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Abstract

This paper introduces a unified framework for the detectioa single source with a sensor array in
the context where the noise variance and the channel betiveesource and the sensors are unknown at
the receiver. The Generalized Maximum Likelihood Test igl&td and yields the analysis of the ratio
between the maximum eigenvalue of the sampled covarian¢exnaand its normalized trace. Using
recent results from random matrix theory, a practical wagualuate the threshold and tihevalue of
the test is provided in the asymptotic regime where the nunibef sensors and the numbéf of
observations per sensor are large but have the same ordexgriitode. The theoretical performance of
the test is then analyzed in terms of Receiver Operating &itenistic (ROC) curve. It is in particular
proved that both Type | and Type Il error probabilities cagesto zero exponentially as the dimensions
increase at the same rate, and closed-form expressionsr@rielgd for the error exponents. These
theoretical results rely on a precise description of thgdateviations of the largest eigenvalue of spiked
random matrix models, and establish that the presentedsgsiptotically outperforms the popular test

based on the condition number of the sampled covariancexmatr
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I. INTRODUCTION

The detection of a source by a sensor array is at the heart oy mizeless applications. It is
of particular interest in the realm of cognitive radio [13] where a multi-sensor cognitive device
(or a collaborative netwotk needs to discover or sense by itself the surrounding emviemt.
This allows the cognitive device to make relevant choiceteims of information to feed back,
bandwidth to occupy or transmission power to use. When tlgaeitige device is switched on, its
prior knowledge (on the noise variance for example) is venjtéd and can rarely be estimated
prior to the reception of data. This unfortunately rules dassical techniques based on energy
detection [4], [5], [6] and requires new sophisticated teghes exploiting the space or spectrum
dimension.

In our setting, the aim of the multi-sensor cognitive datetphase is to construct and analyze

tests associated with the following hypothesis testindlem:

w(n) under H,
y(n) = for n=0:N-1, (2)
h s(n) +w(n) underH,

wherey(n) = [yi(n),...,yx(n)]7 is the observeds x 1 complex time seriesw(n) represents
a K x 1 complex circular Gaussian white noise process with unkneamances?, and N
represents the number of received samples. Vehtar CX*! is a deterministic vector and
typically represents the propagation channel between tlece and theK sensors. Signal
s(n) denotes a standard scalar independent and identicallybdigtd (i.i.d.) circular complex
Gaussian process with respect to the samples0 : N — 1 and stands for the source signal to
be detected.

The standard case where the propagation channel and thevasiance are known has been
thoroughly studied in the literature in the Single Input g Output case [4], [5], [6] and
Multi-Input Multi-Ouput [7] case. In this simple contextjg most natural approach to detect the
presence of source(n) is the well-knownNeyman-PearsoiNP) procedure which consists in
rejecting the null hypothesis when the observed likelihoaiib lies above a certain threshold
[8]. Traditionally, the value of the threshold is set in suchvay that theProbability of False
Alarm (PFA) is no larger than a predefinésliel « € (0,1). Recall that the PFA (resp. the miss

The collaborative network corresponds to multiple bastosts connected, in a wireless or wired manner, to form aialrt

antenna system[3].
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probability) of a test is defined as the probability that theeiver decides hypothesis, (resp.
Hy) when the true hypothesis iH, (resp.H;). The NP test is known to be uniformly most
powerfuli.e., for any levela € (0, 1), the NP test has the minimum achievable miss probability
(or equivalently the maximum achievable power) among atstef levela. In this paper, we
assume on the opposite that:

. the noise variance? is unknown,

« vectorh is unknown.

In this context, probability density functions of the obsgionsy(n) under bothH, and H;
are unknown, and the classical NP approach can no longer poged. As a consequence, the
construction of relevant tests for (1) together with thelysia fo their perfomances is a crucial
issue. The classical approach followed in this paper ctsigeplacing the unknown parameters
by their maximum likelihood estimates. This leads to thealbed Generalized Likelihood Ratio
(GLR). TheGeneralized Likelihood Ratio TeEELRT), which rejects the null hypothesis for large
values of the GLR, easily reduces to the statistics giverheyratio of the largest eigenvalue of
the sampled covariance matrix with its normalized trace[94f [10], [11]. Nearby statistics [12],
[13], [14], [15], with good practical properties, have alseen developed, but would not yield
a different (asymptotic) error exponent analysis.

In this paper, we analyze the performance of the GLRT in tlyenasotic regime where the
numberK of sensors and the numbar of observations per sensor are large but have the same
order of magnitude. This assumption is relevant in manyieafibns, among which cognitive
radio for instance, and casts the problem into a large ranahatnix framework.

Large random matrix theory has already been applied to kdgtaction [16] (see also [17]),
and recently to hypothesis testing [15], [18], [19]. In thigicle, the focus is mainly devoted to
the study of the largest eigenvalue of the sampled covaeiamatrix, whose behaviour changes
under Hy or H,. The fluctuations of the largest eigenvalue undkgrhave been described by
Johnstone [20] by means of the celebrated Tracy-Widomibligion, and are used to study the
threshold and the-value of the GLRT.

In order to characterize the performance of the test, a alafyproach would have been to
evaluate theReceiver Operating CharacteristiROC) curve of the GLRT, that is to plot the
power of the test versus a given level of confidence. Unfateily, the ROC curve does not

admit any simple closed-form expression for a finite numlbiesemsors and snapshots. As the
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miss probability of the GLRT goes exponentially fast to zettee performance of the GLRT
is analyzed via the computation of its error exponent, wltiaracterizes the speed of decrease
to zero. Its computation relies on the study of the large atemis of the largest eigenvalue
of 'spiked’ sampled covariance matrix. By 'spiked’ we reterthe case where the eigenvalue
converges outside the bulk of the limiting spectral disttiln, which precisely happens under
hypothesisH,. We build upon [21] to establish the large deviation priteipand provide a
closed-form expression for the rate function.

We also introduce the error exponent curve, and plot the exponent of the power of the
test versus the error exponent for a given level of confideite error exponent curve can
be interpreted as an asymptotic version of the ROC curveliugdog scale and enables us to
establish that the GLRT outperforms another test based eedhdition number, and proposed
by [22], [23], [24] in the context of cognitive radio.

Notice that the results provided here (determination oftkineshold of the GLRT test and the
computation of the error exponents) would still hold withire setting of real Gaussian random
variables instead of complex ones, with minor modificatfons

The paper is organized as follows.

Section Il introduces the GLRT. The value of the thresholtdjclv completes the definition
of the GLRT, is established in Section II-B. As the latteregirold has no simple closed-form
expression and as its practical evaluation is difficult, mteoduce in Section II-C an asymptotic
framework where it is assumed that both the number of serds@nsd the numbel of available
shapshots go to infinity at the same rate. This assumptioalid for instance in cognitive radio
contexts and yields a very simple evaluation of the threshehich is important in real-time
applications.

In Section 1ll, we recall several results of large random riratheory, among which the
asymptotic fluctuations of the largest eigenvalue of a sampVariance matrix, and the limit of
the largest eigenvalue of a spiked model.

These results are used in Section IV where an approximagsttbld value is derived, which
leads to the same PFA as the optimal one in the asymptotimmeegrhis analysis yields a

relevant practical method to approximate flealuesassociated with the GLRT.

%Details are provided in Remarks 4 and 9.
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Section V is devoted to the performance analysis of the GM& compute the error exponent
of the GLRT, derive its expression in closed-form by estdliig aLarge Deviation Principle
for the test statistid’y 3, and describe the error exponent curve.

Section VI introduces the test based on the condition nujribat is the statistics given by
the ratio between the largest eigenvalue and the smallgshealue of the sampled covariance
matrix. We provide the error exponent curve associated thith test and prove that the latter
is outperformed by the GLRT.

Section VII provides further numerical illustrations ar@hclusions are drawn in Section VIII.

Mathematical details are provided in the Appendix. In gatar, a full rigorous proof of a
large deviation principle is provided in Appendix A, whilenaore informal proof of a nearby
large deviation principle, maybe more accessible to thegpatialist, is provided in Appendix
B.

Notations

Fori € {0, 1}, P;(€) represents the probability of a given evénunder hypothesigi;. For
any real random variablé and any real numbey, notation

T,.2" 7
stands for the test function which rejects the null hypatheghen7 > ~. In this case, the
probability of false alarm (PFADf the test is given by, (7" > ), while the power of the test is
Py(T > 7). Notation% stands for the almost sure (a.s.) convergence under hypsitie For
any one-to-one mappingj : X — Y whereX andYy are two sets, we denote ly ! the inverse
of T" w.r.t. composition. For any borel set € R, x — 14(x) denotes the indicator function of
set A and||«| denotes the Euclidian norm of a given vectarlf A is a given matrix, denote
by A" its transpose-conjugate. K is a cumulative distribution function (c.d.f.), we denotge b

F is complementary c.d.f., that ig7 =1 — F.

3Note that in recent papers [25], [14], [15], the fluctuatimisthe test statistics undeif;, based on large random matrix
techniques, have also been used to approximate the powee dést. We believe that the performance analysis basedeon th

error exponent approach, although more involved, has arwateye of validity.
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[I. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the Generalized Likelihood Rdwst (section II-A) and compute
the associated threshold apéralue (section [I-B). This exact computation raises sowmjuu-
tational issues, which are circumvented by the introductiba relevant asymptotic framework,

well-suited for mathematical analysis (Section 1I-C).

A. Derivation of the Test
Denote by/N the number of observed samples and recall that:

w(n) under H,
y(n) = , n=0:N—-1,
h s(n) +w(n) underH,

where (w(n),0 < n < N — 1) represents an independent and identically distributed.fi.
process of x 1 vectors with circular complex Gaussian entries with mean amd covariance
matrix oI, vectorh € CK*! is deterministic, signals(n),0 < n < N — 1) denotes a
scalar i.i.d. circular complex Gaussian process with zeeamand unit variance. Moreover,
(w(n),0 <n < N-—1)and(s(n),0 <n < N —1) are assumed to be independent processes.
We stack the observed data intakax N matrix Y = [y(0),...,y(N — 1)]. Denote byR the
sampled covariance matrix: 1
R = NYYH,

and respectively, by, (Y; %) andp, (Y; h, 0?) the likelihood functions of the observation matrix
Y indexed by the unknown parametéssand o? under hypothese#l, and H,.

As Y is a K x N matrix whose columns are i.i.d. Gaussian vectors with casae matrix

Y. defined by:

ok e under H,
Y= , (2)
hh" + 521, underH,

the likelihood functions write:
mlYio®) = (r0%) exp (- ZuR) @
P (Y5 h,o?) = (7% det(hh? + 01,)) " exp (—Ntr (R(hh! + 021K)-1)) L@
In the case where parametérsando? are available, the celebrated Neyman-Pearson procedure
yields a uniformly most powerful test, given by the likeldgwratio statisticg2Gho®),

po(Y;0?)
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However, in the case whete ando? are unknown, which is the problem addressed here, no
simple procedure garantees a uniformly most powerful tesd, a classical approach consists in

computing the GLR:

S Y: h,o?
Ly — UPp, 52 pi( : 20' ) ‘ (5)
sup,2 po(Y;0?)

In the GLRT procedure, one rejects hypotheliswheneverLy > £y, wWhereéy is a certain
threshold which is selected in order that the PEALy > &y) does not exceed a given level
.

In the following proposition, which follows after straigotward computations from [26] and
[9], we derive the closed form expression of the GLR. Denote by\; > Ao > --- > A >0

the ordered eigenvalues & (all distincts with probability one).

Proposition 1. Let Ty be defined by:

A
Ty = -1 6
N TuR (6)
then, the GLR (cf. Eqg. (5)) writes:
C
Ly = (TN)N (1 - TYN>(K—1)N
whereC' = (1 — %)(I_K)N.
By Proposition 1,Ly = ¢y x(Ty) Wheregy i = z — CaV (1 - %)N(I_K). The GLRT

rejects the null hypothesis when inequallty, > ¢y holds. AsTy € (1, K) with probability one
and asgpy x Is increasing on this interval, the latter inequality is eglent to 7y > gb]‘V}K(gN).
Otherwise stated, the GLRT reduces to the test which rejretsull hypothesis for large values
of Ty

Tn =2 v (7)

wherevyy = gb](,}K(gN) is a certain threshold which is such that the PFA does notegkaegiven

level «. In the sequel, we will therefore focus on the test stassiic.

Remark 1. There exist several variants of the above statistics [12B]] [14], [15], which

merely consist in replacing the normalized trace with a mioreolved estimate of the noise
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variance. Although very important from a practical pointwaéw, these variants have no impact
on the (asymptotic) error exponent analysis. Thereforerasgict our analysis to the traditional

GLRT for the sake of simplicity.

B. Exact threshold ang-values

In order to complete the construction of the test, we musvigea procedure to set the
threshold~y. As usual, we propose to defingy as the value which maximizes the power
P, (Ty > ~yn) of the test (7) while keeping the PRA (T > vn) under a desired level € (0, 1).

It is well-known (see for instance [8], [27]) that the lattereshold is obtained by:

v =py (@) (8)

wherepy (t) represents the complementary c.d.f. of the statisticunder the null hypothesis:
pn(t) =Po(Ty > t) . 9

Note thatpy(¢) is continuous and decreasing from 1 to O a4 [0, c0), so that the threshold
py' (@) in (8) is always well defined. When the threshold is fixechte = py' (), the GLRT
rejects the null hypothesis whéfy, > p' («) or equivalently, whemy (Ty) < a. It is usually

convenient to rewrite the GLRT under the following form:

Hy
pnv(In) = a. (10)

H,
The statisticspy(Ty) represents theignificance probabilityor p-value of the test. The null
hypothesis is rejected when thevaluepy (T ) is below the levetv. In practice, the computation
of the p-value associated with one experiment is of prime impogamhedeed, the-value not
only allows to accept/reject an hypothesis by (10), but ithiermore reflects how strongly the
data contradicts the null hypothesis [8].

In order to evaluatg-values, we derive in the sequel the exact expression ofdimplementary

c.d.f.py. The crucial point is thal'y is a function of the eigenvalues, . .., \x of the sampled

covariance matrix. We have
pn(t) = / p(l](,N(xla s wg ) (11)
Ag

DRAFT April 19, 2010



where for eacht, the domain of integratior\, is defined by:

K Kz,
A = {(xl,...,xK) e R", P >t} ,
andp(}(,N is the joint probability density function (p.d.f.) of thedmred eigenvalues @t under
H, given by:
1 K
P (T1K) = —(IlzzbzxKZO) [T (o —a)? [[a) e (12)
K,N 1<i<j<K j=1

wherel,, >..>.,>0) Stands for the indicator function of the sgitr; .. .2x) : 1 > --- > 2 >

0} and WhereZ%N is the normalization constant (see for instance [28], [29aier 4]).

Remark 2. For eacht, the computation opy(¢) requires the numerical evaluation of a non-
trivial integral. Despite the fact that powerful numericalethods, based on representations of
such integrals with hypergeometric functions [30], are idadale (see for instance [31], [32]),
an on line computation, requested in a number of real-time applicajanay be out of reach.
Instead, tables of the functigny should be computedff line i.e., prior to the experiment.
As both the dimensiong and N may be subject to frequent chanfjeall possible tables of
the functionpy should be available at the detector’s side, for all possiddues of the couple
(N, K). This both requires substantial computations and consioler memory space. In what

follows, we propose a way to overcome this issue.

In the sequel, we study the asymptotic behaviour of the cemehtary c.d.fpy when both
the number of sensorE” and the number of snapshais go to infinity at the same rate. This

analysis leads to simpler testing procedure.

C. Asymptotic framework

We propose to analyze the asymptotic behaviour of the camgalary c.d.fpy as the number
of observations goes to infinity. More precisely, we consitie case where both the number

of sensors and the numbér of snapshots go to infinity at the same speed, as assumed below

K .
N — 00, K — oo, CN::N—>C,WIthO<c<1. (13)

“In cognitive radio applications for instance, the numbeusérskK which are connected to the network is frequently varying.
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This asymptotic regime is relevant in cases where the sgrssistem must be able to perform
source detection in a moderate amount of tiree the numberk of sensors and the numbar

of samples being of the same order. This is in particular #ge ¢n cognitive radio applications
(see for instance [33]). Very often, the number of sensolewer than the number of snapshots,
hence the ratie lower than 1.

In the sequel, we will simply denot&, K — oo to refer to the asymptotic regime (13).

Remark 3. The results related to the GLRT presented in Sections IV amemain true for

¢ > 1; in the case of the test based on the condition number ancpted in Section VI, extra-
work is needed to handle the fact that the lowest eigenvadneerges to zero, which happens
if ¢>1.

[1l. L ARGE RANDOM MATRICES - LARGEST EIGENVALUE - BEHAVIOUR OF THE GLR

STATISTICS

In this section, we recall a few facts on large random madreee the dimensiond’, K go to
infinity. We focus on the behaviour of the eigenvaluesfofwhich differs whether hypothesis
Hy, holds (Section IlI-A) orH; holds (Section IlI-B).

As the column vectors oY are i.i.d. complex Gaussian with covariance mahgiven by
(2), the probability density oR is given by:

_
Z(N, K, %)
where Z(N, K, ) is a normalizing constant.

e—Ntr(zfllfL) (det R)N—K)

A. Behaviour under hypothesig,

As the behaviour of’y does not depend a#?, we assume that®> = 1; in particular,X = I.
Under Hy, matrixR is a complex Wishart matrix and it is well-known (see for arste [28]) that
the Jacobian of the transformation between the entrieseofrthtrix and the eigenvalues/angles
is given by the Vandermonde determindff., ;. (z; —x;)%. This yields the joint p.d.f. of the
ordered eigenvalues (12) where the normalizing constdiX, K, Ik ) is denoted byZ?ﬂN for
simplicity.

The celebrated result from Maenko and Pastur [34] states that the limit/dsK° — oo of

the c.d.f. Fy(z) = w associated to the empirical distribution of the eigenval(}) of
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R is equal toPy;p ((—oo, z]) wherePy;, represents the Maenko-Pastur distribution:

VOt =)y — )

2mey

Pyip(dy) = 1(,\7,>\+)(y) dy, (14)

with A\t = (1 + /c)?> and A\~ = (1 — /c)%. This convergence is very fast in the sense that the
probability of deviating fromP;;, decreases as V*xconst More precisely, a simple application
of the large deviations results in [35] yields that for angtdnced on the set of probability

measures ofR compatible with the weak convergence and for @ny 0,

lim sup % log Py (d(Fn, Pyp) > ) = —00 . (15)

N—oo

Moreover, the largest eigenvalug of R converges a.s. to the right edge of the kéako-
Pastur distribution, that i§l + /c)?. A further result due to Johnstone [20] describes its speed
of convergence ¥ ~2/3) and its fluctuations (see also [36] for complementary tekulLet A,
be defined by:

—(1 2
Ay = N3 (Al 1+ vey) ) , (16)
by
whereby is defined by )
1 1/3
by = (14 /cn) <TN + 1) : (17)

then A; converges in distribution toward a standard Tracy-Widomdoan variable with c.d.f.

Fry defined by:

Frwy(x) = exp (— /Oo(u — 2)¢*(u) du) VeeR, (18)
whereq solves the Painlevé Il differential equation:

¢"(z) = 2q(x) +2¢*(x), q(z) ~Ai(r) as = — oo

and where Ajz) denotes the Airy function. In particulaf;-y is continuous. The Tracy-Widom
distribution was first introduced in [37], [38] as the asyot distribution of the centered and
rescaled largest eigenvalue of a matrix from the GaussidtakynEnsemble.

Tables of the Tracy-Widom law are available for instance38][ while a practical algorithm

allowing to efficiently evaluate equation (18) can be found40].

Remark 4. In the case where the entries of mati¥x are real Gaussian random variables, the
fluctuations of the largest eigenvalue are still describgdabTracy-Widom distribution whose

definition slightly differs from the one given in the comptese (for details, see [20]).
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B. Behaviour under hypothesi$;

In this case, the covariance matrix writds = 021 + hh* and matrixR follows asingle
spikedmodel. Since the behaviour @fy is not affected if the entries oY are multiplied by a

given constant, we find it convenient to consider the modedre/B. = I + % Denote by

b

0-2
the signal-to-noiseratio (SNR), then matrix> admits the decomposition = UDU* whereU
is a unitary matrix andd = diag (pg, 1,...,1). With the same change of variables from the

entries of the matrix to the eigenvalues/angles with szv}i[lSKjSK(xj — z;)?, the p.d.f. of

the ordered eigenvalues writes:

1 1> > K —Nz; N

A K
K,N 1<i<j<K j=1

where the normalizing constait(N, K, I + hh*) is denoted byZ}{,N for simplicity, Xk is

the diagonal matrix with eigenvaluds;, ..., zx), By is the K x K diagonal matrix with
eigenvalueslfij,O, ...,0), and for any real diagonal matric€3,, Dy, the spherical integral

Ix(Cg,Dg) is defined as

I1(Cr, D) — / FUCRADLA gy (@), (20)

with mj the Haar measure on the unitary group of sigdsee [30, Chapter 3] for details).
Whereas this rank-one perturbation does not affect the p®tim behaviour of Fy (the

convergence towart,;, and the deviations of the empirical measure given by (14) stid

underP;), the limiting behaviour of the largest eigenvalge can change if the signal-to-noise

ratio py is large enough.

Assumption 1. The following constanp € R exists:

= lim pK> . (21)

We refer top as the limiting SNR. We also introduce
00 C
spk — (1 + p) 1+ ; :
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Under hypothesig/,, the largest eigenvalue has the following asymptotic bieleas /N, K go

to infinity:
o Ao Fp>y/e,
A —> (22)
h AT otherwise,
see for instance [41] for a proof of this result. Note in parar that\Z;, is strictly larger than
the right edge of the suppokt” whenever > /c. Otherwise stated, if the perturbation is large

enough, the largest eigenvalue converges outside the gugfpidlarcenko-Pastur distribution.

C. Limiting behaviour ofly under H, and H;

Gathering the results recalled in Sections IlI-A and Illsge obtain the following:

Proposition 2. Let Assumption 1 hold true and assume that /¢, then:

TN%(H—\/E)Z and TN%(1+,0)<1+E> as N, K — oc.
0 1 1%

IV. ASYMPTOTIC THRESHOLD ANDp-VALUES
A. Computation of the asymptotic threshold gndalue
In Theorem 1 below, we take advantage of the convergencétgexfithe largest eigenvalue
of R under H, in the asymptotic regimeéV, Kk — oo to express the threshold and thevalue

of interest in terms of Tracy-Widom quantiles. Recall thag, = 1 — Fpyy, thatey = % and

thatby is given by (17).

Theorem 1. Consider a fixed levek € (0,1) and letv,y be the threshold for which the power

of test (7) is maximumi,e. py(yn) = a Wherepy is defined by11). Then:

1) The following convergence holds true:

A N3 2 —1
(v = b (v — (1 +Vew)?) ~o Frw(a) .

2) The PFA of the following test

Hy
.
Ty 2 (L+ven) + 55 Friv(e) (23)
Hy

converges tav.
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3) Thep-valuepy(Ty) associated with the GLRT can be approximated by:

B 2/3(Ty — )2
pn(Tn) = Frw <N o bz(vl - vew) )> (24)

in the sense thaty(Ty) — pn(Tn) — 0.

Remark 5. Theorem 1 provides a simple approach to compute both thetibid and thep-
values of the GLRT as the dimensiénh of the observed time series and the numbérof
snapshots are large: The thresholg: associated with the level can be approximated by the
righthand side of (23). Similarly, equation (24) provideg@nvenient approximation for the
value associated with one experiment. These approachestdedquire the tedious computation
of the exact complementary c.d.f. (11) and, instead, oryyamr tables of the c.d.f7,, which
can be found for instance in [39] along with more details oe tomputational aspects (note
that function Frryy does not depend on any of the problem’s characteristic, angairticular
not onc). This is of importance in real-time applications, such agmitive radio for instance,
where the users connected to the network must quickly ddordthe presence/absence of a

source.

Proof of Theorem 1:Before proving the three points of the theorem, we first deedhe

fluctuations ofTy under H, with the help of the results in Section IlI-A. Assume withdoss

of generality that? = 1, recall thatTy = KjltrR and denote by:
N2 (Ty — (1 2
. (T bfv +vn)?) (25)

the rescaled and centered version of the statigficsA direct application of Slutsky’s lemma
(see for instance [42]) together with the fluctuations\gfas reminded in Section IlI-A yields
that Ty converges in distribution to a standard Tracy-Widom rand@mable with c.d.f.Fry,
which is continuous oveR. Denote byFy the c.d.f. of Ty under Hy, then a classical result,
sometimes called Polya’s theorem (see for instance [43Berés that the convergence bf;

towards Fry is uniform overR:

sup |[Fiy(z) — Frw(z)] ——— 0. (26)
z€R N, K—o0

We are now in position to prove the theorem.
The mere definition of 5 implies thata = py(yn) = Fn(Cy). Due to (26),Frw (Cy) — a.
As Fry has a continuous inverse, the first point of the theorem iggato
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The second point is a direct consequence of the convergdnEg toward the Tracy-Widom
distribution: The PFA of test (23) can be written ﬁg:(TN > FT‘&,(a)) which readily converges
to a.

The third point is a direct consequence of (26)(Tx)—pn(Tw) = Fx(Tn)—Frw (Ty) = 0.

This completes the proof of Theorem 1.

V. ASYMPTOTIC ANALYSIS OF THE POWER OF THE TEST

In this section, we provide an asymptotic analysis of the groof the GLRT asV, K — oc.
As the power of the test goes exponentially to zero, its eexmonent is computed with the help
of the large deviations associated to the largest eigeevaflimatrix R. The error exponent and
error exponent curve are computed in Theorem 2, Section W& large deviations of interest

are stated in Section V-B. Finally Theorem 2 is proved in ®acV-C.

A. Error exponents and error exponent curve

The most natural approach to characterize the performaneéest is to evaluate its power or
equivalently its miss probabilitye., the probability undef; that the receiver decides hypothesis

H,. For a given levek € (0, 1), the miss probability writes:
Bnr(a) =inf {P; (Ty <7), ~ such thatP, (Ty > v) < a} . (27)
i

Based on Section II-B, the infimum is achieved when the thulesboincides withy = py' (a);
otherwise stated3y r(a) =P, (Ty < py'(a)) (notice that the miss probability depends on the
unknown parameterd and o?). As Sy r(«) has no simple expression in the general case, we
again study its asymptotic behaviour in the asymptoticmegof interest (13). It follows from
Theorem 1 thapy'(a) — AT = (1+/c)? for a € (0,1). On the other hand, under hypothesis
H,, Ty converges a.s. tdgy, which is strictly greater than™ when the ratio”;‘—'Q‘2 is large
enough. In this case}; (TN < pg,l(a)) goes to zero as it expresses the probability that
deviates from its limit\3, ; moreover, one can prove that the convergence to zero isexgial
in N:

NI ()

Py (Ty <z)oxe for = <\X (28)

spk
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where I is the so-called rate function associatedltp. This observation naturally yields the

following definition of the error exponerdt;:

ET = lim —%1OgﬁN7T(Oé) (29)

N,K —o0
the existence of which is established in Theorem 2 belowNa& — oo). Also proved is the
fact that€, does not depend on.

The error exponent gives crucial information on the performance of the tEst provided
that the levelr is kept fixed whenV, K go to infinity. Its existence strongly relies on the study
of the large deviations associated to the statisti¢s

In practice however, one may as well take benefit from theessing number of data not
only to decrease the miss probability, but to decrease tied®Fwell. As a consequence, it is
of practical interest to analyze the detection performanben both the miss probability and
the PFA go to zero at exponential speed. A couplgh) € (0,00) x (0,00) is said to be an
achievablepair of error exponents for the te$l; if there exists a sequence of levels such

that, in the asymptotic regime (13),

) 1 . 1
Nvl}l{lgoo N logay =a and N7111{1300 N log Byr(an) =0 . (30)

We denote by8; the set of achievable pairs of error exponents for Téstas N, K — oo. We
refer to8+ as theerror exponent curvef Ty.
The following notations are needed in order to describe ther eexponenté; and error

exponent curves,.

fz) = [ y%xIPMP(dy) forx e R\ (A7, \F)

31
Ff(z) = [log(z —y)Pyp(dy) forz>A* oy

Remark 6. Function f is the well-known Stieltjes transform associated to dé¢ako-Pastur
distribution and admits a closed-form representation folam So does functiodr™, although

this fact is perhaps less known. These results are gatherégppendix C.

Denote byA(- | A) the convex indicator functione. the function equal to zero far € A

and to infinity otherwise. Fop > /¢, define the function:

IHa) = x(l_ﬁig)k —(1—c)log (%&) — ¢ (FH(x) — FT(A\%5)) + Az | [\, 00)) (32)
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Also define the function:

T

I (2) :x—)\+—(1—c)log<)\+

) — 2 (FH(x) = FT(\D) + Az | [\, 00) . (33)
We are now in position to state the main theorem of the section

Theorem 2. Let Assumption 1 hold true, then:

1) For any fixed levek € (0, 1), the limit £ in (29) exists asV, K — oo and satisfies:
Er = Ij()ﬁ) (34)

if p > +/c and Er = 0 otherwise.

2) The error exponent curve of te8ly is given by:

S = {(Ig(2), 1) (z)) : € (A", A5} (35)

» “\spk

if p > /c and 87 = () otherwise.

The proof of Theorem 2 heavily relies on the large deviatiohdy and is postponed to

Section V-C. Before providing the proof, it is worth makirtgetfollowing remarks.

Remark 7. Several variants of the GLRT have been proposed in the titexaand typically
consist in replacing the denominatq%trf{ (which converges toward?) by a more involved
estimate ob? in order to decrease the bias [12], [13], [14], [15]. Howeveét can be established
that the error exponents of the above variants are as wedrglyy (34) and (35) in the asymptotic

regime.

Remark 8. The error exponené yields a simple approximation of the miss probability in the
sense thaBBy r(a) ~ e VT as N — oo. It depends on the limiting ratie and on the value
of the SNRp through the constantg;, . In the high SNR case, the error exponent turns out to
have a simple expression as a functiorpoff p — oo then g, tends to infinity as well, which

simplifies the expression of rate functidfi. Using F*(A\Z

spk) - log )\:Sk + Op(l) WhereOp(l)

stands for a term which converges to zeropas> o, it is straightforward to show that for each
x> A\, I (x) =logp —1— (1 —c)logr — cF*(z) + 0,(1). After some algebra, we finally
obtain:

Er=logp— (14++c)— (1 —c)log(l++c)—clogvec+o,(1) .
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At high SNR, this yields the following convenient approxiomaof the miss probability:

Bur(a) = (v(c) p)™ (36)

wherev(c) = e"0+Ve(1 4 /c)*~ 2,

B. Large Deviations associated oy

In order to express the error exponents of interest, a rigoformalization of (28) is needed.
Let us recall the definition of a Large Deviation Principle:s&quence of random variables
(Xn)nen Satisfies a Large Deviation Principle (LDP) underin the scaleN with good rate
function [ if the following properties hold true:

. [ is a nonnegative function with compact level sets, {x./(z) < t} is compact fort € R,

. for any closed sef’ C R, the following upper bound holds true:

1
limsupﬁlogIP’(XN eF)< —ir;f] . (37)

N—oo

. for any open setG C R, the following lower bound holds true:
o] :
thrilorcl)f N logP(Xy € G) > —11(1}f[ : (38)

For instance, ifA is a set such thanfiy ) I = infa) I(= inf4 1), (Where infA) and clA)

respectively denote the interior and the closureddfthen (37) and (38) yield

lim N~'logP(Xy € A) = —inf I . (39)

N—oo
Informally stated,

P(Xy€A) o« e NMal  asN oo,

If, moreoverinf 4 I > 0 (which typically happens if the limit o y -if existing- does not belong
to A), then probabilityP(Xy € A) goes to zero exponentially fast, hencla@e deviation(LD);
and the evenf Xy € A} can be referred to as 1@are event. We refer the reader to [44] for
further details on the subject.

As already mentioned above, all the probabilities of irgee rare events a¥, K go to
infinity related to large deviations fdfy. More precisely, Theorem 2 is merely a consequence

of the following Lemma.

Lemma 1. Let Assumption 1 hold true and l&f, K — oo, then:
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1) Under H,, Ty satisfies the LDP in the scal®& with good rate function/;”, which is
increasing from 0 toxo on interval (A1, o).

2) Under H; and if p > /¢, Ty satisfies the LDP in the scal® with good rate function
I7. Function I is decreasing from/ 7 (A™) to 0 on [A*, AZ,] and increasing from O to

00 0N [AZ), 00).

3) For any bounded sequenégy) >0,

LX) ifp>/c
0 otherwise.

1
lm —logP, <TN < (14 en)?+ v ) - (40)

N,K 00 N2/3
4) Letx € (AT, 00) and let(xy)n>0 be any real sequence which converges:tdf p < /c,

then:

) 1
N,lfl(goo —N log Py (TN < .CE'N) =0. (41)

The proof of Lemma 1 is provided in Appendix A.

Remark 9. 1) The proof of the large deviations fdfy relies on the fact that the denominator
K-trR of Ty concentrates much faster than. Therefore, the large deviations @iy
are driven by those ok, a fact that is exploited in the proof.

2) In Appendix A, we rather focus on the large deviationg ptinder H; and skip the proof
of Lemma 1-(1), which is simpler and available (to some é@xien29, Theorem 2.6.6]
Indeed, the proof of the LDP relies on the joint density oféigenvalues. Undeff;, this
joint density has an extra-term, the spherical integraldas thus harder to analyze.

3) Lemma 1-(3) is not a mere consequence of Lemma 1-(2) as itilokes¢he deviations of
T at the vicinity of a point of discontinuity of the rate furmti The direct application
of the LDP would provide a trivial lower bound-¢<) in this case.

4) In the case where the entries of mati¥xare real Gaussian random variables, the results
stated in Lemma 1 will still hold true with minor modificatgrnThe rate functions will be
slightly different. Indeed, the computation of the ratections relies on the joint density

of the eigenvalues, which differs whether the entrie¥ odire real or complex.

®see also the errata sheet for the sign error in the rate ameti the authors webpage.
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Plot of rate function I;
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Figure 1. Plots of rate functiong and I,/ in the case where = 0.5 and p = 1db. In this case\™ = 2.9142, A, = 3,
I (AT) =0and I (AZ,) = 0.

C. Proof of Theorem 2

In order to prove (34), we must study the asymptotic behavimfuthe miss probability

Byr(a) =Py (Ty < py'(a)) asN, K — co. Using Theorem 1-(1), we recall that

Bur(e) =Py (T < (1+ vew)* + 57 (42)

wherecy = % converges ta: and whereny is a deterministic sequence such that

| R
’lll(rgoonN = (1++/¢) <% + 1) Fr(a).

Hence, Lemma 1-(3) yields the first point of Theorem 2. We noove the second point. Assume

N

thatp > \/c. Consider anyr € (\*, AZ,) and for everyN, K, consider the test function which

rejects the null hypothesis whéfy > x,

Hy
Denote byay = Py(Ty > x) the PFA associated with this test. By Lemma 1-(1) togethéin wi

the continuity of the rate function at, we obtain:

lim —% logay = inf If(y)=1(z). (44)

N,K—)OO ye[q:,oo)
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The miss probability of this test is given Bx r(ay) = P1(Ty < z). By Lemma 1-(2),

lim —%logﬁMT(aN): inf IHy) =TI (x) . (45)

N,K—o0 y€(—o0,7]

Equations (44) and (45) prove thatgf(x),lj(x)) is an achievable pair of error exponents.
Therefore, the set in the righthand side of (35) is included;. We now prove the converse.
Assume that(a,b) is an achievable pair of error exponents anddgt be a sequence such
that (30) holds. Denote byy = py'(ax) the threshold associated with level. As I (z) is
continuous and increasing from 0 ¢o on interval(A*, co), there exists a (unique) € (A, co)
such thate = I (x). We now prove thatyy converges tar as N tends to infinity. Consider a
subsequence,y) Which converges to a limity € R U {oo}. Assume thaty > x. Then there

existse > 0 such thaty,yy > x + ¢ for large N. This yields:
—LIOgPO (T (N) > (N)) > —Llogpo (T (N) >$—|—€) . (46)
p(N) ’ ’ ©(N) ’
Taking the limit in both terms yield$, () > I (z + ¢) by Lemma 1, which contradicts the

fact that/; is an increasing function. Now assume that. . Similarly,

1 1
log Py (T < ——logPy (T, _ 47
o) 1080 (T > %) < =y loaPo (T > o = ¢) (47)

for a certaine and for N large enough. Taking the limit of both terms, we obtdjn(z) <

I (x — €) which leads to the same contradiction. This proves that; vy = z. Recall that by
definition (30),

) 1
b= N,lil(rgoo —N IOg]P)l (TN < ’)/N) .

As vy tends tox, Lemma 1 implies that the righthand side of the above equmasicequal to
IT(x) > 0if z € (AT, Ag,) andp > +/c. Itis equal to O ifz > AZ) or p < /c. Now b > 0 by

» “Yspk

definition, therefore both conditionse (A*, A%, ) andp > y/c hold. As a conclusion, ifa, b) is

an achievable pair of error exponents, thenb) = (15 (), If (x)) for a certainz € (A™, AZ,),

and furthermorep > /c. This completes the proof of the second point of Theorem 2.

VI. COMPARISON WITH THE TEST BASED ON THE CONDITION NUMBER

This section is devoted to the study of the asymptotic perémces of the test/y = AA—;{
which is popular in cognitive radio [22], [23], [24]. The nmaiesult of the section is Theorem
3, where it is proved that the test basedonpasymptotically outperforms the one basedign

in terms of error exponent curves.
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A. Description of the test

A different approach which has been introduced in severpéadevoted to cognitive radio
contexts consists in rejecting the null hypothesis fordarglues of the statistidsy defined by:

_ M
-2

which is the ratio between the largest and the smallest eigees ofR. Random variablé/y

Uy (48)

is the so-callectondition numbenf the sampled covariance matik. As for Ty, an important
feature of the statistic& is that its law does not depend of the unknown parametethich
is the level of the noise. Under hypothedi%, recall that the spectral measure Rf weakly
converges to the Maenko-Pastur distribution (14) with suppdet—, A*). In addition to the fact
that A\, converges toward* under H, and Ay Under Hy, the following result related to the
convergence of the lowest eigenvalue is of importance (@e@e$tance [45], [46], [41]):

Mg =25 A7 = 0?(1 — /e)? (49)

under both hypothesed, and H,. Therefore, the statistidsy admits the following limits:

a.s. )\+ (1+\/E)2 a.s. )\Sok
UN?FIW, and UNH—1>>\—Ii forp>\/E. (50)

The test is based on the observation that the limitUgf under the alternativéi; is strictly

larger than the ratio™/\~, at least when the SNR is large enough.

B. A few remarks related to the determination of the thredtiot the testl/,

The determination of the threshold for the tés¢ relies on the asymptotic independence of
A1 and g under Hy,. As we shall prove below that teéty is asymptotically outperformed
by testTy, such a study, rather involved, seems beyond the scope ohtticle. For the sake
of completeness however, we describe unformally how to reetthreshold for/y. Recall the
definition of A; in (16) and letAx be defined as:

AK:N2/3 (AK_(l_\/a)z)lg _
(ver 1) (e 1)

Then bothA; and Ax converge toward Tracy-Widom random variables. Moreover,

(A1, Ak) m (X,Y),
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where X andY are independent random variables, both distributed aguptd £y .
As a corollary of the previous convergence, a direct apptinaof the Delta method [27,
Chapter 3] yields the following convergence in distribatio
A (1 + \/CN)Q
N?/3 (—1—7 — (aX +0Y)
)\K (1 — w/CN)Q ( )

where

which enables one to set the threshold of the test, basedeoquimntiles of the random variable
aX + bY. In particular, following the same arguments as in Theorefr), Jone can prove that
the optimal threshold (for some fixed e (0, 1)), defined byPy(Uy > vy) = « , satisfies
L n2/3 (1+en)? 1
gN = N/ <’YN - (1 — /—CN)Q N, K—o0 FaX-i—bY(a) :

In particular,&y is bounded asV, K — oo.

C. Performance analysis and comparison with the GLRT

We now provide the performance analysis of the above tesidbas the condition number
Uy in terms of error exponents. In accordance with the defimtiof section V-A, we define the
miss probability associated with tdst, asfy () = inf, Py (Uy < 7) for any levela € (0, 1),
where the infimum is taken w.r.t. all thresholgsuch thatP, (Uy > v) < a. We denote by,
the limit of sequence% log By v () (if it exists) in the asymptotic regime (13). We denoteShy
the error exponent curve associated with tésti.e., the set of couple&a, b) of positive numbers
for which —% log By v (an) — b for a certain sequencey which satisfies—% log any — a.

Theorem 3 below provides the error exponents associated tegt Uy. As for Ty, the
performance of the test is expressed in terms of the ratdifumof the LDPs forUy underP,
or P;. These rate functions combine the rate functions for thgektreigenvalue, i.e. I;f and
I defined in Section V-B, together with the rate function a&sted to the smallest eigenvalue,
1, defined below. As we shall see, the positive rank-one gdaation does not affect, whose

rate function remains the same undéy and H;.

Such an asymptotic independence is not formally proved greRf under Ho, but is likely to be true as a similar result has
been established in the case of the Gaussian Unitary Eneddify|[40].
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We first define:
F(x)= /log(y —2)dPyp(y) forxz <A . (51)

As for F*, functionF~ also admits a closed-form expression based,dhe Stieltjes transform
of Martenko-Pastur distribution (see Appendix C for details).

Now, define for eachr € R:
(@) =2 -2 —(1—c)log (Ai_) —2c(F(2) —F~ (A7) + A|(0, A7) (52)

If A\, and )\ were independent random variables, the contraction ple¢see e.g. [44]) would
imply that the following functions

Ly(t) = inf {Ij(m) +I(y) g - t} and To(r) = inf {1;(:6) + I (y) : g - t}
defined for each > 0, are the rate functions associated with the LDP governiyo\ under
hypotheseg/; and H, respectively. Of course,; and\x are not independent, and the contraction
principle does not apply. However, a careful study of thefpsd.  and py , shows that\,

and A\, behave as if they were asymptotically independent, fronrgelaeviation perspective:

Lemma 2. Let Assumption 1 hold true and l&f, K — oo, then:
1) Under Hy, Uy satisfies the LDP in the scal® with good rate functiord’,.
2) Under H; and if p > /¢, Uy satisfies the LDP in the scal® with good rate function
T,
3) For any bounded sequenc¢ey)n>o,

1 1 / 2 L, (AT if p>
lim ——logP <UN < (1+ CN)2 + nfj/g) = p(A) P> (53)
N,K 500 (1-ycn)? N 0 otherwise.

Moreover,I',(A*) = I7(AT).
4) Letz € (AT, 00) and let(zy)n>o be any real sequence which converges:tdf p < /c,
then:

) 1
N,lll(rgoo _N log Py (TN < IL’N) =0 (54)

Remark 10. In the context of Lemma 1, both quantitigsand \x deviate at the same speed,
to the contrary of statistic$y where the denominator concentrated much faster than tigedr

eigenvalue);. Nevertheless, proof of Lemma 2 is a slight extension of tbhef @f Lemma 1,
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based on the study of the joint deviatigqns, Ak ), the proof of which can be performed similarly
to the proof of the deviations of. Once the large deviations established for the coyple A ),
it is a matter of routine to get the large deviations for theioa\, /\x. A proof is outlined in

Appendix B.
We now provide the main result of the section.

Theorem 3. Let Assumption 1 hold true, then:

1) For any fixed levek € (0,1) and for eachp, the error exponen€, exists and coincides

2) The error exponent curve of tety is given by:

s0 = {@on0 e (52 55)

if p > /c and8; = () otherwise.

3) The error exponent curv&; of testTy uniformly dominates;; in the sense that for each
(a,b) € 8y there exitst/ > b such that(a,b') € Sr.

Proof: The proof of items (1) and (2) is merely bookkeeping from theop of Theorem 2
with Lemma 2 at hand.

Let us prove item (3). The key observation lies in the follogviwo facts:

s
vee (VR T(3) = L@, (56)
s
Vo e (A1, A%, T (A—_) < Ii(x). (57)
Recall that
S W + () - Y_ T
L(5) = wi{fw+ro s T-5}

(a) o

< L@ +I7(\7) =1 (),
where (a) follows from the fact that/—(A\~) = 0 and by takingu = x,v = A~. Assume that
inequality (a) is strict. Due to the fact thalt;r is decreasing, the only way to decrease the value
of I(u) + I~ (v) under the considered constraiit= ;= is to find a couple(u, v) with u > z,

but this cannot happen because this would enforce\~ so that the constrairt = = remains
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fulfilled, and this would end up witli—(v) = oo. Necessarily(a) is an equality and (56) holds
true.

Let us now give a sketch of proof for (57). Notice first tl’f{% lu==> 0 (which easily follows
from the fact that/;" is increasing and differentiable) Whi% |l = 0. This equality follows

from the direct computation:

lim I~ (x) _ 1—0_20dF_
/AT — AT A~ dx oA
14 /c _
11— 2cf (A =
where the last equality follows from the fact thégz; = —f together with the closed-form

expression foff as given in Appendix C. As previously, write:

ro(Ai_> — inf {I;(u)ﬂ—(v); %:Ai_}

(u0)
< () + I (A7) = If(x).

Consider now a small perturbatian = = — § and the related perturbation = A\~ — §’ so
that the constraint = <= remains fulfilled. Due to the values of the derivatives/pfand /-
at respective points and A\, the decrease of, (x — §) will be larger than the increase of
I= (A= —¢'), and this will result in the fact that

T, (Ai_) < IFa -8+ (V- +8) < IF(x),

which is the desired result, which in turn yields (57).
We can now prove Theorem 3-(3). Lét,b) € Sy and (a,b') € Sy, we shall prove that
b < t'. Due to the mere definitions of the curvs and S, there existr € (A™, Ag,) and

t € (AT/AT,A8/A7) such thatae = I (z) = To(t). Eq. (57) yields that™ < t. As I} is
decreasing, we have

Vo= If(x) > (A7) = T,(t) = b,

p

and the proof is completed. [ ]

Remark 11. Theorem 3-(1) indicates that when the number of data ine®athe powers of
tests7y and Uy both converge to one at the same exponential sgged 1, provided that

the levela is kept fixed. However, when the level goes to zero expotigritiat as a function of
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Log of the Error exponent for different values of ¢

-10 | 1 1 1 1
0

Figure 2. Computation of the logarithm of the error exponérassociated to the te§ty for different values ofc (with &,
defined forp > \/c and &, |, = = 0), and comparison with the optimal result (Neyman-Pearstmjined in the case where

all the parameters are perfectly known.

the number of snapshots, then the test basedooutperforms/y in terms of error exponents:
The power ofl’y converges to one faster than the powerldf. Simulation results forV, K
fixed sustain this claim (cf. Figure 4). This proves that ie ttontext of interestN, K — o),

the GLRT approach should be prefered to the tégt

VIlI. NUMERICAL RESULTS

In the following section, we analyze the performance of tteppsed tests in various scenarios.

Figure 2 compares the error exponent of tEBgtwith the optimal NP test (assuming that all
the parameters are known) for various values ahd p. The error exponent of the NP test can
be easily obtained using Stein’s Lemma (see for instancp.[48

In Figure 3, we compare the Error Exponent curves of botts tBgtand Uy. The analytic
expressions provided in 2 and 3 for the Error Exponent cuneee been used to plot the curves.

The asymptotic comparison clearly underlines the gain afgugestT)y.
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55X 107 Error Exponent Curves for T and Ts
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Figure 3. Error Exponent curves associated to the Bstg71) andUx (73) in the case where = % andp = 10dB. Each
point of the curve corresponds to a given error exponent ufithe(X axis) and its counterpart error exponent undar (Y
axis) as described in Theorem 2-(2) f6x, and Theorem 3-(2) fot/ .

Finally, we compare in Figure 4 the powers (computed by M&ddo methods) of tests
Ty and Uy for finite values of N and K. We consider the case whefé = 10, N = 50 and
p = 1 and plot the probability of error undet, versus the power of the test, thatdsversus

Py (Tx > yn) (resp.P1(Ux > vn)) Where~yy is fixed by the following condition:

Po(ITny = yv) =a (resp.Po(Uy > 7v) = a) .

VIIl. CONCLUSION

In this contribution, we have analyzed in detail the GLRThe tase where the noise variance
and the channel are unknown. Unlike similar contributioms,have focused our efforts on the
analysis of the error exponent by means of large random xn#tgory and large deviation
techniques. Closed-form expressions were obtained andezhas to establish that the GLRT
asymptotically outperforms the test based on the conditiamber, a fact that is supported by
finite-dimension simulations. We also believe that thedatgviations techniques introduced here

will be of interest for the engineering community, beyond firoblem addressed in this paper.
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Figure 4. Simulated ROC curves f@iv (test 1) andUn (test 2) in the case whet® = 10, N = 50 andp = 10dB.
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APPENDIX A

PROOF OFLEMMA 1: LARGE DEVIATIONS FORTy

The large deviations of the largest eigenvalue of large sandnatrices have already been
investigated in various contexts, Gaussian Orthogonaklbte [49] and deformed Gaussian
ensembles [21]. As mentionned in [21, Remark 1.2], the mradfthe latter can be extended to
complex Wishart matrix models, that is random matriesinder H, or H;.

In both cases, the large deviations)afrely on a close study of the density of the eigenvalues,
either given by (12) (undefiy) or by (19) for the spiked model (undéf;). The study of the
spiked model, as it involves the study of the asymptotichefdpherical integral (see Lemma 3
below), is more difficult. We therefore focus on the proof loé _DP underH; (Lemma 1-(2))
and omit the proof of Lemma 1-(1). Once Lemma 1-(2) is proy@dying Lemma 1-(1) is a
matter of bookkeeping, with the spherical integral remoseéach step.

Recall that\; > --- > Ay are the ordered eigenvalues Bf and that7y is the statistics
defined in (6).

In the sequel, we shall prove the upper bound of the LDP in Laini2) (which gives also
the upper bound in Lemma 1-(3)). The proof of the lower boundlemma 1-(3) requires more
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precise arguments than the lower bound of the LDP. One haethtb study what happens at
the vicinity of A*, which is a point of discontinuity of the rate functidij. Thus, we skip the
proof of the lower bound of the LDP in Lemma 1-(2) to avoid r#pen. Note that the proof
of Lemma 1-(4) is a mere consequence of the fact Thatonverges a.s. ta™ if p < /¢, thus
P, (Ty < zx) converges to 1 whenevery converges tac > A™.

For sake of simplicity and with no loss of generality as the & 7y does not depend om
we assume all along this appendix thdt= 1. We first recall important asymptotic results for

spherical integrals.

A. Useful facts about spherical integrals

Recall that the joint distributions of the ordered eigeuneal under hypothesi&, and H;
are respectively given by (12) and (19). In the latter, thecalted spherical integral (20) is
introduced. We recall here results from [21] related to thgngptotic behaviour of the spherical
integral in the case where one diagonal matrix is of rank ame the other has the limiting

distributionPy,. We first introduce the function defined fer> A* by:

- 2 _Jog (ﬁ) — FH (%), if p< \/E and Mt < o < A%, 58)
iy — L log <c(1—ip)> —F*(x), otherwise.
Consider aK-tuple (z1,---,zx) and denote byrx . = ﬁziﬁz 0., the empirical dis-
tribution associated t@z,, - - ,xx); let d be a metric compatible with the topology of weak

convergence of measures (for example the Dudley distanee fa instance [50]). A strong
version of the convergence of the spherical integral in tkgoeential scale with speedy,

established in [21] can be summarized in the following Lemma

Lemma 3. Assume thatV, K — co and £ — ¢ € (0,1) and let Assumption 1 hold true. Let
x> a9 > - >axg > 0andd > 0. If, for N large enough|z; — x| < § and d(7k x, Pyp) <
N~ then:

<9

9

N
log Iy (?BK,XK) —cJ,(2)

1
N

where J, is given by(58), B = diag <1£ng ,0,. .., 0) and Xy = diag(xy, -+, k).

Recall that the spherical integrd);, defined in (20), appears in the joint density (19) of

the eigenvalues undef/;. Lemma 3 provides a simple asymptotic equivales(z) of the
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normalized integralN ~!log I. Roughly speaking, this will enable us to replatge by the
quantity e~V *</»(*) when establishing the large deviations)af which rely on a careful study
of density (19).

B. Proof of Lemma 1-(2)

In order to establish the LDP under hypotheKisand conditionp > /c, (that is the bounds
(37) and (38)), we first notice that intervdls, « + ) for =, § € R* form a basis of the topology
of R™. The LDP will be therefore a consequence of the following rimtsu

« (Exponential tightness) there exists a functipn R* — R™ going to infinity at infinity

such that for allV,
Py (A > M) < e MO0 (59)

Condition (59) is technical (see for instance [44, Lemma1Bp: Instead of proving
the large deviation upper bound for every closed set, theommutial tightness (59), if
established, enables one to restrict to the compact sets.

« (Upper bound) For any, for any M such that) < = < M,

1
limlimsup —logP; (z < Ty <z +d§ N < M) < —I'(z), (60)
510 N K—o0 IV P

Due to the exponential tightness, it is sufficient to estdibthe upper bound for compact
sets. As each compact can be covered by a finite number of halstherefore sufficient
to establish upper estimate (60) in order to establish theupper bound.

o (Lower bound) For anyt,

1
im lim inf — <Ty< > —If
1;{811\}%Ln0£]v10gp1 (z<Ty<z+9d) > —I(2). (61)

The fact that (61) implies the LD lower bound (38) is standardlD and can be found in
[44, Chapter 1] for instance.
As the arguments are very similar to the ones developed if {24 only prove in detail the
upper bound (60). Proofs of (59) and (61) are left to the reade
The idea is that the empirical measutgey := ﬁ Zfzz dy, (of all but the largest eigenvalues)
and the trace concentrate faster than the largest eigenvalihe exponential scale with speed
N, 7 and the trace can be considered as equal to their limit, césply Pyp and 1. In

particular, the deviations dfy arise from those of the largest eigenvalue and they botkfgati
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the same LDP with the same rate functigh. We therefore isolate the terms depending)en
and gather the others through their empirical measwg.

Recall the notations introduced in (12) and (19) and:let A™, 6 > 0. Consider the following
domain:

Kl’l
D=< (1, - ,x5) €0, M, ——— e (x,249§ }
{0 e oo, 0 c@asy
For N large enough:
Pz <Ty <z +9 M<M) = / dpje n (215
D
_ 11 / dx, 6—N1’16(N—K) logx162(K—1)flog(:cl—u)der,x(u)
ZgN Jo
N Koo
X[K (?BK,XK) H |[L’Z — IL’j|26_sz=2 Zj H{L’é-v_Kdl'Q:K X 1(1,12...250[(20)
1<i<j j=2
(1 B L)(K—l)(N—l) 70
_ N K—-1,N—-1 / dxle—N:cle(N—K) 1ogx162(K—1)flog(:cl—u)der’y(u)
Zin D

N
X I (KBK, XK) dpye_1 -1 (Y2),

where we performed the change of variablgs:= %xl for - = 2 : K, and the related
modifications @y x <> gy and Xx = diag (21, 55 y2, -+, “+y2). Note also that strictly
speaking, the domain of integratidn would express differently with thg,’s and in particular,
we should have changed constddtwhich majorizes ther;’s into a larger constant as thg's
can theoretically be slightly abov&l - we keep the same notation for the sake of simplicity.

To proceed, one has to study the asymptotic behaviour of ahmatdizing constant:

(1 . L)(K—l)(N—l

) 0
N ZK—l,N—l

Zi N ’
which turns out to be difficult. Instead of establishing dihg the bounds (59)-(61), we proceed

as in [21] and establish similar bounds replacing the pribibalneasuresP; by the measures
Q; defined as:

o Zi .
1= 1
(K—=1)(N-1)
Z?{—l,N—l (1 - %)

and the rate functiod” by the functionG, defined by:

Gp(x) = 1j_p —(1=c)logx — cF*(x) +c+clog<

C(lip))
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for x > AT". Notice that these positive measuf@s are not probability measures any more, and
as a consequence, the functi@p is not necessarily positive and its infimum might not be equal
to zero, as it is the case for a rate function.

Writing the upper bound fof);, we obtain:

Quz <Ty <x+6, M < M)

N

< / dxle—Né(ml,cN,er,y)]K (EBIOXK) dp(l](—l,N—1<y2:K>7
D

where, for any compactly supported probability measu@nd any real numbey greater than

the right edge of the support ¢f,

Bly. ) = =y + (1= ew) ogy + 2ex | logly = ().

Let us now localise the empirical measute , aroundPy,’ and the trace around 1. The
continuity and convergence properties of the sphericagiral recalled in Lemma 3 yield, for

K large enough:
z+6 .
Qe <Ty<z4+0, y<M) < / dy /8 e NPwnen Ty NS0 qpd | o (Yauk)

_PK
+4KMN+K6NJV[ T+px /EC dp?{—l,N—l(le)? (62)

with
1 1 &
€= {(yzw" Jyie) € [0, M5 d(Ty, Pyp) < ~ia end EZ;%' € [1-0%1+ 47 } :
iz

The second term in (62) is easily obtained considering thetfat all the eigenvalues are less
than M so that forl < j < K, |z — ;| <2M, 2}~ < M=% and (UXxU*)11 < M. Now,
standard concentration results undéy yield that:

1 1 &
lim sup - log Py (ﬁm ¢ B(Pyp, N~V4) or = Sy [l-61+ 52}> = —0.

N,K—o0 T
j=2

More precisely, one knows using [51] that the empirical mea% ZJK:Q A, is close enough to
its expectation and then using [52] one knows that the egfieat is close enough to its limit

Pyp. The arguments are detailed in the Wigner case in [21] and wetlgive more details here.

"Notice that if 7 x is close toPyp, S0 is7x y due to the change of variablg = ;.
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As cy — cfor NJK — oo, ¢ — ®(y,c,p) is continuous ang: — ®(y,c, p) is lower
semi-continuous, we obtain:

1
limsup —logQi(z <A\ <z 4+, My <M) < sup (P(u,c, Pyp)+ct,(u)) + 26.
N,K—00 N u€[z,z+0]

By continuity inu of the two involved functions, we finally get:

1
limlimsup —logQi(z <A\ <240, My < M) < O(x,¢,Pyp) +¢J, (x) =G,)(x) ,
50 N K—o00 IV

and the counterpart of Eq. (60) is proved f@r and functionG/,. The proof of the lower bound

is quite similar and left to the reader. It remains now to wera(60). AsP; is a probability
measure and the whole spdké is both open and closed, an application of the upper and lower
bounds forQ; immediately yields:

1 Zien
lim inf — log ’ ——— P (Ty € R")
N,K—oo N Z}){_LN_1 (1 - %)(K 1)(N-1)
1 Ziew
= limsup — log : P, (Ty € RY)
(K—1)(N—1)
N, K=o Z in-(1- %)
= lim i log Z}{’N E-D—D)
NK—oo N Z?(—I,N—l (1 - %)
= — ﬁlf G, . (63)

This implies that the LDP holds fdP, with rate functionG, — infg+ G,,.

It remains to check that® = G, — infg+ G, which easily follows from the fact to be proved
that:

i Goln) = G005 (64)
We therefore study the variations 6f, over [A\*,c0). Note that(F*) = —f, and thus that

G(r) = (14 p)~" = (1 = ¢)a~! + cf(x). Functionf being a Stieltjes transform is increasing
for z > A*, and so isG/,, whose limit at infinity is(1 + p)~'. Straightforward but involved
computations using the explicit representation (67)ffgield thatG,(A\3,) = 0. Therefore G,

is decreasing of\™, A\, ] and increasing o\, , oo), and (64) is proved.

This concludes the proof of the upper bound in Lemma 1-(2¢ piroof of Lemma 1-(1) is
very similar and left to the reader.
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C. Proof of Lemma 1-(3)

The proof of this point requires an extra argument as we sthdylarge deviations of'y
near the point(1 + /c)? where the rate function is not continuous. In particulag timit
(53) does not follow from the LDP already established. As \Wmallssee when considering
Py (Ty < (1+ /cn)* 4+ nvN~%3), the fact that the scalgV—2/?) is the same as the one of the
fluctuations of the largest eigenvalue of the complex Wishaodel is crucial.

We detail the proof in the case when> /c and, as above, consider the positive measures

Q. We need to prove that:

o] 2 U +
liminf —log Q1 <TN < (1+ )+ Nz/g) > —G,(\F), neR, (65)

the other bound being a direct consequence of the LDP. Asqugly, we will carefully localize
the various quantities of interest. Denote fy(n) = (1 + \/cn)? +nN-%3 for n € R and by
hy(r) =1—rN=%3for r > 0. Notice also that\; < gy(n)hy(r) together with 1 EJK:Q A >
hy(r) imply that 7y < gn(n). We shall also consider the further constraints:

gN(n — l)hN(r) S )\1 and )\2 < gN(n — 2)hN(’I“)

which enable us to properly separate from the support ofrx ». Now, with the localisation

indicated above, we have fa¥ large enough,

Qi (Ty < gv(m) = Q (gNm—l)hN(r)sxlSgNw)hN(r),

K
1 ) .
ﬁ Z)\j > hN(T)a )\2 < gN(n — 2)hN(7“), T € B(PMPaN 1/4))‘
Jj=2

As previously, we consider the variablgs= %xj for 2 < j < K and obtain, with the help

of Lemma 3;

gn (mhn(r) NG X Nels -
Qi (Iy <gn(m) = / da, / NN Ry NeUp@) =0 @0 o (o)
gn(n=1)hn(r) F

with

Ngn(n—2) hN(T)} o

?:{(y277y[()€|i07 N —1

K
1 N . -
K12 >y () ey € BByp, N 1/4>} :
j=2
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Therefore:

Qi (Ty < gn(m)) = hn(r) (gn(n) — gn(n — 1)) V@OI20Bg (A, -+ M) € F)

(recall thatG,(z) = O(x,c,Pyp) + cJ, (x)). Now, ashy(r) (gn(n) — gn(n — 1)) = (1 -

rN~2/3)N~2/3 its contribution vanishes at the LD scale:

Tim < log (i (r) (gx(n) — gx(n — 1)) =0 .

It remains to check thaP, ((As, -+, Ax) € F) is bounded below uniformly inV. This will
yield the convergence of log Py (A2, - -+, Ax) € F) towards zero, hence (65). Consider:

Py (Mg, -+, Ak) € F) <Py (Fxca ¢ B(Pyp, N11))

1 = N N
+ Py (ﬁ ;Aj < ﬁhzv(r)> + Py <>\2 >N 191\/(77 - 2)hN(7“)) :

We have already used the fact that the first term goes to zeem Whgrows to infinity. Recall

that the fluctuations of~ Zsz A, are of order:, therefore the second term also goes to zero
as we consider deviations of ord&t /3. Now, N2/3(\, — (14 ,/cn)?) converges in distribution

to the Tracy-Widom law, therefore the last term converges$itq, (n — 2 + (1 + /¢)?) < 1.
This concludes the proof.

APPENDIX B

SKETCH OF PROOF FORLEMMA 2: LARGE DEVIATIONS FORUy

As stated in Remark 10, we shall first study the LDP for thetjgjoantity (A, \x). The

purpose here is to outline the following convergence:

1 A N
Nlogp()\lEA’)\KEB)W_;QEI”(@_;QEI (x) ,

which is an illustrative way, although infornfalto state the LDP fof\;, A\x) (see (39)).
Consider the quantit® (A, € (aq, 51), Ak € (ak, fx)). As we are interested in the deviations

of \; and )\, the interesting scenario 5" ¢ (a1, 31) and A\~ ¢ (ag, fx) (recall that\* are

the edgepoints of the support of Manko-Pastur distribution). More precisely, the intaregst

case is when the deviations of the extreme eigenvalue oadside of the bulk; > A™ and

8All the statements, computations and approximations belawbe made precise as in the proof of Lemma 1.
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Bx < A7; such deviations happen at the rate"*<"s* The case where the deviations would
occur within the bulk is unlikely to happen because it woutdoece the whole eigenvalues to
deviate from the limiting support of Maenko-Pastur distribution, which happens at the rate
e~N*xconst. Denote byA = (ay, 81) and B = (a, fx).

P(A\ € A Ak € B)

1

2
= i lasoaez0) | (@— )
KN JAxRE-2)x B 1<i<j<K

K
N
X Hxé'v_Ke_ij]K (EBKaXK) dxy.x

j=1
N

_ / dl’l 62 Z]K:*; log(wl—xj)e(N—K) log:cl—N:cle <_BK7 XK)
A K

K—1 L _ _ _
X/dl’[{ 6221:2 log(z; xK)e(N K)logx g N:(:Ke2log(x1 TK)
B

2 K-1 K—1 N-K ~(N-2)z;

i [ ot
71 ZY B o
K,N 12T 2 ZTK 9 j=2 K-2,N-2 2<i<j<K-1

We shall now perform the following approximations:

log(z; —z;) ~ (K —2) /log(ml — 2)Pyp(dr) = (K —2)F"(xy) ,

log(z; —xk) ~ (K — 2)/log(x — x5 Pyp(dr) = (K —2)F (x2k) ,

™
&
2

=) /xPMpwx) — (K2

N
Iy <EBK,XK) ~ €N0Jp(xl) .

The three first approximations follow from the fact thgit; Zf‘l 0z; =~ Pyp, the last one from
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Lemma 3. Plugging these approximations into the expressidh(\; € A, A\ € B) yields:

]P)()\l GA,)\KGB)

~

_2)F+ _ _
~ / da 2(E=2)F T (21) ,(N=K)logz1—Nx1 ,Nedy(x1)
A

X/dl’[{ 62(K—2)F*(xK)6(N—K)1ong—N:cK62log(x1—:cK)
B

0 K-1 N-K_—(N-2)z;
Zk-2N-2 _a(x-2) T e ’ 2
XTe ZO (xz - LUJ) ToK—-1 -
K,N T12T2> 2T K j=2 K—-2,N-2 2<i<j<K—1

As x; > a; > A\t andxzi < B < A7, the last integral goes to one & N — oo and:

P(\ € A Ak € B)

~ / dxy e_N(%Kil\;mF+(x1)_(l_%)10g961+x1—ch(:c1))
A

X / de e_N(%K—Niz)Fi(xK)_(l_%)IOgZK—‘erJ,-M]%’*IK))
B
0
Zian o)
Zi N '
Recall that we are interested in the lin\t ' log P (A\; € A, Ak € B). The last term will account

for a constanfl (see for instance (63)):

2log(r1—zK
N

The term ) within the exponential in the integral accounts for the lirgetion between

A1 and )\ and its contribution vanishes at the desired rate. In oaewaluate the two remaining
integrals, one has to rely on Laplace’s method (see fornest§3]) to express the leading term
of the integrals (replacindgd N~! by ¢ below):

/d!lfl 6—N(2CF+(m1)—(1—c)logml—i-xl—ch(ml)) ~ 6—NinfweA(2cF+(m)—(1—c)logm—i—x—ch(m))’
A

/de e—N(2cF’(:cK)—(l—c)long—i-xK—ch(:cK)) ~ e—NinfyeB(2cF’(y)—(1—c)logy-‘,—y) )
B

Finally, we get the desired limit:

1 P e
NlogIP’{)\leA,)\KEB}m—;gg@ (x)—;gé@ (y)+71,
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where
P (z) = 2cF"(x) — (1 —c)loga+x —cJy(x) ,
O (y) = 2F (y) (1 —c)logy +y .

It remains to replace/, by its expression (58) and to spread the constamver ®* and ¢,
which are not a priori rate functions (recall that a rate fiorcis nonnegative). IN~ € B, then
the event{ \x € B} is “typical” and no deviation occurs, otherwise stated, thge function
I~ should satisfy/~(A~) = 0. Similarly, I (A*) = 0 under H, and I (\3,) = 0 under H,.

spk

Necessarily,Y' should writeY = ®(A~) + ®(A\*) underH, (resp.T = ®(A\7) + (A

spk

H,) and the rate functions should be given By: = &~ — ®(\7), I = ®T — ®(\") underH,
(resp.l] = &% — O(AZ

spk

) under

) under H;), which are the desired results.
We have proved (informally) that the LDP holds true fa, Ax) with rate function]&”/p(:c) +
I~ (y). The contraction principle [44, Chap. 4] immediatly yieltie LDP for the ratioj—;{ with

rate function:
Losp(t) = inf_ {1, (2) + 1~ ()} (66)

(), 7=t
which is the desired result. We provide here intuitive argata to understand this fact.

For this, interpret the value of the rate functioh(x) as the cost associated to a deviation
of \; (underH,) aroundz: P{\, € (z,z + dz)} ~ e~ (@ If a deviation occurs for the ratio
;—;{, sayj—}l( € (t,t + dt) wheret > @ (which is the typical behaviour dfy under H,), then
necessarily\; must deviate around some valtig so does\i around some valug, so that the
ratio is around. In terms of rate functions, the cost of the joint deviation ~ ty, A\x ~ y) is
IF(ty) + I~ (y). The true cost associated to the deviation of the ratio véilthe minimum cost

among all these possible joint deviations)afand Ak, hence the rate function (66).

APPENDIX C

CLOSED-FORM EXPRESSIONS FOR FUNCTIONS, F* AND F~

Consider the Stieltjes transforfnof Marcenko-Pastur distribution:

o PMP(d)‘)
f(z) = / .

We gather without proofs a few facts relatedftowhich are part of the folklore.
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Lemma 4 (Representation off). The following hold true:
1) Functionf is analytic inC — [A~, A*].
2) If 2 € C— [\~ A*] with R(z) > 2227 then

(1—z—0c)++/(1—2—¢c)?—4dcz

f(z) = 2cz

)

where /= stands for the principal branch of the square-root.
3) If 2 € C— A=, \*] with R(2) < 2%, then
(1—z2—c)—/(1—2—0)*—Adez

2cz

f(z) =

where —,/z stands for the branch of the square-root whose imagge:is C, R(z) < 0}.
4) As a consequence, the following hold true:

(l—z—c)+/(1—2—0c)>—dcx

f(x) = Y if >\t (67)
fr) — (1—x—c)—\/2(clx—x—c)2—4cx i 0<ao<A . (68)

5) Consider the following functiof(z) = of (z) — L=< Functionsf andf satisfy the following

system of equations:

_ 1
{ f(z) - z(l—i—f(z)) 7 (69)
f(z) = - Z(+ct(2)

Recall the definition (31) and (51) of functid™ andF . In the following lemma, we provide

closed-form formulas of interest.

Lemma 5. The following identities hold true:

1) Letz > A*, then
F*(2) = log(z) + % log(1 + cf(x)) + log(1 + F(x)) + zf(2)F(x) .
2) Let0 < z < A, then
F(2) = log(x) + % log(1 + cf(z)) + log(—(1 + £(z))) + £ (x)E(z) .

Proof: Consider the case where> \*. First write

log(x—y):log(x)—i-/:o <1+ ! ) du .

U y—u
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Integrating with respect witl?;;, and applying Funini’s theorem yields:

[ st = Psetn) = oste) + [ (5 +80))

in the case where > \*. Recall thatf andf are holomorphic functions ovét— ({0}U[A~, A*])
and satisfy system (69) (notice in particular that ¢f and1 + f never vanish). Using the first

equation of (69) implies that:

[ 108 — )Py () = log(a) = [t du (70)
Consider (u, f,f) = Llog(1 +cf) +log(1 +f) + uff. By a direct computation of the derivative,
we get:
ir( f(u),f(u)) = f Lo uf) e (s up) o
dy LR = T+cf " 1+f
= f(u)f(u) .
Hence

oo

/x N fu)f(u)du = E log(1 + cf) + log(1 + f) + uff}

- (% log(1 + cf(x)) + log(1 + f(z)) + xf(x)f’(x)) -

It remains to plug this identity into (70) to conclude. Thenmesentation of*~ can be established

similarly.
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