
HAL Id: hal-00421743
https://hal.science/hal-00421743

Preprint submitted on 2 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on adaptive wavelet estimation in a shifted
curves model via block thresholding

Christophe Chesneau, Jalal M. Fadili

To cite this version:
Christophe Chesneau, Jalal M. Fadili. A note on adaptive wavelet estimation in a shifted curves model
via block thresholding. 2009. �hal-00421743�

https://hal.science/hal-00421743
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

A note on adaptive wavelet estimation in a shifted curves
model via block thresholding

Christophe Chesneau · Jalal Fadili

Received:

Abstract In this paper, the problem of adaptive estimation of a mean pattern
in a randomly shifted curve model is considered. Adopting the new point of
view of Bigot and Gadat (2008), we develop an adaptive estimator based on
wavelet block thresholding. Taking the minimax approach, we prove that it
attains near optimal rates of convergence under the quadratic risk over a wide
range of Besov balls. In comparison to the procedure of Bigot and Gadat
(2008), we gain a logarithmic term in the rates of convergence (for the regular
zone).
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1 Introduction

1.1 Model and motivation

Suppose that we observe realizations of n noisy and randomly shifted curves
Y1(t), . . . , Yn(t) defined by the stochastic equation:

dYm(t) = f(t− τm)dt+ εdWm(t), t ∈ [0, 1], m ∈ {1, . . . , n}, (1)

where f is an unknown function, ε > 0 is a fixed constant, W1(t), . . . ,Wm(t)
are n non-observed i.i.d. standard Brownian motion and τ1, . . . , τn are i.i.d.
random variables. The density function of τ1 is denoted g. It is supposed to
be known. The goal is to estimate f from Y1(t), . . . , Yn(t).
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We assume in the sequel that f and g belong to L2
per([0, 1]), the space of

periodic functions of period one that are square-integrable on [0, 1],

L2
per([0, 1]) =

{
h; h is one-periodic and

∫ 1

0

h2(t)dt <∞
}
.

Any function h ∈ L2
per([0, 1]) can be represented by its Fourier series

h(t) =
∑
`∈Z
F(h)(`)ei2iπ`t,

where the equality is intended in mean-square convergence sense1, and F(h)(`)
denotes the Fourier coefficient given by

F(h)(`) =
∫ 1

0

h(t)e−2iπ`tdt, ` ∈ Z,

whenever this integral exists. The notation · will be used for the complex
conjugate.

Model (1) is useful for studying the problem of recovering a mean pattern
from a set of similar curves in the presence of random translations and additive
noise. It fits the setting of Grenander’s theory of random shapes and patterns
Grenander (1993). This problem has been the focus of many works in a variety
of situations. The interested reader may refer to Bigot and Gadat (2008) and
references therein for a comprehensive review. It can also be viewed as a ”ran-
domized” version of the standard Gaussian (periodic) deconvolution problem,
investigated for instance by Cavalier and Tsybakov (2002), Johnstone et al.
(2004) and others.

Before detailing the contribution of this paper, let us briefly describe the
approach developed by Bigot and Gadat (2008). It consists in using the proper-
ties of the Fourier transform to convert model (1) into a linear inverse problem
where g plays the role of a convolution kernel. Starting from this new formu-
lation (see Section 3.2), Bigot and Gadat (2008) constructed an adaptive es-
timation procedure using wavelet-domain term-by-term hard thresholding. It
is closely related to the WaveD procedure of Johnstone et al. (2004) designed
for the standard Gaussian deconvolution problem. Taking the minimax point
of view, under a standard smoothness assumption on g (to be specified in Sec-
tion 3), it was shown that their estimator achieves near optimal minimax rates
under the quadratic risk over a wide class of Besov balls. More precisely, if f̃n
denotes the estimate provided by their procedure and Bsp,r(M) the Besov ball
of radius M (to be defined in Section 2), then

sup
f∈Bs

p,r(M)

E
(∫ 1

0

(
f̃n(t)− f(t)

)2

dt

)
≤ C(log n/n)2s/(2s+2δ+1),

1 This convergence can be sharpened under additional regularity properties, see e.g. as-
sumption (Ag).
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where δ is a regularity parameter coming from the smoothness assumption
made on g. Since the optimal rate of convergence for (1) is n−2s/(2s+2δ+1) (see
Bigot and Gadat (2008)), f̃n is near optimal; as usual the terminology ”near”
pertains to the extra logarithmic factor (log n)2s/(2s+2δ+1).

1.2 Contribution

In this paper, we adopt the same methodology but consider another type of
thresholding: block thresholding. For many nonparametric estimation prob-
lems, procedures based on block thresholding achieve better rates of conver-
gence that the term-by-term one (including hard thresholding). See, for in-
stance, Cai (2002); Cavalier and Tsybakov (2002); Cai and Chicken (2005);
Li and Xiao (2008); Li (2008); Chesneau et al. (2010). This motivates the
construction of such a procedure for the estimation of f in (1). We prove that
block thresholding indeed exhibits better convergence rates than term-by-term
thresholding of Bigot and Gadat (2008). In particular, it gets rid of the log-
arithmic factor when s, p, r and δ belong to the ”regular zone”. The proof
is based on a general theorem on the minimax performances of wavelet block
thresholding procedures established by Chesneau et al. (2010). To apply this
result, we need to prove two conditions: a moment condition and a concen-
tration one. The first one is proved in Bigot and Gadat (2008). The second is
established in this paper. For the proof, some powerful and sharp concentra-
tion inequalities established by Talagrand (1994) and Cirelson, Ibragimov and
Sudakov (1976) are used.

1.3 Paper organization

The paper is organized as follows. In Section 2, we briefly describe wavelets and
Besov balls. Section 3 clarifies the assumption made on g and reformulates (1)
using Fourier analysis. Our wavelet block thresholding procedure is described
in Section 4. In Section 5, the main results if the paper are stated. Their proofs
are provided in Section 6.

2 Wavelets and Besov balls

2.1 Periodized Meyer Wavelets

We consider an orthonormal wavelet basis generated by dilations and transla-
tions of a ”father” Meyer-type wavelet φ and a ”mother” Meyer-type wavelet
ψ. The main features of such wavelets are:

• they are bandlimited, i.e. the Fourier transforms of φ and ψ have compact
supports respectively included in [−4π3−1, 4π3−1] and [−8π3−1,−2π3−1]∪
[2π3−1, 8π3−1].
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• for any frequency in [−2π,−π] ∪ [π, 2π], there exists a constant c > 0 such
that the magnitude of the Fourier transform of ψ is lower bounded by c.

• the functions (φ, ψ) are C∞ as their Fourier transforms have a compact
support, and ψ has an infinite number of vanishing moments as its Fourier
transform vanishes in a neighborhood of the origin:∫ ∞

−∞
tuψ(t)dt = 0, ∀ u ∈ N.

If the Fourier transforms of φ and ψ are also in Cr for a chosen r ∈ N, then
for it can be easily shown that φ and ψ decay as

|φ(t)| = O
(
(1 + |t|)−r−1

)
, |ψ(t)| = O

(
(1 + |t|)−r−1

)
,

meaning that φ and ψ are not very well localized in time. This is why a Meyer
wavelet transform is generally implemented in the Fourier domain.

For the purpose of this paper, we use the periodized Meyer wavelet bases
on the unit interval. For any t ∈ [0, 1], any integer j and any k ∈ {0, . . . , 2j−1},
let

φj,k(t) = 2j/2φ(2jt− k), ψj,k(t) = 2j/2ψ(2jt− k)

be the elements of the wavelet basis, and

φper
j,k (t) =

∑
l∈Z

φj,k(t− l), ψper
j,k (t) =

∑
l∈Z

ψj,k(t− l),

their periodized versions. There exists an integer j∗ such that the collection
{φper

j∗,k
, k = 0, . . . , 2j∗ − 1; ψper

j,k , j = j∗, . . . ,∞, k = 0, . . . , 2j − 1} forms an
orthonormal basis of L2

per([0, 1]). In what follows, the superscript ”per” will
be dropped to lighten the notation.

Let jc be an integer such that jc ≥ j∗. A function f ∈ L2
per([0, 1]) can be

expanded into a wavelet series as

f(t) =
2jc−1∑
k=0

αjc,kφjc,k(t) +
∞∑
j=jc

2j−1∑
k=0

βj,kψj,k(t), t ∈ [0, 1],

where

αjc,k = 〈f, φjc,k〉 =
∫ 1

0

f(t)φjc,k(t)dt, βj,k = 〈f, ψj,k〉 =
∫ 1

0

f(t)ψj,k(t)dt,

and 〈., .〉 is the inner product on L2
per([0, 1]). See (Meyer 1992, Vol. 1 Chapter

III.11) for a detailed account on periodized orthonormal wavelet bases.
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2.2 Besov balls

Let M ∈ (0,∞), s ∈ (0,∞), p ∈ [1,∞) and r ∈ [1,∞). Set βj∗−1,k = αj∗,k.
A function f belongs to the Besov balls Bsp,r(M) if and only if there exists a
constant M∗ > 0 such that the associated wavelet coefficients satisfy ∞∑

j=j∗−1

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤M∗.

For a particular choice of parameters s, p and r, these sets contain the Hölder
and Sobolev balls. See Meyer (1992).

3 Preliminaries

3.1 Assumptions on the density g

As a periodic function, the density g ∈ L2
per([0, 1]) can be written as the series

g(t) =
∑
l∈Z g1(t+ l), and a sufficient condition for g to exist for all t ∈ [0, 1]

is that the template g1 to have fast decay for the series to converge pointwise.
We suppose that there exist three constants, c > 0, C > 0 and δ > 1, such

that, for any ` ∈ Z, the Fourier coefficient of g, i.e. γ` = F(g)(`), satisfies

c(1 + |`|δ)−1 ≤ |γ`| ≤ C(1 + |`|δ)−1. (Ag)

This assumption controls the decay of the Fourier coefficients of g, and thus
the smoothness of g. It is a standard hypothesis usually adopted in the field of
nonparametric estimation for deconvolution problems where the parameter δ
quantifies the spectral properties, hence the ill-conditioning, of the convolution
operator associated to g. See, for instance, Pensky and Vidakovic (1999); Fan
and Koo (2002); Johnstone et al. (2004); Bigot and Gadat (2008).

For example, if g1(t) = e−|t|, then g(t) exists for t ∈ [0, 1] and satisfies
(Ag). Indeed, for any ` ∈ Z, by a change of variable one can show thatγ` =
2
(
1 + 4π2`2

)−1. Hence (Ag) is satisfied with c = (2π2)−1, C = 2 and δ = 2.

3.2 Reformulation as a linear inverse problem

In order to estimate the unknown wavelet coefficients of f from (1), we recall
briefly the methodology of Bigot and Gadat (2008). It consists in casting (1)
as a linear inverse (deconvolution) problem. More precisely, for any ` ∈ Z and
m ∈ {1, . . . , n}, let cm,` =

∫ 1

0
e−2iπ`tdYm(t), then by simple properties of the

Fourier transform
cm,` = θ`e

−2iπ`τm + εzm,`, (2)
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where

θ` = F(f)(`), zm,` =
∫ 1

0

e−2iπ`tdWm(t).

Now, let ĉ` = n−1
∑n
m=1 cm,`, it follows from (2) that

ĉ` = θ`γ̂` + n−1/2εη`, (3)

where

γ̂` = n−1
n∑

m=1

e−2iπ`τm , η` = n−1/2
n∑

m=1

zm,`.

Notice that E (γ̂`) =
∫ 1

0
e−2iπ`xg(x)dx = γ` and η1, . . . , ηn are i.i.d. N (0, 1).

Embarking from (3), if we set, for any j ≥ jc and k ∈ {0, . . . , 2j − 1},

β̂j,k =
∑
`∈Z

(ĉ`/γ`)F(ψj,k)(`), (4)

then the Parseval theorem implies

E
(
β̂j,k

)
=
∑
`∈Z

(θ`/γ`)E (γ̂`)F(ψj,k)(`) =
∑
`∈Z

θ`F(ψj,k)(`)

=
∑
`∈Z
F(f)(`)F(ψj,k)(`) =

∫ 1

0

f(x)ψj,k(x)dx = βj,k.

In plain words, β̂j,k is an unbiased estimator of βj,k. It satisfies additional
interesting properties. Two of them are the core of our theoretical contribution
and are provided in Section 5.

4 Our estimator

We use the notations introduced in Section 3. We assume that (Ag) is fulfilled
with a regularity parameter δ > 1, and the upper-bound in sup`∈Z |θ`| ≤ C∗
is a known constant. We now describe the proposed adaptive procedure for
estimating f from (3). It combines James-Stein rule (see Stein (1990)) with
the wavelet methodology. In the same vein as in Cai (2002), we call it BlockJS.

Let L = blog nc be the block length, J1 = blog2 Lc is the coarsest de-
composition scale, and J2 = b(1/(2δ + 1)) log2(n/ log n)c. For any scale j ∈
{J1, . . . , J2}, let Aj = {1, . . . , 2jL−1} be the set indexing the blocks at scale
j. For each block index K ∈ Aj , Bj,K = {k ∈ {0, . . . , 2j − 1}; (K − 1)L ≤ k ≤
KL− 1} is the set indexing the positions of coefficients within the Kth block.
The sets Aj and Bj,K are chosen such that the blocks partition {0, . . . , 2j−1}
without overlapping, i.e.

⋃
K∈Aj

Bj,K = {0, . . . , 2j − 1}, Bj,K ∩ Bj,K′ = ∅ for
any K 6= K ′ with K, K ′ ∈ Aj , and Card(Bj,K) = L.
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As devised by the discussion of Section 3.2, dividing (3) by γ` (this always
makes sense under (Ag)) and taking the wavelet transform yields the observed
coefficients sequence

α̂J1,k =
∑
`∈DJ1

(ĉ`/γ`)F(φJ1,k)(`), β̂j,k =
∑
`∈Cj

(ĉ`/γ`)F(ψj,k)(`), (5)

where DJ1 denotes the support of F(φJ1,k), and Cj that of F(ψj,k).
We define the BlockJS estimator by

f̂n(t) =
2J1−1∑
k=0

α̂J1,kφJ1,k(t) +
J2∑
j=J1

∑
K∈Aj

∑
k∈Bj,K

β̂∗j,kψj,k(t), t ∈ [0, 1], (6)

where

β̂∗j,k = β̂j,k

(
1− λ(ε ∨ C∗)2n−122δj

1
L

∑
k∈Bj,K

|β̂j,k|2

)
+

, (7)

with, for any (a, b) ∈ R2, (a)+ = max(a, 0), a∨b = max(a, b), a∧b = min(a, b)
and λ > 0 is a threshold parameter to be discussed later.

The differences between f̂n and the procedure of Bigot and Gadat (2008)
are the threshold (to be discussed below) and the thresholding rule: instead of
term-by-term selection of β̂j,k, we operate by group selection with a suitable
length for each block, i.e. L = blog nc. This length is optimal for numerous
nonparametric problems, and, as we will see in Section 5, it is adequate for
(1).

For recent minimax (or oracle) results on BlockJS procedures for other
problems, we refer to Cai (2002); Cavalier and Tsybakov (2002); Cai and
Chicken (2005); Li and Xiao (2008); Li (2008); Chesneau et al. (2010). Details
on the BlockJS for the standard Gaussian white noise model can be found in
Tsybakov (2004).

5 Main results

5.1 Minimax theorem

Theorem 1 Consider the random shift model defined by (1). Suppose that
(Ag) is satisfied and the upper-bound in sup`∈Z |θ`| ≤ C∗ is a known constant.
Let f̂n be the estimator defined by (6) with a large enough λ. Then there exists
a constant C > 0 such that, for any p ∈ [1,∞), r ∈ [1,∞), s ∈ (1/p,∞), and
n large enough, we have

sup
f∈Bs

p,r(M)

E
(∫ 1

0

(
f̂n(t)− f(t)

)2

dt

)
≤ Cϕn,
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where

ϕn =

{
n−2s/(2s+2δ+1), when p ≥ 2,
(log n/n)2s/(2s+2δ+1), when p ∈ [1, 2) and s > (1/p− 1/2)(2δ + 1).

With regard to Bigot and Gadat (2008, Theorem 1.1), ϕn is near optimal.
There is only an extra logarithmic factor (log n)2s/(2s+2δ+1) for the case p ∈
[1, 2) and s > (1/p − 1/2)(2δ + 1). In comparison to the procedure of Bigot
and Gadat (2008), we achieve a better rate as we gain (log n)2s/(2s+2δ+1) for
the case p ≥ 2.

Theorem 1 can be proved via a more general result on the minimax per-
formance of BlockJS. This general result is (Chesneau et al. 2010, Theo-
rem 3.1).To apply this theorem, two conditions on (α̂J1,k)k∈{0,...,2J1−1} and
(β̂j,k)k∈{0,...,2j−1} are required.
• Moment condition. There exists a constant C > 0 such that, for any j ∈
{J1, . . . , J2} and k ∈ {0, . . . , 2j − 1},

E
(
|α̂J1,k − αJ1,k|2

)
≤ C22δJ1n−1, E

(
|β̂j,k − βj,k|4

)
≤ C24δjn−2.

This is proved in (Bigot and Gadat 2008, Proposition 3.1).

• Concentration condition. This is formalized in Proposition 1 below.

Proposition 1 Consider the framework of Theorem 1. Then there exists a
constant λ > 0 such that, for any j ∈ {J1, . . . , J2}, any K ∈ Aj and n large
enough, the estimator (β̂∗j,k)k∈Bj,K

of (7) obeys

P


 ∑
k∈Bj,K

|β̂j,k − βj,k|2
1/2

≥ λ(ε ∨ C∗)2δj(log n/n)1/2

 ≤ n−2.

Consequently, only the proof of Proposition 1 needs to be set to prove The-
orem 1. This is done in Section 6.

5.2 On the choice of the threshold

The estimator f̂n is defined with the threshold

tj =
√
λ(ε ∨ C∗)2δj

√
L/n.

Recall that C∗ is supposed to be a known constant such that sup`∈Z |θ`| ≤ C∗.
Since f , and a fortiori, θ`, is unknown, this condition is not realistic in practice.
To solve this problem, Bigot and Gadat (2008) propose to estimate |θ`| by

|θ̂`| =
√

1
n

∑n
m=1 |cm,`|2 − ε2 and consider a more sophisticated threshold:

t∗j = 2
((
σ̂j
√

2 log n/n
)
∨
(
δ̂j(log n/(3n))

))
,

where σ̂2
j = ε2

∑
`∈Cj
| F(ψj,0)(`)/γ`|2 and δ̂j =

∑
`∈Cj
| F(ψj,0)(`)θ̂`|/|γ`|.
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6 Proofs

In this section, c and C denote positive constants which can take different
values for each mathematical term. They are independent of f and n.

6.1 Proof of Proposition 1

We have

β̂j,k − βj,k = Uj,k + Vj,k,

where

Uj,k =
∑
`∈Cj

θ`(γ̂`/γ` − 1)F(ψj,k)(`), Vj,k = εn−1/2
∑
`∈Cj

(η`/γ`)F(ψj,k)(`).

For any λ > 0, the Minkowski inequality implies

P


 ∑
k∈Bj,K

|β̂j,k − βj,k|2
1/2

≥ λ(ε ∨ C∗)2δj(log n/n)1/2


= P


 ∑
k∈Bj,K

|Uj,k + Vj,k|2
1/2

≥ λ(ε ∨ C∗)2δj(log n/n)1/2


≤ P


 ∑
k∈Bj,K

|Uj,k|2
1/2

+

 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ λ(ε ∨ C∗)2δj(log n/n)1/2


≤ A+B, (8)

where

A = P


 ∑
k∈Bj,K

|Uj,k|2
1/2

≥ 2−1λ(ε ∨ C∗)2δj(log n/n)1/2

 (9)

and

B = P


 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ 2−1λ(ε ∨ C∗)2δj(log n/n)1/2

 . (10)

Let us now investigate the upper bounds for A and B.
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The upper bound for A (see (9)). For this, we need the following inequality
due to Talagrand (1994).

Lemma 1 (Talagrand (1994)) Let V1, . . . , Vn be i.i.d. random variables,
ε1, . . . , εn be independent Rademacher variables, also independent of V1, . . . , Vn,
F be a class of functions uniformly bounded by T and rn : F → R be the op-
erator defined by

rn(h) = n−1
n∑
i=1

h(Vi)− E(h(V1)).

Suppose that

sup
h∈F

V (h(V1)) ≤ v and E

(
sup
h∈F

n∑
i=1

εih(Vi)

)
≤ nH.

Then, there exist two absolute constants C1 > 0 and C2 > 0 such that, for any
t > 0, we have

P
(

sup
h∈F

rn(h) ≥ t+ C2H

)
≤ exp

(
−nC1

(
t2v−1 ∧ tT−1

))
.

In order to apply the Talagrand inequality, consider the unit ball Ω ={
a = (ak) ∈ C;

∑
k∈Bj,K

|ak|2 ≤ 1
}

and the class F of functions defined by

F =
{
h; h(x) =

∑
k∈Bj,K

ak
∑
`∈Cj

θ`(e−2iπ`x/γ` − 1)F(ψj,k)(`), a ∈ Ω
}

.
By classical results of convex analysis, and more precisely the Legendre-Fenchel
conjugate, we have ∑

k∈Bj,K

|Uj,k|2
1/2

= sup
a∈Ω

∑
k∈Bj,K

akUj,k

= sup
a∈Ω

∑
k∈Bj,K

ak
∑
`∈Cj

θ`

(
n−1

n∑
m=1

e−2iπ`τm/γ` − 1

)
F(ψj,k)(`)

= sup
h∈F

rn(h),

where rn denotes the function defined in Lemma 1. Now, let us evaluate the
quantities T , H and v of the Talagrand inequality.

The value of T . Let h be a function in F . Using |ak| ≤ 1, by (Ag),
sup`∈Cj

|e−2iπ`x/γ` − 1| ≤ sup`∈Cj
(1/|γ`|) + 1 ≤ C2δj , and sup`∈Z |θ`| ≤ C∗,

we obtain

|h(x)| =

∣∣∣∣∣∣
∑

k∈Bj,K

ak
∑
`∈Cj

θ`(e−2iπ`x/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
≤

∑
k∈Bj,K

|ak|
∑
`∈Cj

|e−2iπ`x/γ` − 1||θ`||F(ψj,k)(`)|

≤ CC∗2δj
∑

k∈Bj,K

∑
`∈Cj

|F(ψj,k)(`)|.
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Since supk∈Bj,K
sup`∈Cj

|F(ψj,k)(`)| ≤ C2−j/2, Card(Cj) ≤ C2j and Card(Bj,K) ≤
log n, we have

|h(x)| ≤ C2−j/2 Card(Cj) Card(Bj,K) ≤ CC∗2δj2j/2 log n.

Hence T = CC∗2δj2j/2 log n.
The value of H. Let ε1, . . . , εn be independent Rademacher variables inde-

pendent of τ = (τ1, . . . , τn). Since supa∈Ω
∑
k∈Bj,K

a2
k = 1, and using succes-

sively the Cauchy-Schwartz and the Jensen inequalities yield

E

(
sup
h∈F

n∑
m=1

εmh(τm)

)

= E

sup
a∈Ω

n∑
m=1

εm
∑

k∈Bj,K

ak
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)


≤ sup

a∈Ω

 ∑
k∈Bj,K

a2
k

1/2

×

E


 ∑
k∈Bj,K

∣∣∣∣∣∣
n∑

m=1

εm
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2


1/2


≤

 ∑
k∈Bj,K

E


∣∣∣∣∣∣
n∑

m=1

εm
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2



1/2

. (11)

Since ε1, . . . , εn are independent Rademacher variables, also independent of
τ = (τ1, . . . , τn), we have

E


∣∣∣∣∣∣
n∑

m=1

εm
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2
 =

= E

E


∣∣∣∣∣∣
n∑

m=1

εm
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2 ∣∣∣ τ




=
n∑

m=1

E


∣∣∣∣∣∣
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2
 .
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Denote Zm the random variable Zm =
∑
`∈Cj

θ`e
−2iπ`τm/γ`F(ψj,k)(`). Obvi-

ously, for any m, E(Zm) =
∑
`∈Cj

θ`F(ψj,k)(`) and hence

E


∣∣∣∣∣∣
∑
`∈Cj

θ`(e−2iπ`τm/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2
 = V(Zm)

≤ E(|Zm|2) = E


∣∣∣∣∣∣
∑
`∈Cj

θ`e
−2iπ`τm/γ`F(ψj,k)(`)

∣∣∣∣∣∣
2
 . (12)

With this observation, and using the identical distribution of τ1, . . . , τn, we
have

n∑
m=1

V(Zm) = nV(Z1)

≤ nE


∣∣∣∣∣∣
∑
`∈Cj

(θ`/γ`)e−2iπ`τ1F(ψj,k)(`)

∣∣∣∣∣∣
2


= n

∫ 1

0

∣∣∣∣∣∣
∑
`∈Cj

(θ`/γ`)e−2iπ`xF(ψj,k)(`)

∣∣∣∣∣∣
2

g(x)dx.

By assumption (Ag), for any t ∈ [0, 1], we have

|g(t)| ≤
∑
`∈Z
| F(g)(`)| ≤ C

∑
`∈Z

(1 + |`|)−δ,

the sequence is the last right-hand side member is Riemann summable since
δ > 1 and thus |g(t)| <∞. Combining this with sup`∈Z |θ`| ≤ C∗, sup`∈Cj

(1/|γ`|) ≤
C2δj , and the Plancherel formula which implies

∑
`∈Cj
|F(ψj,k)(`)|2 =

∫ 1

0
|ψj,k(t)|2dt =

1, we arrive at

n∑
m=1

V(Zm) ≤ Cn

∫ 1

0

∣∣∣∣∣∣
∑
`∈Cj

(θ`/γ`)e−2iπ`xF(ψj,k)(`)

∣∣∣∣∣∣
2

dx

= Cn
∑
`∈Cj

(|θ`|2/|γ`|2) |F(ψj,k)(`)|2

≤ CC2
∗n22δj

∑
`∈Cj

|F(ψj,k)(`)|2

= CC2
∗n22δj . (13)

Putting (11) and (13) together, we obtain

E

(
sup
h∈F

n∑
m=1

εmh(τm)

)
≤ C

(
C2
∗n22δj Card(Bj,K)

)1/2 ≤ CC∗2δj(n log n)1/2.
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Hence H = CC∗2δj(log n/n)1/2.
The value of v. With the same observation as in (12), we have

sup
h∈F

V (h(τ1)) ≤ sup
a∈Ω

E


∣∣∣∣∣∣
∑

k∈Bj,K

ak
∑
`∈Cj

θ`(e−2iπ`τ1/γ` − 1)F(ψj,k)(`)

∣∣∣∣∣∣
2


≤ sup
a∈Ω

E


∣∣∣∣∣∣
∑

k∈Bj,K

ak
∑
`∈Cj

(θ`/γ`)e−2iπ`τ1F(ψj,k)(`)

∣∣∣∣∣∣
2


= sup
a∈Ω

∫ 1

0

∣∣∣∣∣∣
∑

k∈Bj,K

ak
∑
`∈Cj

(θ`/γ`)e−2iπ`xF(ψj,k)(`)

∣∣∣∣∣∣
2

g(x)dx.

Proceeding as in (13), we obtain

sup
h∈F

V (h(τ1)) ≤ C sup
a∈Ω

∫ 1

0

∣∣∣∣∣∣
∑

k∈Bj,K

ak
∑
`∈Cj

(θ`/γ`)e−2iπ`xF(ψj,k)(`)

∣∣∣∣∣∣
2

dx

= C sup
a∈Ω

∑
`∈Cj

(|θ`|2/|γ`|2)

∣∣∣∣∣∣
∑

k∈Bj,K

ak F(ψj,k)(`)

∣∣∣∣∣∣
2

≤ CC2
∗2

2δj sup
a∈Ω

∑
`∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

ak F(ψj,k)(`)

∣∣∣∣∣∣
2

. (14)

By the Plancherel formula, we get

∑
`∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

ak F(ψj,k)(`)

∣∣∣∣∣∣
2

=
∑
`∈Cj

∣∣∣∣∣∣F
 ∑
k∈Bj,K

akψj,k

 (`)

∣∣∣∣∣∣
2

=
∫ 1

0

∣∣∣∣∣∣
∑

k∈Bj,K

akψj,k(t)

∣∣∣∣∣∣
2

dt

=
∑

k∈Bj,K

|ak|2 ≤ 1. (15)

Th last equality follows from the fact that at each scale j, the collection {ψj,k}k
forms an orthonormal basis of the corresponding detail space. It then follows
from (14) and (15) that

sup
h∈F

V (h(τ1)) ≤ CC2
∗2

2δj .

Hence v = CC2
∗2

2δj .
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Combining the obtained values for v,H and T , and taking t = 4−1λC∗2δj(log n/n)1/2,
we obtain (

t2v−1 ∧ tT−1
)
≥ C

(
λ2(log n/n) ∧ λ(n2j log n)−1/2

)
.

For any j ∈ {J1, . . . , J2} and n large enough, we have

n2j log n ≤ n2J2 log n ≤ Cn(n/ log n)1/(2δ+1) log n ≤ λ−2(n/ log n)2.

Hence (
t2v−1 ∧ tT−1

)
≥ Cλ2(log n/n).

Therefore, for λ large enough and t = 4−1λC∗2δj(log n/n)1/2, the Talagrand
inequality described in Lemma 1 yields

A = P


 ∑
k∈Bj,K

|Uj,k|2
1/2

≥ 2−1λ(ε ∨ C∗)2δj(log n/n)1/2


≤ P


 ∑
k∈Bj,K

|Uj,k|2
1/2

≥ 4−1λC∗2δj(log n/n)1/2 + C2H


= P

(
sup
h∈F

rn(h) ≥ t+ C2H

)
≤ exp

(
−nC1

(
t2v−1 ∧ tT−1

))
≤ exp

(
−nCλ2(log n/n)

)
≤ 2−1n−2. (16)

We obtain the desired upper bound for A.

The upper bound for B (see (10)). We now turn to upper-bounding B.
Toward this goal, we need the following inequality due to Cirelson, Ibragimov
and Sudakov (1976).

Lemma 2 (Cirelson, Ibragimov and Sudakov (1976)) Let (ϑt)t∈D be a
centered Gaussian process. If E (supt∈D ϑt) ≤ N and supt∈D V (ϑt) ≤ V then,
for any x > 0,

P
(

sup
t∈D

ϑt ≥ x+N

)
≤ exp

(
−x2/(2V )

)
.

The following random variables obey

Vj,k = εn−1/2
∑
`∈Cj

(η`/γ`)F(ψj,k)(`) ∼ N
(
0, n−1σ2

j,k

)
,

where
σ2
j,k = ε2

∑
`∈Cj

|F(ψj,k)(`)/γ`|2 .



On curves model and wavelet block thresholding 15

Consider again the unit ball Ω as defined above. For any a ∈ Ω, let Z(a)
be the centered Gaussian process defined by

Z(a) =
∑

k∈Bj,K

akVj,k = εn−1/2
∑
`∈Cj

(η`/γ`)
∑

k∈Bj,K

akF(ψj,k)(`).

Again, by an argument of the Legendre-Fenchel conjugate of the unit Eu-
clidean ball, we have

sup
a∈Ω

Z(a) =

 ∑
k∈Bj,K

|Vj,k|2
1/2

.

Let us now apply Lemma 2 to our setting by determining the values of N and
V that appear in the Cirelson inequality.

Value of N . Recall that owing to assumption (Ag), sup`∈Cj
(1/|γ`|2) ≤

C22δj . In addition, the Plancherel formula implies that

σ2
j,k = ε2

∑
`∈Cj

|F(ψj,k)(`)/γ`|2 ≤ Cε222δj
∑
`∈Cj

|F(ψj,k)(`)|2 = Cε222δj .

Combining these facts with the Jensen inequality, we therefore get

E
(

sup
a∈Ω

Z(a)
)

= E


 ∑
k∈Bj,K

|Vj,k|2
1/2

 ≤
 ∑
k∈Bj,K

E
(
|Vj,k|2

)1/2

≤ C

n−1
∑

k∈Bj,K

σ2
j,k

1/2

≤ Cε2δjn−1/2 Card(Bj,K)1/2

= Cε2δj(log n/n)1/2.

Hence N = Cε2δj(log n/n)1/2.
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Value of V . Since η` is a complex white noise, i.e. E (η`η`′) = 1 if ` = `′

and 0 otherwise, it comes

sup
a∈Ω

V(Z(a)) = sup
a∈Ω

E


∣∣∣∣∣∣
∑

k∈Bj,K

akVj,k

∣∣∣∣∣∣
2


= sup
a∈Ω

E

 ∑
k∈Bj,K

∑
k′∈Bj,K

akak′Vj,kV j,k′


= εn−1 sup

a∈Ω

∑
k∈Bj,K

∑
k′∈Bj,K

akak′
∑
`∈Cj

∑
`′∈Cj

(1/γ`)F(ψj,k)(`)(1/γ`′)F(ψj,k′)(`′)E (η`η`′)

= εn−1 sup
a∈Ω

∑
k∈Bj,K

∑
k′∈Bj,K

akak′
∑
`∈Cj

(1/|γ`|2)F(ψj,k)(`)F(ψj,k′)(`)

= εn−1 sup
a∈Ω

∑
`∈Cj

(1/|γ`|2)

∣∣∣∣∣∣
∑

k∈Bj,K

akF(ψj,k)(`)

∣∣∣∣∣∣
2

.

By assumption (Ag), we know that sup`∈Cj
(1/|γ`|2) ≤ C22δj . Using this and

the equality
∑
`∈Cj

∣∣∣∑k∈Bj,K
ak F(ψj,k)(`)

∣∣∣2 =
∑
k∈Bj,K

|ak|2, (see (15)), we
obtain

sup
a∈Ω

V(Z(a)) ≤ Cεn−122δj sup
a∈Ω

∑
`∈Cj

∣∣∣∣∣∣
∑

k∈Bj,K

akF(ψj,k)(`)

∣∣∣∣∣∣
2

= Cεn−122δj .

The last equality is by definition of a ∈ Ω. Hence V = Cεn−122δj .

Taking λ large enough and x = 4−1λε2δj(log n/n)1/2, the inequality of
Lemma 2 yields

B = P


 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ 2−1λ(ε ∨ C∗)2δj(log n/n)1/2


≤ P


 ∑
k∈Bj,K

|Vj,k|2
1/2

≥ 4−1λε2δj(log n/n)1/2 +N


= P

(
sup
a∈Ω

Z(a) ≥ x+N

)
≤ exp

(
−x2/(2V )

)
≤ exp

(
−Cλ2 log n

)
≤ 2−1n−2. (17)

We obtain the desired upper bound for B. Putting (8), (9), (10), (16) and (17)
together, the proof of Proposition 1 follows.

ut
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