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, we gain a logarithmic term in the rates of convergence (for the regular zone).

Introduction

Model and motivation

Suppose that we observe realizations of n noisy and randomly shifted curves Y 1 (t), . . . , Y n (t) defined by the stochastic equation:

dY m (t) = f (t -τ m )dt + dW m (t), t ∈ [0, 1], m ∈ {1, . . . , n}, (1)
where f is an unknown function, > 0 is a fixed constant, W 1 (t), . . . , W m (t) are n non-observed i.i.d. standard Brownian motion and τ 1 , . . . , τ n are i.i.d. random variables. The density function of τ 1 is denoted g. It is supposed to be known. The goal is to estimate f from Y 1 (t), . . . , Y n (t).

We assume in the sequel that f and g belong to L 2 per ([0, 1]), the space of periodic functions of period one that are square-integrable on [0, 1],

L 2 per ([0, 1]) = h; h is one-periodic and

1 0 h 2 (t)dt < ∞ .
Any function h ∈ L 2 per ([0, 1]) can be represented by its Fourier series

h(t) = ∈Z F(h)( )e i2iπ t ,
where the equality is intended in mean-square convergence sense 1 , and F(h)( ) denotes the Fourier coefficient given by

F(h)( ) = 1 0 h(t)e -2iπ t dt, ∈ Z,
whenever this integral exists. The notation • will be used for the complex conjugate.

Model ( 1) is useful for studying the problem of recovering a mean pattern from a set of similar curves in the presence of random translations and additive noise. It fits the setting of Grenander's theory of random shapes and patterns [START_REF] Grenander | General Pattern Theory: A Mathematical Study of Regular Structures[END_REF]. This problem has been the focus of many works in a variety of situations. The interested reader may refer to [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF] and references therein for a comprehensive review. It can also be viewed as a "randomized" version of the standard Gaussian (periodic) deconvolution problem, investigated for instance by [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] and others.

Before detailing the contribution of this paper, let us briefly describe the approach developed by [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]. It consists in using the properties of the Fourier transform to convert model (1) into a linear inverse problem where g plays the role of a convolution kernel. Starting from this new formulation (see Section 3.2), [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF] constructed an adaptive estimation procedure using wavelet-domain term-by-term hard thresholding. It is closely related to the WaveD procedure of [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF] designed for the standard Gaussian deconvolution problem. Taking the minimax point of view, under a standard smoothness assumption on g (to be specified in Section 3), it was shown that their estimator achieves near optimal minimax rates under the quadratic risk over a wide class of Besov balls. More precisely, if f n denotes the estimate provided by their procedure and B s p,r (M ) the Besov ball of radius M (to be defined in Section 2), then sup

f ∈B s p,r (M ) E 1 0 f n (t) -f (t) 2 dt ≤ C(log n/n) 2s/(2s+2δ+1) ,
where δ is a regularity parameter coming from the smoothness assumption made on g. Since the optimal rate of convergence for (1) is n -2s/(2s+2δ+1) (see [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]), f n is near optimal; as usual the terminology "near" pertains to the extra logarithmic factor (log n) 2s/(2s+2δ+1) .

Contribution

In this paper, we adopt the same methodology but consider another type of thresholding: block thresholding. For many nonparametric estimation problems, procedures based on block thresholding achieve better rates of convergence that the term-by-term one (including hard thresholding). See, for instance, [START_REF] Cai | On block thresholding in wavelet regression: Adaptivity, blocksize and threshold level[END_REF]; [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]; [START_REF] Cai | Block thresholding for density estimation: Local and global adaptivity[END_REF]; [START_REF] Li | On the minimax optimality of block thresholded wavelet estimators with longmemory data[END_REF]; [START_REF] Li | On the block thresholding wavelet estimators with censored data[END_REF]; [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF]. This motivates the construction of such a procedure for the estimation of f in (1). We prove that block thresholding indeed exhibits better convergence rates than term-by-term thresholding of [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]. In particular, it gets rid of the logarithmic factor when s, p, r and δ belong to the "regular zone". The proof is based on a general theorem on the minimax performances of wavelet block thresholding procedures established by [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF]. To apply this result, we need to prove two conditions: a moment condition and a concentration one. The first one is proved in [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]. The second is established in this paper. For the proof, some powerful and sharp concentration inequalities established by [START_REF] Talagrand | Sharper bounds for gaussian and empirical processes[END_REF] and [START_REF] Cirelson | Norm of Gaussian sample functions[END_REF] are used.

Paper organization

The paper is organized as follows. In Section 2, we briefly describe wavelets and Besov balls. Section 3 clarifies the assumption made on g and reformulates (1) using Fourier analysis. Our wavelet block thresholding procedure is described in Section 4. In Section 5, the main results if the paper are stated. Their proofs are provided in Section 6.

2 Wavelets and Besov balls

Periodized Meyer Wavelets

We consider an orthonormal wavelet basis generated by dilations and translations of a "father" Meyer-type wavelet φ and a "mother" Meyer-type wavelet ψ. The main features of such wavelets are:

• they are bandlimited, i.e. the Fourier transforms of φ and ψ have compact

supports respectively included in [-4π3 -1 , 4π3 -1 ] and [-8π3 -1 , -2π3 -1 ] ∪ [2π3 -1 , 8π3 -1 ].
• for any frequency in [-2π, -π] ∪ [π, 2π], there exists a constant c > 0 such that the magnitude of the Fourier transform of ψ is lower bounded by c. • the functions (φ, ψ) are C ∞ as their Fourier transforms have a compact support, and ψ has an infinite number of vanishing moments as its Fourier transform vanishes in a neighborhood of the origin:

∞ -∞ t u ψ(t)dt = 0, ∀ u ∈ N.
If the Fourier transforms of φ and ψ are also in C r for a chosen r ∈ N, then for it can be easily shown that φ and ψ decay as

|φ(t)| = O (1 + |t|) -r-1 , |ψ(t)| = O (1 + |t|) -r-1 ,
meaning that φ and ψ are not very well localized in time. This is why a Meyer wavelet transform is generally implemented in the Fourier domain.

For the purpose of this paper, we use the periodized Meyer wavelet bases on the unit interval. For any t ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2 j -1}, let

φ j,k (t) = 2 j/2 φ(2 j t -k), ψ j,k (t) = 2 j/2 ψ(2 j t -k)
be the elements of the wavelet basis, and

φ per j,k (t) = l∈Z φ j,k (t -l), ψ per j,k (t) = l∈Z ψ j,k (t -l),
their periodized versions. There exists an integer j * such that the collection {φ per j * ,k , k = 0, . . . , 2 j * -1; ψ per j,k , j = j * , . . . , ∞, k = 0, . . . , 2 j -1} forms an orthonormal basis of L 2 per ([0, 1]). In what follows, the superscript "per" will be dropped to lighten the notation.

Let j c be an integer such that j c ≥ j * . A function f ∈ L 2 per ([0, 1]) can be expanded into a wavelet series as

f (t) = 2 jc -1 k=0 α jc,k φ jc,k (t) + ∞ j=jc 2 j -1 k=0 β j,k ψ j,k (t), t ∈ [0, 1],
where

α jc,k = f, φ jc,k = 1 0 f (t)φ jc,k (t)dt, β j,k = f, ψ j,k = 1 0 f (t)ψ j,k (t)dt,
and ., . is the inner product on L 2 per ([0, 1]). See (Meyer 1992, Vol. 1 Chapter III.11) for a detailed account on periodized orthonormal wavelet bases.

Besov balls Let

M ∈ (0, ∞), s ∈ (0, ∞), p ∈ [1, ∞) and r ∈ [1, ∞). Set β j * -1,k = α j * ,k .
A function f belongs to the Besov balls B s p,r (M ) if and only if there exists a constant M * > 0 such that the associated wavelet coefficients satisfy

   ∞ j=j * -1   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
For a particular choice of parameters s, p and r, these sets contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Preliminaries

Assumptions on the density g

As a periodic function, the density g ∈ L 2

per ([0, 1]) can be written as the series g(t) = l∈Z g 1 (t + l), and a sufficient condition for g to exist for all t ∈ [0, 1] is that the template g 1 to have fast decay for the series to converge pointwise.

We suppose that there exist three constants, c > 0, C > 0 and δ > 1, such that, for any ∈ Z, the Fourier coefficient of g, i.e. γ = F(g)( ), satisfies

c(1 + | | δ ) -1 ≤ |γ | ≤ C(1 + | | δ ) -1 . (A g )
This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. It is a standard hypothesis usually adopted in the field of nonparametric estimation for deconvolution problems where the parameter δ quantifies the spectral properties, hence the ill-conditioning, of the convolution operator associated to g. See, for instance, [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF]; [START_REF] Fan | Wavelet deconvolution[END_REF]; [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF]; [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]. For example, if g 1 (t) = e -|t| , then g(t) exists for t ∈ [0, 1] and satisfies (A g ). Indeed, for any ∈ Z, by a change of variable one can show thatγ = 2 1 + 4π 2 2 -1 . Hence (A g ) is satisfied with c = (2π 2 ) -1 , C = 2 and δ = 2.

Reformulation as a linear inverse problem

In order to estimate the unknown wavelet coefficients of f from (1), we recall briefly the methodology of [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF]. It consists in casting (1) as a linear inverse (deconvolution) problem. More precisely, for any ∈ Z and m ∈ {1, . . . , n}, let c m, = 1 0 e -2iπ t dY m (t), then by simple properties of the Fourier transform

c m, = θ e -2iπ τm + z m, , (2) 
where

θ = F(f )( ), z m, = 1 0 e -2iπ t dW m (t). Now, let c = n -1 n m=1 c m, , it follows from (2) that c = θ γ + n -1/2 η , (3) 
where

γ = n -1 n m=1 e -2iπ τm , η = n -1/2 n m=1 z m, .
Notice that E ( γ ) =

1 0 e -2iπ x g(x)dx = γ and η 1 , . . . , η n are i.i.d. N (0, 1). Embarking from (3), if we set, for any j ≥ j c and k ∈ {0, . . . , 2 j -1},

β j,k = ∈Z ( c /γ )F(ψ j,k )( ), (4) 
then the Parseval theorem implies

E β j,k = ∈Z (θ /γ )E ( γ ) F(ψ j,k )( ) = ∈Z θ F(ψ j,k )( ) = ∈Z F(f )( )F(ψ j,k )( ) = 1 0 f (x)ψ j,k (x)dx = β j,k .
In plain words, β j,k is an unbiased estimator of β j,k . It satisfies additional interesting properties. Two of them are the core of our theoretical contribution and are provided in Section 5.

Our estimator

We use the notations introduced in Section 3. We assume that (A g ) is fulfilled with a regularity parameter δ > 1, and the upper-bound in sup ∈Z |θ | ≤ C * is a known constant. We now describe the proposed adaptive procedure for estimating f from (3). It combines James-Stein rule (see [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]) with the wavelet methodology. In the same vein as in [START_REF] Cai | On block thresholding in wavelet regression: Adaptivity, blocksize and threshold level[END_REF], we call it BlockJS. Let L = log n be the block length, J 1 = log 2 L is the coarsest decomposition scale, and J 2 = (1/(2δ + 1)) log 2 (n/ log n) . For any scale j ∈ {J 1 , . . . , J 2 }, let A j = {1, . . . , 2 j L -1 } be the set indexing the blocks at scale j. For each block index K ∈ A j , B j,K = {k ∈ {0, . . . , 2 j -1}; (K -1)L ≤ k ≤ KL -1} is the set indexing the positions of coefficients within the Kth block. The sets A j and B j,K are chosen such that the blocks partition {0, . . . , 2 j -1} without overlapping, i.e. K∈Aj B j,K = {0, . . . , 2 j -1}, B j,K ∩ B j,K = ∅ for any K = K with K, K ∈ A j , and Card(B j,K ) = L.

As devised by the discussion of Section 3.2, dividing (3) by γ (this always makes sense under (A g )) and taking the wavelet transform yields the observed coefficients sequence

α J1,k = ∈D J 1 ( c /γ )F(φ J1,k )( ), β j,k = ∈Cj ( c /γ )F(ψ j,k )( ), (5) 
where D J1 denotes the support of F(φ J1,k ), and C j that of F(ψ j,k ).

We define the BlockJS estimator by

f n (t) = 2 J 1 -1 k=0 α J1,k φ J1,k (t) + J2 j=J1 K∈Aj k∈B j,K β * j,k ψ j,k (t), t ∈ [0, 1], (6) 
where

β * j,k = β j,k 1 - λ( ∨ C * ) 2 n -1 2 2δj 1 L k∈B j,K | β j,k | 2 + , (7) 
with, for any (a, b) ∈ R 2 , (a

) + = max(a, 0), a ∨ b = max(a, b), a ∧ b = min(a, b)
and λ > 0 is a threshold parameter to be discussed later.

The differences between f n and the procedure of [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF] are the threshold (to be discussed below) and the thresholding rule: instead of term-by-term selection of β j,k , we operate by group selection with a suitable length for each block, i.e. L = log n . This length is optimal for numerous nonparametric problems, and, as we will see in Section 5, it is adequate for (1).

For recent minimax (or oracle) results on BlockJS procedures for other problems, we refer to [START_REF] Cai | On block thresholding in wavelet regression: Adaptivity, blocksize and threshold level[END_REF]; [START_REF] Cavalier | Sharp adaptation for inverse problems with random noise[END_REF]; [START_REF] Cai | Block thresholding for density estimation: Local and global adaptivity[END_REF]; [START_REF] Li | On the minimax optimality of block thresholded wavelet estimators with longmemory data[END_REF]; [START_REF] Li | On the block thresholding wavelet estimators with censored data[END_REF]; [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF]. Details on the BlockJS for the standard Gaussian white noise model can be found in [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF].

Main results

Minimax theorem

Theorem 1 Consider the random shift model defined by (1). Suppose that (A g ) is satisfied and the upper-bound in sup ∈Z |θ | ≤ C * is a known constant. Let f n be the estimator defined by ( 6) with a large enough λ. Then there exists a constant C > 0 such that, for any p ∈ [1, ∞), r ∈ [1, ∞), s ∈ (1/p, ∞), and n large enough, we have

sup f ∈B s p,r (M ) E 1 0 f n (t) -f (t) 2 dt ≤ Cϕ n ,
where 2s+2δ+1) , when p ≥ 2, (log n/n) 2s/(2s+2δ+1) , when p ∈ [1, 2) and s > (1/p -1/2)(2δ + 1).

ϕ n = n -2s/(
With regard to Bigot and Gadat (2008, Theorem 1.1), ϕ n is near optimal. There is only an extra logarithmic factor (log n) 2s/(2s+2δ+1) for the case p ∈ [1, 2) and s > (1/p -1/2)(2δ + 1). In comparison to the procedure of [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF], we achieve a better rate as we gain (log n) 2s/(2s+2δ+1) for the case p ≥ 2.

Theorem 1 can be proved via a more general result on the minimax performance of BlockJS. This general result is [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF], Theorem 3.1).To apply this theorem, two conditions on ( α J1,k ) k∈{0,...,2 J 1 -1} and ( β j,k ) k∈{0,...,2 j -1} are required.

• Moment condition. There exists a constant C > 0 such that, for any j ∈ {J 1 , . . . , J 2 } and k ∈ {0, . . . , 2 j -1},

E | α J1,k -α J1,k | 2 ≤ C2 2δJ1 n -1 , E | β j,k -β j,k | 4 ≤ C2 4δj n -2 .
This is proved in (Bigot and Gadat 2008, Proposition 3.1).

• Concentration condition. This is formalized in Proposition 1 below.

Proposition 1 Consider the framework of Theorem 1. Then there exists a constant λ > 0 such that, for any j ∈ {J 1 , . . . , J 2 }, any K ∈ A j and n large enough, the estimator ( β * j,k ) k∈B j,K of (7) obeys

P      k∈B j,K | β j,k -β j,k | 2   1/2 ≥ λ( ∨ C * )2 δj (log n/n) 1/2    ≤ n -2 .
Consequently, only the proof of Proposition 1 needs to be set to prove Theorem 1. This is done in Section 6.

On the choice of the threshold

The estimator f n is defined with the threshold

t j = √ λ( ∨ C * )2 δj L/n.
Recall that C * is supposed to be a known constant such that sup ∈Z |θ | ≤ C * . Since f , and a fortiori, θ , is unknown, this condition is not realistic in practice.

To solve this problem, [START_REF] Bigot | An inverse problem point of view for adaptive estimation in a shifted curves model[END_REF] propose to estimate |θ | by

| θ | = 1 n n m=1 |c m, | 2 -2
and consider a more sophisticated threshold:

t * j = 2 σ j 2 log n/n ∨ δ j (log n/(3n)) ,
where

σ 2 j = 2 ∈Cj | F(ψ j,0 )( )/γ | 2 and δ j = ∈Cj | F(ψ j,0 )( ) θ |/|γ |.

Proofs

In this section, c and C denote positive constants which can take different values for each mathematical term. They are independent of f and n.

Proof of Proposition 1

We have

β j,k -β j,k = U j,k + V j,k ,
where

U j,k = ∈Cj θ ( γ /γ -1)F(ψ j,k )( ), V j,k = n -1/2 ∈Cj (η /γ )F(ψ j,k )( ).
For any λ > 0, the Minkowski inequality implies

P      k∈B j,K | β j,k -β j,k | 2   1/2 ≥ λ( ∨ C * )2 δj (log n/n) 1/2    = P      k∈B j,K |U j,k + V j,k | 2   1/2 ≥ λ( ∨ C * )2 δj (log n/n) 1/2    ≤ P      k∈B j,K |U j,k | 2   1/2 +   k∈B j,K |V j,k | 2   1/2 ≥ λ( ∨ C * )2 δj (log n/n) 1/2    ≤ A + B, (8) 
where

A = P      k∈B j,K |U j,k | 2   1/2 ≥ 2 -1 λ( ∨ C * )2 δj (log n/n) 1/2    (9) 
and

B = P      k∈B j,K |V j,k | 2   1/2 ≥ 2 -1 λ( ∨ C * )2 δj (log n/n) 1/2    . ( 10 
)
Let us now investigate the upper bounds for A and B.

The upper bound for A (see ( 9)). For this, we need the following inequality due to [START_REF] Talagrand | Sharper bounds for gaussian and empirical processes[END_REF].

Lemma 1 [START_REF] Talagrand | Sharper bounds for gaussian and empirical processes[END_REF]) Let V 1 , . . . , V n be i.i.d. random variables, 1 , . . . , n be independent Rademacher variables, also independent of V 1 , . . . , V n , F be a class of functions uniformly bounded by T and r n : F → R be the operator defined by

r n (h) = n -1 n i=1 h(V i ) -E(h(V 1 )).
Suppose that

sup h∈F V (h(V 1 )) ≤ v and E sup h∈F n i=1 i h(V i ) ≤ nH.
Then, there exist two absolute constants C 1 > 0 and C 2 > 0 such that, for any t > 0, we have

P sup h∈F r n (h) ≥ t + C 2 H ≤ exp -nC 1 t 2 v -1 ∧ tT -1 .
In order to apply the Talagrand inequality, consider the unit ball

Ω = a = (a k ) ∈ C; k∈B j,K |a k | 2 ≤ 1 and the class F of functions defined by F = h; h(x) = k∈B j,K a k ∈Cj θ (e -2iπ
x /γ -1)F(ψ j,k )( ), a ∈ Ω . By classical results of convex analysis, and more precisely the Legendre-Fenchel conjugate, we have

  k∈B j,K |U j,k | 2   1/2 = sup a∈Ω k∈B j,K a k U j,k = sup a∈Ω k∈B j,K a k ∈Cj θ n -1 n m=1 e -2iπ τm /γ -1 F(ψ j,k )( ) = sup h∈F r n (h),
where r n denotes the function defined in Lemma 1. Now, let us evaluate the quantities T , H and v of the Talagrand inequality.

The value of T . Let h be a function in

F . Using |a k | ≤ 1, by (A g ), sup ∈Cj |e -2iπ x /γ -1| ≤ sup ∈Cj (1/|γ |) + 1 ≤ C2 δj , and sup ∈Z |θ | ≤ C * , we obtain |h(x)| = k∈B j,K a k ∈Cj θ (e -2iπ x /γ -1)F(ψ j,k )( ) ≤ k∈B j,K |a k | ∈Cj |e -2iπ x /γ -1||θ ||F(ψ j,k )( )| ≤ CC * 2 δj k∈B j,K ∈Cj |F(ψ j,k )( )|. Since sup k∈B j,K sup ∈Cj |F(ψ j,k )( )| ≤ C2 -j/2 , Card(C j ) ≤ C2 j and Card(B j,K ) ≤ log n, we have |h(x)| ≤ C2 -j/2 Card(C j ) Card(B j,K ) ≤ CC * 2 δj 2 j/2 log n.
Hence T = CC * 2 δj 2 j/2 log n. The value of H. Let 1 , . . . , n be independent Rademacher variables independent of τ = (τ 1 , . . . , τ n ). Since sup a∈Ω k∈B j,K a 2 k = 1, and using successively the Cauchy-Schwartz and the Jensen inequalities yield

E sup h∈F n m=1 m h(τ m ) = E   sup a∈Ω n m=1 m k∈B j,K a k ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( )   ≤ sup a∈Ω   k∈B j,K a 2 k   1/2 × E        k∈B j,K n m=1 m ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2    1/2     ≤    k∈B j,K E    n m=1 m ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2       1/2 . (11)
Since 1 , . . . , n are independent Rademacher variables, also independent of τ = (τ 1 , . . . , τ n ), we have

E    n m=1 m ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2    = = E   E    n m=1 m ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2 τ       = n m=1 E    ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2    .
Denote Z m the random variable Z m = ∈Cj θ e -2iπ τm /γ F(ψ j,k )( ). Obviously, for any m, E(Z m ) = ∈Cj θ F(ψ j,k )( ) and hence

E    ∈Cj θ (e -2iπ τm /γ -1)F(ψ j,k )( ) 2    = V(Z m ) ≤ E(|Z m | 2 ) = E    ∈Cj θ e -2iπ τm /γ F(ψ j,k )( ) 2    . ( 12 
)
With this observation, and using the identical distribution of τ 1 , . . . , τ n , we have

n m=1 V(Z m ) = nV(Z 1 ) ≤ nE    ∈Cj (θ /γ )e -2iπ τ1 F(ψ j,k )( ) 2    = n 1 0 ∈Cj (θ /γ )e -2iπ x F(ψ j,k )( ) 2 g(x)dx.
By assumption (A g ), for any t ∈ [0, 1], we have (θ /γ )e -2iπ x F(ψ j,k )( )

|g(t)| ≤ ∈Z | F(g)( )| ≤ C ∈Z (1 + | |) -δ ,
2 dx = Cn ∈Cj (|θ | 2 /|γ | 2 ) |F(ψ j,k )( )| 2 ≤ CC 2 * n2 2δj ∈Cj |F(ψ j,k )( )| 2 = CC 2 * n2 2δj . (13) 
Putting ( 11) and ( 13) together, we obtain

E sup h∈F n m=1 m h(τ m ) ≤ C C 2 * n2 2δj Card(B j,K ) 1/2 ≤ CC * 2 δj (n log n) 1/2 . Hence H = CC * 2 δj (log n/n) 1/2 .
The value of v. With the same observation as in ( 12), we have

sup h∈F V (h(τ 1 )) ≤ sup a∈Ω E    k∈B j,K a k ∈Cj θ (e -2iπ τ1 /γ -1)F(ψ j,k )( ) 2    ≤ sup a∈Ω E    k∈B j,K a k ∈Cj (θ /γ )e -2iπ τ1 F(ψ j,k )( ) 2    = sup a∈Ω 1 0 k∈B j,K a k ∈Cj (θ /γ )e -2iπ x F(ψ j,k )( ) 2 g(x)dx.
Proceeding as in ( 13), we obtain

sup h∈F V (h(τ 1 )) ≤ C sup a∈Ω 1 0 k∈B j,K a k ∈Cj (θ /γ )e -2iπ x F(ψ j,k )( ) 2 dx = C sup a∈Ω ∈Cj (|θ | 2 /|γ | 2 ) k∈B j,K a k F(ψ j,k )( ) 2 ≤ CC 2 * 2 2δj sup a∈Ω ∈Cj k∈B j,K a k F(ψ j,k )( ) 2 . ( 14 
)
By the Plancherel formula, we get

∈Cj k∈B j,K a k F(ψ j,k )( ) 2 = ∈Cj F   k∈B j,K a k ψ j,k   ( ) 2 = 1 0 k∈B j,K a k ψ j,k (t) 2 dt = k∈B j,K |a k | 2 ≤ 1. (15) 
Th last equality follows from the fact that at each scale j, the collection {ψ j,k } k forms an orthonormal basis of the corresponding detail space. It then follows from ( 14) and ( 15) that

sup h∈F V (h(τ 1 )) ≤ CC 2 * 2 2δj . Hence v = CC 2 * 2 2δj .
Combining the obtained values for v, H and T , and taking t = 4 -1 λC * 2 δj (log n/n) 1/2 , we obtain

t 2 v -1 ∧ tT -1 ≥ C λ 2 (log n/n) ∧ λ(n2 j log n) -1/2 .
For any j ∈ {J 1 , . . . , J 2 } and n large enough, we have

n2 j log n ≤ n2 J2 log n ≤ Cn(n/ log n) 1/(2δ+1) log n ≤ λ -2 (n/ log n) 2 . Hence t 2 v -1 ∧ tT -1 ≥ Cλ 2 (log n/n).
Therefore, for λ large enough and t = 4 -1 λC * 2 δj (log n/n) 1/2 , the Talagrand inequality described in Lemma 1 yields

A = P      k∈B j,K |U j,k | 2   1/2 ≥ 2 -1 λ( ∨ C * )2 δj (log n/n) 1/2    ≤ P      k∈B j,K |U j,k | 2   1/2 ≥ 4 -1 λC * 2 δj (log n/n) 1/2 + C 2 H    = P sup h∈F r n (h) ≥ t + C 2 H ≤ exp -nC 1 t 2 v -1 ∧ tT -1 ≤ exp -nCλ 2 (log n/n) ≤ 2 -1 n -2 . (16) 
We obtain the desired upper bound for A.

The upper bound for B (see ( 10)). We now turn to upper-bounding B.

Toward this goal, we need the following inequality due to [START_REF] Cirelson | Norm of Gaussian sample functions[END_REF].

Lemma 2 [START_REF] Cirelson | Norm of Gaussian sample functions[END_REF]) Let (ϑ t ) t∈D be a centered Gaussian process. If E (sup t∈D ϑ t ) ≤ N and sup t∈D V (ϑ t ) ≤ V then, for any x > 0,

P sup t∈D ϑ t ≥ x + N ≤ exp -x 2 /(2V ) .
The following random variables obey

V j,k = n -1/2 ∈Cj (η /γ )F(ψ j,k )( ) ∼ N 0, n -1 σ 2 j,k , where σ 2 j,k = 2 ∈Cj |F(ψ j,k )( )/γ | 2 .
Consider again the unit ball Ω as defined above. For any a ∈ Ω, let Z(a) be the centered Gaussian process defined by

Z(a) = k∈B j,K a k V j,k = n -1/2 ∈Cj (η /γ ) k∈B j,K a k F(ψ j,k )( ).
Again, by an argument of the Legendre-Fenchel conjugate of the unit Euclidean ball, we have

sup a∈Ω Z(a) =   k∈B j,K |V j,k | 2   1/2 .
Let us now apply Lemma 2 to our setting by determining the values of N and V that appear in the Cirelson inequality.

Value of N . Recall that owing to assumption (A g ), sup ∈Cj (1/|γ | 2 ) ≤ C2 2δj . In addition, the Plancherel formula implies that

σ 2 j,k = 2 ∈Cj |F(ψ j,k )( )/γ | 2 ≤ C 2 2 2δj ∈Cj |F(ψ j,k )( )| 2 = C 2 2 2δj .
Combining these facts with the Jensen inequality, we therefore get

E sup a∈Ω Z(a) = E      k∈B j,K |V j,k | 2   1/2    ≤   k∈B j,K E |V j,k | 2   1/2 ≤ C   n -1 k∈B j,K σ 2 j,k   1/2 ≤ C 2 δj n -1/2 Card(B j,K ) 1/2 = C 2 δj (log n/n) 1/2 .
Hence N = C 2 δj (log n/n) 1/2 .

Value of V . Since η is a complex white noise, i.e. E (η η ) = 1 if = and 0 otherwise, it comes The last equality is by definition of a ∈ Ω. Hence V = C n -1 2 2δj . Taking λ large enough and x = 4 -1 λ 2 δj (log n/n) 1/2 , the inequality of Lemma 2 yields

B = P      k∈B j,K |V j,k | 2   1/2 ≥ 2 -1 λ( ∨ C * )2 δj (log n/n) 1/2    ≤ P      k∈B j,K |V j,k | 2   1/2 ≥ 4 -1 λ 2 δj (log n/n) 1/2 + N    = P sup a∈Ω Z(a) ≥ x + N ≤ exp -x 2 /(2V ) ≤ exp -Cλ 2 log n ≤ 2 -1 n -2 . ( 17 
)
We obtain the desired upper bound for B. Putting (8), ( 9), ( 10), ( 16) and ( 17) together, the proof of Proposition 1 follows.

  the sequence is the last right-hand side member is Riemann summable since δ > 1 and thus |g(t)| < ∞. Combining this with sup ∈Z |θ | ≤ C * , sup ∈Cj (1/|γ |) ≤ C2 δj , and the Plancherel formula which implies ∈Cj |F(ψ j,k )( )| 2 =

.

  K k ∈B j,K a k a k V j,k V j,k   = n -1 sup a∈Ω k∈B j,K k ∈B j,K a k a k ∈Cj ∈Cj (1/γ )F(ψ j,k )( )(1/γ )F(ψ j,k )( )E (η η ) = n -1 sup a∈Ω k∈B j,K k ∈B j,K a k a k ∈Cj (1/|γ | 2 )F(ψ j,k )( )F(ψ j,k )( ) = n -1 sup a∈Ω ∈Cj (1/|γ | 2 ) k∈B j,K a k F(ψ j,k )( ) 2By assumption (A g ), we know that sup ∈Cj (1/|γ | 2 ) ≤ C2 2δj . Using this and the equality∈Cj k∈B j,K a k F(ψ j,k )( ) 2 = k∈B j,K |a k | 2 , (see (15)), we obtain sup a∈Ω V(Z(a)) ≤ C n -1 2 2δj sup a∈Ω ∈Cj k∈B j,K a k F(ψ j,k )( ) 2 = C n -1 2 2δj .
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