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Abstract

This paper introduces a unified framework for the detectiba source with a sensor array in the
context where the noise variance and the channel betweesotiree and the sensors are unknown at
the receiver. The Generalized Maximum Likelihood Test igl&d and yields the analysis of the ratio
between the maximum eigenvalue of the sampled covarian¢exnaand its normalized trace. Using
recent results of random matrix theory, a practical way talete the threshold and thevalue of
the test is provided in the asymptotic regime where the nunibef sensors and the numbéf of
observations per sensor are large but have the same ordexgriitode. The theoretical performance of
the test is then analyzed in terms of Receiver Operating &itenistic (ROC) curve. It is in particular
proved that both Type | and Type Il error probabilities cagesto zero exponentially as the dimensions
increase at the same rate, and closed-form expressionsr@riglgd for the error exponents. These
theoretical results rely on a precise description of thgdateviations of the largest eigenvalue of spiked
random matrix models, and establish that the presentedsgsiptotically outperforms the popular test

based on the condition number of the sampled covariancexmatr
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I. INTRODUCTION

The detection of a source by a sensor array is at the heart oy mizeless applications. It is
of particular interest in the realm of cognitive radip [H] ivhere a multi-sensor cognitive device
(or a collaborative netwoffx needs to discover or sense by itself the surrounding emviemt.
This allows the cognitive device to make relevant choiceteims of information to feed back,
bandwidth to occupy or transmission power to use. When tlgaeitige device is switched on, its
prior knowledge (on the noise variance for example) is venjtéd and can rarely be estimated
prior to the reception of data. This unfortunately rules dassical techniques based on energy
detection [[¢], [¥], [F] and requires new sophisticated teghes exploiting the space or spectrum
dimension.

In our setting, the aim of the multi-sensor cognitive datetphase is to construct and analyze

tests associated with the following hypothesis testindlem:

w(n) under H,
y(n) = : (1)
h s(n) +w(n) underH,

wherey(n) = [yi(n),...,yx(n)]” is the observeds x 1 complex time seriesK is related

to the coherence time of the networlk. the time whereh is constant)w(n) represents an
independent identically distributed (i.i.dfjy x 1 complex circular Gaussian noise process with
zero mean and covariance matrix equalofd. Vector h € CX*! is a deterministic vector,
which typically represents the propagation channel betviiee source and th& sensors. Signal
s(n) denotes a scalar i.i.d. circular complex Gaussian procéiszero mean and unit variance,
which stands for the source signal to be detected.

The standard case where the propagation channel and thevasiance are known has been
thoroughly studied in the literature in the Single Input gén Output case[]4],[]5],[I6] and
Multi-Input Multi-Ouput [1] case. In this simple contexhe most natural approach to detect the
presence of source(n) is the well-knownNeyman-PearsoiNP) procedure which consists in
rejecting the null hypothesis when the observed likelihoaiib lies above a certain threshold
[B]. Traditionally, the value of the threshold is set in suchvay that theProbability of False
Alarm (PFA) is no larger than a predefinésliel « € (0, 1). Recall that the PFA (resp. the miss

The collaborative network corresponds to multiple bastosts connected, in a wireless or wired manner, to form aialrt
antenna systelﬂ[3].
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probability) of a test is defined as the probability that theeiver decides hypothesis, (resp.
Hy) when the true hypothesis iH, (resp.H;). The NP test is known to be uniformly most
powerfuli.e., for any levela € (0, 1), the NP test has the minimum achievable miss probability
(or equivalently the maximum achievable power) among atstef levela. In this paper, we
assume on the opposite that:

. the noise variance? is unknown,

« vectorh is unknown.

In this context, probability density functions of the obsgionsy(n) under bothH, and H;
are unknown, and the classical NP approach can no longer poged. As a consequence, the
construction of relevant tests fdf (1) together with thelygsia fo their perfomances is a crucial
issue. The classical approach followed in this paper ctsigeplacing the unknown parameters
by their maximum likelihood estimates. This leads to thealbed Generalized Likelihood Ratio
(GLR). The Generalized Likelihood Ratio Te$¢GLRT), which rejects the null hypothesis for
large values of the GLR, easily reduces to the statistiosginy the ratio of the largest eigenvalue
of the sampled covariance matrix with its normalized trae[H], [[J]. Nearby statisticJ11],
[L2], [E3], [L4], with good practical properties, have alseen developed, but would not yield
a different (asymptotic) error exponent analysis.

In this paper, we analyze the performance of the GLRT in tlyenasotic regime where the
numberK of sensors and the numbar of observations per sensor are large but have the same
order of magnitude. This assumption is relevant in manyieafibns, among which cognitive
radio for instance, and casts the problem into a large ranahatnix framework.

Large random matrix theory has been recently applied to thgse testing[]14],[T115],[]16].
In this article, the focus is mainly devoted to the study & targest eigenvalue of the sampled
covariance matrix, whose behaviour changes undgror H,. The fluctuations of the largest
eigenvalue undefi, have been described by Johnstoné [17] by means of the ctldbreacy-
Widom distribution, and are used to study the threshold &edgivalue of the GLRT.

In order to characterize the performance of the test, a alafyproach would have been to
evaluate theReceiver Operating Characteristi®ROC) curve of the GLRT, that is to plot the
power of the test versus a given level of confidence. Unfateiy, the ROC curve does not
admit any simple closed-form expression for a finite numkbiesemsors and snapshots. As the

miss probability of the GLRT goes exponentially fast to zetee performance of the GLRT
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is analyzed via the computation of its error exponent, wltiaracterizes the speed of decrease
to zero. Its computation relies on the study of the large atemis of the largest eigenvalue
of 'spiked’ sampled covariance matrix. By 'spiked’ we reterthe case where the eigenvalue
converges outside the bulk of the limiting spectral disttiln, which precisely happens under
hypothesisH;. We build upon [[I8] to establish the large deviation pritejpand provide a
closed-form expression for the rate function.

We also introduce the error exponent curve, and plot the exxponent of the power of the
test versus the error exponent for a given level of confideite error exponent curve can
be interpreted as an asymptotic version of the ROC curveliug-dog scale and enables us to
establish that the GLRT outperforms another test based ewdhdition number, and proposed
by [M9], [29], [21] in the context of cognitive radio.

The paper is organized as follows.

Section[]l introduces the GLRT. The value of the thresholticw completes the definition
of the GLRT, is established in Secti¢n 1]-B. As the lattereftrold has no simple closed-form
expression and as its practical evaluation is difficult, mteoduce in Sectiop TT{C an asymptotic
framework where it is assumed that both the number of serds@msd the numbelN of available
snapshots go to infinity at the same rate. This assumptioalig for instance in cognitive radio
contexts and yields a very simple evaluation of the threshahich is important in real-time
applications.

In Section[Tl], we recall several results of large random riratheory, among which the
asymptotic fluctuations of the largest eigenvalue of a samplariance matrix, and the limit of
the largest eigenvalue of a spiked model.

These results are exploited in Sectipn IV where an appraeirttareshold value is derived,
which leads to the same PFA as the optimal one in the asyrmaptgime. This analysis yields
a relevant practical method to approximate thealuesassociated with the GLRT.

SectionV is devoted to the performance analysis of the GMRI compute the error exponent
of the GLRT, derive its expression in closed-form by estdblig aLarge Deviation Principle

(LDP) for the test statistid@y fl, and describe the error exponent curve.

2Note that in recent paperE|22D13D14], the fluctuatiaisthe test statistics undefl;, based on large random matrix
techniques, have also been used to approximate the powée dést. We believe that the performance analysis basedeon th

error exponent approach, although more involved, has arwateye of validity.

DRAFT October 5, 2009



Section[V]l introduces the test based on the condition nuntbat is the statistics given by
the ratio between the largest eigenvalue and the smallgshealue of the sampled covariance
matrix. We provide the error exponent curve associated thith test and prove that the latter
is outperformed by the GLRT.

Section[VI] provides further numerical illustrations, otusions are drawn in Sectign VI,

and further mathematical details are provided in the Append

Notations

Fori € {0,1}, P;[€] represents the probability of a given evéhunder hypothesigi;. For

any real random variablé and any real numbey, notation

T,.2"y

Ho

stands for the test function which rejects the null hypatheghen7 > ~. In this case, the
probability of false alarm (PFADf the test is given by, [T > ~], while the power of the test is
Py [T > ~]. Notation“l'{—i» stands for the almost sure (a.s.) convergence under hygsttg For

any one-to-one mapping : X — Y whereX andYy are two sets, we denote ly ! the inverse

of T" w.r.t. composition. For any borel set € R, x — 14(x) denotes the indicator function of
set A and||«| denotes the Euclidian norm of a given vectarlf A is a given matrix, denote
by A" its transpose-conjugate. F is a cumulative distribution function (c.d.f.), we denotge b

F is complementary c.d.f., that ig7 =1 — F.
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[I. GENERALIZED LIKELIHOOD RATIO TEST

In this section, we derive the Generalized Likelihood Rawst (sectiorf TI-pA) and compute
the associated threshold apéralue (sectiorf 11-B). This exact computation raises sowm@gu-
tational issues, which are circumvented by the introductiba relevant asymptotic framework,

well-suited for mathematical analysis (Sectjon ]I-C).
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A. Derivation of the Test

Denote by/N the number of observed samples and recall that:

w(n) under H
y(n) = ,

h s(n) +w(n) underH,
where (w(n),0 < n < N — 1) represents an independent and identically distributedl.ji.
process of x 1 vectors with circular complex Gaussian entries with mean aed covariance
matrix oI, vectorh € CK*! is deterministic, signals(n),0 < n < N — 1) denotes a
scalar i.i.d. circular complex Gaussian process with zeeamand unit variance. Moreover,
(w(n),0 <n < N-—1)and(s(n),0 <n < N —1) are assumed to be independent processes.
We stack the observed data intakax N matrix Y = [y(0),...,y(N — 1)]. Denote byR the

sampled covariance matrix:

L1
R=—_YY"
N )

and respectively, by, (Y; o%) andp, (Y h, 0?) the likelihood functions of the observation matrix
Y indexed by the unknown parametdisand o under hypothese#l, and H;.
AsY is a K x N matrix whose columns are i.i.d. Gaussian vectors with camae matrix
Y. defined by:
ol 1 under H,

3= : (2)
hh" + 021 underH,

the likelihood functions write:
2 2\—NK N A
po(Y;0%) = (o) exp (—ptr R) , 3)
(Y h,o?) = (7% det(hh + 021i)) Y exp (—Ntr (R(hh' + 0—21K)—1)) @

In the case where parametérsindo? are available, the celebrated Neyman-Pearson procedure
yields a uniformly most powerful test, given by the likeldgwratio statistics%.

However, in the case whete ando? are unknown, which is the problem addressed here, no
simple procedure garantees a uniformly most powerful tasd, a classical approach consists in
computing the GLR:

SUPp, 52 P1 (YJ h'7 02)
Ly = 2

5
sup,2 po(Y;0?) ®)
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In the GLRT procedure, one rejects hypotheliswheneverLy > £y, whereéy is a certain
threshold which is selected in order that the PRALy > {y) does not exceed a given level
.

In the following proposition, which follows after straigbtward computations fron] 23] and
[Al, we derive the closed form expression of the GLR. Denote byA\; > Xy > -+ > Ag >0

the ordered eigenvalues & (all distincts with probability one).

Proposition 1. Let Ty be defined by:

A
TN - ~ (6)
~trR
then, the GLR (cf. Eq[](5)) writes:
C
Ly = K—1)N
(Tw)V (1= %)™

whereC' = (1 - +

). The GLRT
rejects the null hypothesis when inequallty > ¢y holds. AsTy € (1, K') with probability one

By Proposition[IL,Ly = ¢nx(Ty) Wheregy i : z — Ca=V (1 - l)N(l_K

K
and aspy x Is increasing on this interval, the latter inequality is eglent to 7y > gij}K(gN).
Otherwise stated, the GLRT reduces to the test which rejretsull hypothesis for large values
of Ty

In =2 v (7)

wherevyy = ¢]—V}K(§N) is a certain threshold which is such that the PFA does notegkaegiven

level «. In the sequel, we will therefore focus on the test stassiic.

Remark 1. There exist several variants of the above statist[c$ [LER][ [L3], [14], which
merely consist in replacing the normalized trace with a mioneolved estimate of the noise
variance. Although very important from a practical pointvaéw, these variants have no impact
on the (asymptotic) error exponent analysis. Thereforeras&ict our analysis to the traditional
GLRT for the sake of simplicity.
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B. Exact threshold ang-values

In order to complete the construction of the test, we musvigea procedure to set the
threshold~y. As usual, we propose to defingy as the value which maximizes the power
P, [Ty > ~yn] of the test[(7) while keeping the PHA[Tx > ~vy] under a desired level € (0,1).

It is well-known (see for instancd][8][ [R4]) that the lattéreshold is obtained by:

v = py (@) (8)

wherepy (t) represents the complementary c.d.f. of the statisticaunder the null hypothesis:
pn(t) = Po[Tn > t] . 9

Note thatpy(¢) is continuous and decreasing from 1 to Oa [0, c0), so that the threshold
py'(a) in @) is always well defined. When the threshold is fixechte = py' (), the GLRT
rejects the null hypothesis whéfy, > p' («) or equivalently, whemy (Ty) < a. It is usually

convenient to rewrite the GLRT under the following form:

Hy
pN(TN) z . (10)
H,

The statisticspy (7)) represents theignificance probabilityor p-value of the test. The null
hypothesis is rejected when thevaluepy (T ) is below the levetv. In practice, the computation
of the p-value associated with one experiment is of prime impogamedeed, the-value not
only allows to accept/reject an hypothesis by] (10), but itfermore reflects how strongly the
data contradicts the null hypothes|$ [8].

In order to evaluatp-values, we derive in the sequel the exact expression ofdimplementary
c.d.f.py. The crucial point is thal'y is a function of the eigenvalues, . .., \x of the sampled
covariance matribR. We have

pN(t) = / p([)é(N) (w1, 2x)drLK (11)
Ay
where for each, the domain of integratior\, is defined by:
Kz
_ K !
At— {(.Tl,...,x[() ER y Tt + 2k >t} y
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andp)'" is the joint probability density function (p.d.f.) of thedmred eigenvalues d& under
Hy, given by:

K

1 1> >x >0 — _ Nz

2N (21.) = % H (2 — 21)? H$§V K ,~Na (12)
K 1<i<j<K j=1

wherel,, >..>.,>0) Stands for the indicator function of the sgitr; .. .2x) : 1 > --- > 2 >

0} and whereZ;" is the normalization constant.

Remark 2. For eacht, the computation opy(¢) requires the numerical evaluation of a non-
trivial integral, whoseon line computation may be out of reach in a number of applications.
Instead, tables of the functiomy should be computedff line i.e., prior to the experiment.
As both the dimension& and N may be subject to frequent chanfjeall possible tables of
the functionpy should be available at the detector’s side, for all possid¢ues of the couple
(N, K). This both requires tedious computations and considerai#enory space. In the sequel,

we propose a way to overcome this issue.

In the sequel, we study the asymptotic behaviour of the cemphtary c.d.fpy, when both
the number of sensorE” and the number of snapshais go to infinity at the same rate. This

analysis leads to simpler testing procedure.

C. Asymptotic framework

We propose to analyze the asymptotic behaviour of the camgatéary c.d.fp as the number
of observations goes to infinity. More precisely, we consitie case where both the numiér

of sensors and the numbar of snapshots go to infinity at the same speed, as assumed below
K .
N — 00, K — oo, CNZ:N—>C,WIth0<C<1. (13)

This asymptotic regime is relevant in cases where the sgrssistem must be able to perform
source detection in a moderate amount of tiree the numberk of sensors and the numbar

of samples being of the same order. This is in particular e dn cognitive radio applications
(see for instancd 25]). Very often, the number of sensolsvigr than the number of snapshots,

hence the ratie lower than 1.

3In cogpnitive radio applications for instance, the numbeusérsK which are connected to the network is frequently varying.
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10
In the sequel, we will simply denot®’, K — oo to refer to the asymptotic regimg {13).

Remark 3. The results related to the GLRT presented in Sectjohs IV [@meémain true for

¢ > 1; in the case of the test based on the condition number ancpted in Sectiop VI, extra-
work is needed to handle the fact that the lowest eigenvadnearges to zero, which happens
if ¢>1.

[Il. A REMINDER ON LARGE RANDOM MATRICES AND THEIR LARGEST EIGENVAUES

In this section, we recall a few facts on large random madra® the dimensiond’, X' go to
infinity. We focus on the behaviour of the eigenvaluesfofwhich differs whether hypothesis
Hj holds (Sectiorf TlT-A) orH; holds (Sectior TT-B).

As the column vectors oY are i.i.d. complex Gaussian with covariance malhgiven by
@), the probability density oR is given by:

1

—Ntr(=71R) detR)V-K
Z(N.K,%)° (detR)™~7,

whereZ (N, K, X) is a normalizing constant.

A. Behaviour under hypothesi$,

As the behaviour of 'y does not depend o, we assume that? = 1; in particular,X = I.
Under H,, matrixR is a complex Wishart matrix and it is well-known (see for arste [2B]) that
the Jacobian of the transformation between the entrieseofrthtrix and the eigenvalues/angles
is given by the Vandermonde determindiit_, . («; —x;)*. This yields the joint p.d.f. of the
ordered eigenvalue$ (12).

The celebrated result from Magnko and PastufJR7] states that the limit/dsK’ — oo of
the c.d.f. Fiy(z) = w associated to the empirical distribution of the eigenval(d) of
R is equal toPy;p ((—oo, z]) wherePy;, represents the Maenko-Pastur distribution:

V¥ -9 -A)

2mey

Pyp(dy) = 1oa- a4y (y) Y, (14)

with AT = (1 +,/c)? and A\~ = (1 — y/c)%. This convergence is very fast in the sense that the
probability of deviating fromPy, decreases as V*xconst. More precisely, a simple application
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of the large deviations results ifi ]28] yields that for angtdhced on the set of probability

measures oiR compatible with the weak convergence and for any 0,

1
lim sup I log Py (d(Fin, Pyp) > d) = —oc0 . (15)

N—oo
Moreover, the largest eigenvalug of R converges a.s. to the right edge of the kéako-
Pastur distribution, that i§1 + /c)?. A further result due to Johnstong J17] describes its speed

of convergence ¥ ~%/?) and its fluctuations. Lety be defined by:

. 2
by
whereby is defined by )
1 1/3
by == (1+ /cn) (\/T_N + 1) , a7

then ¢y converges in distribution toward a standard Tracy-Widomdoan variable with c.d.f.

Fry defined by:

Frw(z) = exp (— / Oo(u —2)¢*(u) du) Ve eR, (18)
whereq solves the Painlevé Il differential equation:

¢" () = zq(z) + 2¢°(x), q(x) ~Ai(z) as = — oo

and where Ajz) denotes the Airy function. In particulaf;-y is continuous. The Tracy-Widom
distribution was first introduced irf [R9][ [BO0] as the asyotjt distribution of the centered and
rescaled largest eigenvalue of a matrix from the GaussidtatyrEnsemble.

Tables of the Tracy-Widom law are available for instance@i][ while a practical algorithm

allowing to efficiently evaluate equatioh [18) can be foundd32].

B. Behaviour under hypothesi$;

In this case, the covariance matrix writds = o2I; + hh* and matrixR follows a single
spikedmodel. Since the behaviour d@fy is not affected if the entries oY are multiplied by a
given constant, we find it convenient to consider the modedrel = I + % Denote by

[

0-2
the signal-to-noiseratio (SNR), then matrix: admits the decompositioh = UDU* whereU

is a unitary matrix and = diag (pg, 1,...,1). With the same change of variables from the
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entries of the matrix to the eigenvalues/angles with Jaop],_; ., (z; — x;)*, the p.d.f. of

the ordered eigenvalues writes:

K
Lz,> >0 ke ne, (N
pi (@) = ST @y—%flld“ﬂzNﬂk<EBK’“) 4

where Z(N, K, %) is the normalization constanX x is the diagonal matrix with eigenvalues
: , R o
(x1,...,7K), Bi is the K x K diagonal matrix with elgenvalue(qu—f;K,O, ...,0), and for any

real diagonal matrice€ i, D, the spherical integralx (Cy, Dy) is defined as

Jk<cK;DK>zi/eKWCKQDKQ”dnm«QL (20)

with mx the Haar measure on the unitary group of sige

Whereas this rank-one perturbation does not affect the pistin behaviour of Fy (the
convergence towart,;, and the deviations of the empirical measure given[by (14) retid
underP;), the limiting behaviour of the largest eigenvalge can change if the signal-to-noise

ratio py is large enough.

Assumption 1. The following constanp € R exists:

L

K—o0 0’2

= lim pK> . (21)

K—o0

We refer top as the limiting SNR. We also introduce
00 C
spk — (1 + p) 1 +-=.
p
Under hypothesig/;, the largest eigenvalue has the following asymptotic bielheas /N, K go
to infinity:

B G

H .
! AT otherwise,

see for instance[[B3] for a proof of this result. Note in markar that\Z, is strictly larger than
the right edge of the suppokt™ whenever > /c. Otherwise stated, if the perturbation is large

enough, the largest eigenvalue converges outside the gupplarcenko-Pastur distribution.
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C. Limiting behaviour ofl’y under H, and H;

Gathering the results recalled in Secti¢ns IJI-A dnd lilsBe obtain the following:

Proposition 2. Let Assumptiof]1 hold true and assume that /¢, then:

TN—>(1+f) and TN%(Hp)(Hf) as N, K — ooc.
1 P

V. ASYMPTOTIC THRESHOLD ANDp-VALUES
A. Computation of the asymptotic threshold grdalue

In Theorem[]L below, we take advantage of the convergencédtgeasfithe largest eigenvalue
of R under H, in the asymptotic regimeéV, K — oo to express the threshold and thevalue

of interest in terms of Tracy-Widom quantiles. Recall tiay, = 1 — Fry.

Theorem 1. Assume thatV, K — oco. Then, the following properties hold true:

1) For any fixed levet € (0, 1), the power of tes{]7) is maximum if and only if the threshold

N Writes:
7N - (1 + \/ ) N2/3 (23)

for a certain sequencéy which converges td;, («), whereby is defined by({7).
2) The PFA of the following test

H,
Ty = (1+en)* + N2/3 Fry (@) (24)
Hy
converges tav.
3) Thep-valuepy(Ty) associated with the GLRT can be approximated by:
N _ N23(Ty — (1 + \/en)?
pn(Tn) = Frw ( Iy = L+ Ven) )) (25)

b

in the sense thaty(Ty) — pn(TN) — 0.

Proof: Before proving the three points of the theorem, we first desdhe fluctuations of
Tx under H, with the help of the results in Sectidn TTFA. Assume withdass of generality
thato? = 1, recall thatTy =

= 1tR and denote by:

_ N (Ty = (1+ /en)?)
- »

(26)
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the rescaled and centered version of the statigficsA direct application of Slutsky’s lemma
(see for instance[J24]) together with the fluctuations\efas reminded in Sectiop TTHA yields
that Ty converges in distribution to a standard Tracy-Widom rand@mable with c.d.f.Frry,
which is continuous oveR. Denote byFy the c.d.f. of Ty under Hy, then a classical result,
sometimes called Polya’s theorem (see for instahce [34Perés that the convergence Bf;

towards Fry is uniform overR:

sup [ Fiv(z) — Friw(z)] ——— 0. (27)
2€R N,K—o0

We are now in position to prove the theorem.

Recall that the power of tedf| (7) is maximum under level aamst« if and only if py(vy) =
. Define (v = N*3(yn — (1 + (/en)?)/bn. Clearly, « = py(vy) = Fn(Cx). Due to [2F),
Frw((n) — a. As Fry has a continuous inverse, the first point of the theorem isguto

The second point is a direct consequence of the convergdnEg toward the Tracy-Widom
distributon: The PFA of tesf{(P4) can be written %:[TN > Fr ()| which readily converges

to «a.

The third point is a direct consequence fl (27)(Tx ) —pn(Tn) = Fn(Tn)—Frw (Tn) — 0.
This completes the proof of Theoreh 1.

Remark 4. Theorem[]1 provides a simple approach to compute both thehhbld and thep-
values of the GLRT as the dimensiéh of the observed time series and the numbérof
snapshots are large: The thresholg associated with the level can be approximated by the
righthand side of[(24). Similarly, equatiop [25) provides@venient approximation for the
value associated with one experiment. These approachestdedquire the tedious computation
of the exact complementary c.d[f:](11) and, instead, olfyae tables of the c.d.f'ry,, which
can be found for instance i [B1] along with more details oe tomputational aspects (note
that function Frryy does not depend on any of the problem’s characteristic, angairticular
not onc). This is of importance in real-time applications, such agmitive radio for instance,
where the users connected to the network must quickly ddordithe presence/absence of a

source.
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V. ASYMPTOTIC ANALYSIS OF THE POWER OF THE TEST

In this section, we provide an asymptotic analysis of the groef the GLRT asV, K — oc.
As the power of the test goes exponentially to zero, its eexmonent is computed with the help
of the large deviations associated to the largest eigeexaflunatrixR. The error exponent and
error exponent curve are computed in Theofém 2, Setioh Wé;arge deviations of interest
are stated in Sectidn VB. Finally Theordin 2 is proved in adt-Q.

A. Error exponents and error exponent curve

The most natural approach to characterize the performaneéest is to evaluate its power or
equivalently its miss probabilitye., the probability undef; that the receiver decides hypothesis

H,. For a given levek € (0, 1), the miss probability writes:
Bnr(a) =inf (P, {Ty < v}, v such thatPy {7y > v} < a) . (28)

Based on Sectiop 1B, the infemum is achieved when the timlelscoincides withy = py' (a);
otherwise statedjy (o) =P, {Ty < py'(a)} (notice that the miss probability depends on the
unknown parameterd ando?). As By r(«) has no simple expression in the general case, we
again study its asymptotic behaviour in the asymptoticmegof interest[(J3). It follows from
Theorem(]L thapy'(a) — AT = (1+ /c)? for a € (0,1). On the other hand, under hypothesis
H,, Ty converges a.s. tagy, which is strictly greater than™ when the ratio”;‘—'Q‘2 is large
enough. In this case?; {TN < p]_vl(oz)} goes to zero as it expresses the probability that
deviates from its limit\>°, ;

o> Mmoreover, one can prove that the convergence to zero isexgial
in V:

P, [Ty ~ 2] ~ e NP @) | (29)

where I is the so-called rate function associatedlte. This observation naturally yields the

following definition of the error exponerdt;:

8T = lim —%logﬁMT(a) (30)

N—oo

the existence of which is established in Theofém 2 belowNak — oc). Also proved is the
fact thaté, does not depend on.
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The error exponent gives crucial information on the performance of the tEst provided
that the levely is kept fixed whenV, K go to infinity. Its existence strongly relies on the study
of the large deviations associated to the statisti¢s

In practice however, one may as well take benefit from theesing number of data not
only to decrease the miss probability, but to decrease tied3Fwell. As a consequence, it is
of practical interest to analyze the detection performanben both the miss probability and
the PFA go to zero at exponential speed. A coupleh) € (0,00) x (0,00) is said to be an
achievablepair of error exponents for the te$l; if there exists a sequence of levels, such

that, in the asymptotic regim¢ {13),
. 1 . 1
]\}I_Iil)o N logay =a and A}lgl)o—ﬁ log By r(an) =0 . (32)

We denote bys, the set of achievable pairs of error exponents for Testas N, K — oco. We
refer toS; as theerror exponent curvef Ty.
The following notations are needed in order to describe ther eexponenté, and error

exponent curves,.

(o) = [ 22D e ry (o) P = [ st - 0)Pap(d) (620 . (32

Remark 5. Function f is the well-known Stieltjes transform associated to dé¢ako-Pastur
distribution and admits a closed-form representation folam So does functiodr*, although

this fact is perhaps less known. These results are gatherédpbpendi B.

Denote byA(- | A) the convex indicator functione. the function equal to zero far € A

and to infinity otherwise. Fop > /¢, define the function:

IHa) = x(l_fig)k —(1—c)log (%&) — ¢ (FH(x) — FT(A\5)) + Az | [\, 00)) (33)

Also define the function:

X
A+
We are now in position to state the main theorem of the section

I @) =2 — A" —(1—c)log ( ) —2c (FH(z) —FY(0) + Az | [\F,00)) . (34)

Theorem 2. Let Assumptiofij1 hold true, then:
1) For any fixed levek € (0,1), the limit £1 in (BQ) exists asV, K — oo and satisfies:

Er = [F (A7) (35)
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if p > /c and &7 = 0 otherwise.

2) The error exponent curve of te8ly is given by:

8¢ = {(UF(x), If(x) : € (A", 050} (36)

» “spk

if p > /c and 87 = () otherwise.

The proof of Theorenf]2 heavily relies on the large deviatiohgy and is postponed to

Section[V=C. Before providing the proof, it is worth makiretfollowing remarks.

Remark 6. Several variants of the GLRT have been proposed in the fitexraand typically
consist in replacing the denominat@gtrf{ (which converges toward?) by a more involved
estimate ofr? in order to decrease the biaf JL11]f L2][TL3][[34]. Howevét can be established
that the error exponents of the above variants are as wedirglwy [3p) and[(36) in the asymptotic

regime.

Remark 7. The error exponen€ yields a compact approximation of the miss probability in
the sense thatly r(a) ~ e Vér as N — oo. It depends on the limiting ratie and on the
value of the SNR through the constankZ;, . In the high SNR case, the error exponent turns

out to have a simple expression as a functiop.off p — oo then\Z, tends to infinity as well,

which simplifies the expression of rate functigh. Using F'*(Ag

k) = log A%y + 0,(1) where

0,(1) stands for a term which converges to zeroms- oo, it is straightforward to show that
for eachz > A", I7(z) =logp — 1 — (1 —¢)logz — cF*(z) + 0,(1). After some algebra, we

finally obtain:
Er=logp— (1++/c)— (1 —c)log(l+/c) —clog\/c+0,(1) .
At high SNR, this yields the following convenient approxiomaof the miss probability:
Bnr(a) = (¥(e)p)" (37)

wherev(c) = e"0+Ve(1 4 /c)* 2,

B. Large Deviations associated oy

In order to express the error exponents of interest, a rigoformalization of [[29) is needed.

Let us recall the definition of a Large Deviation Principldd®). A sequence of random variables
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(Xn)nen Satisfies a Large Deviation Principle (LDP) underin the scaleN with good rate

function [ if the following properties hold true:

« [ is a nonnegative function with compact level sets, {x./(z) < t} is compact fort € R,

. for any closed sef’ C R, the following upper bound holds true:

1
limsupﬁlogP(XN el)< —i%f[. (38)

N—oo

« for any open setG C R, the following lower bound holds true:

1
lim inf I logP(Xy € G) > — igf]. (39)

N—oo

We refer the reader td [B5] for further details on the subject

As already mentioned above, all the probabilities of irgere rare events a¥, K go to

infinity related to large deviations fdFy. More precisely, Theorerf] 2 is merely a consequence

of the following Lemma.

Lemma 1. Let Assumptiofi]1 hold true and I&f, K — oo, then:

1)

2)

3)

4)

Under H,, Ty satisfies the LDP in the scal& with good rate function/;”, which is
increasing from 0 toxo on interval (A1, c0).

Under H; and if p > /¢, Ty satisfies the LDP in the scal® with good rate function
I7. Function I7 is decreasing from/f(A") to 0 on [A*, A%, ] and increasing from O to

00 0N [AZ), 00).

For any bounded sequenégy ) n>o,
N nn I\ i p> e
lim ——logP; { T < (14 /cn)? + =< 7 (40)
NK—co N { N2/3} 0 otherwise.
Letz € (AT, 00) and let(zy)n>o be any real sequence which converges:tdf p < /c,
then:
) 1
Ml}{tgoo N logPy [Ty < xn] =0 (42)

The proof of Lemmd]1 is provided in Appendi¥ A.

Remark 8. Lemmd]L-(3) is not a mere consequence of Lefijma 1-(2) as iildesthe deviations

of Ty at the vicinity of a point of discontinuity of the rate furmsti The direct application of

the LDP would provide a trivial lower bound-{<) in this case.

DRAFT
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C. Proof of Theorenf]2

In order to prove [(35), we must study the asymptotic behavimfuthe miss probability
Byr(e) =P {Ty < py'(a)} asN, K — co. Using Theorenf]1-(1), we recall that

Brrla) =P {Ti < (14 Ven)* + < | (42)

wherecy = % converges ta: and whereyy is a deterministic sequence such that
1 1/3
yim iy = (1+ Ve) <% + 1) Fry(a) .
Hence, Lemm@ 1-(3) yields the first point of Theorfgm 2. We noove the second point. Assume
thatp > \/c. Consider any: € (A*, \,) and for everyN, K, consider the test function which

» “Yspk
rejects the null hypothesis whéfy > x,

Hy
Denote byay = Py[Tv > z] the PFA associated with this test. By Lemija 1-(1) togethéin wi

the continuity of the rate function at, we obtain:

1
lim N logay = inf I (y) = I (z) . (44)

N,K—o0 y€lz,00)

The miss probability of this test is given Bx r(an) = P4 [Ty < z]. By Lemma[]L-(2),

. 1 .
N,111<IEOO N log Bn.r(an) = ye(lflfo’x} ];r(y) = ];r(x) . (45)

Equations [(44) and[(#5) prove théky (x), I (x)) is an achievable pair of error exponents.
Therefore, the set in the righthand side pf] (36) is included;. We now prove the converse.
Assume that(a,b) is an achievable pair of error exponents anddgt be a sequence such
that (31) holds. Denote byy = py'(ay) the threshold associated with level. As I () is
continuous and increasing from 0 4o on interval(A\*, c0), there exists a (unique) € (A, o)
such thata = I (z). We now prove thatyy converges tor as N tends to infinity. Consider a
subsequence,y) which converges to a limity € R U {oo}. Assume thaty > x. Then there

existse > 0 such thaty, ) > = + € for large N. This yields:

1
log Py {T > log Py {T . 4
o) 8 o {Tov) > Yo} > SO s o {Tony > @ + €} (46)
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Taking the limit in both terms yield$, (z) > I (z + ¢) by Lemma[JL, which contradicts the

fact that/;" is an increasing function. Now assume that: z. Similarly,

1
- — IOgPO {Tsp(N) > ’ch(N)} < — IOgPO {Tcp(N) > — 6} (47)

w(N) p(N)
for a certaine and for N large enough. Taking the limit of both terms, we obtdjn(z) <
I (x — ¢) which leads to the same contradiction. This proves that; vy = z. Recall that by
definition (31),

. 1
b= NEII(IEOO_N logP1 {Ty < v} -

As vy tends toxr, Lemma[]l implies that the righthand side of the above eqguasicequal to
I7(z) > 0if z € (AT, Ag,) andp > /e Itis equal to O ifz > AZ, or p < /c. Now b > 0 by

definition, therefore both conditionse (A*, A%, ) andp > /c hold. As a conclusion, ifa, b) is

an achievable pair of error exponents, thenb) = (15 (), I 7 (x)) for a certainz € (A", AZ),

and furthermore > \/c. This completes the proof of the second point of Theofpm 2.

VI. COMPARISON WITH THE TEST BASED ON THE CONDITION NUMBER

This section is devoted to the study of the té&t = j—;{ which is popular in cognitive
radio [19], [20], [Z1]. The main result of the section is Them [3, where it is proved that the
test based o’y asymptotically outperforms the one baseddf in terms of error exponent

curves.

A. Description of the test

A different approach which has been introduced in severpéadevoted to cognitive radio
contexts consists in rejecting the null hypothesis fordarglues of the statistidsy defined by:

Al

Unv = —
N )\Kv

(48)

which is the ratio between the largest and the smallest eidees ofR. Random variablé/y
is the so-callectondition numbenf the sampled covariance matik. As for T, an important
feature of the statisticEy is that its law does not depend of the unknown parameteshich
is the level of the noise. Under hypothedis, recall that the spectral measure Bf weakly
converges to the Maenko-Pastur distributior (JL4) with supp@pt—, A*). In addition to the fact
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that A\, converges toward* under H, and A Under Hy, the following result related to the

convergence of the lowest eigenvalue is of importance (se&$tance [[36],[[37],[[33]):
Mg 22 AT = 02(1 — /e)? (49)

under both hypothesed, and H,. Therefore, the statistidsy admits the following limits:

a.s. AT . (1 + \/6)2 a.s. )\:;k
Uv o v Ty A Un gy fore>ve (0)

The test is based on the observation that the limiU/gf under the alternativé?; is strictly

larger than the ratio™/\~, at least when the SNR is large enough.

Remark 9. The determination of the threshold relies on the asymptotiependence ol
and \x under H,, which enables to express the limiting distribution of tlagia in terms of
independent Tracy-Widom distributions. This in turn wowiedld a procedure to compute the
asymptotic threshold in a similar fashion to Theorfgm 1. Sarclasymptotic independence is not
proved ydl in the case of the LUE but has been established in the case @WE in [33] (see
also [32)).

B. Performance analysis and comparison with the GLRT

We now provide the performance of the above test based onahditon numberUy in
terms of error exponents. In accordance with the definitminsection[V-A, we define the miss
probability associated with testy asfy () = inf Py [Uy < ] for any levela € (0,1), where
the infemum is taken w.r.t. all thresholdssuch thatP, [Uy > v] < a. We denote by, the
limit of sequence—% log By () (if it exists) in the asymptotic regim¢ (13). We denote &y
the error exponent curve associated with tésti.e., the set of couple&a, b) of positive numbers
for which —% log By v (an) — b for a certain sequencey which satisfies—% log any — a.

Theorem[B below provides the error exponents associated tedt Uy. As for Ty, the
performance of the test is expressed in terms of the ratdifumof the LDPs forUy underP,
or IP;. These rate functions combine the rate functions for thgektreigenvalue,, i.e. ];f and

Iy defined in Sectioff ViB, together with the rate function agsted to the smallest eigenvalue,

“The proof of this result is beyond the scope of this artickimprily devoted to the study of the test basedon.
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1, defined below. As we shall see, the positive rank-one gdeation does not affect whose
rate function remains the same undéy and H;.
We first define:

F(z) = / log(y — 2)dPyp(y), (< A7) . (51)

As for F*, functionF~ also admits a closed-form expression based,dhe Stieltjes transform
of Marcenko-Pastur distribution (see Appenlix B for details).
Now, define for eaclr € R:

I"(@)=2—-A" —(1-c)log (%) —2¢(F () —F~ (A7) + A(z|(0, A7) (52)

If A\, and\x were independent random variables, the contraction plie¢see e.g.[[35]) would
imply that the following functions
T

rp<t):inf{1;<x)+1—(y): ;zt} and r0<t):inf{10+(x>+r(y): gzt}

defined for each > 0, are the rate functions associated with the LDP governiyo\ under
hypotheseg/, and H, respectively. Of course,; and\x are not independent, and the contraction
principle does not apply. However, a carefull study of thdzfppggN andp}gN show that\; and

Ak behave as if they were asymptotically independent, fronrgelaeviation perspective:

Lemma 2. Assumep > +/c. The ratio\; /\x satisfies the LDP asv, K — oo and % —c €

(0,1), with good rate functiori’y(¢) (resp.I',(¢)) under hypothesigi, (resp. H).

Proof of Lemmd]2 is very similar to the proof of Lemifja 1 and isréfore omitted. We now

provide the main result of the section.

Theorem 3. Let Assumptiofi]1 hold true, then:

1) For any fixed levek € (0,1) and for eachp, the error exponen€ exists and coincides

2) The error exponent curve of tety is given by:

so = oo e (52 53)

if p > +/c and 8y = 0 otherwise.

3) The error exponent curv&; of testTy uniformly dominates;; in the sense that for each
(a,b) € 8y there exitst/ > b such that(a,b') € Sr.
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Proof: The proof of items (1) and (2) is merely bookkeeping from theop of Theoren{]2
with Lemma[P at hand.

Let us prove item (3). The key observation lies in the follogviwo facts:

Ve e (AT A, T, (Ai_) — If(x), (54)
Ve e (A A, T (Ai_) < I(x). (55)

Recall that

r,,(Ai_) - mf{fg(u)u—(v); %:Ai_}

< I(x)+I-(A7) = If(x),

—
=

where (a) follows from the fact that/ = (A=) = 0 and by takingu = x,v = A~. Assume that
inequality (a) is strict. Due to the fact thalt;r is decreasing, the only way to decrease the value
of I;(u) + I~ (v) under the considered constraiit= ;= is to find a couple(u, v) with u > z,
but this cannot happen because this would enforce\~ so that the constrairt = = remains
fulfilled, and this would end up witi~(v) = oo. Necessarily(a) is an equality and[($4) holds
true.

Let us now give a sketch of proof fdr (55). Notice first tﬁ% lu=z> 0 (which easily follows
from the fact that is increasing and differentiable) Whi%}; lv »-= 0. This equality follows

from the direct computation:

lim I~ (x) _ 1—c_2ch_
A X — AT A~ dx v A
1+ /¢ _
= 1- 2cf (A =
= e + 2cf(A7) 0,
where the last equality follows from the fact thégzé = —f together with the closed-form

expression fof as given in AppendiXB. As previously, write:

F0<)\£_) = inf{]&r(u)vLI_(v): %:)\i_}

< L@+ I7(A) = I (x).

—
=

Consider now a small perturbatian = x — § and the related perturbation = A\~ — §’ so

that the constraint = <= remains fulfilled. Due to the values of the derivatives/pfand /-
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at respective points and \~, the decrease of (z — ) will be larger than the increase of
I= (A~ =), and this will result in the fact that

T, (%) < IFr—8)+ 1"\ +8) < IF(2)

which is the desired result, which in turn yields](55).
We can now prove Theorerj 3-(3). Lét,b) € 8y and (a,b') € Sr, we shall prove that
b < V. Due to the mere definitions of the curv8s and 8+, there existr € (A", \%,) and

» “'spk

t € (AT/AT,AZ/A7) such thata = I (z) = To(t). Eq. (Bb) yields that: < t. As If is

spk
decreasing, we have

Vo= If(x) > I;7(tA\7) = T,(t) = b,
and the proof is completed. [ |

Remark 10. Theorem[B-(1) indicates that when the number of data inegathe powers of
testsTy and Uy both converge to one at the same exponential sgged £, provided that
the levela is kept fixed. However, when the level goes to zero expoiigritiat as a function of
the number of snapshots, then the test basedpnutperforms, in terms of error exponents:
The power ofl’y converges to one faster than the powerldf. Simulation results forV, K
fixed sustain this claim (cf. Figuig 3). This proves that ie ttontext of interestN, K — o),
the GLRT approach should be prefered to the tést

VII. NUMERICAL RESULTS

In the following section, we analyze the performance of tteppsed tests in various scenarios.

Figure[1 compares the error exponent of tBgtwith the optimal NP test (assuming that all
the parameters are known) for various values ahd p. The error exponent of the NP test can
be easily obtained using Stein’s Lemma (see for instandp.[39

In Figure[R, we compare the Error Exponent curves of botls tEgtand Uy. The analytic
expressions provided [ih 2 afid 3 for the Error Exponent cunaes been used to plot the curves.
The asymptotic comparison clearly underlines the gain afgugestT)y.

Finally, we compare in Figurf] 3 the powers (computed by M@u#do methods) of tests

Ty and Uy for finite values of N and K. We consider the case whefé = 10, N = 50 and
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Log of the Error exponent for different values of ¢

-10 | 1 1 1 1
0

Figure 1. Computation of the logarithm of the error expon&rdssociated to the te§ty for different values ofc (with &,

defined forp > \/c and &, |,— = = 0), and comparison with the optimal result (Neyman-Pearstmtjined in the case where

all the parameters are perfectly known.

p = 1 and plot the probability of error undet, versus the power of the test, thatdsversus

Py, (T > vn) (resp. Py, (Uyx > vn)) Where~yy is fixed by the following condition:

Pu,(Tn > vv) =a  (resp.Py,(Uy > yv) = @) .

VIIl. CONCLUSION

In this contribution, we have analyzed in detail the GLRThe tase where the noise variance
and the channel are unknown. Unlike similar contributioms,have focused our efforts on the
analysis of the error exponent by means of large random xn#tgory and large deviation
techniques. Closed-form expressions were obtained andezhas to establish that the GLRT
asymptotically outperforms the test based on the conditiamber, a fact that is supported by
finite-dimension simulations. We also believe that thedatgviations techniques introduced here

will be of interest for the engineering community, beyond firoblem addressed in this paper.
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Error Exponent Curves for 7% and 15
25 T T T T T

15
EE curve for T}

EE curve forT>

0 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Figure 2. Error Exponent curves associated to the tBstg7:) and Uy (1%) in the case where = % andp = 10dB

APPENDIX A

PROOF OFLEMMA [Il: LARGE DEVIATIONS FORT )y

The large deviations of the largest eigenvalue of large sananatrices have already been
investigated for the Gaussian orthogonal ensenjble [40]d@fioirmed Gaussian ensemblgg [18].
As mentionned in[[18, Remark 1.2], the proofs of the lattar ba extended to the single spiked

model (random matrix model undéf;) or the complex Wishart model (random matrix model
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Power

'
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0 0.1 0.2 03 0.4 0.5 06 0.7 0.8 0.9 1

False Alarm Probability Level

Figure 3. Simulated ROC curves f@iv (test 1) andUn (test 2) in the case wher® = 10, N = 50 and p = 10dB.

under H,). We rather focus on the proof of the LDP for the spiked modeinfma[JL-(2)) and
omit the proof of the LDP for the largest eigenvalue of the L{IEmma[l-(1)).

Recall that\; > --- > Ay are the ordered eigenvalues Bf and that7y is the statistics
defined in [p).

In the sequel, we shall prove the upper bound of the LDP in Lafdn{2) (which gives also
the upper bound in Lemmd 1-(3)). The proof of the lower boumdemma[JL-(3) requires more
precise arguments than the lower bound of the LDP. One haethtb study what happens at
the vicinity of A*, which is a point of discontinuity of the rate functidij. Thus, we skip the
proof of the lower bound of the LDP in Lemnj& 1-(2) to avoid r#pen. Note that the proof
of Lemma[]l-(4) is a mere consequence of the fact Thatonverges a.s. ta* if p < /c, thus
P1(Ty < xy) converges to 1 whenevery converges ta: > ™.

For sake of simplicity and with no loss of generality as the &f 7y does not depend om
we assume all along this appendix thdt= 1. We first recall important asymptotic results for

spherical integrals.

A. Useful facts about spherical integrals

Recall that the joint distributions of the ordered eigeuneal under hypothesi&, and H;
are respectively given by (12) anfl [19). In the latter, thecalted spherical integral (RO) is
introduced. We recall here results froin][18] related to thy@ptotic behaviour of the spherical

October 5, 2009 DRAFT



28

integral in the case where one diagonal matrix is of rank ame the other has the limiting

distributionPy,. We first introduce the function defined fer> A by:

py— J £ (si) — FH S0, if p < \/E andir<e G
iy — L —log ((;(1—1,))> —F*(x), otherwise.
Consider aK-tuple (z1,---,zx) and denote byry x = ﬁzg\; 0z, the empirical distri-
bution associated tox,--- ,z); let d be a a metric compatible with the topology of weak

convergence of measures (for example the Dudley distanee fa instance[[41]). A strong
version of the convergence of the spherical integral in tkgoeential scale with speedy,

established in[[18] can be summarized in the following Lemma

Lemma 3. Assume thatV, K — oo and £ — ¢ € (0,1) and let Assumptiofi] 1 hold true. Let
x> a9 > - >axg > 0andd > 0. If, for N large enough|z; — x| < § and d(7k x, Pyp) <

N~-Y4 then:
N

10gIK (—BK,XK) - CJp(JI) S )

)

K

1
N

where J, is given by(B8), Bx = diag< bE_ (), .. .,0) and Xy = diag(xy, -+, k).

1+pk’

B. Proof of Lemmd]1-(2)

In order to establish the LDP under hypothe&isand conditiony > /¢, (that is the bounds
(B3) and [3P)), we first notice that intervdls, z +4) for 2,6 € R form a basis of the topology
of R*. The LDP will be therefore a consequence of the followingrmsu(for details, sed [B5,
chap. 1 and 4]):

« (Exponential tightness) there exists a functipn Rt — R™* going to infinity at infinity

such that for allV,
Py (A > M) < e MM (57)

« (Upper bound) For any;, for any M such that) < x < M,

lggllig:sip % logPy (2 < Ty <x+06, \ < M) < —I7(x), (58)

« (Lower bound) For any,

1
im lim inf — <Ty< > —If
1;{511%2102%\710??1?1 (z<Ty<z+0)>—-1](x). (59)
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As the arguments are very similar to the ones developed jj {8 only detail the upper bound.
The idea is that the empirical meastuirg » := ﬁ ZJK:Q dy, (of all but the largest eigenvalues)
and the trace concentrate faster than the largest eigenvaliuhe exponential scale with speed
N, 7 and the trace can be considered as equal to their limit, césply Fyp and 1. In
particular, the deviations dfy arise from those of the largest eigenvalue and they botkfgati
the same LDP with the same rate functlb,jm We therefore isolate the terms depending)@n
and gather the others through their empirical measyg.

Recall the notations introduced in]12) afd](19) and:let A*, § > 0. Consider the following

domain:
K.Z’l

T+t ke

D:{(xl,-~-,xK)€[0,M]K, E(x,x+5)}

For N large enough:

Pl(l’ S TN S x+5, )\1 S M) :/ dp}%N(.TLK)
D

_ 1 /dxl6_Nx16(N_K)1ogx162(1<—1)flog(xl—u)dﬁK,x(u)
D

1
ZN,K

K
N Ko _
X Ir <EBK7XK) H ‘CL’Z — .Tj|2e_NZj=2mJ H'Tév KdﬂfQ;K X 1(1,12...21,}(20)
1<i<j =2
(1 B %)(K—l)(]\f—l

IN

) 70
1 ZN_ 1K1 / div, e~ No1 (=) logar 2(K-1) [ logla—u)ditsc y (u)
ZN K D

N _
X1k (EBKa XK) dp(;)é]lfl 1(y2:K),

where we performed the change of variablgs:= %xl for - = 2 : K, and the related

modifications @y x — 7xy and Xx = diag (21, 55 y2, -+, “+y2). Note also that strictly

speaking, the domain of integratidn would express differently with the;’s and in particular,

we should have changed constadtwhich majorizes ther;’s into a larger constant as thg's

can theoretically be slightly abov&l - we keep the same notation for the sake of simplicity.
To proceed, one has to study the asymptotic behaviour of ahmatdizing constant:

(1 B %)(K_l)(N_l) Z]Qf—l,K—l

1 )
ZN,K

which turns out to be difficult. Instead of establishing dthg the bounds[(37)f(%9), we proceed

as in [I8] and establish similar bounds replacing the pridibhalneasuresP; by the measures
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Q, defined as:

2y i
Q= ’ Py
(K-D(N-1)
Z?{—l,N—l (1 o %)
and the rate functiod; by the functionG;, defined by:
r P
Gy(z) = e (1—c)logx — cF*(x) + ¢+ clog (c(l +,0))

for z > A\™. Notice that these positive measuf@s are not probability measures any more, and
as a consequence, the functi@p is not necessarily positive and its infemum might not be equa
to zero, as it is the case for a rate function.

Writing the upper bound fo€);, we obtain:

Qux<Ty <x+6 M\ <M)

N

< /d%e_N@(xl’cN’ﬁK’Y)IK (EBIOXK) dp?N T (2,
D

where, for any compactly supported probability measu@nd any real numbey greater than
the right edge of the support af,

O(y,en, i) = =y + (1 —cn)logy + 2cn / log(y — A\)du(N).

Let us now localise the empirical measute , aroundPyf] and the trace around 1. The
continuity and convergence properties of the sphericagirat recalled in Lemm§ 3 yield, for
K large enough:

z+0
Qz<Ty<z+6, M<M) < / day / A/ S (729
T &

PK
4R NNHE NV /

PR () (60)

with

1 1 &
e .— {(yz, e yk) € 10, MIETY d(fiy, Pyp) < g and o z;yj €[1-0%1+6 } :
The second term i (60) is easily obtained considering tbetftatjall the eigenvalues are less
than M so that forl < j < K, |z — ;| <2M, 2}~ < M=% and (UXxU*)11 < M. Now,
standard concentration results undéy yield that:

K
1 1
limsupﬁlogIP’o (ﬁK,)\ ¢ B(Pgp, N~V4) or EZ)V ¢ [1 — 621 +52}> = —o0.

N—oo =2

°Notice that if 7 x is close toPyp, S0 is7x y due to the change of variablg = ;.
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More precisely, one knows usinfj [42] that the empirical mea% ZL A, is close enough to
its expectation and then using J43] one knows that the eagieatis close enough to its limit

Pyp. The arguments are detailed in the Wigner casg ih [18] and weotigive more details here.

As cy — cfor NNK — oo, ¢ — ®(y,c,pu) is continuous angt — ®(y,c, p) is lower
semi-continuous, we obtain:

1
lim sup N logQi(z <A\ <z+4+d, Ny <M)< sup (P(u,c, Pyp)+cl,(u)) + 26.
N—oo UE[IE,.’L'—‘,-(S]

By continuity inw« of the two involved functions, we finally get:

1
lglnoqlimsupﬁlog(@l(x <M<z4+6, M <M)<P(z,¢,Pyp) +cJ,(z) =G,(2) ,

N—oo
and the counterpart of Ed. (58) is proved {@r and functionG,. The proof of the lower bound
is quite similar and left to the reader. It remains now to weco(58). AsP; is a probability
measure and the whole spake is both open and closed, an application of the upper and lower

bounds forQ; immediately yields:

1 ZLN
o K +
llNHLIOIéf N log N . (K—l)(N—l)]P)l (Ty € RT)
Zgy (1-%)
1 zZN
= limsup — log K P, (Ty € RY)

Neos N ZON-1 (1 B %)(K—l)(N—l)

K—1
1 Z:N
= lim —log K
oo 0,N—1 (K-1)(N-1)
Noe N T (- %)
= —infG,.
R+

This implies that the LDP holds fdP, with rate functionG, — infg+ G,,.
It remains to check that; = G, —infg+ G, which easily follows from the fact to be proved
that:

nfGl) = G005 (61)
We therefore study the variations 6f, over [A\*,c0). Note that(F*) = —f, and thus that

G(r) = (14 p)~" = (1 = ¢)a~! + of(x). Functionf being a Stieltjes transform is increasing
for = > AT, and so isG’, whose limit at infinity is(1 + p)~'. Straightforward but involved
computations using the explicit representatipn (63)ffgield that G, (A\35,) = 0. Therefore G,

is decreasing of\*, A3, ] and increasing o\, , o), and (61) is proved.
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This concludes the proof of the upper bound in Lenfina 1-(2 pioof of Lemmg]J1-(1) is

very similar and left to the reader.

C. Proof of Lemma]1-(3)

The proof of this point requires an extra argument as we sthdylarge deviations of
near the point(1 + /c)? where the rate function is not continuous. In particulag timit
(#Q) does not follow from the LDP already established. As wallssee when considering
Py {Ty < (1+ /cn)? + v N~#3}, the fact that the scaleN—%/?) is the same as the one of
the fluctuations of the largest eigenvalue of the complexh@fismodel is crucial.

We detail the proof in the case when> ,/c and, as above, consider the positive measures
Q. We need to prove that:

_ log Q (TN < (1+ en)? + ) > —G,(\), neR, (62)

N2/3
the other bound being a direct consequence of the LDP. Asqugly, we will carefully localize
the various quantities of interest. Denote dy(n) = (1 + \/cx)* + nN~%3 for n € R and by
hy(r) =1—rN~%3for r > 0. Notice also that\; < gy(n)hy(r) together with. Ef s Aj >

hy(r) imply that Ty < gy (n). We shall also consider the further constraints:
gN(’f] — 1)]1]\/(7’) <\ and Ay < gN(’f] — 2)]1]\/(7‘)

which enable us to properly separate from the support ofrx x. Now, with the localisation

indicated above, we have fa¥ large enough,
Qi (Tx <gn(n) 2 Q (91\/(77 —Dhn(r) < X < gn(n)hn(r),
1 K
ﬁ Z )\j > hN(’I“), )\2 < gN(ﬁ — 2)hN(’I“), 7%[(7)\ € B(]P)MP, N_1/4)) .
7j=2
As previously, we consider the vanablge;s— w2 for 2 < j < K and obtain:

(mMhn(r) .
Q: (TN < QN(TZ)) > / d$1/€_Nq>(z1’cN’wa> Ne(Jp (@) dP%Nl_l(yzzK)
gn(n—1)hn(r) F

with

F .= {(yz,... JYK) € {0, NgN(?V__QihN(T)} _
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Lemma[B yields therefore:
Qi (Tx < gn(m)) > N (GA-20)p, (A2, Ak) €F).

It remains to check thaP, ((A\s, -+, A\x) € F) is bounded below uniformly inV. This will
yield the convergence of log Py (A2, - -+, Ax) € F) towards zero, henc§ (62). Consider:

Po (A2, -+, Ak) € F°) <Py (Txa ¢ B(Pyp, N711))

I N N
+ Py (ﬁ ;)\j < mhz\r(r)> + Py <)\2 > 5 7Ivn— Q)hN(T))

We have already used the fact that the first term goes to zeem Whgrows to infinity. Recall

that the fluctuations of--~ Esz ); are of ordery., therefore the second term also goes to zero
as we consider deviations of ord&r2/3, Now, N2/3(\, — (1+ ,/cx)?) converges in distribution
to the Tracy-Widom law, therefore the last term convergesiq (n — 2 + (1 ++/c)?) < 1.

This concludes the proof.

APPENDIX B

PROOF OFLEMMA

Consider the Stieltjes transforfnof Marcenko-Pastur distribution:

[ Pyp(dN)
f(z) = / e

We gather without proofs a few facts relatedftowhich are part of the folklore.

Lemma 4 (Representation off). The following hold true:
1) Functionf is analytic inC — [A~, A*].
2) If z € C— [\~ \*] with R(z) > 222 then

(1—2—=c)++/(1—2—0c)—decz
2cz

f(z) =

)

where/z stands for the principal branch of the square-root.
3) If z € C— [A\~,\*] with R(2) < 2%, then

(1—z—0¢)—+y/(1—2—10c)?—4dcz
2cz

f(z) =

where —,/z stands for the branch of the square-root whose imagge:is C, R(z) < 0}.

October 5, 2009 DRAFT



34

4) As a consequence, the following hold true:
(l—z—c)+/(1—z—0c)?—4dcx

f(x) = 5o if >\t (63)
fr) — (l—x—c)—\/2(01$—x—c)2—4cx f 0<az<A . (64)

5) Consider the following functiof(z) = cf (z) — <. Functionsf andf satisfy the following

system of equations:

1
fe) = I (65)
f(2) = —iram)

Recall the definition[(32) and (p1) of functidf™ andF~. In the following lemma, we provide

closed-form formulas of interest.
Lemma 5. The following identities hold true:
1) Letxz > \*, then
1 - -
F(x) =log(z) + - log(1 + cf(x)) + log(1 + f(x)) + zf(x)f(z) .
2) Let0 <x <\, then

F~(z) =log(z) + % log(1 + cf (z)) 4 log(—(1 4 f(z))) + «f (2)f(z) .

Proof: Consider the case where> \*. First write

1og(x—y):10g(x)+/:o <1+ ! ) du .

u o y—u

Integrating with respect witl?;;, and applying Funini’s theorem yields:

<71
/log(x — y)Pyp(dy) = log(x) +/ (a + f(u)) du
in the case where > \*. Recall thaf andf are holomorphic functions ové— ({0}U[A~, A*])
and satisfy systen] (p5) (notice in particular that cf and1 + f never vanish). Using the first
equation of [(g5) implies that:
[ 108 — )Py () = log(a) [t du (66)
Consider(u, f, f) = Llog(1+ cf) +log(1 +f) +uff. By a direct computation of the derivative,

we get:

d - 1 . - 1 .
—I'(u, f f = | — f f/ _ f ff
T (u, f(u), f(u)) (1+cf+u>+ <1+f+u)+

= f(u)f(u) .
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Hence

[e.e]

/:Of(U)f(U)du = Elog(l%—cf)+1og(1+f)+uff}

xT

= - (% log(1 + cf(x)) + log(1 + f(z)) + $f(93)f(93)) :

It remains to plug this identity intd (§6) to conclude. Thenesentation o~ can be established

similarly.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

J. Mitola Ill and GQ Maguire Jr. Cognitive radio: makingfevare radios more persondEEE Wireless Communications
6:13-18, 1999.

S. Haykin. Cognitive radio: Brain-empowered wirelessrenunications.|IEEE Journal on Selected areas in Comi3,
2005.

M. Dohler, E. Lefranc, and A.H. Aghvami. Virtual antenaarays for future wireless mobile communication systel6g.,
Beijing, China 2002.

H. Urkowitz. Energy detection of unknown determinissignals. Proc. of the IEEE 55:523-531, 1967.

V. I. Kostylev. Energy detection of a signal with randommglitude. Proc IEEE Int. Conf. on Communications, New York
City.

M. K. Simon, F. F. Digham, and M.-S. Alouini. On the enerdgtection of unknown signals over fading channéGC
2003 Conference Record, Anchorage, Alaskz03.

Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor. Spatial-s@gbint detection for wideband spectrum sensing in cogmit
radio networks.Proc. ICASSP, Las Vega2008.

E.L. Lehman and J.P. Roman@esting statistical hypotheseSpringer Texts in Statistics. Springer, 2006.

M. Wax and T. Kailath. Detection of signals by informatitheoretic criterialEEE Trans. on Signal, Speech, and Signal
Processing 33(2):387—-392, April 1985.

P-J Chung, J. F. Bohme, C. F. Mecklenbrauker, and AroHeéetection of the number of signals using the benjamin-
hochberg procedurdEEE Trans. on Signal Processing5, 2007.

X. Mestre. Improved estimation of eigenvalues and migetors of covariance matrices using their sample estisndEEE
Trans on Inform. Theory54(11):5113-5129, Nov. 2008.

X. Mestre. On the asymptotic behavior of the samplenesties of eigenvalues and eigenvectors of covariance rstric
IEEE Trans. on Signal Processing6(11):5353-5368, Nov. 2008.

S. Kritchman and B. Nadler. Determining the number ofmponents in a factor model from limited noisy data.
Chemometrics and Intelligent Laboratory Systems, 20082,194.

S. Kritchman and B. Nadler. Non-parametric detectidérthe number of signals: Hypothesis testing and random matri
theory. in press in IEEE Transactions Signal Processing, 2009

N. Raj Rao, J. A. Mingo, R. Speicher, and A. Edelman. iStiaal eigen-inference from large Wishart matricesnn.
Statist, 36(6):2850-2885, 2008.

October 5, 2009 DRAFT



36

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

N. Raj Rao and J. Silverstein. Fundamental limit of skmgeneralized eigenvalue based detection of signals isenoi
using relatively few signal-bearing and noise-only sampéXiv:0902.4250 2009.

I. M. Johnstone. On the distribution of the largest eigdue in principal components analysésn. Statist.29(2):295-327,
2001.

M. Maida. Large deviations for the largest eigenvalderank one deformations of Gaussian ensembl&sectron. J.
Probab, 12:1131-1150 (electronic), 2007.

Y. H. Zeng and Y. C. Liang. Eigenvalue based spectrunsisgnalgorithms for cognitive radicdo appear in IEEE Trans

on Communications volume=arXiv:0804.2960v1

L. S. Cardoso, M. Debbah, P. Bianchi, and J. Najim. Coatde Spectrum Sensing Using Random Matrix Theory.
Proceedings of ISPWQ008.

F. Penna, R. Garello, and M. A. Spirito. Cooperative @pen Sensing based on the Limiting Eigenvalue Ratio [hgtion

in Wishart Matrices.|EEE Communication Lettersubmitted, 2009.

T. Abbas, N-K Masoumeh, and G. Saeed. Multiple antenmectsum sensing in cognitive radiosubmitted to IEEE

Transactions on Wireless Communications, 2009
T. W. Anderson. Asymptotic theory for principal compnt analysis.J. Math. Stat. 34:122-148, 1963.
A. W. Van der Vaart. Asymptotic Statisticchapter 14. Cambridge Univ. Press., 1998.

J. Mitola. Cognitive Radio An Integrated Agent Architecture for SafavDefined Radio PhD thesis, Royal Institute of
Technology (KTH), May 2000.

M. L. Mehta. Random matricesvolume 142 ofPure and Applied Mathematics (Amsterdani)lsevier/Academic Press,
Amsterdam, third edition, 2004.

V. A. Martenko and L. A. Pastur. Distribution of eigeiues in certain sets of random matricédat. Sb. (N.S,)72
(114):507-536, 1967.

G. Ben Arous and A. Guionnet. Large deviations for Wigsméaw and Voiculescu's non-commutative entroggrobab.
Theory Related Fieldsl08(4):517-542, 1997.

C. A. Tracy and H. Widom. Level-spacing distributionsdathe Airy kernel.Comm. Math. Phys159(1):151-174, 1994.
C. A. Tracy and H. Widom. On orthogonal and symplectidnmaensemblesComm. Math. Phys177(3):727-754, 1996.

A. Bejan. Largest eigenvalues and sample covariancgigaa. tracy-widom and painleve ii; computational aspeatd

realization in s-plus with applicationsittp://www.vitrum.md/andrew/TWinSplus.pg005.

F. Bornemann. Asymptotic independence of the extreigensalues of GUEarXiv:0902.3870 2009.

J. Baik and J. Silverstein. Eigenvalues of large sangpleariance matrices of spiked population moddisMultivariate
Anal, 97(6):1382-1408, 2006.

P. J. Bickel and P. W. Millar. Uniform convergence of pability measures on classes of functionStatist. Sinica
2(1):1-15, 1992.

A. Dembo and O. ZeitouniLarge Deviations Techniques And Applicatior&pringer Verlag, New York, second edition,
1998.

Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah. On the limit dfe largest eigenvalue of the large-dimensional samplericoee
matrix. Probab. Theory Related Field8(4):509-521, 1988.

Z. D. Baiand Y. Q. Yin. Limit of the smallest eigenvalué alarge-dimensional sample covariance matArn. Probah.
21(3):1275-1294, 1993.

DRAFT October 5, 2009



37

[38] P. Bianchi, M. Debbah, and J. Najim. Asymptotic indegemce in the spectrum of the gaussian unitary ensemble.
arXiv:0811.0979

[39] P.-N. Chen. General Formulas For The Neyman-Pearspa-TyError Exponent Subject To Fixed And Exponential Type-
Error Bounds.IEEE Transactions on Information Theor§2(1):316-323, 1996.

[40] G. Ben Arous, A. Dembo, and A. Guionnet. Aging of sphatispin glassesProbab. Theory Related Field$20(1):1-67,
2001.

[41] R. M. Dudley. Real analysis and probabilifyvolume 74 ofCambridge Studies in Advanced Mathemati€ambridge
University Press, Cambridge, 2002. Revised reprint of ®@91original.

[42] A. Guionnet and O. Zeitouni. Concentration of the spaneasure for large matriceSlectron. Comm. Probap5:119-136
(electronic), 2000.

[43] Z. D. Bai. Convergence rate of expected spectral digtions of large random matrices. Il. Sample covarianceriogst.
Ann. Probah. 21(2):649-672, 1993.

October 5, 2009 DRAFT



