Eigencones and the PRV conjecture

Nicolas Ressayre

To cite this version:

Nicolas Ressayre. Eigencones and the PRV conjecture. 2009. hal-00421900v1

HAL Id: hal-00421900 https://hal.science/hal-00421900v1

Preprint submitted on 5 Oct 2009 (v1), last revised 3 Nov 2009 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Eigencones and the PRV conjecture

N. Ressayre

October 5, 2009

Abstract

Let G be a complex semi-simple simply-connected algebraic group. Given two irreducible representations V_{1} and V_{2} of G, we are interested in some components of $V_{1} \otimes V_{2}$. Consider two geometric realizations of V_{1} and V_{2} using the Borel-Weil-Bott theorem. Namely, for $i=1,2$, let \mathcal{L}_{i} be a G-linearized line bundle on G / B such that $\mathrm{H}^{q_{i}}\left(G / B, \mathcal{L}_{i}\right)$ is isomorphic to V_{i}. Assume that the cup product $$
\mathrm{H}^{q_{1}}\left(G / B, \mathcal{L}_{1}\right) \otimes \mathrm{H}^{q_{2}}\left(G / B, \mathcal{L}_{2}\right) \longrightarrow \mathrm{H}^{q_{1}+q_{2}}\left(G / B, \mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)
$$ is non zero. Then, $\mathrm{H}^{q_{1}+q_{2}}\left(G / B, \mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)$ is an irreducible component of $V_{1} \otimes V_{2}$; such a component will be called cohomological. Solving a Dimitrov-Roth conjecture, we prove here that the cohomological components of $V_{1} \otimes V_{2}$ are exactly the PRV components of stable multiplicity one. Note that Dimitrov-Roth already obtained some particular cases. We also characterize these components in terms of the geometry of the Eigencone of G. Along the way, we prove that the structure coefficients of the Belkale-Kumar product on $\mathrm{H}^{*}(G / B, \mathbb{Z})$ in the Schubert basis are zero or one.

1 Introduction

Let G be a complex semi-simple simply-connected algebraic group with a fixed Borel subgroup B and maximal torus $T \subset B$. Let $X(T)$ denote the character group of T. For any dominant $\lambda \in X(T), V_{\lambda}$ denotes the irreducible G-module of highest weight λ. We will denote by $\operatorname{LR}(G)$ the set of triples (λ, μ, ν) of dominant weights such that $V_{\lambda} \otimes V_{\mu} \otimes V_{\nu}$ contains non zero G-invariant vectors. Note that, (λ, μ, ν) belongs to $\operatorname{LR}(G)$ if and only if V_{ν}^{*} is a submodule of $V_{\lambda} \otimes V_{\mu}$.

Let W denote the Weyl group of T and w_{0} denote the longest element of W. The most obvious component of $V_{\lambda} \otimes V_{\mu}$ is $V_{\lambda+\mu}$ corresponding to the
point $\left(\lambda, \mu,-w_{0}(\lambda+\mu)\right)$ in $\operatorname{LR}(G)$. Following Dimitrov-Roth, we present three natural generalizations of these elements of $\mathrm{LR}(G)$. Our main result which was conjectured and partially proved by Dimitrov-Roth in DR09b, DR09a asserts that these three generalizations actually coincide.

The PRV conjecture. Let (λ, μ, ν) be a triple of dominant weights. In 1966, Parthasarathy, Ranga-Rao and Varadarajan proved in PRRV67 that if there exists $w \in W$ such that $w \lambda+w w_{0} \mu+w_{0} \nu=0$ then $(\lambda, \mu, \nu) \in \operatorname{LR}(G)$; and more precisely that $\left(V_{k \lambda} \otimes V_{k \mu} \otimes V_{k \nu}\right)^{G}$ has dimension one for any positive integer k (here, V^{G} denotes the subspace of G-invariant vectors in the G module V). Kumar Kum89 and Mathieu Mat89 independently proved the PRV conjecture which asserts that $(\lambda, \mu, \nu) \in \operatorname{LR}(G)$ if there exists $u, v, w \in W$ such that $u \lambda+v \mu+w \nu=0$. Unlike the original PRV situation, $\left(V_{\lambda} \otimes V_{\mu} \otimes V_{\nu}\right)^{G}$ may have dimension greater than one. Here, we are interested in the set of triple of dominant weights (λ, μ, ν) such that:
(i) $\exists u, v, w \in W$ s.t. $u \lambda+v \mu+w \nu=0$; and,
(ii) $\operatorname{dim}\left(V_{k \lambda} \otimes V_{k \mu} \otimes V_{k \nu}\right)^{G}=1$ for any $k \geq 1$.

Such a point in $\operatorname{LR}(G)$ is said to have the PRV property (Property (i)) and to have stable multiplicity one (Property (ii)].

Cohomological component of $V_{\lambda} \otimes V_{\nu}$. Consider the complete flag variety $X=G / B$. For $\lambda \in X(T)$, we denote by \mathcal{L}_{λ} the G-linearized line bundle on X such that B acts on the fiber over B / B by the character $-\lambda$. If λ is dominant the Borel-Weil theorem asserts that $\mathrm{H}^{0}\left(X, \mathcal{L}_{\lambda}\right)$ is isomorphic to V_{λ}^{*}. We also set $\lambda^{*}=-w_{0} \lambda$. The points $\left(\lambda, \mu,-w_{0}(\lambda+\mu)\right)$ of $L R(G)$ have the following geometric interpretation: the morphism

$$
\begin{equation*}
\mathrm{H}^{0}\left(X, \mathcal{L}_{\lambda}\right) \otimes \mathrm{H}^{0}\left(X, \mathcal{L}_{\mu}\right) \longrightarrow \mathrm{H}^{0}\left(X, \mathcal{L}_{\lambda+\mu}\right) \tag{1}
\end{equation*}
$$

given by the product of sections is non zero.
Following Dimitrov-Roth (see DR09b, DR09a), we are now going to introduce a natural generalization of these points of $\mathrm{LR}(G)$ coming from the Borel-Weil-Bott theorem. Let $l(w)$ denote the length of $w \in W$ and ρ denote the half sum of the positive roots. For $w \in W$ and $\lambda \in X(T)$, we set:

$$
\begin{equation*}
w \cdot \lambda=w(\lambda+\rho)-\rho \tag{2}
\end{equation*}
$$

The Borel-Weil-Bott theorem asserts that for any dominant weight λ and any $w \in W, \mathrm{H}^{l(w)}\left(X, \mathcal{L}_{w \cdot \lambda}\right)$ is isomorphic to V_{λ}^{*}. Let (λ, μ, ν) be a triple
of dominant weights. We will say that $\left(\lambda, \mu, \nu^{*}\right)$ is a cohomological point of $\mathrm{LR}(G)$ if the cup product:

$$
\begin{equation*}
\mathrm{H}^{l(u)}\left(X, \mathcal{L}_{u \cdot \lambda}\right) \otimes \mathrm{H}^{l(v)}\left(X, \mathcal{L}_{v \cdot \mu}\right) \longrightarrow \mathrm{H}^{l(w)}\left(X, \mathcal{L}_{w \cdot \nu}\right) \tag{3}
\end{equation*}
$$

is non zero for some $u, v, w \in W$ such that $l(w)=l(u)+l(v)$ and $u \cdot \lambda+v \cdot \mu=$ $w \cdot \nu$.

Regularly extremal points. Let $\mathcal{L} R(G)$ denote the cone generated by the semigroup $\mathrm{LR}(G)$ in the rational vector space $X(T)_{\mathbb{Q}}^{3}=(X(T) \otimes$ $\mathbb{Q})^{3}$. Let $X(T)_{\mathbb{Q}}^{+}\left(\right.$resp. $\left.X(T)_{\mathbb{Q}}^{++}\right)$denote the cone generated by dominant (resp. strictly dominant) weights of T. Since the semigroup $\operatorname{LR}(G)$ is finitely generated, $\mathcal{L} R(G)$ is a closed convex polyhedral cone contained in $\left(X(T)_{\mathbb{Q}}^{+}\right)^{3}$. A face of $\mathcal{L} R(G)$ which intersects $\left(X(T)_{\mathbb{Q}}^{++}\right)^{3}$ will be said regular. In Res07 and Res08a, the regular faces are parametrized bijectively. In particular, it is proved that the dimension of any regular face is greater or equal to $2 r$ (where r is the rank of G). A point in $\operatorname{LR}(G)$ is said to be regularly extremal if it belongs to a regular face of $\mathcal{L} R(G)$ of dimension $2 r$. Note that a regularly extremal point is not necessarily regular but it is only a limit of regular points in $\mathcal{L} R(G)$ which belongs to a minimal regular face.

The main result. We can now state
Theorem 1 Let (λ, μ, ν) be a triple of dominant weights. The following are equivalent:
(i) (λ, μ, ν) satisfies the PRV property and has stable multiplicity one;
(ii) (λ, μ, ν) is a cohomological point in $\operatorname{LR}(G)$;
(iii) (λ, μ, ν) is regularly extremal.

Theorem 11 was conjectured in DR09b. In DR09a, Dimitrov-Roth prove it when λ, μ or ν is strictly dominant. Note that this case also follows easily from Res07, Theorem G]. In DR09a, Dimitrov-Roth also prove the case when G is a simple classical group. Here, we present a proof independent of the type of G semisimple.

We now introduce some notation to characterize in a more concrete way the points satisfying Theorem 11. Let Φ^{+}denote the set of positive roots. For $w \in W$, we set:

$$
\begin{equation*}
\Phi_{w}:=\left\{\alpha \in \Phi^{+}: w \alpha \in-\Phi^{+}\right\} \tag{4}
\end{equation*}
$$

By DR09, Theorem I], we have:

Theorem $2 \operatorname{Let}(\lambda, \mu, \nu)$ be a triple of dominant weights. Then, (λ, μ, ν) satisfies (Assertion (iii) of) Theorem 1 if and only if there exist u, v and w in W such that

$$
\begin{equation*}
\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
u \lambda+v \mu+w \nu=0 \tag{6}
\end{equation*}
$$

The Belkale-Kumar product for complete flag manifolds. Consider the cohomology ring $\mathrm{H}^{*}(X, \mathbb{Z})$. For $w \in W$, we will denote by σ_{w} the Poincaré dual class of the homology class of $\overline{B w B / B}$. It is well known that $\mathrm{H}^{*}(X, \mathbb{Z})=\bigoplus_{w \in W} \sigma_{w}$. Along the way, we prove the following:

Theorem 3 Let u, v and w in W such that $\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w}$. Then, we have:

$$
\sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=\sigma_{e}
$$

In BK06, Belkale-Kumar defined a new product on $\mathrm{H}^{*}(X, \mathbb{Z})$. Theorem 3 actually asserts that the structure coefficients of this product in the Schubert basis are zero or one. It allows to compute very easily in this ring. Note that particular cases of Theorem 3 was obtained in Ric09, Ric08, Res08b. The question to know if Theorem 3 holds was explicitly asked in DR09b and Res08b.

In this text, we are interested in the question of the existence of non-zero G-invariant vectors in the tensor product of three irreducible G-modules. All the results can be easily generalized to the case of the tensor product of s such G-modules, for any $s \geq 3$.

2 GIT cones

2.1 Definitions

Let X be a smooth irreducible projective variety endowed with an algebraic action of G. We assume that the group $\mathrm{Pic}^{\mathrm{G}}(\mathrm{X})$ of G-linearized line bundles on X has finite rank. In this work, X will always be a product of flag manifolds of G. We consider the following semigroup:

$$
\begin{equation*}
\mathrm{TC}^{G}(X)=\left\{\mathcal{L} \in \operatorname{Pic}^{\mathrm{G}}(\mathrm{X}): \mathrm{H}^{0}(\mathrm{X}, \mathcal{L})^{\mathrm{G}} \neq\{0\}\right\} \tag{7}
\end{equation*}
$$

The Borel-Weil theorem allows to identify $\mathrm{TC}^{G}\left((G / B)^{3}\right)$ with $\mathrm{LR}(G)$. We will denote by $\mathcal{T}^{G}(X)$ the cone generated by $\mathrm{TC}^{G}(X)$ in $\operatorname{Pic}^{\mathrm{G}}(\mathrm{X})_{\mathbb{Q}}=$ $\mathrm{Pic}^{\mathrm{G}}(\mathrm{X}) \otimes \mathbb{Q}$. The set of ample G-linearized line bundles on X generates an open convex cone $\operatorname{Pic}^{\mathrm{G}}(\mathrm{X})_{\mathbb{Q}}^{++}$in $\operatorname{Pic}^{\mathrm{G}}(\mathrm{X})_{\mathbb{Q}}$. We set:

$$
\begin{equation*}
\mathcal{A C}^{G}(X)=\operatorname{Pic}^{\mathrm{G}}(\mathrm{X})_{\mathbb{Q}}^{++} \cap \mathcal{T} \mathcal{C}^{\mathrm{G}}(\mathrm{X}) \tag{8}
\end{equation*}
$$

For example, $\mathcal{T} \mathcal{C}^{G}\left((G / B)^{3}\right)$ is $\mathcal{L} R(G)$ and $\mathcal{A C}^{G}\left((G / B)^{3}\right)$ is the intersection of $\mathcal{L} R(G)$ with the interior of the dominant chamber of $X\left(T^{3}\right)_{\mathbb{Q}}$.

For any $\mathcal{L} \in \operatorname{Pic}^{\mathrm{G}}(\mathrm{X})$, we set

$$
X^{\mathrm{ss}}(\mathcal{L})=\left\{x \in X: \exists n>0 \text { and } \sigma \in \mathrm{H}^{0}\left(X, \mathcal{L}^{\otimes n}\right)^{G} \text { s.t. } \sigma(x) \neq 0\right\}
$$

Note that this definition of $X^{\mathrm{ss}}(\mathcal{L})$ is like in MFK94 if \mathcal{L} is ample but not in general. We consider the following projective variety:

$$
X^{\mathrm{ss}}(\mathcal{L}) / / G:=\operatorname{Proj} \bigoplus_{n \geq 0} \mathrm{H}^{0}\left(X, \mathcal{L}^{\otimes n}\right)^{G}
$$

and the natural G-invariant morphism

$$
\pi: X^{\mathrm{ss}}(\mathcal{L}) \longrightarrow X^{\mathrm{ss}}(\mathcal{L}) / / G
$$

If \mathcal{L} is ample π is a good quotient.

2.2 Covering pairs

2.2.1 - Let P be a parabolic subgroup of G containing B. Le W_{P} denote the Weyl group of P and W^{P} denote the set of minimal length representatives of elements in W / W_{P}. For $u \in W^{P}$, we will denote by σ_{u}^{P} the Poincaré dual class in $\mathrm{H}^{2 \operatorname{dim}(G / P)-2 l(u)}(G / P, \mathbb{Z})$ of $\overline{B u P / P}$. Let us consider the tangent space T_{u} of $u^{-1} B u P / P$ at the point P.

Let now u, v and w in W^{P} such that $l(u)+l(v)+l(w)=\operatorname{dim} G / P$. Using the transversality theorem of Kleiman, Belkale-Kumar showed in BK06, Proposition 2] the following important lemma:

Lemma 1 The product $\sigma_{u}^{P} \cdot \sigma_{v}^{P} \cdot \sigma_{w}^{P} \neq 0$ if and only if there exist $p_{1}, p_{2}, p_{3} \in$ P such that the natural map

$$
T_{P}(G / P) \longrightarrow \frac{T_{P}(G / P)}{p_{1} T_{u}} \oplus \frac{T_{P}(G / P)}{p_{2} T_{v}} \oplus \frac{T_{P}(G / P)}{p_{3} T_{w}}
$$

is an isomorphism.

Then, Belkale-Kumar defined Levi-movability:

Definition. The triple (u, v, w) is said to be Levi-movable if there exist $l_{1}, l_{2}, l_{3} \in L$ such that the natural map

$$
T_{P}(G / P) \longrightarrow \frac{T_{P}(G / P)}{l_{1} T_{u}} \oplus \frac{T_{P}(G / P)}{l_{2} T_{v}} \oplus \frac{T_{P}(G / P)}{l_{3} T_{w}}
$$

is an isomorphism.

We define $c_{u v w} \in \mathbb{Z}_{\geq 0}$ by

$$
\sigma_{u}^{P} \cdot \sigma_{v}^{P}=\sum_{w \in W^{P}} c_{u v w}\left(\sigma_{w}^{P}\right)^{\vee}
$$

where $\left(\sigma_{w}^{P}\right)^{\vee}$ denotes the Poincaré dual class of σ_{w}^{P}. Belkale-Kumar set:

$$
c_{u v w}^{\odot_{0}}= \begin{cases}c_{u v w} & \text { if }(u, v, w) \text { is Levi - movable } \\ 0 & \text { otherwise }\end{cases}
$$

They define on the group $\mathrm{H}^{*}(G / P, \mathbb{Z})$ a bilinear product \odot_{0} by the formula:

$$
\sigma_{u}^{P} \odot_{0} \sigma_{v}^{P}=\sum_{w \in W^{P}} c_{u v w}^{\odot_{0}}\left(\sigma_{w}^{P}\right)^{\vee}
$$

By BK06, Definition 18], we have:
Theorem 4 The product \odot_{0} is commutative, associative and satisfies Poincaré duality.

Note that T_{u} is stable by T. This implies that for $P=B,(u, v w)$ is Levi-movable if and only if

$$
\begin{equation*}
T_{B} G / B=T_{u} \oplus T_{v} \oplus T_{w} \tag{9}
\end{equation*}
$$

2.2.2 - Let H be a subtorus of T and C be an irreducible subvariety of the H-fixed point set X^{H} in X. Let $\mathcal{L} \in \operatorname{Pic}^{\mathrm{G}}(\mathrm{X})$. There exists a unique character $\mu^{\mathcal{L}}(C, H)$ of H such that

$$
\begin{equation*}
h . \tilde{x}=\mu^{\mathcal{L}}(C, H)\left(h^{-1}\right) \tilde{x} \tag{10}
\end{equation*}
$$

for any $h \in H$ and $\tilde{x} \in \mathcal{L}$ over C. Analogously, if λ is a one parameter subgroup of G and C is an irreducible subvariety of $X^{\lambda}=X^{\operatorname{Im} \lambda}$, we will denote by $\mu^{\mathcal{L}}(C, \lambda)$ the integer such that:

$$
\begin{equation*}
\lambda(t) \tilde{x}=t^{-\mu^{\mathcal{L}}(C, \lambda)} \tilde{x} \tag{11}
\end{equation*}
$$

for any $t \in \mathbb{C}^{*}$ and \tilde{x} as above.
We will consider the parabolic subgroup $P(\lambda)$ (see MFK94) defined by

$$
\begin{equation*}
P(\lambda)=\left\{g \in G: \lim _{t \rightarrow 0} \lambda(t) g \lambda\left(t^{-1}\right) \text { exists in } G\right\} . \tag{12}
\end{equation*}
$$

We also denote by G^{λ} the centralizer of λ in G; it is a Levi subgroup of $P(\lambda)$. Now, C is an irreducible component of X^{λ}. We denote by C^{+}the corresponding Białynicki-Birula cell:

$$
\begin{equation*}
C^{+}=\left\{x \in X: \lim _{t \rightarrow 0} \lambda(t) x \in C\right\} . \tag{13}
\end{equation*}
$$

One can easily check that C^{+}is $P(\lambda)$-stable. We consider the fiber product $G \times_{P(\lambda)} C^{+}$and the morphism

$$
\begin{array}{rlcc}
\eta: G \times_{P(\lambda)} C^{+} & \longrightarrow & X \tag{14}\\
{[g: x]} & \longmapsto & g \cdot x .
\end{array}
$$

Definition. The pair (C, λ) is said to be generically finite if η is dominant with finite general fibers. It is said to be well generically finite if it is generically finite and there exists a point $x \in C$ such that the tangent map of η at $[e: x]$ is invertible. It is said to be well covering if it is well generically finite and η is birational.
2.2.3 - Set $X=(G / B)^{3}$. Let λ be a dominant regular one parameter subgroup; $P(\lambda)=B$. The group λ has only isolated fixed points in X parametrized by W^{3}. Let $(u, v, w) \in W$ and $z=\left(u^{-1} B / B, v^{-1} B / B, w^{-1} B / B\right)$. Set $C=\{z\}$. It is well known that $C^{+}=B u^{-1} B / B \times v^{-1} B / B \times w^{-1} B / B$. Consider now

$$
\eta: G \times_{B} C^{+} \longrightarrow X
$$

Let $x=\left(g_{1} B / B, g_{2} B / B, g_{3} B / B\right) \in X$. The projection $G \times_{B} C^{+} \longrightarrow$ G / B induces an isomorphism between $\eta^{-1}(x)$ and $g_{1} B u B / B \cap g_{2} B v B / B \cap$ $g_{3} B w B / B$. With the Kleiman theorem, this implies that
(C, λ) is generically finite $\Longleftrightarrow \sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=d[\mathrm{pt}]$ with $d>0 ;$
(C, λ) is well generically finite $\Longleftrightarrow \sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=d[\mathrm{pt}]$ with $d>0$, and $\eta^{-1}(z)$ is finite;
(C, λ) is well covering $\Longleftrightarrow \sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=[\mathrm{pt}]$, and $\eta^{-1}(z)=\{[e: z]\}$.

2.3 PRV points in $\operatorname{LR}(G)$

In this subsection, $X=(G / B)^{3}$. We have the following very easy lemma:
Lemma 2 Let (λ, μ, ν) be a triple of dominant weights. Then, (λ, μ, ν) has the PRV property if and only if there exists an irreducible component C of X^{T} such that $\mu^{\mathcal{L}_{(\lambda, \mu, \nu)}}(C, T)$ is trivial.

Proof. The irreducible components of X^{T} are the singletons $\{(u B / B, v B / B, w B / B)\}$ for $u, v, w \in W$. Moreover, a direct computation shows that

$$
\mu^{\mathcal{L}_{(\lambda, \mu, \nu)}}(\{(u B / B, v B / B, w B / B)\}, T)=-\left(u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu\right) .
$$

The lemma follows.
We also make the following obvious observation:
Lemma 3 Let (λ, μ, ν) be a point in $\operatorname{LR}(G)$ with the PRV property. Then, (λ, μ, ν) has stable multiplicity one if and only if $X^{\mathrm{ss}}\left(\mathcal{L}_{(\lambda, \mu, \nu)}\right) / / G$ is a point.

2.4 Cohomological points in $\operatorname{LR}(G)$

We now recall DR09a, Theorem 1]:
Theorem 5 Let (λ, μ, ν) be a triple of dominant weights. Then, (λ, μ, ν) is a cohomological point of $\operatorname{LR}(G)$ if and only if there exist $u, v, w \in W$ such that
(i) $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$, and
(ii) $\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w}$.

2.5 Regularly extremal points in $\operatorname{LR}(G)$

We now recall a result from Res07, Res08a which describes the regularly extremal points in $\operatorname{LR}(G)$. Indeed, in Res07, Res08a], we describe the minimal regular faces of $\mathcal{L} R(G)$, and the Kumar-Mathieu version of the PRV conjecture proves that $\operatorname{LR}(G)$ is saturated along these faces (that is, any triple of dominant weight which belongs to $\mathcal{L} R(G)$ belongs to $L R(G)$).

Theorem 6 Let (λ, μ, ν) be a triple of dominant weights. Then, (λ, μ, ν) is a regularly extremal point of $\operatorname{LR}(G)$ if and only if there exists $u, v, w \in W$ such that
(i) $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$,
(ii) $\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w}$, and
(iii) $\sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=\sigma_{e}$.

3 The Belkale-Kumar product for complete flag manifold

Theorem 7 The non-zero structure coefficients of the ring $\left(\mathrm{H}^{*}(G / B, \mathbb{Z}), \odot_{0}\right)$ in the Schubert basis are equal to 1 .

Proof. Let $(u, v, w) \in W^{3}$ such that

$$
\sigma_{u} \odot_{0} \sigma_{v} \odot_{0} \sigma_{w}=d[\mathrm{pt}] .
$$

Note that d is the coefficient of σ_{w}^{\vee} in the expression of $\sigma_{u} \odot_{0} \sigma_{v}$ as a linear combination of Schubert classes. So, we have to prove that if $d \neq 0$ then $d=1$.

Set $X=(G / B)^{3}, z=\left(u^{-1} B / B, v^{-1} B / B, w^{-1} B / B\right)$ and $C^{+}=B u^{-1} B / B \times$ $\left.B v^{-1} B / B \times B w^{-1} B / B\right)$. Consider the following morphism

$$
\begin{aligned}
& \eta: G \times_{B} C^{+} \longrightarrow \\
& {[g: x] } \longmapsto \\
& \longmapsto x . \\
&
\end{aligned}
$$

Since (u, v, w) is Levi-movable, the tangent map of η is invertible at $[e: z]$ and so at any point of C^{+}. It follows that η is a covering of degree d. In particular d is the cardinality of the fiber $\eta^{-1}(z)$.

Consider the natural projection $\pi: G \times_{B} C^{+} \longrightarrow G / B$. Choose a one parameter subgroup λ of T such that $P(\lambda)=B$; that is, λ is dominant and regular. The map π identifies $\eta^{-1}(z)$ with the set of $g \in G / B$ such that $g^{-1} z \in C^{+}$. Since $\lim _{t \rightarrow 0} \lambda(t)\left(g^{-1} z\right)=z$, Res07, Lemma 12] implies that $g^{-1} z \in B z$. So, $g \in G_{z} B$. Finally, $\eta^{-1}(z)=G_{z} \cdot B / B$.

It remains to prove that G_{z} is connected. Let $g \in G_{z}$. Since T and $g T g^{-1}$ are maximal tori of G_{z}°, there exists $h \in G_{z}^{\circ}$ such that $g T g^{-1}=h T h^{-1}$. Then, $h^{-1} g$ normalizes T. But, $h^{-1} g$ fixes $u^{-1} B / B$. We deduce that $h^{-1} g$ belongs to T and so to G_{z}°. It follows that g belongs to G_{z}°.

4 The main theorem

 the following

Theorem 8 Let (λ, μ, ν) be a triple of dominant weights. Then, the following are equivalent
(i) there exist $u, v, w \in W$ such that
(a) $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$, and
(b) $X^{\mathrm{ss}}\left(\mathcal{L}_{(\lambda, \mu, \nu)}\right) / / G$ is a point.
(ii) there exist $u, v, w \in W$ such that
(a) $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$, and
(b) $\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w}$,
(iii) there exist $u, v, w \in W$ such that
(a) $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$,
(b) $\Phi^{+}=\Phi_{u} \sqcup \Phi_{v} \sqcup \Phi_{w}$, and
(c) $\sigma_{u} \cdot \sigma_{v} \cdot \sigma_{w}=\sigma_{e}$.

We first prove
Lemma 4 Let G be a reductive group and Y be a product of flag varieties of G. We assume that $\mathcal{A C}^{G}(Y)=\operatorname{Pic}^{\mathrm{G}}(\mathrm{Y})_{\mathbb{Q}}^{++}$.

Then, Y is a point.
Proof. We are going to prove that if Y is non trivial, then $\mathcal{A C}^{G}(Y)$ is not equal to $\mathrm{Pic}^{\mathrm{G}}(\mathrm{Y})_{\mathbb{Q}}^{++}$. If $Y=G / P_{1}$ with P_{1} a strict parabolic subgroup of G, $\mathcal{A C}^{G}(Y)$ is empty. If $Y=G / P_{1} \times G / P_{2}$ with P_{1} and P_{2} two strict parabolic subgroups of G, a weight (λ, μ) belongs to $\mathcal{A C}^{G}(Y)$ if and only if $\mu=-w_{0} \lambda$. In particular, $\mathcal{A C}^{G}(Y)$ has empty interior.

Let us now assume that, $Y=G / P_{1} \times G / P_{2} \times G / P_{3}$ with P_{1}, P_{2} and P_{3} three strict parabolic subgroups of G. Let (λ, μ, ν) be three weights such that $\mathcal{L}_{(\lambda, \mu, \nu)}$ is an ample line bundle on Y. The set of $\gamma \in X(T) \otimes \mathbb{Q}$ such that there exists a positive integer k such that $V_{k \gamma}^{*}$ is contained in $V_{k \lambda} \otimes V_{k \mu}$ is a compact polytope (namely, a moment polytope). In particular, there exists n such that for any positive integer $k, V_{k n \nu}^{*}$ is not a submodule of $V_{k \lambda} \otimes V_{k \mu}$. So, the ample element $\mathcal{L}_{(\lambda, \mu, n \nu)}$ does not belong to $\mathcal{A C}^{G}(Y)$.

The case when Y is a product of more than three flag varieties works similarly.

Proof. [of Theorem 8] It is clear that Assertion (iii) implies Assertion (ii). Theorem 7 shows the converse implication.

Let us assume that Assertion (iiii) is satisfied and set $C=\left\{\left(u^{-1} B / B, v^{-1} B / B, w^{-1} B / B\right)\right\}$. By Res07, Proposition 9], there exists a dominant morphism from C to $X^{\text {ss }}\left(\mathcal{L}_{(\lambda, \mu, \nu)}\right) / / G$; it follows that $X^{\text {ss }}\left(\mathcal{L}_{(\lambda, \mu, \nu)}\right) / / G$ is a point.

Let us assume that (λ, μ, ν) satisfies Assertion (ii). If \bar{X} is a the product of three flag manifolds for G, there exists a unique G^{3}-equivariant map $p: X \longrightarrow \bar{X}$. There exists a unique such variety \bar{X}, such that $\mathcal{L}_{(\lambda, \mu, \nu)}$ is the pullback by p of an ample G-linearized line bundle $\overline{\mathcal{L}}$ on \bar{X}. Consider the image \bar{z} of $\left(u^{-1} B / B, v^{-1} B / B, w^{-1} B / B\right)$ by p.

The condition $u^{-1} \lambda+v^{-1} \mu+w^{-1} \nu=0$ implies that T acts trivially on the fiber in $\overline{\mathcal{L}}$ over \bar{z}. Since T has finite index in its normalizer $N(T)$ in G, \bar{z} is semitable for $\overline{\mathcal{L}}$ and the action of $N(T)$. A Luna theorem (see Res07, Proposition 8] for an adapted version) shows that \bar{z} is semistable for \bar{z} and the action of G. In particular, $\overline{\mathcal{L}}$ belongs to $\mathcal{A C}^{G}(\bar{X})$.

Let $\overline{\mathcal{F}}$ be the face of $\mathcal{T}^{G}(\bar{X})$ containing $\overline{\mathcal{L}}$ in its relative interior. By Res07, Theorem H], there exists a well covering pair (\bar{C}, λ) of \bar{X} such that $\overline{\mathcal{F}}$ is the set of $\mathcal{L} \in \mathcal{T C}^{G}(\bar{X})$ such that $\mu^{\mathcal{L}}(\bar{C}, \lambda)=0$. The first step of this proof is to show that there exists such a pair where \bar{C} is a singleton.

By Res09, there exists a well covering pair (\bar{C}, λ) of \bar{X} such that
(i) λ is a dominant one parameter subgroup of T;
(ii) $\overline{\mathcal{F}}$ is the set of $\mathcal{L} \in \mathcal{T C}^{G}(\bar{X})_{\mathbb{Q}}$ such that $\mu^{\mathcal{L}}(C, \lambda)=0$;
(iii) $\overline{\mathcal{L}}_{\mid \bar{C}}$ belongs to the relative interior of $\mathcal{A C}^{G^{\lambda}}(\bar{C})$;
(iv) if K is the kernel of the action of G^{λ} on $\bar{C}, \mathcal{A C}^{G^{\lambda}}(\bar{C})$ spans the subspace $\operatorname{Pic}^{\mathrm{G}}(\overline{\mathrm{X}})_{\mathbb{Q}}^{\mathrm{K}}$.

We claim that \bar{C} is a singleton. We mention that the proof of the claim will use Lemma ${ }^{6}$.

We first prove that $G . \bar{z}$ is the unique closed G-orbit in $\bar{X}^{\text {ss }}(\overline{\mathcal{L}})$. Since $\bar{X}^{\mathrm{ss}}(\overline{\mathcal{L}}) / / G=X^{\mathrm{ss}}\left(\mathcal{L}_{(\lambda, \mu, \nu)}\right) / / G$ is a point, $\bar{X}^{\mathrm{ss}}(\overline{\mathcal{L}})$ is affine and contains a unique closed G-orbit. Since \bar{z} is fixed by T and T has finite index in its normalizer, Lun75, Corollary 1] shows that $G . \bar{z}$ is closed in $\bar{X}^{\mathrm{ss}}(\overline{\mathcal{L}})$.

By Res07, Proposition 10], \bar{C} intersects $G . \bar{z}$. Up to changing \bar{z} by another point in $W \cdot \bar{z}$, one may assume that $\bar{z} \in \bar{C}$.

We claim that $\mathcal{A C}^{G^{\lambda}}(\bar{C})$ is the set of points in $\mathrm{Pic}^{\mathrm{G}^{\lambda}}(\overline{\mathrm{C}})_{\mathbb{Q}}^{++}$with trivial action of K°. By Condition (iv), it is sufficient to prove that $\mathcal{A} \mathcal{C}^{G^{\lambda}}(\bar{C})$ is the intersection of $\mathrm{Pic}^{\mathrm{G}^{\lambda}}(\overline{\mathrm{C}})_{\mathcal{O}}^{++}$and a linear subspace. The kernel of $\mu^{\bullet}(\bar{z}, T)$ will be this subspace. By Lun75, Corollary 1] (see also, Res07, Proposition 8]), if $\mathcal{M} \in \operatorname{Pic}^{\mathrm{G}^{\lambda}}(\overline{\mathrm{C}})_{\mathbb{Q}}^{++}$satisfy $\mu^{\mathcal{M}}(\bar{z}, T)=0$ then \bar{z} is semistable for \mathcal{M} and \mathcal{M} belongs to $\mathcal{A C}^{G^{\lambda}}(\bar{C})$. Since $\bar{C}^{\text {ss }}\left(\overline{\mathcal{L}}_{\bar{C}}\right) / / G^{\lambda}$ is a point, $G^{\lambda} \bar{z}$ is the unique closed G^{λ}-orbit in $\bar{C}^{\text {ss }}\left(\overline{\mathcal{L}}_{\bar{C}}\right)$. But, $\overline{\mathcal{L}}_{\bar{C}}$ belongs to the relative interior of $\mathcal{A C}^{G}(\bar{C})$. It follows that $G^{\lambda} \cdot \bar{z}$ is the only closed G^{λ}-orbit in $\bar{C}^{s \mathrm{~s}}(\mathcal{M})$ for any \mathcal{M} in the relative interior of $\mathcal{A C}^{G}(\bar{C})$. In particular, $\mu^{\mathcal{M}}(\bar{z}, T)=0$. This implies that $\mathcal{A C}^{G^{\lambda}}(\bar{C})$ is contained in the kernel of $\mu^{\bullet}(\bar{z}, T)$.

The claim and Lemma π^{6} below imply that \bar{C} is one point; so, $\bar{C}=\{\bar{z}\}$. This ends the first step.

The second step consists in proving that $G_{\bar{z}}=G^{\lambda}$. Consider $\bar{\eta}: G \times P(\lambda)$ $\bar{C}^{+} \longrightarrow \bar{X}$. Since (\bar{C}, λ) is well covering, $\bar{\eta}^{-1}(z)$ is only one point. This implies that $G_{\bar{z}}$ is contained in $P(\lambda)$. On the other hand, G^{λ} is connected and acts on each irreducible component of \bar{X}^{λ}. We deduce that G^{λ} fixes \bar{z}. Moreover, $G . \bar{z}$ is affine, and $G_{\bar{z}}$ is reductive. This implies that $G_{\bar{z}}=G^{\lambda}$.

The third step consists in raising (\bar{C}, λ) to a well covering pair (C, λ) of X. Let P, Q and R be the parabolic subgroups of G containing B such that $\bar{X}=G / P \times G / Q \times G / R$. Up to multiplying u by an element of W_{P} on the left, we may assume that $\overline{B u P(\lambda)}=\overline{P u P(\lambda)}$. Similarly, we choose v and w without changing $\bar{z}=\left(u^{-1} P / P, v^{-1} Q / Q, w^{-1} R / R\right)$. Since (\bar{C}, λ) is well covering, Res07, Proposition 11] shows that:

$$
\begin{equation*}
[\overline{B u P(\lambda) / P(\lambda)}] \odot_{0}[\overline{B v P(\lambda) / P(\lambda)}] \odot_{0}[\overline{B w P(\lambda) / P(\lambda)}]=[\mathrm{pt}] . \tag{15}
\end{equation*}
$$

Set $C=G^{\lambda} u^{-1} B / B \times G^{\lambda} v^{-1} B / B \times G^{\lambda} x^{-1} B / B$. Then, Res07, Proposition 11] shows that (C, λ) is a well covering pair of X. The corresponding face \mathcal{F} of $\mathcal{L} R(G)$ contains $\overline{\mathcal{F}}$.

The forth step consists in perturbing (C, λ) to obtain a well covering pair $\left(C^{\prime}, \lambda^{\prime}\right)$ with a regular one parameter subgroup λ^{\prime} such that the corresponding face \mathcal{F}^{\prime} of $\mathcal{L} R(G)$ still contains $\overline{\mathcal{F}}$. Let us recall that the map $W^{P(\lambda)} \times W_{P(\lambda)} \longrightarrow W,(u, v) \mapsto u v$ is a bijection. For $w \in W$, we will denote by \bar{w} the unique element of $W_{P(\lambda)}$ such that $w \in W^{P(\lambda)} w$. Since $G_{\bar{z}}=G^{\lambda}$, one can multiply u, v and w on the right by elements of $W_{G^{\lambda}}$ to obtain:
(i) $\bar{z}=\left(u^{-1} P / P, v^{-1} Q / Q, w^{-1} R / R\right)$,
(ii) $[\overline{B u P(\lambda) / P(\lambda)}] \odot_{0}[\overline{B v P(\lambda) / P(\lambda)}] \odot_{0}[\overline{B w P(\lambda) / P(\lambda)}]=[\mathrm{pt}] \in \mathrm{H}^{0}(G / P(\lambda), \mathbb{Z})$,
(iii) $\left[\overline{B^{\lambda} \bar{u} B^{\lambda} / B^{\lambda}}\right] \odot_{0}\left[\overline{B^{\lambda} \bar{v} B^{\lambda} / B^{\lambda}}\right] \odot_{0}\left[\overline{B^{\lambda} \bar{w} B^{\lambda} / B^{\lambda}}\right]=[\mathrm{pt}] \in \mathrm{H}^{0}\left(G^{\lambda} B^{\lambda}, \mathbb{Z}\right)$.

We claim that

$$
\begin{equation*}
[\overline{B u B / B}] \odot_{0}[\overline{B v B / B}] \odot_{0}[\overline{B w B / B}]=[\mathrm{pt}] \in \mathrm{H}^{0}(G / B, \mathbb{Z}) \tag{16}
\end{equation*}
$$

Set $z=\left(u^{-1} B / B, v^{-1} B / B, w^{-1} B / B\right)$ and $C^{+}=B^{3} . z$. Consider the morphism $\eta: G \times_{B} C^{+} \longrightarrow X$. To prove the claim, we have to prove that η is birotional and that $\eta^{-1}(z)=\{[e: z]\}$. By Res08b] or Ric08], $[\overline{B u B / B}] \cdot[\overline{B v B / B}] \cdot[\overline{B w B / B}]=[\mathrm{pt}]$ and η is birational. Let now $g \in G$ such that $g^{-1} z \in C^{+}$. It remains to prove that $g \in B$. Since $C^{+}=B^{3} . z$ and $\bar{C}^{+}=P(\lambda)^{3} p(z), g^{-1} \bar{z} \in \bar{C}^{+}$. But, $\left(\bar{C}^{+}, \lambda\right)$ is well covering, and so, $g \in P(\lambda)$. Since $P(\lambda)=G^{\lambda} B$, we may assume that $g \in G^{\lambda}$.

Consider now, the subvariety $F=G^{\lambda} u^{-1} B / B \times G^{\lambda} v^{-1} B / B \times G^{\lambda} w^{-1} B / B$ of X. There is a unique G^{λ}-equivariant isomorphism from F onto $\left(G^{\lambda} / B^{\lambda}\right)^{3}$ and $C^{+} \cap F$ maps onto $B^{\lambda} \bar{u}^{-1} B^{\lambda} / B^{\lambda} \times B^{\lambda} \bar{v}^{-1} B^{\lambda} / B^{\lambda} \times B^{\lambda} \bar{w}^{-1} B^{\lambda} / B^{\lambda}$ by this isomorphism. Now, since $g^{-1} z \in C^{+} \cap F$ and $g \in G^{\lambda}$, Condition (iii) implies that $g \in B^{\lambda}$.

Finally, Condition 16 means that (u, v, w) satisfy Assertion (iii).

References

[BK06] Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185-228.
[DR09a] Ivan Dimitrov and Mike Roth, Cup products of line bundles on homogeneous varieties and generalized prv components of multiplicity one, 2009, pp. 1-61.
[DR09b] \qquad , Geometric realization of prv components and the littlewood-richardson cone, 2009, pp. 1-13.
[Kum89] Shrawan Kumar, A refinement of the PRV conjecture, Invent. Math. 97 (1989), no. 2, 305-311.
[Lun75] D. Luna, Adhérences d'orbite et invariants, Invent. Math. 29 (1975), no. 3, 231-238.
[Mat89] Olivier Mathieu, Filtrations of B-modules, Duke Math. J. 59 (1989), no. 2, 421-442.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3d ed., Springer Verlag, New York, 1994.
[PRRV67] K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383-429.
[Res07] Nicolas Ressayre, Geometric invariant theory and generalized eigenvalue problem, Preprint (2007), no. arXiv:0704.2127, 1-45.
[Res08a] _, Geometric invariant theory and generalized eigenvalue problem II, Preprint (2008), no. arXiv:0903.1187, 1-25.
[Res08b] , Multiplicative formulas in cohomology of G / P and in quiver representations, Preprint (2008), no. arXiv:0812.2122, 120.
[Res09] GIT-cones and quivers, Preprint (2009), no. arXiv:0903.1202, 1-15.
[Ric08] Edward Richmond, A multiplicative formula for structure constants in the cohomology of flag varieties, 2008.
[Ric09] Edward Richmond, A partial horn recursion in the cohomology of flag varieties, Journal of Algebraic Combinatorics (2009), 1-15.

