hierarchical modeling using probabilistic approaches, and classification of the so-called analysis
coefficients, following the approach of [12]. Such approaches involve signal models of the form

x =
∑

λ∈Λ

αλϕλ + r , (1)

where the atoms {ϕλ, λ ∈ Λ} constitute a dictionary in some reference Hilbert space, and the coefficients αλ,
called synthesis coefficients are random variables, whose distribution is controlled by some hidden state

Xλ ∈ {s0, . . . sK} .

r is some residual, which is not supposed to be sparse, and is generally modelled as Gaussian white noise.

The index set Λ can be equipped with a structure, which can take several forms, including

• A hierarchy, or stratification, defined in terms of groups and members. Namely, an index value is actually
a pair λ = (g,m), where g stands for “group” and m stands for “member”. Coefficients which are members
of the same group are assumed to be statistically dependent, while coefficients belonging to different groups
are independent.

• A neighborhood system, assigning to each λ a neighborhood, neighboring coefficients being again assumed
dependent. We shall not follow this way here, and we shall stick to the stratification approach.

The dependencies can be introduced in various ways. We shall describe here two approaches, that assume either
dependent hidden states with uncorrelated synthesis coefficients (conditional to the hidden states, following [12–
14]), or simplified hidden states (labelled only by groups) with “within group” correlations between synthesis
coefficients. This approach somewhat extends the hierarchical Bernoulli model proposed in [12].

A main objective in such a context is to identify from a realization of the signal model the corresponding
realization of hidden states. Assuming this goal has been reached, a multilayered decomposition of the signal
can be obtained, by partial resynthesis from coefficients that are in the same state.

For sound signals, the dictionaries under consideration are generally redundant time-frequency dictionaries.
Therefore, for a given signal x, the expansion (1) is not unique. In [14], a MCMC (Markov chain Monte Carlo)
approach was proposed for calculating MMSE (Minimum Mean Squared Error) estimates; we shall rather focus
here on estimates obtained from the analysis coefficients

aλ = 〈x, ϕλ〉 , (2)

and study conditions under which the identification of hidden states (i.e. smoothing) is possible from these
coefficients. After the identification of hidden states, a multilayered expansion of the signal is obtained by
partial synthesis from coefficients associated with a fixed hidden state:

xk =
∑

λ:Xλ=sk

αλϕλ . (3)



In the context of sound signal decomposition, such multilayered expansions have been used to separate tonal,
transient and “stochastic” layers. Several applications of such decompositions can be mentioned, including audio
signal analysis (the physical characteristics of the systems that produced sound may be more easily readable
from the layers after separation), coding (the different layers are most efficiently encoded in different waveform
systems), transformation,...

We describe in this paper a general framework for identifying hidden states from the analysis coefficients, and
solve the corresponding sparse regression problem. We first describe the hierarchical models we are interested in,
and study the behavior of corresponding analysis coefficients, in mainly two situations: unstructured dictionaries,
and unions of orthonormal bases. We then describe corresponding estimation algorithms, and conclude with
numerical results on sound signals.

2. HIDDEN STATES MODELS

We discuss in this section the general sparse regression problem, and its adaptation to the molecular case. Let H
denote a (finite or infinite dimensional) separable real Hilbert space, and let D = {ϕλ, λ ∈ Λ} denote a complete
dictionary in H. Here, Λ denotes a generic index set. We shall assume that the dictionary is a normalized tight
frame in H, i.e. that ‖ϕλ‖ = 1 for all λ, and that for all x ∈ H, one has the Parseval identity

∑

λ∈Λ

|〈x, ϕλ〉|
2 = A‖x‖2 (4)

for some constant A > 0. If D is not a basis in H, any x ∈ H admits infinitely many expansions in the form
given in (1).

We are interested in signals that are sparse in the considered dictionary, i.e. signals x ∈ H which admit an
expansion (1) involving only a small number of nonzero (or significant) synthesis coefficients. The corresponding
index set is termed significance map.

Given such a sparse signal, the non-uniqueness of its expansion with respect to the dictionary makes it difficult
to identify unambiguously the model (1). The approach we propose uses the analysis coefficients (2) and develops
a strategy to estimate the relevant such coefficients, from which a sparse expansion may be identified. Namely, it
may be proved that under suitable assumptions on the dictionary and the sparsity of the expansion, the analysis
coefficients may be used to locate the significant synthesis coefficients, and therefore estimate a sparse signal
expansion.

In the numerical applications to be described later, we shall often limit ourselves to unions of bases (the
dictionary D is the union of two orthonormal bases B1 and B2), and to a specific pair of orthonormal bases: B1

is a local trigonometric (i.e. an MDCT –Modified Discrete Cosine Transform– basis, see for example [15]) basis
(tuned in such a way to achieve good frequency resolution), and B2 is a local trigonometric basis with good time
resolution. The index sets are then two-dimensional (a time index and a frequency index), and we write them as
such when necessary. Other choices for the bases are possible (for example a combination of MDCT and wavelet
bases, as in [13,16]), as well as extensions to frames (that would however require significant modifications).

2.1 Hierarchical signal random models

Let us now introduce an explicit model for the sparse signal in (1). The ingredients of such models are essentially
twofold: a model for the set of hidden states X and, conditional to X, a model for the synthesis coefficients.

Definition 1. Given a dictionary D = {ϕλ, λ ∈ Λ} of the Hilbert space H as above, a corresponding hierarchical
random model is defined by
i. A discrete probability model for the significance map. The corresponding probability measures for the (random)
map X will be denoted by PX, and the expectations by EX.
ii. A probability model for the synthesis coefficients {αλ, λ ∈ Λ}, conditional to the hidden states. The cor-
responding probability measure and expectation are denoted by P0 and E0. The global probability measure and
expectation will be denoted by P and E respectively.



The corresponding signal model takes the form (1).

The coefficients αλ above are the synthesis coefficients. The analysis coefficients are given by

aλ = 〈x, ϕλ〉 =
∑

µ

αµ〈ϕµ, ϕλ〉 + 〈r, ϕλ〉 . (5)

For now on, we shall limit ourselves to the case of zero-mean, Gaussian synthesis coefficients. In such situations,
the analysis coefficients are linear combinations of zero-mean, jointly Gaussian random variables: conditional to
the hidden states, an analysis coefficient is a zero-mean Gaussian random variable, whose variance depends on the
hidden states realization. More precisely, introducing the Gram matrix G of the dictionary (i.e. Gij = 〈ϕi, ϕj〉),

the analysis covariance matrix C
(a)
X;λµ = E0 {aλaµ} is related to the synthesis covariance matrix C

(s)
X;λµ = E0 {αλαµ}

(remember that these matrices are random because they are defined conditional to the hidden states X) by

C
(a)
X

= GTC
(s)
X
GT .

Clearly enough, to identify hidden states from analysis coefficients, C
(a)
X

should reflect the structure of C
(s)
X

. This
imposes constraints on the Gram matrix, and thus on the dictionary. We shall analyze below such requirements
in more specific situations.

The case of structured dictionaries. A particular case of interest is the case where the dictionary D is
structured as the union of several orthonormal bases (for example, two local cosine bases with different time-
frequency resolutions, as described in the introduction):

D = B1 ∪ B2 ∪ · · · ∪ BK , with Bk = {ψk
ℓ , ℓ = 1, 2, . . . }

In such cases, the Gram matrix inherits a simpler block structure

G =











I G̃12 . . . G̃1K

G̃21 I . . . G̃2K

...
...

. . .
...

G̃K1 G̃K2 . . . I











, with Iλµ = δλµ , G̃kk′

ℓℓ′ = 〈ψk
ℓ , ψ

k′

ℓ′ 〉

Sparse significance map models. Sticking to the problematics of sparse signal expansion, we shall limit
the present discussion to models in which coefficients are either significant or vanish. State s0 corresponds to
vanishing coefficients, while states s1, . . . sK correspond to random synthesis coefficients with nonzero variances,
denoted by σ2

1 , . . . σ
2
K . The significance map is the subset of the index state corresponding to states sk, k 6= 0.

We shall mainly consider the two simpler models

M1. When the dictionary is not structured: we set

P{Xλ = sk} = pk , P{Xλ = s0} = p0 = 1 −
K

∑

k=1

pk . (6)

For simplicity, we set σ0 = 0. The simplest such model is a two-state model (K = 1).

M2. For structured dictionaries, for example unions of orthonormal bases, we introduce as many states as bases,
and set

P
{

Xk
ℓ = sk′

}

= pkδkk′ + (1 − pk)δk′0 (7)

The model is thus as follows: a signal is expanded in the form

x =

K
∑

k=1

∑

ℓ

αk
ℓψ

k
ℓ + r , (8)

and the distribution of αk
ℓ is governed by Xk

ℓ .

In what follows, the residual signal (noise) is modelled as a Gaussian white noise with variance ϑ2.



2.2 Behavior of analysis coefficients

As mentioned earlier, in such models, the analysis coefficients are zero mean, correlated Gaussian random
variables. Their covariance matrix has a somewhat complicated expression, which we study now in a couple
of specific situations. Let us recall that the goal is to estimate model parameters (variances σ2

k and probabilities
pk), and identify “active” atoms, i.e. atoms ϕλ such that Xλ 6= s0. The generic algorithmic structure we shall
work with is (Classification) Expectation Maximization –EM or CEM– type methods [17], in which parameter and
hidden states estimates are recursively refined from results of previous iterations. We derive below conditional
estimates that can be plugged in such algorithms.

2.2.1 Conditional independent synthesis coefficients

We follow the analysis of [12, 13] in which the synthesis coefficients were supposed independent conditional to
the hidden states. In such a situation, it was shown that the analysis coefficients follow a Gaussian mixture
distribution, from which the hidden states may sometimes be estimated. We now briefly describe this situation.

Let us then assume that conditional to the hidden states, the synthesis coefficients are either independent
zero mean Gaussian variables, with variances σ2

Xλ
, or vanish. By convention, we denote σs0

= 0. Clearly,

EX{σ2
Xλ

} =
K

∑

k=1

pkσ
2
k .

It follows from the analysis above that the synthesis coefficients are sums of independent zero-mean Gaussian
random variables, and are therefore (dependent) zero-mean Gaussian random variables, whose covariance depends
upon the hidden states X, and the redundancy of the dictionary

E0 {aλaλ′} =
∑

µ

σ2
Xµ

〈ϕλ′ , ϕµ〉〈ϕµ, ϕλ〉 + ϑ2 . (9)

Disregarding the correlations between analysis coefficients, pick a fixed λ, and denote for the sake of simplicity
by X−λ = {Xλ′ , λ′ 6= λ} the set of all hidden states except Xλ. We have that

E0

{

|aλ|
2
}

= σ2
Xλ

+ γλ(X−λ) + ϑ2 =

{

γλ(X−λ) + ϑ2 if Xλ = s0
σ2

λ + γλ(X−λ) + ϑ2 otherwise
, (10)

where we have introduced the random variables γλ (called gamma weights in [12]), defined by (recall that by
convention, σs0

= 0)

γλ(X−λ) =
∑

µ6=λ

σ2
Xµ

|〈ϕλ, ϕµ〉|
2 . (11)

Clearly, for all λ one has the bound
γλ(X−λ) ≤ Amax

k
σ2

k , (12)

A being the frame constant, see (4).

The distribution of analysis coefficients, and thus the possibility of discriminating between Xλ = s0 and
Xλ 6= s0 depends clearly on the distribution of the γ variables. An explicit calculation yields

Lemma 1. The first moments of the γ weights read

EX {γλ(X−λ)} = (A− 1)

K
∑

k=1

pkσ
2
k

and their variance
varX{γλ(X−λ)} = varX{σ2

Xλ
}

∑

µ6=λ

|〈ϕλ, ϕµ〉|
4



As we shall see, the smaller the latter quantity compared with σ2
Xλ

, the easier the estimation of Xλ. It is
interesting to look at the quantities that control the sizes of these averages. Low values of EX {γλ(X−λ)} can
be obtained with small values of the variances σ2

k and small values for the probabilities pk, k 6= 0 (which is a
sparsity requirement) and a small value for the frame constant A (which is a low coherence assumption). Small
values for the variance of γλ are ensured by small values of the 4-Babel function

B4 = max
λ

∑

µ6=λ

|〈ϕλ, ϕµ〉|
4

(which is also a low coherence assumption).

We now specialize to the case K = 1 for the sake of simplicity. Noticing that conditional to X−λ, the
distribution of the analysis coefficient is a Gaussian mixture

aλ|X−λ ∼ pN (0, w2
λ,1) + (1 − p)N (0, w2

λ,0) , (13)

where we have introduced the new (random) variances

w2
λ;0 = γλ(X) + ϑ2 , w2

λ;1 = w2
λ;0 + σ2

1 . (14)

For simplicity, let us introduce the following threshold function

τ0 : (w0, w1, p) 7−→

√

ln

[

1 − p

p

w1

w0

]

, (15)

which is well-defined as soon as p ∈ (0, 1) and

w1 >
p

1 − p
w0 . (16)

Let us also denote by δ(w0, w1) the harmonic difference of the squared numbers w0 and w1 (such that w1 > w0)

δ(w0, w1) =

√

2

w−2
0 − w−2

1

. (17)

The conditional MAP estimate for Xλ can be obtained as follows

Proposition 1. Consider model M1, with K = 1, and assume i.i.d. hidden states Xλ. Assume that for all λ,
condition (16) is satisfied. With the notations above, set

τ(λ) = δ(wλ;0, wλ;1)τ0(wλ;0, wλ;1, p) .

Then the maximum a posteriori estimator for Xλ conditional to X−λ is given by

X̂λ =

{

s1 if |aλ| ≥ τ(λ)
s0 otherwise

The proof can be adapted from Proposition 3 of [12]. Type I and II error rates can also be derived from this
result.

Remark 1. Estimates for the variance of the γ weights are important for the following reason. If varX{γλ(X−λ)}
is large, then the variance of the thresholds τλ is large too, which results in high error rates.

Given estimates X̂ for the hidden states, estimates for the other parameters σ1 and p are readily obtained:

p̂ =
#{λ : X̂λ = s1}

dim(H)
, σ̂2

1 =
1

p̂dim(H)

∑

λ:X̂λ=s1

(

|aλ|
2 − γλ(X̂−λ) − ϑ2

)

. (18)



It is worth noticing that in such a scheme, the noise variance ϑ2 has to be known in advance. It must then be
estimated separately, or used as a tuning parameter that controls the sparsity of the expansion.

Remark 2. Replacing γλ(X−λ) by its expectation EX{γλ(X−λ)} given in Lemma 1 yields simpler estimates,
which we call mean field estimates.

This naturally leads to a simple CEM algorithm.

Algorithm 1.

• Initialize the parameters σ1 and p and the hidden states X, using the mean field estimates.

• Iterate the following steps

1. Compute the γλ(X−λ)

2. Re-estimate hidden states (Maximization Step. Can be done by classification)

3. Re-estimate parameters σ1 and p (Expectation Step).

• Estimate the significant coefficients αλ with Xλ = s1 by regression.

The situation becomes simpler in the case of a structured dictionary, as in model M2. Assume D is the union
of K orthonormal bases. Then we have

{

αℓ
k ∼ N (0, σ2

k) if Xk
ℓ = sk

αℓ
k = 0 otherwise ,

(19)

and as before, conditional to the hidden states X−k = {Xk′

ℓ′ , k
′ 6= k}, the analysis coefficients ak

ℓ = 〈x, ψk
ℓ 〉 are

distributed according to a Gaussian mixture, with zero mean and variances

E0

{

|ak
ℓ |

2
}

= σ2
Xk

ℓ

+ γk
ℓ (X−k) + ϑ2 =

{

γk
ℓ (X−k) + ϑ2 if Xk

ℓ = s0
σ2

k + γk
ℓ (X−k) + ϑ2 if Xk

ℓ = sk
, (20)

where as before we have introduced random variables γk
ℓ (X−k), defined by

γk
ℓ (X−k) =

∑

k′ 6=k

∑

ℓ′

σ2
Xk′

ℓ′

|〈ψk
ℓ , ψ

k′

ℓ′ 〉|
2 . (21)

Lemma 2. Assume that for each k, the Xk
ℓ are i.i.d. Then the first moments of the γk

ℓ (X−k) weights read

EX{γk
ℓ (X−k)} =

∑

k′ 6=k

pkσ
2
k

∑

ℓ′

|〈ψk
ℓ , ψ

k′

ℓ′ 〉|
2 =

∑

k′ 6=k

pk′σ2
k′ ,

and
varX{γk

ℓ (X−k)} =
∑

k′

σ4
k′pk′(1 − pk′)

∑

ℓ′

|〈ψk′

ℓ′ , ψ
k
ℓ 〉|

4 .

As before, conditional MAP estimates for the hidden states are obtained by adaptive thresholding. Set

wk
0;ℓ =

√

γk
ℓ (X−k) + ϑ2 , wk

1;ℓ =
√

σ2
k + γk

ℓ (X−k) + ϑ2 . (22)

Proposition 2. Consider model M2, and assume i.i.d. hidden states Xk
ℓ . Assume that for all k, ℓ, parameters

wk
0;ℓ, w

k
1;ℓ, pk are such that condition (16) is fulfilled. With the notations above, set

τk(ℓ) = δ
(

wk
0;ℓ, w

k
1;ℓ

)

τ0
(

wk
0;ℓ, w

k
1;ℓ, pk

)

.



Then the maximum a posteriori estimator for Xk
ℓ conditional to X−k is given by

X̂k
ℓ =

{

sk if |ak
ℓ | ≥ τk(ℓ)

s0 otherwise

As before, estimates for the parameters (except the noise variance ϑ2) can be obtained, as in (18). Also, mean-
field estimates are obtained replacing the γ weights by their expected values. All this results in an algorithm
that parallels Algorithm 1:

Algorithm 2.

• Initialize the parameters σk and pk and the hidden states X, using the mean field estimates.

• Iterate the following steps

1. Compute the γk
ℓ (X−k)

2. Re-estimate hidden states (Maximization Step. Can be done by classification)

3. Re-estimate parameters σk and pk (Expectation Step).

• Estimate the significant coefficients αk
ℓ such that Xk

ℓ = sk by regression.

Before turning to a more complex situation, it is worth analyzing the results obtained so far and the corre-
sponding algorithms. Propositions 1 and 2 actually provide expressions for adaptive thresholds, which are used
inside iterative algorithms for hidden states estimations. Such an approach is to be compared with LASSO type
variational approaches, in which regression is performed through iterative thresholding algorithms. The main
difference with the current approach lies in the fact that here, the thresholds are coefficient dependent, and
thresholding is performed on the analysis coefficients at each iteration: the goal of this approach is to obtain an
estimate of the significance map while the LASSO gives an estimates of the synthesis coefficients.

2.2.2 Dependent coefficients

It turns out that a similar analysis can be carried out in situations where correlations between synthesis coeffi-
cients are introduced, provided they are introduced in a stratified way. We now develop a new scheme in which
dependencies between coefficients are taken into account. We will see that in such a situation, generalized adap-
tive thresholding rules are obtained, together with an iterative thresholding algorithm, to be compared with the
corresponding algorithm that was derived in a variational framework [8] (the so-called group-LASSO regression
problem [18]).

For the sake of simplicity, let us first discuss the case of dictionaries structured as union of orthonormal bases
Bk = {ψk

λ, λ ∈ Λk}. The stratification is introduced by assuming that the index set of the basis is actually a
double index: λ = (g,m), g being a group index, and m being a membership index. We assume that the hidden
states are structured in the sense that they are constant within a given group:

Xk
gm = Xk

g , ∀m . (23)

Furthermore, we assume that the synthesis coefficients belonging to the same group are (correlated) zero-mean
Gaussian vectors. Assuming again a two-states model, we write

x =
K

∑

k=1

∑

g

∑

m

αk
g,mψ

k
g,m + r , (24)

where for each k, the synthesis coefficients αk
g,m are, conditional to the hidden state Xg, multivariate Gaussian

random variables, with covariance matrix Σk.

αk
g = {αk

g,m,m = 1, 2, . . . } ∼

{

N (0,Σk) if Xk
g = sk

0 otherwise
(25)



Again, the residual layer r is modelled as a Gaussian white noise, with zero mean and variance ϑ2.

Suppose X−k = {xk′

gm, k
′ 6= k} is fixed. Conditional to X−k, the analysis coefficients ak

g,m = 〈x, ψk
g,m〉 are

distributed according to a multivariate zero mean normal distribution. Limiting our investigations to a fixed
group g, we readily obtain

E0

{

ak
gma

k
gm′

}

= Ik
g Σk

mm′ +
[

Γk
g(X−k)

]

mm′
+ ϑ2δmm′ , (26)

where we have introduced the indicator variable

Ik
g =

{

1 if Xk
g = sk

0 otherwise

and the random covariance matrices Γk
g(X−k) defined by

[

Γk
g(X−k)

]

mm′
=

∑

k′ 6=k

∑

g′

Ik′

g′

∑

n,n′

Σk′

nn′〈ψk′

g′n, ψ
k
gm〉〈ψk

gm′ , ψk′

g′n′〉 . (27)

The matrix Γk
g(X−k) represents the contribution of the other layers k′ 6= k to the covariance of the considered

layer k. Γk
g(X−k) is positive semi-definite by construction. In analogy with the previous situation, set

W k
0;g = Γk

g(X−k) + ϑ2I , W k
1;g = W k

0;g + Σk
g . (28)

In what follows, we shall need to use the inverses of these matrices.

Lemma 3. Assume that for all k, the covariance matrix Σk is (strictly) positive-definite. If ϑ 6= 0, or if there
exists k′ 6= k and g such that Xk′

g = sk′ , then W k
0;g and thus W k

1;g are positive-definite, and thus invertible.

In this new situation, estimates for the hidden states cannot be obtained by simple coefficient thresholding
as before. However, under suitable assumptions, such estimates can be obtained using generalized adaptive
thresholding, very much in the spirit of the group-LASSO regression methods [18].

Proposition 3. Let k be a given layer, and assume X−k is fixed. Assume that the matrices W k
0;g and W k

1;g are
invertible, and set

Ck
g =

(

W k
0;g

)

−1 −
(

W k
1;g

)

−1 . (29)

Assume further that W k
0;g and W k

1;g are such that w0 = det(W k
0;g), w1 = det(W k

1;g) and pk fulfill condition (16),
and set

τ̃k(g) = τ0(det(W k
0;g),det(W k

1;g), pk) .

1. Conditional to X−k, the MAP estimate for the hidden states Xk
g is given as follows

X̂k
g =

{

sk if
∣

∣〈ak
g , C

k
g a

k
g〉

∣

∣ ≥ τ̃k(g)
s0 otherwise .

2. Assume Ck
g is positive definite. Then the estimate above becomes

X̂k
g =

{

sk if
∥

∥

∥

(

Ck
g

)−1/2
ak

g

∥

∥

∥

2

≥ τ̃k(g)

s0 otherwise .

Remark 3. Notice the similarity of the so-obtained thresholding rule with the thresholding rule obtained in [8]:
for a given layer k, a group g is selected (or not) based on the value of the L2 norm of the corresponding vector
of analysis coefficients: here this L2 norm is replaced with a more general quadratic form, which reduces to a
squared norm in the positive definite case.

In very much the same spirit as before, parameters (except again the noise variance) can be estimated
conditional to the hidden states. This results in the following general scheme



Algorithm 3.

• Initialize the parameters Σk and pk and the hidden states X, using the mean field estimates.

• Iterate the following steps

1. Compute the matrices Γk
g(X−k)

2. Re-estimate the hidden states Xk
g;m (Maximization Step. Can be done by classification)

3. Re-estimate parameters Σk and pk (Expectation Step).

• Estimate the significant coefficients αk
g such that Xk

g = sk by regression.

Notice that in this algorithm (as in the previous one) we do not specify the regression method used to estimate
the significant coefficients. Standard L2 regression can be used, as well as sparse regression.

3. NUMERICAL RESULTS

We now illustrate the approaches we described above in sound signal applications. The goal is to obtain multilay-
ered audio signal expansions that can synthesize separately transient and tonal layers. Following earlier works,
we consider a dictionary constructed as the union of two time-frequency bases (i.e. MDCT bases, see [15]).
Hence, we follow here the model M2 with K = 2.

We recall that an MDCT basis is an orthonormal basis of functions of the form

ψτν(t) =

√

2

L
ω(t− kℓ) cos

(

π
ν + 1/2

L
(t− τL)

)

, (30)

for an appropriate choice of the window function ω and the parameter L (see [15] for details). The choice of
the window determines the time-frequency resolution of the window. We thus choose two windows ω1 and ω2 of
different sizes, for describing the tonal layer (wide window, narrow band) and the transient layer (wide window,
narrow band) respectively.

For the correlated case, we need to construct a stratification of the index set.

• For the tonal layer, synthesis coefficients are expected to be correlated in time. The group index is then
the frequency index ν, and the membership index is the time index k.

• For the transient layer, the situation is opposite (correlations across frequencies for fixed time). The group
index is then the time index ν, and the membership index is the frequency index k.

The musical signal used for the experiments is an excerpt of mamavatu from Shusheela Raman. The signal is
sampled at 44.1 KHz and is about 12 s long (219 samples). The two window functions we choose are respectively
256 samples (6 ms) and 4096 samples (93 ms) long for the transient and the tonal layers.

The results shown here are essentially obtained using the mean-field version of the analysis, which has the
advantage of being numerically efficient. The CEM algorithms proposed above are actually very costly in terms
of computations, because the γ weights have to be updated at each iteration. Efficient update for the γ weights
require the storage of the dictionary’s Gram matrix, which is very demanding in terms of storage capacities for
long signals. However, the structure of the MDCT basis makes it possible to simplify it, as discussed in [12].

A mean-field version can be also derived within a CEM algorithm. We provide the algorithm for the correlated
case, assuming the groups are distributed according to a Bernoulli law. Notice that in this simple version, both
layers are estimated independently of each other, which is far from optimal. The algorithm is described in the
case of the transient layer.
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1. Fix a basis {ψτν} and compute the analysis coefficients aτν = 〈x, ψτν〉.

2. Initialize the significance map (for example, with a thresholding on the ℓ2 norm of the vectors
aτ = {aτν , ν = 1, 2, . . . }).

3. Classification of the analysis coefficients with CEM

• Estimation of the memberships probabilities (denoted by p1 and p2) by computing respectively
the proportion of X̂τ = 1 and X̂τ = 0.

• Estimation of the covariance matrices of {aτν , Xτ = 1} and {aτν , Xτ = 0} (denoted by Σ1

and Σ2)

(a) E step: compute the membership probabilities of aτν for each weighted normal law.

(b) M step by classification: X̂k = 1 if P{aτν ∼ p1N (0,Σ1)} > P{aτν ∼ p2N (0,Σ2)}, and then
estimates the membership probabilities and the covariance matrices.

We first use the Bernoulli model described in [12] for both the tonal and the transient layers. In this model,
each time-frequency atom of each basis k = 1, 2 can be used with probability pk. The mean field estimates of
the significance maps of each layer are provided in figure 1.

Figure 1. Decomposition of the mamavatu signal into two layers. Left: significance map of the transient layer using the
Bernoulli M2 model. Right: significance map of the transient layer using the structured model.

As can be seen in Figure 1, the mean field Bernoulli approach has difficulties separating the two layers
correctly. The estimated tonal layer (not shown here) keeps a lot of transient information, and the estimated
transient layer retains too many low frequency atoms that “belong” to the tonal layer. The two layers being
estimated independently of each other, they share too much information: the tonal layer “sounds” too “transient”,
and the transient layer “sounds” too “tonal”. The right hand side image represents the estimated significance
map obtained using the “vector” model. As expected, the significance map is less sparse (entire vectors are
retained), but sharper. In addition, the low frequency part is not present any more.

As a result, the vector algorithm also provides estimates for the correlation (i.e. covariance divided out by
standard deviations) matrices for the two layers. Focusing again on the transient layer estimate, we display
in Figure 2 the correlation matrix for the transient layer and the non transient layer (using a narrow analysis
window). As can be seen, the dominance of the diagonal is much stronger for the non transient part, which
reveals the frequency correlations that have been captured by the algorithm. One may also notice that the rows
of the transient correlation matrix are much sparwer than the rows of the other one. This remark may be used for
initializing the classification algorithms: mark as “transient” the fixed time coefficient vectors {akν , ν = 1, 2, . . . }
whose ℓ1 norm (or any other diversity measure) is below a certain threshold.



Figure 2. Correlation matrices of the fixed-time analysis coefficient vectors, estimated using the CEM algorithm: non-
transient (left) and transient layers (right).

4. CONCLUSIONS

We have described in this paper some generalizations of results previously obtained in [12], motivated by the
need of modelling more closely sound signals. The proposed approach fits nicely into EM or CEM estimation
algorithms. The theoretical results are fairly similar to the ones obtained in [12], and clearly show the role of
the dictionary and sparsity assumptions on the possibility of recovering sparse signal expansions from analysis
coefficients. In the Bernoulli case, we have for simplicity limited the discussion to the case where all coefficients
belonging to the same state have the same variance, but this assumption can be relaxed as was done in [12].

Besides the generalization to arbitrary dictionaries, a main aspect was to extend the previous strategy, which
was essentially based upon synthesis coefficient decorrelation assumptions, to the correlated case. Interestingly
enough, the obtained algorithms bear some resemblance with iterative thresholding approaches developed to
solve the LASSO regression problem (decorrelated case), and the generalized version that was developed in the
context of group-LASSO regression (correlated case): a group of coefficients is considered significant and thus
selected if its image by a given quadratic form (the squared L2 norm for group-LASSO) exceeds a given threshold.

While the proposed procedure is particularly relevant for transient modeling, it should be improved further
for modelling tonals. Indeed, when it comes to long signals, it doesn’t make sense time-independent tonal
significance maps, and some time-variations have to be included. This can be made by introducing an extra time
scale in the algorithm, as in [12]. The latter may also be used to update the parameters of the model (including
the parameters of the transient layer) as a function of time.

REFERENCES

[1] Daudet, L. and Torrésani, B., “Sparse adaptive representations for musical signals,” in [Signal Processing
Methods for Music Transcription ], Klapuri, A. and Davy, M., eds., 65–98, Springer, New York (2006).

[2] Goodwin, M. M., [Adaptive signal models : theory, algorithms and audio applications ], vol. 467 of Interna-
tional Series on Engineering and Computer Sciences, Kluwer (1998).

[3] Boyer, R. and Abed-Meraim, K., “Audio modeling based on delayed sinusoids,” IEEE Transactions on
Speech and Audio Processing 12(2), 110–120 (2004).
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