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Abstract

This paper introduces a unified framework for the detection of a single source with a sensor array in

the context where the noise variance and the channel betweenthe source and the sensors are unknown at

the receiver. The Generalized Maximum Likelihood Test is studied and yields the analysis of the ratio

between the maximum eigenvalue of the sampled covariance matrix and its normalized trace. Using

recent results from random matrix theory, a practical way toevaluate the threshold and thep-value of

the test is provided in the asymptotic regime where the number K of sensors and the numberN of

observations per sensor are large but have the same order of magnitude. The theoretical performance of

the test is then analyzed in terms of Receiver Operating Characteristic (ROC) curve. It is in particular

proved that both Type I and Type II error probabilities converge to zero exponentially as the dimensions

increase at the same rate, and closed-form expressions are provided for the error exponents. These

theoretical results rely on a precise description of the large deviations of the largest eigenvalue of spiked

random matrix models, and establish that the presented testasymptotically outperforms the popular test

based on the condition number of the sampled covariance matrix.
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merouane.debbah@supelec.fr ,
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I. INTRODUCTION

The detection of a source by a sensor array is at the heart of many wireless applications. It is

of particular interest in the realm of cognitive radio [1], [2] where a multi-sensor cognitive device

(or a collaborative network1) needs to discover or sense by itself the surrounding environment.

This allows the cognitive device to make relevant choices interms of information to feed back,

bandwidth to occupy or transmission power to use. When the cognitive device is switched on, its

prior knowledge (on the noise variance for example) is very limited and can rarely be estimated

prior to the reception of data. This unfortunately rules outclassical techniques based on energy

detection [4], [5], [6] and requires new sophisticated techniques exploiting the space or spectrum

dimension.

In our setting, the aim of the multi-sensor cognitive detection phase is to construct and analyze

tests associated with the following hypothesis testing problem:

y(n) =







w(n) underH0

h s(n) +w(n) underH1

for n = 0 : N − 1 , (1)

wherey(n) = [y1(n), . . . , yK(n)]
T is the observedK × 1 complex time series,w(n) represents

a K × 1 complex circular Gaussian white noise process with unknownvarianceσ2, andN

represents the number of received samples. Vectorh ∈ CK×1 is a deterministic vector and

typically represents the propagation channel between the source and theK sensors. Signal

s(n) denotes a standard scalar independent and identically distributed (i.i.d.) circular complex

Gaussian process with respect to the samplesn = 0 : N − 1 and stands for the source signal to

be detected.

The standard case where the propagation channel and the noise variance are known has been

thoroughly studied in the literature in the Single Input Single Output case [4], [5], [6] and

Multi-Input Multi-Ouput [7] case. In this simple context, the most natural approach to detect the

presence of sources(n) is the well-knownNeyman-Pearson(NP) procedure which consists in

rejecting the null hypothesis when the observed likelihoodratio lies above a certain threshold

[8]. Traditionally, the value of the threshold is set in sucha way that theProbability of False

Alarm (PFA) is no larger than a predefinedlevelα ∈ (0, 1). Recall that the PFA (resp. the miss

1The collaborative network corresponds to multiple base stations connected, in a wireless or wired manner, to form a virtual

antenna system[3].
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probability) of a test is defined as the probability that the receiver decides hypothesisH1 (resp.

H0) when the true hypothesis isH0 (resp.H1). The NP test is known to be uniformly most

powerful i.e., for any levelα ∈ (0, 1), the NP test has the minimum achievable miss probability

(or equivalently the maximum achievable power) among all tests of levelα. In this paper, we

assume on the opposite that:

• the noise varianceσ2 is unknown,

• vectorh is unknown.

In this context, probability density functions of the observationsy(n) under bothH0 andH1

are unknown, and the classical NP approach can no longer be employed. As a consequence, the

construction of relevant tests for (1) together with the analysis fo their perfomances is a crucial

issue. The classical approach followed in this paper consists in replacing the unknown parameters

by their maximum likelihood estimates. This leads to the so-calledGeneralized Likelihood Ratio

(GLR). TheGeneralized Likelihood Ratio Test(GLRT), which rejects the null hypothesis for large

values of the GLR, easily reduces to the statistics given by the ratio of the largest eigenvalue of

the sampled covariance matrix with its normalized trace, cf. [9], [10], [11]. Nearby statistics [12],

[13], [14], [15], with good practical properties, have alsobeen developed, but would not yield

a different (asymptotic) error exponent analysis.

In this paper, we analyze the performance of the GLRT in the asymptotic regime where the

numberK of sensors and the numberN of observations per sensor are large but have the same

order of magnitude. This assumption is relevant in many applications, among which cognitive

radio for instance, and casts the problem into a large randommatrix framework.

Large random matrix theory has already been applied to signal detection [16] (see also [17]),

and recently to hypothesis testing [15], [18], [19]. In thisarticle, the focus is mainly devoted to

the study of the largest eigenvalue of the sampled covariance matrix, whose behaviour changes

underH0 or H1. The fluctuations of the largest eigenvalue underH0 have been described by

Johnstone [20] by means of the celebrated Tracy-Widom distribution, and are used to study the

threshold and thep-value of the GLRT.

In order to characterize the performance of the test, a natural approach would have been to

evaluate theReceiver Operating Characteristic(ROC) curve of the GLRT, that is to plot the

power of the test versus a given level of confidence. Unfortunately, the ROC curve does not

admit any simple closed-form expression for a finite number of sensors and snapshots. As the
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miss probability of the GLRT goes exponentially fast to zero, the performance of the GLRT

is analyzed via the computation of its error exponent, whichcaracterizes the speed of decrease

to zero. Its computation relies on the study of the large deviations of the largest eigenvalue

of ’spiked’ sampled covariance matrix. By ’spiked’ we referto the case where the eigenvalue

converges outside the bulk of the limiting spectral distribution, which precisely happens under

hypothesisH1. We build upon [21] to establish the large deviation principle, and provide a

closed-form expression for the rate function.

We also introduce the error exponent curve, and plot the error exponent of the power of the

test versus the error exponent for a given level of confidence. The error exponent curve can

be interpreted as an asymptotic version of the ROC curve in alog-log scale and enables us to

establish that the GLRT outperforms another test based on the condition number, and proposed

by [22], [23], [24] in the context of cognitive radio.

Notice that the results provided here (determination of thethreshold of the GLRT test and the

computation of the error exponents) would still hold withinthe setting of real Gaussian random

variables instead of complex ones, with minor modifications2.

The paper is organized as follows.

Section II introduces the GLRT. The value of the threshold, which completes the definition

of the GLRT, is established in Section II-B. As the latter threshold has no simple closed-form

expression and as its practical evaluation is difficult, we introduce in Section II-C an asymptotic

framework where it is assumed that both the number of sensorsK and the numberN of available

snapshots go to infinity at the same rate. This assumption is valid for instance in cognitive radio

contexts and yields a very simple evaluation of the threshold, which is important in real-time

applications.

In Section III, we recall several results of large random matrix theory, among which the

asymptotic fluctuations of the largest eigenvalue of a sample covariance matrix, and the limit of

the largest eigenvalue of a spiked model.

These results are used in Section IV where an approximate threshold value is derived, which

leads to the same PFA as the optimal one in the asymptotic regime. This analysis yields a

relevant practical method to approximate thep-valuesassociated with the GLRT.

2Details are provided in Remarks 4 and 9.
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Section V is devoted to the performance analysis of the GLRT.We compute the error exponent

of the GLRT, derive its expression in closed-form by establishing aLarge Deviation Principle

for the test statisticTN 3, and describe the error exponent curve.

Section VI introduces the test based on the condition number, that is the statistics given by

the ratio between the largest eigenvalue and the smallest eigenvalue of the sampled covariance

matrix. We provide the error exponent curve associated withthis test and prove that the latter

is outperformed by the GLRT.

Section VII provides further numerical illustrations and conclusions are drawn in Section VIII.

Mathematical details are provided in the Appendix. In particular, a full rigorous proof of a

large deviation principle is provided in Appendix A, while amore informal proof of a nearby

large deviation principle, maybe more accessible to the non-specialist, is provided in Appendix

B.

Notations

For i ∈ {0, 1}, Pi(E) represents the probability of a given eventE under hypothesisHi. For

any real random variableT and any real numberγ, notation

T
H0
≷

H1 γ

stands for the test function which rejects the null hypothesis whenT > γ. In this case, the

probability of false alarm (PFA)of the test is given byP0(T > γ), while the power of the test is

P1(T > γ). Notation
a.s.−−→
Hi

stands for the almost sure (a.s.) convergence under hypothesisHi. For

any one-to-one mappingT : X → Y whereX andY are two sets, we denote byT−1 the inverse

of T w.r.t. composition. For any borel setA ∈ R, x 7→ 1A(x) denotes the indicator function of

setA and‖x‖ denotes the Euclidian norm of a given vectorx. If A is a given matrix, denote

by AH its transpose-conjugate. IfF is a cumulative distribution function (c.d.f.), we denote by

F̄ is complementary c.d.f., that is:̄F = 1− F .

3Note that in recent papers [25], [14], [15], the fluctuationsof the test statistics underH1, based on large random matrix

techniques, have also been used to approximate the power of the test. We believe that the performance analysis based on the

error exponent approach, although more involved, has a wider range of validity.
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II. GENERALIZED L IKELIHOOD RATIO TEST

In this section, we derive the Generalized Likelihood RatioTest (section II-A) and compute

the associated threshold andp-value (section II-B). This exact computation raises some compu-

tational issues, which are circumvented by the introduction of a relevant asymptotic framework,

well-suited for mathematical analysis (Section II-C).

A. Derivation of the Test

Denote byN the number of observed samples and recall that:

y(n) =







w(n) underH0

h s(n) +w(n) underH1

, n = 0 : N − 1 ,

where (w(n), 0 ≤ n ≤ N − 1) represents an independent and identically distributed (i.i.d.)

process ofK×1 vectors with circular complex Gaussian entries with mean zero and covariance

matrix σ2IK , vector h ∈ CK×1 is deterministic, signal(s(n), 0 ≤ n ≤ N − 1) denotes a

scalar i.i.d. circular complex Gaussian process with zero mean and unit variance. Moreover,

(w(n), 0 ≤ n ≤ N − 1) and (s(n), 0 ≤ n ≤ N − 1) are assumed to be independent processes.

We stack the observed data into aK × N matrix Y = [y(0), . . . ,y(N − 1)]. Denote byR̂ the

sampled covariance matrix:

R̂ =
1

N
YYH ,

and respectively, byp0(Y; σ2) andp1(Y;h, σ2) the likelihood functions of the observation matrix

Y indexed by the unknown parametersh andσ2 under hypothesesH0 andH1.

As Y is aK × N matrix whose columns are i.i.d. Gaussian vectors with covariance matrix

Σ defined by:

Σ =







σ2IK underH0

hhH + σ2IK underH1

, (2)

the likelihood functions write:

p0(Y; σ2) = (πσ2)−NK exp

(

−N

σ2
tr R̂

)

, (3)

p1(Y;h, σ2) = (πK det(hhH + σ2IK))
−N exp

(

−Ntr (R̂(hhH + σ2IK)
−1)
)

. (4)

In the case where parametersh andσ2 are available, the celebrated Neyman-Pearson procedure

yields a uniformly most powerful test, given by the likelihood ratio statisticsp1(Y;h,σ2)
p0(Y;σ2)

.
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However, in the case whereh andσ2 are unknown, which is the problem addressed here, no

simple procedure garantees a uniformly most powerful test,and a classical approach consists in

computing the GLR:

LN =
sup

h,σ2 p1(Y;h, σ2)

supσ2 p0(Y; σ2)
. (5)

In the GLRT procedure, one rejects hypothesisH0 wheneverLN > ξN , whereξN is a certain

threshold which is selected in order that the PFAP0(LN > ξN) does not exceed a given level

α.

In the following proposition, which follows after straightforward computations from [26] and

[9], we derive the closed form expression of the GLRLN . Denote byλ1 > λ2 > · · · > λK ≥ 0

the ordered eigenvalues of̂R (all distincts with probability one).

Proposition 1. Let TN be defined by:

TN =
λ1

1
K
tr R̂

, (6)

then, the GLR (cf. Eq. (5)) writes:

LN =
C

(TN)
N (1− TN

K

)(K−1)N

whereC =
(

1− 1
K

)(1−K)N
.

By Proposition 1,LN = φN,K(TN ) whereφN,K : x 7→ Cx−N
(

1− x
K

)N(1−K)
. The GLRT

rejects the null hypothesis when inequalityLN > ξN holds. AsTN ∈ (1, K) with probability one

and asφN,K is increasing on this interval, the latter inequality is equivalent toTN > φ−1
N,K(ξN).

Otherwise stated, the GLRT reduces to the test which rejectsthe null hypothesis for large values

of TN :

TN

H1

≷

H0

γN (7)

whereγN = φ−1
N,K(ξN) is a certain threshold which is such that the PFA does not exceed a given

level α. In the sequel, we will therefore focus on the test statistics TN .

Remark 1. There exist several variants of the above statistics [12], [13], [14], [15], which

merely consist in replacing the normalized trace with a moreinvolved estimate of the noise
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variance. Although very important from a practical point ofview, these variants have no impact

on the (asymptotic) error exponent analysis. Therefore, werestrict our analysis to the traditional

GLRT for the sake of simplicity.

B. Exact threshold andp-values

In order to complete the construction of the test, we must provide a procedure to set the

thresholdγN . As usual, we propose to defineγN as the value which maximizes the power

P1(TN > γN) of the test (7) while keeping the PFAP0(TN > γN) under a desired levelα ∈ (0, 1).

It is well-known (see for instance [8], [27]) that the latterthreshold is obtained by:

γN = p−1
N (α) (8)

wherepN(t) represents the complementary c.d.f. of the statisticsTN under the null hypothesis:

pN(t) = P0(TN > t) . (9)

Note thatpN(t) is continuous and decreasing from 1 to 0 ont ∈ [0,∞), so that the threshold

p−1
N (α) in (8) is always well defined. When the threshold is fixed toγN = p−1

N (α), the GLRT

rejects the null hypothesis whenTN > p−1
N (α) or equivalently, whenpN(TN ) < α. It is usually

convenient to rewrite the GLRT under the following form:

pN(TN )

H0

≷

H1

α . (10)

The statisticspN(TN) represents thesignificance probabilityor p-value of the test. The null

hypothesis is rejected when thep-valuepN(TN) is below the levelα. In practice, the computation

of the p-value associated with one experiment is of prime importance. Indeed, thep-value not

only allows to accept/reject an hypothesis by (10), but it furthermore reflects how strongly the

data contradicts the null hypothesis [8].

In order to evaluatep-values, we derive in the sequel the exact expression of the complementary

c.d.f. pN . The crucial point is thatTN is a function of the eigenvaluesλ1, . . . , λK of the sampled

covariance matrix̂R. We have

pN (t) =

∫

∆t

p0K,N(x1, · · · , xK)dx1:K (11)
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where for eacht, the domain of integration∆t is defined by:

∆t =

{

(x1, . . . , xK) ∈ RK ,
Kx1

x1 + · · ·+ xK
> t

}

,

andp0K,N is the joint probability density function (p.d.f.) of the ordered eigenvalues of̂R under

H0 given by:

p0K,N(x1:K) =
1(x1≥···≥xK≥0)

Z0
K,N

∏

1≤i<j≤K

(xj − xi)
2

K
∏

j=1

xN−K
j e−Nxj (12)

where1(x1≥···≥xK≥0) stands for the indicator function of the set{(x1 . . . xK) : x1 ≥ · · · ≥ xK ≥
0} and whereZ0

K,N is the normalization constant (see for instance [28], [29, Chapter 4]).

Remark 2. For eacht, the computation ofpN(t) requires the numerical evaluation of a non-

trivial integral. Despite the fact that powerful numericalmethods, based on representations of

such integrals with hypergeometric functions [30], are available (see for instance [31], [32]),

an on line computation, requested in a number of real-time applications, may be out of reach.

Instead, tables of the functionpN should be computedoff line i.e., prior to the experiment.

As both the dimensionsK and N may be subject to frequent changes4, all possible tables of

the functionpN should be available at the detector’s side, for all possiblevalues of the couple

(N,K). This both requires substantial computations and considerable memory space. In what

follows, we propose a way to overcome this issue.

In the sequel, we study the asymptotic behaviour of the complementary c.d.f.pN when both

the number of sensorsK and the number of snapshotsN go to infinity at the same rate. This

analysis leads to simpler testing procedure.

C. Asymptotic framework

We propose to analyze the asymptotic behaviour of the complementary c.d.f.pN as the number

of observations goes to infinity. More precisely, we consider the case where both the numberK

of sensors and the numberN of snapshots go to infinity at the same speed, as assumed below

N → ∞, K → ∞, cN :=
K

N
→ c, with 0 < c < 1. (13)

4In cognitive radio applications for instance, the number ofusersK which are connected to the network is frequently varying.

April 19, 2010 DRAFT



10

This asymptotic regime is relevant in cases where the sensing system must be able to perform

source detection in a moderate amount of timei.e., the numberK of sensors and the numberN

of samples being of the same order. This is in particular the case in cognitive radio applications

(see for instance [33]). Very often, the number of sensors islower than the number of snapshots,

hence the ratioc lower than 1.

In the sequel, we will simply denoteN,K → ∞ to refer to the asymptotic regime (13).

Remark 3. The results related to the GLRT presented in Sections IV and Vremain true for

c ≥ 1; in the case of the test based on the condition number and presented in Section VI, extra-

work is needed to handle the fact that the lowest eigenvalue converges to zero, which happens

if c ≥ 1.

III. L ARGE RANDOM MATRICES - LARGEST EIGENVALUE - BEHAVIOUR OF THE GLR

STATISTICS

In this section, we recall a few facts on large random matrices as the dimensionsN,K go to

infinity. We focus on the behaviour of the eigenvalues ofR̂ which differs whether hypothesis

H0 holds (Section III-A) orH1 holds (Section III-B).

As the column vectors ofY are i.i.d. complex Gaussian with covariance matrixΣ given by

(2), the probability density of̂R is given by:

1

Z(N,K,Σ)
e−Ntr(Σ−1R̂)(det R̂)N−K ,

whereZ(N,K,Σ) is a normalizing constant.

A. Behaviour under hypothesisH0

As the behaviour ofTN does not depend onσ2, we assume thatσ2 = 1; in particular,Σ = IK .

UnderH0, matrixR̂ is a complex Wishart matrix and it is well-known (see for instance [28]) that

the Jacobian of the transformation between the entries of the matrix and the eigenvalues/angles

is given by the Vandermonde determinant
∏

1≤i<j≤K(xj −xi)2. This yields the joint p.d.f. of the

ordered eigenvalues (12) where the normalizing constantZ(N,K, IK) is denoted byZ0
K,N for

simplicity.

The celebrated result from Marčenko and Pastur [34] states that the limit asN,K → ∞ of

the c.d.f.FN (x) =
#{i, λi≤x}

K
associated to the empirical distribution of the eigenvalues (λi) of
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R̂ is equal toPM̌P ((−∞, x]) wherePM̌P represents the Marčenko-Pastur distribution:

PM̌P(dy) = 1(λ−,λ+)(y)

√

(λ+ − y)(y − λ−)

2πcy
dy, (14)

with λ+ = (1 +
√
c)2 andλ− = (1 −√

c)2. This convergence is very fast in the sense that the

probability of deviating fromPM̌P decreases ase−N2×const.. More precisely, a simple application

of the large deviations results in [35] yields that for any distanced on the set of probability

measures onR compatible with the weak convergence and for anyδ > 0,

lim sup
N→∞

1

N
log P0 (d(FN ,PM̌P) > δ) = −∞ . (15)

Moreover, the largest eigenvalueλ1 of R̂ converges a.s. to the right edge of the Marčenko-

Pastur distribution, that is(1 +
√
c)2. A further result due to Johnstone [20] describes its speed

of convergence (N−2/3) and its fluctuations (see also [36] for complementary results). Let Λ1

be defined by:

Λ1 = N2/3

(

λ1 − (1 +
√
cN)

2

bN

)

, (16)

wherebN is defined by

bN := (1 +
√
cN)

(

1√
cN

+ 1

)1/3

, (17)

thenΛ1 converges in distribution toward a standard Tracy-Widom random variable with c.d.f.

FTW defined by:

FTW (x) = exp

(

−
∫ ∞

x

(u− x)q2(u) du

)

∀x ∈ R , (18)

whereq solves the Painlevé II differential equation:

q′′(x) = xq(x) + 2q3(x), q(x) ∼ Ai(x) as x→ ∞

and where Ai(x) denotes the Airy function. In particular,FTW is continuous. The Tracy-Widom

distribution was first introduced in [37], [38] as the asymptotic distribution of the centered and

rescaled largest eigenvalue of a matrix from the Gaussian Unitary Ensemble.

Tables of the Tracy-Widom law are available for instance in [39], while a practical algorithm

allowing to efficiently evaluate equation (18) can be found in [40].

Remark 4. In the case where the entries of matrixY are real Gaussian random variables, the

fluctuations of the largest eigenvalue are still described by a Tracy-Widom distribution whose

definition slightly differs from the one given in the complexcase (for details, see [20]).
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B. Behaviour under hypothesisH1

In this case, the covariance matrix writesΣ = σ2IK + hh∗ and matrixR̂ follows a single

spikedmodel. Since the behaviour ofTN is not affected if the entries ofY are multiplied by a

given constant, we find it convenient to consider the model whereΣ = IK + hh∗

σ2 . Denote by

ρK =
‖h‖2
σ2

the signal-to-noiseratio (SNR), then matrixΣ admits the decompositionΣ = UDU∗ whereU

is a unitary matrix andD = diag (ρK , 1, . . . , 1) . With the same change of variables from the

entries of the matrix to the eigenvalues/angles with Jacobian
∏

1≤i<j≤K(xj − xi)
2, the p.d.f. of

the ordered eigenvalues writes:

p1,NK (x1:K) =
1(x1≥···≥xK≥0)

Z1
K,N

∏

1≤i<j≤K

(xj − xi)
2

K
∏

j=1

xN−K
j e−NxjIK

(

N

K
BK ,XK

)

(19)

where the normalizing constantZ(N,K, IK + hh∗) is denoted byZ1
K,N for simplicity, XK is

the diagonal matrix with eigenvalues(x1, . . . , xK), BK is the K × K diagonal matrix with

eigenvalues( ρK
1+ρK

, 0, . . . , 0), and for any real diagonal matricesCK ,DK , the spherical integral

IK(CK ,DK) is defined as

IK(CK ,DK) =

∫

eKtr(CKQDKQH)dmK(Q), (20)

with mK the Haar measure on the unitary group of sizeK (see [30, Chapter 3] for details).

Whereas this rank-one perturbation does not affect the asymptotic behaviour ofFN (the

convergence towardPM̌P and the deviations of the empirical measure given by (15) still hold

underP1), the limiting behaviour of the largest eigenvalueλ1 can change if the signal-to-noise

ratio ρK is large enough.

Assumption 1. The following constantρ ∈ R exists:

ρ = lim
K→∞

‖h‖2
σ2

(

= lim
K→∞

ρK

)

. (21)

We refer toρ as the limiting SNR. We also introduce

λ∞spk = (1 + ρ)

(

1 +
c

ρ

)

.
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Under hypothesisH1, the largest eigenvalue has the following asymptotic behaviour asN,K go

to infinity:

λ1
a.s.−−→
H1







λ∞spk if ρ >
√
c ,

λ+ otherwise,
(22)

see for instance [41] for a proof of this result. Note in particular thatλ∞spk is strictly larger than

the right edge of the supportλ+ wheneverρ >
√
c. Otherwise stated, if the perturbation is large

enough, the largest eigenvalue converges outside the support of Mařcenko-Pastur distribution.

C. Limiting behaviour ofTN underH0 andH1

Gathering the results recalled in Sections III-A and III-B,we obtain the following:

Proposition 2. Let Assumption 1 hold true and assume thatρ >
√
c, then:

TN
a.s.−−→
H0

(1 +
√
c)2 and TN

a.s.−−→
H1

(1 + ρ)

(

1 +
c

ρ

)

asN,K → ∞.

IV. A SYMPTOTIC THRESHOLD ANDp-VALUES

A. Computation of the asymptotic threshold andp-value

In Theorem 1 below, we take advantage of the convergence results of the largest eigenvalue

of R̂ underH0 in the asymptotic regimeN,K → ∞ to express the threshold and thep-value

of interest in terms of Tracy-Widom quantiles. Recall thatF̄TW = 1 − FTW , that cN = K
N

, and

that bN is given by (17).

Theorem 1. Consider a fixed levelα ∈ (0, 1) and letγN be the threshold for which the power

of test (7) is maximum,i.e. pN(γN) = α wherepN is defined by(11). Then:

1) The following convergence holds true:

ζN
△
=

N2/3

bN

(

γN − (1 +
√
cN)

2
)

−−−−−→
N,K→∞

F̄−1
TW (α) .

2) The PFA of the following test

TN

H1

≷

H0

(1 +
√
cN)

2 +
bN
N2/3

F̄−1
TW (α) (23)

converges toα.
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3) Thep-valuepN (TN) associated with the GLRT can be approximated by:

p̃N(TN) = F̄TW

(

N2/3(TN − (1 +
√
cN)

2)

bN

)

(24)

in the sense thatpN(TN)− p̃N(TN ) → 0.

Remark 5. Theorem 1 provides a simple approach to compute both the threshold and thep-

values of the GLRT as the dimensionK of the observed time series and the numberN of

snapshots are large: The thresholdγN associated with the levelα can be approximated by the

righthand side of (23). Similarly, equation (24) provides aconvenient approximation for thep-

value associated with one experiment. These approaches do not require the tedious computation

of the exact complementary c.d.f. (11) and, instead, only rely on tables of the c.d.f.FTW , which

can be found for instance in [39] along with more details on the computational aspects (note

that functionFTW does not depend on any of the problem’s characteristic, and in particular

not on c). This is of importance in real-time applications, such as cognitive radio for instance,

where the users connected to the network must quickly decidefor the presence/absence of a

source.

Proof of Theorem 1:Before proving the three points of the theorem, we first describe the

fluctuations ofTN underH0 with the help of the results in Section III-A. Assume withoutloss

of generality thatσ2 = 1, recall thatTN = λ1

K−1trR̂
and denote by:

T̃N =
N2/3(TN − (1 +

√
cN)

2)

bN
(25)

the rescaled and centered version of the statisticsTN . A direct application of Slutsky’s lemma

(see for instance [42]) together with the fluctuations ofλ1 as reminded in Section III-A yields

that T̃N converges in distribution to a standard Tracy-Widom randomvariable with c.d.f.FTW

which is continuous overR. Denote byFN the c.d.f. ofT̃N underH0, then a classical result,

sometimes called Polya’s theorem (see for instance [43]), asserts that the convergence ofFN

towardsFTW is uniform overR:

sup
x∈R

|FN(x)− FTW (x)| −−−−−→
N,K→∞

0 . (26)

We are now in position to prove the theorem.

The mere definition ofζN implies thatα = pN(γN) = F̄N (ζN). Due to (26),F̄TW (ζN) → α.

As FTW has a continuous inverse, the first point of the theorem is proved.
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The second point is a direct consequence of the convergence of FN toward the Tracy-Widom

distribution: The PFA of test (23) can be written as:P0

(

T̃N > F̄−1
TW (α)

)

which readily converges

to α.

The third point is a direct consequence of (26):pN(TN)−p̃N(TN) = F̄N(T̃N)−F̄TW (T̃N) → 0 .

This completes the proof of Theorem 1.

V. ASYMPTOTIC ANALYSIS OF THE POWER OF THE TEST

In this section, we provide an asymptotic analysis of the power of the GLRT asN,K → ∞.

As the power of the test goes exponentially to zero, its errorexponent is computed with the help

of the large deviations associated to the largest eigenvalue of matrixR̂. The error exponent and

error exponent curve are computed in Theorem 2, Section V-A;the large deviations of interest

are stated in Section V-B. Finally Theorem 2 is proved in Section V-C.

A. Error exponents and error exponent curve

The most natural approach to characterize the performance of a test is to evaluate its power or

equivalently its miss probabilityi.e., the probability underH1 that the receiver decides hypothesis

H0. For a given levelα ∈ (0, 1), the miss probability writes:

βN,T (α) = inf
γ
{P1 (TN < γ) , γ such thatP0 (TN > γ) ≤ α} . (27)

Based on Section II-B, the infimum is achieved when the threshold coincides withγ = p−1
N (α);

otherwise stated,βN,T (α) = P1

(

TN < p−1
N (α)

)

(notice that the miss probability depends on the

unknown parametersh andσ2). As βN,T (α) has no simple expression in the general case, we

again study its asymptotic behaviour in the asymptotic regime of interest (13). It follows from

Theorem 1 thatp−1
N (α) → λ+ = (1 +

√
c)2 for α ∈ (0, 1). On the other hand, under hypothesis

H1, TN converges a.s. toλ∞spk which is strictly greater thanλ+ when the ratio‖h‖2
σ2 is large

enough. In this case,P1

(

TN < p−1
N (α)

)

goes to zero as it expresses the probability thatTN

deviates from its limitλ∞spk; moreover, one can prove that the convergence to zero is exponential

in N :

P1 (TN < x) ∝ e−NI+ρ (x) for x ≤ λ∞spk , (28)
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whereI+ρ is the so-called rate function associated toTN . This observation naturally yields the

following definition of the error exponentET :

ET = lim
N,K→∞

− 1

N
log βN,T (α) (29)

the existence of which is established in Theorem 2 below (asN,K → ∞). Also proved is the

fact thatET does not depend onα.

The error exponentET gives crucial information on the performance of the testTN , provided

that the levelα is kept fixed whenN,K go to infinity. Its existence strongly relies on the study

of the large deviations associated to the statisticsTN .

In practice however, one may as well take benefit from the increasing number of data not

only to decrease the miss probability, but to decrease the PFA as well. As a consequence, it is

of practical interest to analyze the detection performancewhen both the miss probability and

the PFA go to zero at exponential speed. A couple(a, b) ∈ (0,∞) × (0,∞) is said to be an

achievablepair of error exponents for the testTN if there exists a sequence of levelsαN such

that, in the asymptotic regime (13),

lim
N,K→∞

− 1

N
logαN = a and lim

N,K→∞
− 1

N
log βN,T (αN) = b . (30)

We denote byST the set of achievable pairs of error exponents for testTN asN,K → ∞. We

refer toST as theerror exponent curveof TN .

The following notations are needed in order to describe the error exponentET and error

exponent curveST .







f(x) =
∫

1
y−x

PM̌P(dy) for x ∈ R \ (λ−, λ+)
F+(x) =

∫

log(x− y)PM̌P(dy) for x ≥ λ+
. (31)

Remark 6. Function f is the well-known Stieltjes transform associated to Marčenko-Pastur

distribution and admits a closed-form representation formula. So does functionF+, although

this fact is perhaps less known. These results are gathered in Appendix C.

Denote by∆( · | A) the convex indicator functioni.e. the function equal to zero forx ∈ A

and to infinity otherwise. Forρ >
√
c, define the function:

I+ρ (x) =
x− λ∞spk
(1 + ρ)

− (1− c) log

(

x

λ∞spk

)

− c
(

F+(x)− F+(λ∞spk)
)

+∆(x | [λ+,∞)) .(32)
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Also define the function:

I+0 (x) = x− λ+ − (1− c) log
( x

λ+

)

− 2c
(

F+(x)− F+(λ+)
)

+∆(x | [λ+,∞)) . (33)

We are now in position to state the main theorem of the section:

Theorem 2. Let Assumption 1 hold true, then:

1) For any fixed levelα ∈ (0, 1), the limit ET in (29) exists asN,K → ∞ and satisfies:

ET = I+ρ (λ
+) (34)

if ρ >
√
c andET = 0 otherwise.

2) The error exponent curve of testTN is given by:

ST =
{

(I+0 (x), I
+
ρ (x)) : x ∈ (λ+, λ∞spk)

}

(35)

if ρ >
√
c and ST = ∅ otherwise.

The proof of Theorem 2 heavily relies on the large deviationsof TN and is postponed to

Section V-C. Before providing the proof, it is worth making the following remarks.

Remark 7. Several variants of the GLRT have been proposed in the literature, and typically

consist in replacing the denominator1
K
tr R̂ (which converges towardσ2) by a more involved

estimate ofσ2 in order to decrease the bias [12], [13], [14], [15]. However, it can be established

that the error exponents of the above variants are as well given by (34) and (35) in the asymptotic

regime.

Remark 8. The error exponentET yields a simple approximation of the miss probability in the

sense thatβN,T (α) ≃ e−N ET asN → ∞. It depends on the limiting ratioc and on the value

of the SNRρ through the constantλ∞spk. In the high SNR case, the error exponent turns out to

have a simple expression as a function ofρ. If ρ→ ∞ thenλ∞spk tends to infinity as well, which

simplifies the expression of rate functionI+ρ . Using F+(λ∞spk) = log λ∞spk + oρ(1) whereoρ(1)

stands for a term which converges to zero asρ→ ∞, it is straightforward to show that for each

x ≥ λ+, I+ρ (x) = log ρ − 1 − (1 − c) log x − cF+(x) + oρ(1). After some algebra, we finally

obtain:

ET = log ρ− (1 +
√
c)− (1− c) log(1 +

√
c)− c log

√
c+ oρ(1) .
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At high SNR, this yields the following convenient approximation of the miss probability:

βN,T (α) ≃ (ψ(c) ρ)N , (36)

whereψ(c) = e−(1+
√
c)(1 +

√
c)c−1c−

c
2 .

B. Large Deviations associated toTN

In order to express the error exponents of interest, a rigorous formalization of (28) is needed.

Let us recall the definition of a Large Deviation Principle: Asequence of random variables

(XN)N∈N satisfies a Large Deviation Principle (LDP) underP in the scaleN with good rate

function I if the following properties hold true:

• I is a nonnegative function with compact level sets, i.e.{x, I(x) ≤ t} is compact fort ∈ R,

• for any closed setF ⊂ R, the following upper bound holds true:

lim sup
N→∞

1

N
log P(XN ∈ F ) ≤ − inf

F
I . (37)

• for any open setG ⊂ R, the following lower bound holds true:

lim inf
N→∞

1

N
log P(XN ∈ G) ≥ − inf

G
I . (38)

For instance, ifA is a set such thatinf int(A) I = infcl(A) I(= infA I), (where int(A) and cl(A)

respectively denote the interior and the closure ofA), then (37) and (38) yield

lim
N→∞

N−1 logP(XN ∈ A) = − inf
A
I . (39)

Informally stated,

P(XN ∈ A) ∝ e−N infA I asN → ∞ .

If, moreoverinfA I > 0 (which typically happens if the limit ofXN -if existing- does not belong

toA), then probabilityP(XN ∈ A) goes to zero exponentially fast, hence alarge deviation(LD);

and the event{XN ∈ A} can be referred to as arare event. We refer the reader to [44] for

further details on the subject.

As already mentioned above, all the probabilities of interest are rare events asN,K go to

infinity related to large deviations forTN . More precisely, Theorem 2 is merely a consequence

of the following Lemma.

Lemma 1. Let Assumption 1 hold true and letN,K → ∞, then:
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1) Under H0, TN satisfies the LDP in the scaleN with good rate functionI+0 , which is

increasing from 0 to∞ on interval [λ+,∞).

2) UnderH1 and if ρ >
√
c, TN satisfies the LDP in the scaleN with good rate function

I+ρ . Function I+ρ is decreasing fromI+ρ (λ
+) to 0 on [λ+, λ∞spk] and increasing from 0 to

∞ on [λ∞spk,∞).

3) For any bounded sequence(ηN)N≥0,

lim
N,K→∞

− 1

N
logP1

(

TN < (1 +
√
cN)

2 +
ηN
N2/3

)

=







I+ρ (λ
+) if ρ >

√
c

0 otherwise.
(40)

4) Let x ∈ (λ+,∞) and let(xN )N≥0 be any real sequence which converges tox. If ρ ≤ √
c,

then:

lim
N,K→∞

− 1

N
log P1 (TN < xN ) = 0 . (41)

The proof of Lemma 1 is provided in Appendix A.

Remark 9. 1) The proof of the large deviations forTN relies on the fact that the denominator

K−1tr R̂ of TN concentrates much faster thanλ1. Therefore, the large deviations ofTN

are driven by those ofλ1, a fact that is exploited in the proof.

2) In Appendix A, we rather focus on the large deviations ofλ1 underH1 and skip the proof

of Lemma 1-(1), which is simpler and available (to some extent) in [29, Theorem 2.6.6]5.

Indeed, the proof of the LDP relies on the joint density of theeigenvalues. UnderH1, this

joint density has an extra-term, the spherical integral, and is thus harder to analyze.

3) Lemma 1-(3) is not a mere consequence of Lemma 1-(2) as it describes the deviations of

TN at the vicinity of a point of discontinuity of the rate function. The direct application

of the LDP would provide a trivial lower bound (−∞) in this case.

4) In the case where the entries of matrixY are real Gaussian random variables, the results

stated in Lemma 1 will still hold true with minor modifications: The rate functions will be

slightly different. Indeed, the computation of the rate functions relies on the joint density

of the eigenvalues, which differs whether the entries ofY are real or complex.

5see also the errata sheet for the sign error in the rate function on the authors webpage.
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Figure 1. Plots of rate functionsI+0 and I+ρ in the case wherec = 0.5 andρ = 1 db. In this case,λ+ = 2.9142, λ∞
spk = 3,

I+0 (λ+) = 0 andI+ρ (λ∞
spk) = 0.

C. Proof of Theorem 2

In order to prove (34), we must study the asymptotic behaviour of the miss probability

βN,T (α) = P1

(

TN < p−1
N (α)

)

asN,K → ∞. Using Theorem 1-(1), we recall that

βN,T (α) = P1

(

TN < (1 +
√
cN)

2 +
ηN
N2/3

)

(42)

wherecN = K
N

converges toc and whereηN is a deterministic sequence such that

lim
N,K→∞

ηN = (1 +
√
c)

(

1√
c
+ 1

)1/3

F̄−1
TW (α) .

Hence, Lemma 1-(3) yields the first point of Theorem 2. We now prove the second point. Assume

that ρ >
√
c. Consider anyx ∈ (λ+, λ∞spk) and for everyN,K, consider the test function which

rejects the null hypothesis whenTN > x,

TN

H1

≷

H0

x . (43)

Denote byαN = P0(TN > x) the PFA associated with this test. By Lemma 1-(1) together with

the continuity of the rate function atx, we obtain:

lim
N,K→∞

− 1

N
logαN = inf

y∈[x,∞)
I+0 (y) = I+0 (x) . (44)
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The miss probability of this test is given byβN,T (αN ) = P1(TN < x). By Lemma 1-(2),

lim
N,K→∞

− 1

N
log βN,T (αN) = inf

y∈(−∞,x]
I+ρ (y) = I+ρ (x) . (45)

Equations (44) and (45) prove that(I+0 (x), I
+
ρ (x)) is an achievable pair of error exponents.

Therefore, the set in the righthand side of (35) is included in ST . We now prove the converse.

Assume that(a, b) is an achievable pair of error exponents and letαN be a sequence such

that (30) holds. Denote byγN = p−1
N (αN) the threshold associated with levelαN . As I+0 (x) is

continuous and increasing from 0 to∞ on interval(λ+,∞), there exists a (unique)x ∈ (λ+,∞)

such thata = I+0 (x). We now prove thatγN converges tox asN tends to infinity. Consider a

subsequenceγϕ(N) which converges to a limitγ ∈ R ∪ {∞}. Assume thatγ > x. Then there

existsǫ > 0 such thatγϕ(N) > x+ ǫ for largeN . This yields:

− 1

ϕ(N)
log P0

(

Tϕ(N) > γϕ(N)

)

≥ − 1

ϕ(N)
log P0

(

Tϕ(N) > x+ ǫ
)

. (46)

Taking the limit in both terms yieldsI+0 (x) ≥ I+0 (x + ǫ) by Lemma 1, which contradicts the

fact thatI+0 is an increasing function. Now assume thatγ < x. Similarly,

− 1

ϕ(N)
logP0

(

Tϕ(N) > γϕ(N)

)

≤ − 1

ϕ(N)
logP0

(

Tϕ(N) > x− ǫ
)

(47)

for a certainǫ and forN large enough. Taking the limit of both terms, we obtainI+0 (x) ≤
I+0 (x− ǫ) which leads to the same contradiction. This proves thatlimN γN = x. Recall that by

definition (30),

b = lim
N,K→∞

− 1

N
log P1 (TN < γN) .

As γN tends tox, Lemma 1 implies that the righthand side of the above equation is equal to

I+ρ (x) > 0 if x ∈ (λ+, λ∞spk) andρ >
√
c. It is equal to 0 ifx ≥ λ∞spk or ρ ≤ √

c. Now b > 0 by

definition, therefore both conditionsx ∈ (λ+, λ∞spk) andρ >
√
c hold. As a conclusion, if(a, b) is

an achievable pair of error exponents, then(a, b) = (I+0 (x), I
+
ρ (x)) for a certainx ∈ (λ+, λ∞spk),

and furthermoreρ >
√
c. This completes the proof of the second point of Theorem 2.

VI. COMPARISON WITH THE TEST BASED ON THE CONDITION NUMBER

This section is devoted to the study of the asymptotic performances of the testUN = λ1

λK
,

which is popular in cognitive radio [22], [23], [24]. The main result of the section is Theorem

3, where it is proved that the test based onTN asymptotically outperforms the one based onUN

in terms of error exponent curves.
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A. Description of the test

A different approach which has been introduced in several papers devoted to cognitive radio

contexts consists in rejecting the null hypothesis for large values of the statisticsUN defined by:

UN =
λ1
λK

, (48)

which is the ratio between the largest and the smallest eigenvalues ofR̂. Random variableUN

is the so-calledcondition numberof the sampled covariance matrix̂R. As for TN , an important

feature of the statisticsUN is that its law does not depend of the unknown parameterσ which

is the level of the noise. Under hypothesisH0, recall that the spectral measure ofR̂ weakly

converges to the Marčenko-Pastur distribution (14) with support(λ−, λ+). In addition to the fact

that λ1 converges towardλ+ underH0 and λ∞spk underH1, the following result related to the

convergence of the lowest eigenvalue is of importance (see for instance [45], [46], [41]):

λK
a.s.−−→ λ− = σ2(1−

√
c)2 (49)

under both hypothesesH0 andH1. Therefore, the statisticsUN admits the following limits:

UN
a.s.−−→
H0

λ+

λ−
=

(1 +
√
c)2

(1−√
c)2

, and UN
a.s.−−→
H1

λ∞spk
λ−

for ρ >
√
c . (50)

The test is based on the observation that the limit ofUN under the alternativeH1 is strictly

larger than the ratioλ+/λ−, at least when the SNRρ is large enough.

B. A few remarks related to the determination of the threshold for the testUN

The determination of the threshold for the testUN relies on the asymptotic independence of

λ1 and λK underH0. As we shall prove below that testUN is asymptotically outperformed

by testTN , such a study, rather involved, seems beyond the scope of this article. For the sake

of completeness however, we describe unformally how to set the threshold forUN . Recall the

definition ofΛ1 in (16) and letΛK be defined as:

ΛK = N2/3

(

λK − (1−√
cN)

2
)

(√
cN − 1

)

(

c
−1/2
N − 1

)1/3
.

Then bothΛ1 andΛK converge toward Tracy-Widom random variables. Moreover,

(Λ1,ΛK) −−−−−→
N,K→∞

(X, Y ) ,
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whereX andY are independent random variables, both distributed according to FTW
6.

As a corollary of the previous convergence, a direct application of the Delta method [27,

Chapter 3] yields the following convergence in distribution:

N2/3

(

λ1
λK

− (1 +
√
cN )

2

(1−√
cN)2

)

→ (aX + bY ) ,

where

a =
(1 +

√
c)

(1−√
c)2

(

1√
c
+ 1

)1/3

and b =
(1 +

√
c)2

(
√
c− 1)3

(

1√
c
− 1

)1/3

,

which enables one to set the threshold of the test, based on the quantiles of the random variable

aX + bY . In particular, following the same arguments as in Theorem 1-1), one can prove that

the optimal threshold (for some fixedα ∈ (0, 1)), defined byP0(UN > γN) = α , satisfies

ξN
△
= N2/3

(

γN − (1 +
√
cN)

2

(1−√
cN)2

)

−−−−−→
N,K→∞

F̄−1
aX+bY (α) .

In particular,ξN is bounded asN,K → ∞.

C. Performance analysis and comparison with the GLRT

We now provide the performance analysis of the above test based on the condition number

UN in terms of error exponents. In accordance with the definitions of section V-A, we define the

miss probability associated with testUN asβN,U(α) = infγ P1 (UN < γ) for any levelα ∈ (0, 1),

where the infimum is taken w.r.t. all thresholdsγ such thatP0 (UN > γ) ≤ α. We denote byEU

the limit of sequence− 1
N
log βN,U(α) (if it exists) in the asymptotic regime (13). We denote bySU

the error exponent curve associated with testUN i.e., the set of couples(a, b) of positive numbers

for which − 1
N
log βN,U(αN) → b for a certain sequenceαN which satisfies− 1

N
logαN → a.

Theorem 3 below provides the error exponents associated with test UN . As for TN , the

performance of the test is expressed in terms of the rate function of the LDPs forUN underP0

or P1. These rate functions combine the rate functions for the largest eigenvalueλ1, i.e. I+ρ and

I+0 defined in Section V-B, together with the rate function associated to the smallest eigenvalue,

I−, defined below. As we shall see, the positive rank-one perturbation does not affectλK whose

rate function remains the same underH0 andH1.

6Such an asymptotic independence is not formally proved yet for R̂ underH0, but is likely to be true as a similar result has

been established in the case of the Gaussian Unitary Ensemble [47],[40].
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We first define:

F−(x) =

∫

log(y − x)dPM̌P(y) for x ≤ λ− . (51)

As for F+, functionF− also admits a closed-form expression based onf , the Stieltjes transform

of Mařcenko-Pastur distribution (see Appendix C for details).

Now, define for eachx ∈ R:

I−(x) = x− λ− − (1− c) log
( x

λ−

)

− 2c
(

F−(x)− F−(λ−)
)

+∆(x|(0, λ−]). (52)

If λ1 andλK were independent random variables, the contraction principle (see e.g. [44]) would

imply that the following functions

Γρ(t) = inf
(x,y)

{

I+ρ (x) + I−(y) :
x

y
= t

}

and Γ0(t) = inf
(x,y)

{

I+0 (x) + I−(y) :
x

y
= t

}

defined for eacht ≥ 0, are the rate functions associated with the LDP governingλ1/λK under

hypothesesH1 andH0 respectively. Of course,λ1 andλK are not independent, and the contraction

principle does not apply. However, a careful study of the p.d.f. p0K,N and p1K,N shows thatλ1

andλK behave as if they were asymptotically independent, from a large deviation perspective:

Lemma 2. Let Assumption 1 hold true and letN,K → ∞, then:

1) UnderH0, UN satisfies the LDP in the scaleN with good rate functionΓ0.

2) UnderH1 and if ρ >
√
c, UN satisfies the LDP in the scaleN with good rate function

Γρ.

3) For any bounded sequence(ηN)N≥0,

lim
N,K→∞

− 1

N
logP1

(

UN <
(1 +

√
cN)

2

(1−√
cN)2

+
ηN
N2/3

)

=







Γρ(λ
+) if ρ >

√
c

0 otherwise.
(53)

Moreover,Γρ(λ
+) = I+ρ (λ

+).

4) Let x ∈ (λ+,∞) and let(xN )N≥0 be any real sequence which converges tox. If ρ ≤ √
c,

then:

lim
N,K→∞

− 1

N
log P1 (TN < xN ) = 0 (54)

Remark 10. In the context of Lemma 1, both quantitiesλ1 and λK deviate at the same speed,

to the contrary of statisticsTN where the denominator concentrated much faster than the largest

eigenvalueλ1. Nevertheless, proof of Lemma 2 is a slight extension of the proof of Lemma 1,
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based on the study of the joint deviations(λ1, λK), the proof of which can be performed similarly

to the proof of the deviations ofλ1. Once the large deviations established for the couple(λ1, λK),

it is a matter of routine to get the large deviations for the ratio λ1/λK . A proof is outlined in

Appendix B.

We now provide the main result of the section.

Theorem 3. Let Assumption 1 hold true, then:

1) For any fixed levelα ∈ (0, 1) and for eachρ, the error exponentEU exists and coincides

with ET .

2) The error exponent curve of testUN is given by:

SU =

{

(Γ0(t),Γρ(t)) : t ∈
(

λ+

λ−
,
λ∞spk
λ−

)}

(55)

if ρ >
√
c and SU = ∅ otherwise.

3) The error exponent curveST of testTN uniformly dominatesSU in the sense that for each

(a, b) ∈ SU there exitsb′ > b such that(a, b′) ∈ ST .

Proof: The proof of items (1) and (2) is merely bookkeeping from the proof of Theorem 2

with Lemma 2 at hand.

Let us prove item (3). The key observation lies in the following two facts:

∀x ∈ (λ+, λ∞spk), Γρ

( x

λ−

)

= I+ρ (x) , (56)

∀x ∈ (λ+, λ∞spk), Γ0

( x

λ−

)

< I+0 (x) . (57)

Recall that

Γρ

( x

λ−

)

= inf
(u,v)

{

I+ρ (u) + I−(v) :
u

v
=

x

λ−

}

(a)

≤ I+ρ (x) + I−(λ−) = I+ρ (x),

where (a) follows from the fact thatI−(λ−) = 0 and by takingu = x, v = λ−. Assume that

inequality(a) is strict. Due to the fact thatI+ρ is decreasing, the only way to decrease the value

of I+ρ (u) + I−(v) under the considered constraintu
v
= x

λ− is to find a couple(u, v) with u > x,

but this cannot happen because this would enforcev > λ− so that the constraintu
v
= x

λ− remains
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fulfilled, and this would end up withI−(v) = ∞. Necessarily,(a) is an equality and (56) holds

true.

Let us now give a sketch of proof for (57). Notice first thatdI+0
du

|u=x> 0 (which easily follows

from the fact thatI+0 is increasing and differentiable) whiledI
−

dv
|vրλ−= 0. This equality follows

from the direct computation:

lim
xրλ−

I−(x)

x− λ−
= 1− 1− c

λ−
− 2c

dF−

dx

∣

∣

∣

∣

xրλ−

= 1− 1 +
√
c

1−√
c
+ 2cf(λ−) = 0 ,

where the last equality follows from the fact thatdF−

dx
= −f together with the closed-form

expression forf as given in Appendix C. As previously, write:

Γ0

( x

λ−

)

= inf
(u,v)

{

I+0 (u) + I−(v) :
u

v
=

x

λ−

}

(a)

≤ I+0 (x) + I−(λ−) = I+0 (x).

Consider now a small perturbationu = x − δ and the related perturbationv = λ− − δ′ so

that the constraintu
v
= x

λ− remains fulfilled. Due to the values of the derivatives ofI+0 and I−

at respective pointsx and λ−, the decrease ofI+0 (x − δ) will be larger than the increase of

I−(λ− − δ′), and this will result in the fact that

Γ0

( x

λ−

)

≤ I+0 (x− δ) + I−(λ− + δ′) < I+0 (x) ,

which is the desired result, which in turn yields (57).

We can now prove Theorem 3-(3). Let(a, b) ∈ SU and (a, b′) ∈ ST , we shall prove that

b < b′. Due to the mere definitions of the curvesSU and ST , there existx ∈ (λ+, λ∞spk) and

t ∈ (λ+/λ−, λ∞spk/λ
−) such thata = I+0 (x) = Γ0(t). Eq. (57) yields that x

λ− < t. As I+ρ is

decreasing, we have

b′ = I+ρ (x) > I+ρ (tλ
−) = Γρ(t) = b ,

and the proof is completed.

Remark 11. Theorem 3-(1) indicates that when the number of data increases, the powers of

testsTN andUN both converge to one at the same exponential speedEU = ET , provided that

the levelα is kept fixed. However, when the level goes to zero exponentially fast as a function of
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Log of the Error exponent for different values of c

ρ

← c=0.7

Figure 2. Computation of the logarithm of the error exponentE associated to the testTN for different values ofc (with Eρ

defined forρ ≥ √
c andEρ |ρ=√

c = 0), and comparison with the optimal result (Neyman-Pearson)obtained in the case where

all the parameters are perfectly known.

the number of snapshots, then the test based onTN outperformsUN in terms of error exponents:

The power ofTN converges to one faster than the power ofUN . Simulation results forN,K

fixed sustain this claim (cf. Figure 4). This proves that in the context of interest (N,K → ∞),

the GLRT approach should be prefered to the testUN .

VII. N UMERICAL RESULTS

In the following section, we analyze the performance of the proposed tests in various scenarios.

Figure 2 compares the error exponent of testTN with the optimal NP test (assuming that all

the parameters are known) for various values ofc andρ. The error exponent of the NP test can

be easily obtained using Stein’s Lemma (see for instance [48]).

In Figure 3, we compare the Error Exponent curves of both tests TN andUN . The analytic

expressions provided in 2 and 3 for the Error Exponent curveshave been used to plot the curves.

The asymptotic comparison clearly underlines the gain of using testTN .
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Figure 3. Error Exponent curves associated to the testsTN (T1) andUN (T2) in the case wherec = 1
5

andρ = 10 dB. Each

point of the curve corresponds to a given error exponent under H0 (X axis) and its counterpart error exponent underH1 (Y

axis) as described in Theorem 2-(2) forTN and Theorem 3-(2) forUN .

Finally, we compare in Figure 4 the powers (computed by Monte-Carlo methods) of tests

TN andUN for finite values ofN andK. We consider the case whereK = 10, N = 50 and

ρ = 1 and plot the probability of error underH0 versus the power of the test, that isα versus

P1(TN ≥ γN) (resp.P1(UN ≥ γN)) whereγN is fixed by the following condition:

P0(TN ≥ γN) = α (resp.P0(UN ≥ γN) = α) .

VIII. C ONCLUSION

In this contribution, we have analyzed in detail the GLRT in the case where the noise variance

and the channel are unknown. Unlike similar contributions,we have focused our efforts on the

analysis of the error exponent by means of large random matrix theory and large deviation

techniques. Closed-form expressions were obtained and enabled us to establish that the GLRT

asymptotically outperforms the test based on the conditionnumber, a fact that is supported by

finite-dimension simulations. We also believe that the large deviations techniques introduced here

will be of interest for the engineering community, beyond the problem addressed in this paper.
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Figure 4. Simulated ROC curves forTN (test 1) andUN (test 2) in the case whereK = 10, N = 50 andρ = 10 dB.
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APPENDIX A

PROOF OFLEMMA 1: LARGE DEVIATIONS FORTN

The large deviations of the largest eigenvalue of large random matrices have already been

investigated in various contexts, Gaussian Orthogonal Ensemble [49] and deformed Gaussian

ensembles [21]. As mentionned in [21, Remark 1.2], the proofs of the latter can be extended to

complex Wishart matrix models, that is random matricesR̂ underH0 or H1.

In both cases, the large deviations ofλ1 rely on a close study of the density of the eigenvalues,

either given by (12) (underH0) or by (19) for the spiked model (underH1). The study of the

spiked model, as it involves the study of the asymptotics of the spherical integral (see Lemma 3

below), is more difficult. We therefore focus on the proof of the LDP underH1 (Lemma 1-(2))

and omit the proof of Lemma 1-(1). Once Lemma 1-(2) is proved,proving Lemma 1-(1) is a

matter of bookkeeping, with the spherical integral removedat each step.

Recall thatλ1 ≥ · · · ≥ λK are the ordered eigenvalues ofR̂ and thatTN is the statistics

defined in (6).

In the sequel, we shall prove the upper bound of the LDP in Lemma 1-(2) (which gives also

the upper bound in Lemma 1-(3)). The proof of the lower bound in Lemma 1-(3) requires more
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precise arguments than the lower bound of the LDP. One has indeed to study what happens at

the vicinity of λ+, which is a point of discontinuity of the rate functionI+ρ . Thus, we skip the

proof of the lower bound of the LDP in Lemma 1-(2) to avoid repetition. Note that the proof

of Lemma 1-(4) is a mere consequence of the fact thatTN converges a.s. toλ+ if ρ ≤ √
c, thus

P1(TN < xN ) converges to 1 wheneverxN converges tox > λ+.

For sake of simplicity and with no loss of generality as the law of TN does not depend onσ,

we assume all along this appendix thatσ2 = 1. We first recall important asymptotic results for

spherical integrals.

A. Useful facts about spherical integrals

Recall that the joint distributions of the ordered eigenvalues under hypothesisH0 and H1

are respectively given by (12) and (19). In the latter, the so-called spherical integral (20) is

introduced. We recall here results from [21] related to the asymptotic behaviour of the spherical

integral in the case where one diagonal matrix is of rank one and the other has the limiting

distributionPM̌P. We first introduce the function defined forx ≥ λ+ by:

Jρ(x) =







ρ
c
− log

(

ρ
c(1+ρ)

)

− F+(λ∞spk), if ρ ≤ √
c andλ+ ≤ x ≤ λ∞spk,

ρx
c(1+ρ)

− 1− log
(

ρ
c(1+ρ)

)

− F+(x), otherwise.
(58)

Consider aK-tuple (x1, · · · , xK) and denote bŷπK,x = 1
K−1

∑N
i=2 δx2 the empirical dis-

tribution associated to(x2, · · · , xK); let d be a metric compatible with the topology of weak

convergence of measures (for example the Dudley distance - see for instance [50]). A strong

version of the convergence of the spherical integral in the exponential scale with speedN ,

established in [21] can be summarized in the following Lemma:

Lemma 3. Assume thatN,K → ∞ and K
N

→ c ∈ (0, 1) and let Assumption 1 hold true. Let

x1 ≥ x2 ≥ · · · ≥ xK ≥ 0 and δ > 0. If, for N large enough,|x1 − x| ≤ δ and d(π̂K,x,PM̌P) ≤
N−1/4 then:

∣

∣

∣

∣

1

N
log IK

(

N

K
BK ,XK

)

− cJρ(x)

∣

∣

∣

∣

≤ δ,

whereJρ is given by(58), BK = diag
(

ρK
1+ρK

, 0, . . . , 0
)

andXK = diag(x1, · · · , xK).

Recall that the spherical integralIK , defined in (20), appears in the joint density (19) of

the eigenvalues underH1. Lemma 3 provides a simple asymptotic equivalentcJρ(x) of the
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normalized integralN−1 log IK . Roughly speaking, this will enable us to replaceIK by the

quantitye−N×cJρ(x) when establishing the large deviations ofλ1, which rely on a careful study

of density (19).

B. Proof of Lemma 1-(2)

In order to establish the LDP under hypothesisH1 and conditionρ >
√
c, (that is the bounds

(37) and (38)), we first notice that intervals(x, x+δ) for x, δ ∈ R+ form a basis of the topology

of R+. The LDP will be therefore a consequence of the following bounds:

• (Exponential tightness) there exists a functionf : R+ → R+ going to infinity at infinity

such that for allN ,

P1 (λ1 ≥ M) ≤ e−Nf(M) . (59)

Condition (59) is technical (see for instance [44, Lemma 1.2.18]): Instead of proving

the large deviation upper bound for every closed set, the exponential tightness (59), if

established, enables one to restrict to the compact sets.

• (Upper bound) For anyx, for anyM such that0 < x < M,

lim
δ↓0

lim sup
N,K→∞

1

N
log P1 (x ≤ TN ≤ x+ δ, λ1 ≤ M) ≤ −I+ρ (x) , (60)

Due to the exponential tightness, it is sufficient to establish the upper bound for compact

sets. As each compact can be covered by a finite number of balls, it is therefore sufficient

to establish upper estimate (60) in order to establish the LDupper bound.

• (Lower bound) For anyx,

lim
δ↓0

lim inf
N,K→∞

1

N
log P1 (x ≤ TN ≤ x+ δ) ≥ −I+ρ (x) . (61)

The fact that (61) implies the LD lower bound (38) is standardin LD and can be found in

[44, Chapter 1] for instance.

As the arguments are very similar to the ones developed in [21], we only prove in detail the

upper bound (60). Proofs of (59) and (61) are left to the reader.

The idea is that the empirical measureπ̂K,λ := 1
K−1

∑K
j=2 δλj

(of all but the largest eigenvalues)

and the trace concentrate faster than the largest eigenvalue. In the exponential scale with speed

N , π̂K,λ and the trace can be considered as equal to their limit, respectively PM̌P and 1. In

particular, the deviations ofTN arise from those of the largest eigenvalue and they both satisfy
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the same LDP with the same rate functionI+ρ . We therefore isolate the terms depending onλ1

and gather the others through their empirical measureπ̂K,λ.

Recall the notations introduced in (12) and (19) and letx > λ+, δ > 0. Consider the following

domain:

D =

{

(x1, · · · , xK) ∈ [0,M ]K ,
Kx1

x1 + · · ·+ xK
∈ (x, x+ δ)

}

For N large enough:

P1(x ≤ TN ≤ x+ δ, λ1 ≤M) =

∫

D

dp1K,N(x1:K)

=
1

Z1
K,N

∫

D

dx1 e
−Nx1e(N−K) log x1e2(K−1)

∫

log(x1−u)dπ̂K,x(u)

×IK
(

N

K
BK ,XK

)

∏

1<i<j

|xi − xj |2e−N
∑K

j=2 xj

K
∏

j=2

xN−K
j d x2:K × 1(x1≥···≥xK≥0)

=

(

1− 1
N

)(K−1)(N−1)
Z0

K−1,N−1

Z1
K,N

∫

D

dx1e
−Nx1e(N−K) log x1e2(K−1)

∫

log(x1−u)dπ̂K,y(u)

×IK
(

N

K
BK ,XK

)

dp0K−1,N−1(y2:K),

where we performed the change of variablesyi := N
N−1

xi for i = 2 : K, and the related

modificationsπ̂K,x ↔ π̂K,y and XK = diag
(

x1,
N−1
N
y2, · · · , N−1

N
y2
)

. Note also that strictly

speaking, the domain of integrationD would express differently with theyi’s and in particular,

we should have changed constantM which majorizes thexi’s into a larger constant as theyi’s

can theoretically be slightly aboveM - we keep the same notation for the sake of simplicity.

To proceed, one has to study the asymptotic behaviour of the normalizing constant:
(

1− 1
N

)(K−1)(N−1)
Z0

K−1,N−1

Z1
K,N

,

which turns out to be difficult. Instead of establishing directly the bounds (59)-(61), we proceed

as in [21] and establish similar bounds replacing the probability measuresP1 by the measures

Q1 defined as:

Q1 :=
Z1

K,N

Z0
K−1,N−1

(

1− 1
N

)(K−1)(N−1)
P1

and the rate functionI+ρ by the functionGρ defined by:

Gρ(x) =
x

1 + ρ
− (1− c) log x− cF+(x) + c+ c log

(

ρ

c(1 + ρ)

)
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for x > λ+. Notice that these positive measuresQ1 are not probability measures any more, and

as a consequence, the functionGρ is not necessarily positive and its infimum might not be equal

to zero, as it is the case for a rate function.

Writing the upper bound forQ1, we obtain:

Q1(x ≤ TN ≤ x+ δ, λ1 ≤M)

≤
∫

D

dx1e
−NΦ(x1,cN ,π̂K,y)IK

(

N

K
BK ,XK

)

dp0K−1,N−1(y2:K),

where, for any compactly supported probability measureµ and any real numbery greater than

the right edge of the support ofµ,

Φ(y, cN , µ) = −y + (1− cN) log y + 2cN

∫

log(y − λ)dµ(λ).

Let us now localise the empirical measureπ̂K,y aroundPM̌P
7 and the trace around 1. The

continuity and convergence properties of the spherical integral recalled in Lemma 3 yield, for

K large enough:

Q1(x ≤ TN ≤ x+ δ , λ1 ≤M) ≤
∫ x+δ

x

dx1

∫

E

e−NΦ(x1,cN ,π̂K,y)eNc(Jρ(x1)+δ)dp0K−1,N−1(y2:K)

+4KMN+Ke
NM

ρK
1+ρK

∫

EC

dp0K−1,N−1(y2:K), (62)

with

E :=

{

(y2, · · · , yK) ∈ [0,M ]K−1, d(π̂K,y,PM̌P) ≤
1

N1/4
and

1

K

K
∑

j=2

yj ∈
[

1− δ2, 1 + δ2
]

}

.

The second term in (62) is easily obtained considering the fact that all the eigenvalues are less

thanM so that for1 ≤ j ≤ K, |x1 − xj | ≤ 2M, xN−K
j ≤ MN−K and (UXKU

∗)11 ≤ M. Now,

standard concentration results underH0 yield that:

lim sup
N,K→∞

1

N
log P0

(

π̂K,λ /∈ B(PM̌P, N
−1/4) or

1

K

K
∑

j=2

λj /∈
[

1− δ2, 1 + δ2
]

)

= −∞.

More precisely, one knows using [51] that the empirical measure 1
K

∑K
j=2 λj is close enough to

its expectation and then using [52] one knows that the expectation is close enough to its limit

PM̌P. The arguments are detailed in the Wigner case in [21] and we donot give more details here.

7Notice that if π̂K,x is close toPM̌P, so is π̂K,y due to the change of variableyi = N
N−1

xi.
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As cN → c for N,K → ∞, c 7→ Φ(y, c, µ) is continuous andµ 7→ Φ(y, c, µ) is lower

semi-continuous, we obtain:

lim sup
N,K→∞

1

N
logQ1(x ≤ λ1 ≤ x+ δ , λ1 ≤M) ≤ sup

u∈[x,x+δ]

(Φ(u, c, PM̌P) + cJρ (u)) + 2δ.

By continuity in u of the two involved functions, we finally get:

lim
δ↓0

lim sup
N,K→∞

1

N
logQ1(x ≤ λ1 ≤ x+ δ , λ1 ≤M) ≤ Φ(x, c,PM̌P) + cJρ (x) = Gρ(x) ,

and the counterpart of Eq. (60) is proved forQ1 and functionGρ. The proof of the lower bound

is quite similar and left to the reader. It remains now to recover (60). AsP1 is a probability

measure and the whole spaceR+ is both open and closed, an application of the upper and lower

bounds forQ1 immediately yields:

lim inf
N,K→∞

1

N
log

Z1
K,N

Z0
K−1,N−1

(

1− 1
N

)(K−1)(N−1)
P1(TN ∈ R+)

= lim sup
N,K→∞

1

N
log

Z1
K,N

Z0
K−1,N−1

(

1− 1
N

)(K−1)(N−1)
P1(TN ∈ R+)

= lim
N,K→∞

1

N
log

Z1
K,N

Z0
K−1,N−1

(

1− 1
N

)(K−1)(N−1)

= − inf
R+
Gρ . (63)

This implies that the LDP holds forP1 with rate functionGρ − infR+ Gρ.

It remains to check thatI+ρ = Gρ− infR+ Gρ, which easily follows from the fact to be proved

that:

inf
x∈[λ+,∞)

Gρ(x) = Gρ(λ
∞
spk) . (64)

We therefore study the variations ofGρ over [λ+,∞). Note that(F+)′ = −f , and thus that

G′
ρ(x) = (1 + ρ)−1 − (1 − c)x−1 + cf(x). Functionf being a Stieltjes transform is increasing

for x > λ+, and so isG′
ρ, whose limit at infinity is(1 + ρ)−1. Straightforward but involved

computations using the explicit representation (67) forf yield thatG′
ρ(λ

∞
spk) = 0. Therefore,Gρ

is decreasing on[λ+, λ∞spk] and increasing on[λ∞spk,∞), and (64) is proved.

This concludes the proof of the upper bound in Lemma 1-(2). The proof of Lemma 1-(1) is

very similar and left to the reader.
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C. Proof of Lemma 1-(3)

The proof of this point requires an extra argument as we studythe large deviations ofTN

near the point(1 +
√
c)2 where the rate function is not continuous. In particular, the limit

(53) does not follow from the LDP already established. As we shall see when considering

P1

(

TN < (1 +
√
cN)

2 + ηNN
−2/3

)

, the fact that the scale(N−2/3) is the same as the one of the

fluctuations of the largest eigenvalue of the complex Wishart model is crucial.

We detail the proof in the case whenρ >
√
c and, as above, consider the positive measures

Q1. We need to prove that:

lim inf
N,K→∞

1

N
logQ1

(

TN < (1 +
√
cN)

2 +
η

N2/3

)

≥ −Gρ(λ
+), η ∈ R, (65)

the other bound being a direct consequence of the LDP. As previously, we will carefully localize

the various quantities of interest. Denote bygN(η) = (1 +
√
cN)

2 + ηN−2/3 for η ∈ R and by

hN(r) = 1−rN−2/3 for r > 0. Notice also thatλ1 ≤ gN(η)hN(r) together with 1
K−1

∑K
j=2 λj >

hN(r) imply that TN < gN(η). We shall also consider the further constraints:

gN(η − 1)hN (r) ≤ λ1 and λ2 < gN(η − 2)hN(r)

which enable us to properly separateλ1 from the support of̂πK,λ. Now, with the localisation

indicated above, we have forN large enough,

Q1 (TN < gN(η)) ≥ Q1

(

gN(η − 1)hN(r) ≤ λ1 ≤ gN(η)hN(r),

1

K − 1

K
∑

j=2

λj > hN(r), λ2 < gN(η − 2)hN(r), π̂K,λ ∈ B(PM̌P, N
−1/4)

)

.

As previously, we consider the variablesyj = N
N−1

xj for 2 ≤ j ≤ K and obtain, with the help

of Lemma 3:

Q1 (TN < gN(η)) ≥
∫ gN (η)hN (r)

gN (η−1)hN (r)

dx1

∫

F

e−NΦ(x1,cN ,π̂K,y)eNc(Jρ(x1)−δ)dp0K−1,N−1(y2:K)

with

F :=

{

(y2, · · · , yK) ∈
[

0,
N gN(η − 2) hN(r)

N − 1

]K−1

,

1

K − 1

K
∑

j=2

yj >
N

N − 1
hN (r), π̂K,y ∈ B(PM̌P, N

−1/4)

}

.
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Therefore:

Q1 (TN < gN(η)) ≥ hN (r) (gN(η)− gN(η − 1)) eN(Gρ(λ+)−2δ)P0 ((λ2, · · · , λK) ∈ F)

(recall thatGρ(x) = Φ(x, c,PM̌P) + cJρ (x)). Now, ashN(r) (gN(η) − gN(η − 1)) = (1 −
rN−2/3)N−2/3, its contribution vanishes at the LD scale:

lim
N→∞

1

N
log (hN (r) (gN(η)− gN(η − 1))) = 0 .

It remains to check thatP0 ((λ2, · · · , λK) ∈ F) is bounded below uniformly inN . This will

yield the convergence of1
N
log P0 ((λ2, · · · , λK) ∈ F) towards zero, hence (65). Consider:

P0 ((λ2, · · · , λK) ∈ Fc) ≤ P0

(

π̂K,λ /∈ B(PM̌P, N
−1/4)

)

+ P0

(

1

K − 1

K
∑

j=2

λj <
N

N − 1
hN (r)

)

+ P0

(

λ2 >
N

N − 1
gN(η − 2)hN (r)

)

.

We have already used the fact that the first term goes to zero whenN grows to infinity. Recall

that the fluctuations of 1
K−1

∑K
j=2 λj are of order1

N
, therefore the second term also goes to zero

as we consider deviations of orderN−2/3. Now,N2/3(λ2−(1+
√
cN)

2) converges in distribution

to the Tracy-Widom law, therefore the last term converges toFTW (η − 2 + r(1 +
√
c)2) < 1.

This concludes the proof.

APPENDIX B

SKETCH OF PROOF FORLEMMA 2: LARGE DEVIATIONS FORUN

As stated in Remark 10, we shall first study the LDP for the joint quantity (λ1, λK). The

purpose here is to outline the following convergence:

1

N
logP (λ1 ∈ A, λK ∈ B) −−−−−→

N,K→∞
− inf

x∈A
I+ρ (x)− inf

y∈B
I−(x) ,

which is an illustrative way, although informal8, to state the LDP for(λ1, λK) (see (39)).

Consider the quantityP (λ1 ∈ (α1, β1), λK ∈ (αK , βK)). As we are interested in the deviations

of λ1 andλK , the interesting scenario isλ+ /∈ (α1, β1) andλ− /∈ (αK , βK) (recall thatλ± are

the edgepoints of the support of Marčenko-Pastur distribution). More precisely, the interesting

case is when the deviations of the extreme eigenvalue occur outside of the bulk:α1 > λ+ and

8All the statements, computations and approximations belowcan be made precise as in the proof of Lemma 1.

DRAFT April 19, 2010



37

βK < λ−; such deviations happen at the ratee−N×const.. The case where the deviations would

occur within the bulk is unlikely to happen because it would enforce the whole eigenvalues to

deviate from the limiting support of Marčenko-Pastur distribution, which happens at the rate

e−N2×const.. Denote byA = (α1, β1) andB = (αK , βK).

P (λ1 ∈ A, λK ∈ B)

=
1

Z1
K,N

∫

A×R(K−2)×B

1(λ1≥···≥λK≥0)

∏

1≤i<j≤K

(xi − xj)
2

×
K
∏

j=1

xN−K
j e−NxjIK

(

N

K
BK , XK

)

d x1:K

=

∫

A

d x1 e
2
∑K−1

j=2 log(x1−xj)e(N−K) log x1−Nx1IK

(

N

K
BK , XK

)

×
∫

B

d xK e2
∑K−1

i=2 log(xi−xK)e(N−K) log xK−NxKe2 log(x1−xK)

×
Z0

K−2,N−2

Z1
K,N

∫

x1≥x2≥···≥xK

K−1
∏

j=2

e−2xj

K−1
∏

j=2

xN−K
j e−(N−2)xj

Z0
K−2,N−2

∏

2≤i<j≤K−1

(xi − xj)
2d x2:K−1

We shall now perform the following approximations:

K−1
∑

j=2

log(x1 − xj) ≈ (K − 2)

∫

log(x1 − x)PM̌P( dx) = (K − 2)F+(x1) ,

K−1
∑

j=2

log(xj − xK) ≈ (K − 2)

∫

log(x− xK)PM̌P( dx) = (K − 2)F−(xK) ,

K−1
∑

j=2

xj ≈ (K − 2)

∫

xPM̌P( dx) = (K − 2) ,

IK

(

N

K
BK , XK

)

≈ eNcJρ(x1) .

The three first approximations follow from the fact that1
K−2

∑K−1
2 δxi

≈ PM̌P, the last one from
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Lemma 3. Plugging these approximations into the expressionof P (λ1 ∈ A, λK ∈ B) yields:

P (λ1 ∈ A, λK ∈ B)

≈
∫

A

d x1 e
2(K−2)F+(x1)e(N−K) log x1−Nx1eNcJρ(x1)

×
∫

B

d xK e2(K−2)F−(xK)e(N−K) log xK−NxKe2 log(x1−xK)

×
Z0

K−2,N−2

Z1
K,N

e−2(K−2)

∫

x1≥x2≥···≥xK

K−1
∏

j=2

xN−K
j e−(N−2)xj

Z0
K−2,N−2

∏

2≤i<j≤K−1

(xi − xj)
2d x2:K−1 .

As x1 ≥ α1 ≥ λ+ andxK ≤ βK ≤ λ−, the last integral goes to one asK,N → ∞ and:

P (λ1 ∈ A, λK ∈ B)

≈
∫

A

d x1 e
−N( 2(K−2)

N
F+(x1)−(1−K

N ) log x1+x1−cJρ(x1))

×
∫

B

d xK e
−N

(

2(K−2)
N

F−(xK)−(1−K
N ) log xK+xK+

2 log(x1−xK)

N

)

×Z
0
K−2,N−2

Z1
K,N

e−2(K−2) .

Recall that we are interested in the limitN−1 log P (λ1 ∈ A, λK ∈ B). The last term will account

for a constantΥ (see for instance (63)):

1

n
log

(

Z0
K−2,N−2

Z1
K,N

e−2(K−2)

)

−−−−−→
N,K→∞

Υ .

The term2 log(x1−xK)
N

within the exponential in the integral accounts for the interraction between

λ1 andλK and its contribution vanishes at the desired rate. In order to evaluate the two remaining

integrals, one has to rely on Laplace’s method (see for instance [53]) to express the leading term

of the integrals (replacingKN−1 by c below):

∫

A

d x1 e
−N(2cF+(x1)−(1−c) log x1+x1−cJρ(x1)) ≈ e−N infx∈A(2cF+(x)−(1−c) log x+x−cJρ(x)) ,

∫

B

d xK e−N(2cF−(xK)−(1−c) log xK+xK−cJρ(xK)) ≈ e−N infy∈B(2cF−(y)−(1−c) log y+y) .

Finally, we get the desired limit:

1

N
logP {λ1 ∈ A, λK ∈ B} −−−−−→

N,K→∞
− inf

x∈A
Φ+(x)− inf

y∈B
Φ−(y) + Υ ,
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where

Φ+(x) = 2cF+(x)− (1− c) log x+ x− cJρ(x) ,

Φ−(y) = 2cF−(y)− (1− c) log y + y .

It remains to replaceJρ by its expression (58) and to spread the constantΥ overΦ+ andΦ−,

which are not a priori rate functions (recall that a rate function is nonnegative). Ifλ− ∈ B, then

the event{λK ∈ B} is “typical” and no deviation occurs, otherwise stated, therate function

I− should satisfyI−(λ−) = 0. Similarly, I+0 (λ
+) = 0 underH0 and I+ρ (λ

∞
spk) = 0 underH1.

Necessarily,Υ should writeΥ = Φ(λ−) + Φ(λ+) underH0 (resp.Υ = Φ(λ−) + Φ(λ∞spk) under

H1) and the rate functions should be given by:I− = Φ− −Φ(λ−), I+0 = Φ+ −Φ(λ+) underH0

(resp.I+ρ = Φ+ − Φ(λ∞spk) underH1), which are the desired results.

We have proved (informally) that the LDP holds true for(λ1,ΛK) with rate functionI+0/ρ(x)+

I−(y). The contraction principle [44, Chap. 4] immediatly yieldsthe LDP for the ratioλ1

λK
with

rate function:

Γ0/ρ(t) = inf
(x,y),x

y
=t
{I+0/ρ(x) + I−(y)} , (66)

which is the desired result. We provide here intuitive arguments to understand this fact.

For this, interpret the value of the rate functionI+ρ (x) as the cost associated to a deviation

of λ1 (underH1) aroundx: P{λ1 ∈ (x, x+ dx)} ≈ e−NI+ρ (x). If a deviation occurs for the ratio
λ1

λK
, say λ1

λK
∈ (t, t + dt) wheret >

λ∞
spk

λ− (which is the typical behaviour ofUN underH1), then

necessarilyλ1 must deviate around some valuety, so doesλK around some valuey, so that the

ratio is aroundt. In terms of rate functions, the cost of the joint deviation(λ1 ≈ ty, λK ≈ y) is

I+ρ (ty) + I−(y). The true cost associated to the deviation of the ratio will be the minimum cost

among all these possible joint deviations ofλ1 andλK , hence the rate function (66).

APPENDIX C

CLOSED-FORM EXPRESSIONS FOR FUNCTIONSf , F+ AND F−

Consider the Stieltjes transformf of Mařcenko-Pastur distribution:

f(z) =

∫

PM̌P(dλ)

λ− z
.

We gather without proofs a few facts related tof , which are part of the folklore.

April 19, 2010 DRAFT



40

Lemma 4 (Representation off). The following hold true:

1) Function f is analytic inC− [λ−, λ+].

2) If z ∈ C− [λ−, λ+] with ℜ(z) ≥ λ++λ−

2
, then

f(z) =
(1− z − c) +

√

(1− z − c)2 − 4cz

2cz
,

where
√
z stands for the principal branch of the square-root.

3) If z ∈ C− [λ−, λ+] with ℜ(z) < λ++λ−

2
, then

f(z) =
(1− z − c)−

√

(1− z − c)2 − 4cz

2cz
,

where−√
z stands for the branch of the square-root whose image is{z ∈ C, ℜ(z) ≤ 0}.

4) As a consequence, the following hold true:

f(x) =
(1− x− c) +

√

(1− x− c)2 − 4cx

2cx
if x ≥ λ+ , (67)

f(x) =
(1− x− c)−

√

(1− x− c)2 − 4cx

2cx
if 0 ≤ x ≤ λ− . (68)

5) Consider the following functioñf(z) = cf(z)− 1−c
z

. Functionsf and f̃ satisfy the following

system of equations:






f(z) = − 1
z(1+f̃ (z))

f̃(z) = − 1
z(1+cf(z))

, (69)

Recall the definition (31) and (51) of functionF+ andF−. In the following lemma, we provide

closed-form formulas of interest.

Lemma 5. The following identities hold true:

1) Let x ≥ λ+, then

F+(x) = log(x) +
1

c
log(1 + cf(x)) + log(1 + f̃(x)) + xf(x)f̃(x) .

2) Let 0 ≤ x ≤ λ−, then

F−(x) = log(x) +
1

c
log(1 + cf(x)) + log(−(1 + f̃(x))) + xf(x)f̃(x) .

Proof: Consider the case wherex ≥ λ+. First write

log(x− y) = log(x) +

∫ ∞

x

(

1

u
+

1

y − u

)

du .
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Integrating with respect withPM̌P and applying Funini’s theorem yields:
∫

log(x− y)PM̌P( dy) = log(x) +

∫ ∞

x

(

1

u
+ f(u)

)

du

in the case wherex > λ+. Recall thatf andf̃ are holomorphic functions overC−({0}∪[λ−, λ+])
and satisfy system (69) (notice in particular that1 + cf and1 + f̃ never vanish). Using the first

equation of (69) implies that:
∫

log(x− y)PM̌P( dy) = log(x)−
∫ ∞

x

f(u)f̃(u) du . (70)

ConsiderΓ(u, f , f̃) = 1
c
log(1+ cf)+ log(1+ f̃)+uf f̃ . By a direct computation of the derivative,

we get:

d

du
Γ(u, f(u), f̃(u)) = f ′

(

1

1 + cf
+ uf̃

)

+ f̃ ′
(

1

1 + f̃
+ uf

)

+ f f̃

= f(u)f̃(u) .

Hence
∫ ∞

x

f(u)f̃(u) du =

[

1

c
log(1 + cf) + log(1 + f̃) + uf f̃

]∞

x

= −
(

1

c
log(1 + cf(x)) + log(1 + f̃(x)) + xf(x)f̃(x)

)

.

It remains to plug this identity into (70) to conclude. The representation ofF− can be established

similarly.
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