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Spectral inequalities for non-selfadjoint elliptic operators

and application to the null-controllability of parabolic systems

Introduction 1.Results in an abstract setting

Various methods have been developed to prove the null-controllability of parabolic equations

∂ t u + Au = Bg u |t=0 = u 0 (1)
where A is of elliptic type, and B is a bounded operator (for instance a distributed control).

A large number of such results are based on the seminal papers of either G. Lebeau and L. Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] or A. Fursikov and O.Yu. Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF]. The first approach has been used for the treatment of self-adjoint operators A. The second approach also permits to address non-selfadjoint operators and semilinear equations. Each method has advantages. We shall focus on those of the Lebeau-Robbiano method. First, this method only relies on elliptic Carleman estimates that are simpler to produce than their parabolic counterparts as needed for the Fursikov-Imanuvilov approach. Second, it enlights some fundamental properties of the elliptic operator A through a spectral inequality. This type of spectral inequality, further investigated in [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] and [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF], has a large field of applications, like the measurement of the level sets of sums of root functions (see [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF] or Section 7). For control issues, it yields the cost of the null-controllability of the low frequencies of the elliptic operator A. Finally, based on this fine spectral knowledge of A, this approach gives an explicit iterative construction of the control function, using both the partial controllability result and the natural parabolic dissipation.

In this paper, we extend the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for the abstract parabolic system (1) to cases in which A is a non-selfadjoint elliptic operator. More precisely, we treat the case where A is a small perturbation of a selfadjoint operator, under certain spectral assumptions. We suppose A = A 0 + A 1 where A 1 is a relatively compact perturbation of an elliptic selfadjoint operator A 0 . We first obtain spectral inequalities of the following type. Denoting by Π α the projector on the spectral subspaces of A associated to eigenvalues with real part less than α, we have, for some θ ≥ 1/2 Π α w H ≤ Ce Dα θ B * Π α w Y , w ∈ H.

(2)

Here, B * ∈ L(H; Y ) denotes a bounded observation operator and the state space H and the observation space Y are Hilbert spaces. Typically, B * = 1 ω is a distributed observation. This spectral inequality yields the cost of the measurement of some finite sums of root-vectors of A through the partial observation B * , in terms of the largest eigenvalue of A in the considered spectral subspace. The difficulty here is not in the elliptic estimates since Carleman inequalities remains unchanged under the addition of lower order terms, but in the spectral theory of the non-selfadjoint operator A. This motivates the exposition of the spectral theory of such operators in Section 2, following [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF].

Inequalities of the type of (2) were first established in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] for the Laplace operator under a relatively different form. In fact, the inequality proved in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] reads

Π α w + 2 H + Π α w - 2 H ≤ Ce D √ α ϕB * e t √ A Π α w + + e -t √ A Π α w - 2 L 2 (0,T ;Y )
, w + , w -∈ H,

(3) where ϕ(t) is a smooth cut-off function. Here, in the non-selfadjoint case, we prove a spectral inequality of the form

Π α w H ≤ Ce Dα θ ϕB * e t √ A Π α + e -t √ A Π α w L 2 (0,T ;Y ) , w ∈ H. (4) 
We also prove that such an inequality is sufficient to deduce controllability results (in the case θ < 1). Spectral inequality of the form (2) first appeared in [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] and [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF] for the Laplace operator with θ = 1/2. Comments can be made about the two different forms of spectral inequalities, (2) on the one hand, and (3), (4) on the other hand, that involves an integration with respect to an additional variable. Both types can be proved with interpolation inequalities (like (12) or (14) below), themselves following from local Carleman inequalities. The interpolation inequality (12) used to prove (3) exhibits a spacialy distributed observation, whereas the interpolation inequality (14), used to prove (2) is characterized by a boundary observation at time t = 0. This latter form is more convenient to use for control results (see Section 6). Yet, for systems, the derivation of such an interpolation inequality with boundary observation at time t = 0 is open (see Section 5).

In Section 4, we deduce from the spectral inequality (4) the construction of a control function for the parabolic problem (1). Following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and an idea that goes back to the work of D.L. Russell [START_REF] Russell | A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[END_REF], the spectral inequality yields the controllability of the parabolic system on the related finite dimensional spectral subspace Π α H with a control cost of the form Ce Cα θ . In the case θ < 1, we can then construct a control to the full parabolic equation (1). We improve the method of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] from a spectral point of view. The proof of the controllability in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] relies on the Hilbert basis property of the eigenfunctions of the Laplace operator.

Here we only use some resolvent estimate away from the spectrum. No (Hilbert or Riesz) basis property is required in the construction.

The main results of this article can be summarized as follows

• Starting from an interpolation inequality of the Lebeau-Robbiano type (12) (resp. ( 14)), the spectral inequality (4) (resp. (2)) holds (see Theorem 3.2, resp. 3.3).

• The spectral inequality (4) (resp. (2)) implies that the control cost needed to drive any initial datum to (I -Π α )H is bounded by Ce Cα θ (see Theorem 4.10, resp. Proposition 6.2).

• In the case θ < 1, the non-selfadjoint parabolic system (1) is null-controllable in any positive time (see Theorem 4.13).

The question of the optimality of the power θ in these spectral inequalities remains open. For an elliptic operator A, in the results we obtain, the power θ increases linearly with the space dimension n: θ ≈ max{1/2; n/2 -cst}. In the selfadjoint case however, the spectral inequalities (2) and (4) always hold with θ = 1/2, and the controllability result always follows. The power 1/2 is known to be optimal in this case (see [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF] or [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators[END_REF]). Moreover, thanks to global parabolic inequalities, the controllability result of Theorem 4.13 is in general known to be true, independently on θ (see [START_REF] Fursikov | Controllability of evolution equations[END_REF]). We are thus led to consider that the spectral inequalities should be true with θ = 1/2: the power θ we obtain does not seem to be natural but only technical.

Since θ ≈ max{1/2; n/2 -cst}, our controllability results, obtained for θ < 1, are limited to small dimensions n. This problem arises in all the applications we give. In fact, in each of them, the power θ is the limiting point of the theory. The origin of the dimension-depending term n/2 -cst in θ cannot be found in the elliptic estimates or in the control theory described above, but only in the resolvent estimates we use (see Section 2). If one wants to improve our results, one has to improve the resolvent estimates of [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF] (maybe taking into account that A is a differential operator). On the contrary, if one wants to prove the optimality of the power θ, one needs to produce lower bounds for the resolvent of A. In any case, it does not seem to be an easy task at all. Remark 1.1. Note that we can replace A by A + λ in (1) without changing the controllability properties of the parabolic problem. More precisely, suppose that the problem

∂ t v + (A + λ)v = Bf v |t=0 = u 0
is null-controllable in time T > 0 by a control function f . Then, the control function g = e λt f drives the solution of Problem (1) to zero in time T and has the same regularity as f . Hence, in the sequel, we shall consider that the operator A is sufficiently positive without any loss of generality.

Remark 1.2. In the sequel, C will denote a generic constant, whose value may change from line to line.

Some applications

We give several applications of such a spectral approach in Sections 5, 6 and 7. This work has first been motivated by the problem of Section 5, i.e. the null-controllability in any time T > 0 of parabolic systems of the type

       ∂ t u 1 + P 1 u 1 + au 1 + bu 2 = 0 in (0, T ) × Ω, ∂ t u 2 + P 2 u 2 + cu 1 + du 2 = 1 ω g in (0, T ) × Ω, u 1|t=0 = u 0 1 , u 2|t=0 = u 0 2 in Ω, u 1 = u 2 = 0 on (0, T ) × ∂Ω, (5) 
where The field of coupled systems of d parabolic equations, d ≥ 2, has also been investigated in [START_REF] Khodja | Controllability for a class of reaction-diffusion systems: the generalized kalman's condition[END_REF] where the authors prove a Kalman-type rank condition in the case where the coefficients are constant and in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic pdes by one control force[END_REF] where the authors prove the controllability of a cascade system with nonvanishing variable coupling coefficients by one control force.

P i = -div(c i ∇•), i = 1,
Here, we obtain a spectral inequality of the type (4) with θ = max{1/2; n/2 -1} for the operator

A = P 1 + a b c P 2 + d
with the measurement on only one component. As opposed to the results of [START_REF] Khodja | Null controllability of some reaction-diffusion systems with one control force[END_REF] and [START_REF] González-Burgos | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF], we can provide an estimation on the control cost of low modes for system (5).

The null-controllability of (5) follows from the method described above in the case n ≤ 3 (corresponding to θ < 1 in the spectral inequality).

In Section 6, we address the fractional power controllability problem

∂ t u + A ν u = Bg u |t=0 = u 0 ∈ H,
that has been solved in the selfadjoint case in [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF] and [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF]. We prove the null-controllability in any time T > 0 when ν > θ. The case ν ≤ θ is open. In particular when ν = 1, it allows us to give an estimation on the control cost of low modes for the following heat equation with a transport term

   ∂ t u -∆u + b • ∇u + cu = 1 ω g in (0, T ) × Ω, u |t=0 = u 0 in Ω, u = 0 on (0, T ) × ∂Ω. (6) 
In the case n ≤ 2 (corresponding to θ < 1 in the spectral inequality), this estimate is sufficient to recover the null-controllability of (6).

In Section 7, we are not concerned with controllability issues, but with the measurement of the (n -1)-dimensional Hausdorff measure of the level sets of sums of root functions of A = -∆ + b • ∇ + c on the n-dimensional compact manifold Ω. Yet, the technique and the estimates used here are the same as in the other sections. We obtain the following estimate, for sums of root functions associated with eigenvalues of real part lower than α, i.e., ϕ ∈ Π α L 2 (Ω), we have

H n-1 ({ϕ = K}) ≤ C 1 α θ + C 2 , θ = max 1 2 ; n -1 2 .
This type of inequality has already been proved in the selfadjoint case for the Laplace operator.

In [START_REF] Donnelly | Nodal sets of eigenfunctions on riemannian manifolds[END_REF] and [START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF], H. Donnelly and C. Fefferman proved, for ϕ an eigenfunction associated with the eigenvalue α, the estimate H n-1 ({ϕ = K}) ≤ Cα 1/2 . This was generalized to sums of eigenfunctions associated with eigenvalues lower than α in [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]. We generalize this last result for operators that are lower order perturbations of the Laplace operator. Here, however, θ is in general strictly greater than 1/2.
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Spectral theory of perturbated selfadjoint operators

To prepare the following sections, we shall first recall a theorem about the spectral theory of some operators close to being selfadjoint. This result can be presented with numerous variations and refinements. This subject has been a well-developed research field since the 60 s. The first step of the theory is the Keldysh theorem on the completeness of the root vectors of a weakly perturbed compact selfadjoint operator (see [START_REF] Gohberg | Introduction to the theory of linear non-selfadjoint operators[END_REF] for more precisions). The main result here, Theorem 2.5, was first proved by A.S. Markus and by D.S. Katsnel'son [START_REF] Katsnel'son | Conditions under which systems of eigenvectors of some classes of operators form a basis[END_REF]. A simplified proof was given later by A.S. Markus and V.I. Matstaev with Matsaev's method of "artificial lacuna". This proof is presented in the book [Mar88, Chapter 1] by A.S. Markus in the more general case of weak perturbations of certain normal operators. For later use in the following sections, we sharpen some of the results as given by M.S. Agranovich [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF], following the steps of his proof.

Let H be a separable Hilbert space, (•, •) H be the scalar product on H and . H be the associated norm. The set of bounded linear operators on H is denoted by L(H) and is equiped with the subordinated norm • L(H) . As usual, for a given operator A on H, we denote by D(A) its domain, by ρ(A) its resolvent set, i.e., the subset of C where the resolvent R A (z) = (z -A) -1 is defined and bounded, and by Sp(A) = C \ ρ(A) its spectrum.

Proposition 2.1. Let A = A 0 + A 1 be an operator on H. Assume that (a) Re(Au, u) H ≥ 0 for all u ∈ D(A), (b) A 0 : D(A 0 ) ⊂ H → H is selfadjoint, positive, with a dense domain and compact resolvent, (c) A 1 : D(A 1 ) ⊂ H → H is q-subordinate to A 0 , i.e., there exist k 0 > 0 and q ∈ [0, 1) such that for every u ∈ D(A

1/2 0 ), |(A 1 u, u) H | ≤ k 0 2 A 1/2 0 u 2q H u 2-2q H .
We then have,

(i) D(A) = D(A 0 ) ⊂ D(A 1
) ⊂ H and A has a dense domain and a compact resolvent,

(ii) Sp(A) ⊂ O q k 0 = {z ∈ C, Re(z) ≥ 0, | Im(z)| < k 0 |z| q } (iii) R A (z) L(H) ≤ 2 d(z,Sp(A 0 )) ≤ 2 d(z,R + ) for z ∈ C \ O q 2k 0
, where d(z, S) denotes the euclidian distance from z to the subset S of C.

Remark 2.2. Note that the subordination assumption (b) can be found under the different forms:

• D(A q 0 ) ⊂ D(A 1 ), and

A 1 u H ≤ C A q 0 u H for u ∈ D(A q 0 ) in [Agr76]; • D(A 0 ) ⊂ D(A 1 ), and A 1 u H ≤ C A 0 u q H u 1-q H for u ∈ D(A 0 ) in [Mar88, Chapter 1]; • A 1 A -q 0 L(H) = C < +∞ in [Dzh94].
Replacing assumption (b) by one of these assertions does not change the conclusions of Proposition 2.1 and Theorem 2.5.

Remark 2.3. Point (i) implies that Sp(A) contains only isolated eingenvalues, with finite multiplicity and without any accumulation point. Furthermore, for every λ ∈ Sp(A), the sequence of iterated null-spaces

N k = N ((A -λ) k ) is stationary.
For what follows, we shall need the spectrum of A to be located in a "parabolic neighborhood" of the real positive axis. We note that there exist λ 0 > 0, K 0 > 0 such that

Sp(A + λ 0 ) ⊂ O q k 0 + λ 0 ⊂ O q 2k 0 + λ 0 ⊂ P q K 0 = {z ∈ C, Re(z) ≥ 0, | Im(z)| < K 0 Re(z) q } , (7) 
see Fig. 1. We now fix λ 0 and K 0 satisfying this assumption. Referring to Remark 1.1, we shall work with the operator A + λ 0 , yet writing A for simplicity.

Im(z)

∂P q K 0 Re(z) γ k ∂O q 2k 0 + λ0 α k-1 α k λ0 I0 α0 I k-1 I k I1 α1 Figure 1: Complex contours around the spectrum of A Definition 2.4. Let (α k ) k∈N ⊂ R + be an increasing sequence, 0 < α 0 < α 1 < • • • < α k < • • •
tending to +∞, and such that α k / ∈ Re(Sp(A)), for every k ∈ N. Then, we set

I k = {z ∈ C, Re(z) = α k , | Im(z)| ≤ K 0 α q k }
and by γ k , we denote the positively oriented contour delimited by the vertical line segments I k on the right and I k-1 on the left and by the parabola ∂P q K 0 on the upper and the lower side (see Fig. 1). We also define the associated spectral projectors

P k = 1 2iπ γ k R A (z)dz.
Note that the spectral projector P k is a projector on the characteristic subspaces of A associated with the eigenvalues that are inside γ k . The projectors satisfy the identity P k P j = δ jk P k . Moreover, thanks to Remark 2.3, the projectors P k , k ∈ N, have finite rank.

We can now state the main spectral result, that can (at least partially) be found under different forms in [START_REF] Agranovich | Summability of series in root vectors of non-selfadjoint elliptic operators[END_REF], [Mar88, Chapter 1], [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF], [START_REF] Dzhanlatyan | Basis properties of the system of root vectors for weak perturbations of a normal operator[END_REF].

Theorem 2.5. Let 0 < λ 1 ≤ λ 2 ≤ • • • ≤ λ k ≤ • • •
be the spectrum of the selfadjoint operator A 0 . We assume the additional condition that there exists p > 0 such that lim sup j→∞ λ j j -p > 0. Then, setting β = max{0, p -1 -(1 -q)}, there exists a sequence (α k ) k∈N ⊂ R + as in Definition 2.4 such that for some C > 0

R A (z) L(H) ≤ e Cα β k , k ∈ N, z ∈ I k . ( 8 
)
Remark 2.6. Note that Proposition 2.1 point (iii

) implies that R A (z) L(H) ≤ 2 K 0 α q k ≤ 2 K 0 α q 0 for z ∈ γ k ∩ ∂P q K 0 . Thus the resolvent estimate (8), R A (z) L(H) ≤ e Cα β k holds for all z ∈ γ k .
Remark 2.7. Comments can be made about this theorem and its proof:

• The idea of the proof of Theorem 2.5 is to find uniform gaps around vertical lines Re(z) = α k in the spectrum of A, to be sure that the resolvent R A is well-defined in these regions. To find such gaps, one proves the existence of sufficiently large gaps in the spectrum of A 0 and places α k in these zones. The results presented in [START_REF] Agranovich | Summability of series in root vectors of non-selfadjoint elliptic operators[END_REF], [Mar88, Chapter 1], [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF], [START_REF] Dzhanlatyan | Basis properties of the system of root vectors for weak perturbations of a normal operator[END_REF] are in fact a bit stronger than Theorem 2.5 since they contain not only the resolvent estimate (8) but also some basis properties.

• In the case p(1 -q) ≥ 1 one can prove a Riesz basis property for the subspaces P k H, i.e. one can write H = k∈N P k H and there exists c > 0 such that for all u ∈ H,

c -1 u 2 H ≤ k∈N P k u 2 H ≤ c u 2 H .
• In the case p(1 -q) < 1 one can prove a weaker basis property (so-called Abel basis) for the subspaces P k H.

For α ∈ R + we define the spectral projector on the characteristic subspace of H associated with the eigenvalues of real part less than max{α k ; α k ≤ α}:

Π α = α k ≤α P k = 1 2iπ Γα R A (z)dz = 1 2iπ S α k ≤α γ k R A (z)dz,
where Γ α is the positively oriented contour delimited by the vertical line segments Re(z) = max{α k ; α k ≤ α} on the right and Re(z) = α 0 > 0 on the left and by the parabola P q K 0 on the upper and the lower side.

On each finite dimensional subspace P k H (or equivalently Π α H) we have a holomorphic calculus for A (e.g. see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]); given a holomorphic function f , we have

f (A)P k = f (AP k ) = 1 2iπ γ k f (z)R A (z)dz ∈ L(P k H).
In the subsequent sections, we shall consider the adjoint problem of the abstract parabolic system (1), involving A * = A 0 + A * 1 . The spectral theory of A and A * and their respective functional calculus are connected by the following proposition (see [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]).

Proposition 2.8. Let f be a holomorphic function, γ a positively oriented contour in C\Sp(A). We denote f :

z → f (z), f γ (A) = 1 2iπ γ f (z)R A (z)dz and γ the positively oriented complex conjugate contour of γ. Then, γ is a contour in C \ Sp(A * ) and (f γ (A)) * = f γ (A * ). With this new notation, f γ k (A) = f (A)P k = f (AP k ). Noting that with the choices made above, γ k = γ k , Γ α = Γ α , we obtain P k (A * ) = 1 γ k (A * ) = (1 γ k (A)) * = P k (A) * = P * k and Π α (A * ) = (Π α (A)) * = Π * α . More generally, if f = f , we have f γ k (A * ) = (f γ k (A)) * and f Γα (A * ) = f Γα (A) * .
Example 2.9. For t ∈ R, the functions f (z) = e tz or f (z) = e t √ z (taking for √ z the principal value of the square root of z ∈ C) or f (z) = R ψ(t)e -itz dt (ψ being a real function) fulfill the property f = f . For all these functions, we have

f γ k (A * ) = (f γ k (A)) * , f Γα (A * ) = f Γα (A) * .
This will be used in the following sections.

Remark 2.10.

Note that R A * (z) L(H) = R A (z) L(H) .
As a consequence, any sequence satisfying (8) for A also satisfies (8) for A * .

In the course of the construction of a control function that we present below, we shall need a precise asymptotics of the increasing sequence (α k ) k∈N , that is not given in [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF]. We first remark that if (α k ) k∈N is a sequence satisfying properties (i) -(iii) of Theorem 2.5, then every subsequence of (α k ) k∈N also satisfies these properties. We shall thus seek a minimal growth for the asymptotics of (α k ) k∈N .

For µ ∈ R, we set N (µ) = #{k ∈ N, λ k ∈ Sp(A 0 ), λ k ≤ µ}.
Here, we prove the following proposition.

Proposition 2.11. If the eigenvalues of A 0 satisfy the following asymptotics:

N (µ) = m 0 µ 1 p + o(µ 1 p
), as µ → +∞, then, for all δ > 1 we can choose the sequence (α n ) n∈N such that there exists N ∈ N and for every n ≥ N , we have

δ n-1 ≤ α n ≤ δ n .
First note that the assumption we make here for the asymptotics of the eigenvalues is stronger than that made in Theorem 2.5 for it implies λ k ∼ k→∞ Ck p . To prove Proposition 2.11, we briefly recall how the sequence (α k ) k∈N is built in [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF]. Every

α n is in the interval [µ n -hµ q n , µ n + hµ q n ], where (µ n ) n∈N is a sequence increasing to infinity such that #{k ∈ N, λ k ∈ Sp(A 0 ), λ k ∈ [µ n -hµ q n , µ n + hµ q n ]} ≤ Cµ β n .
We thus need to show the existence of such a sequence (µ n ) n∈N , having a precise asymptotics as n goes to infinity. This is the aim of Lemma 2.12 below, replacing [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF]Lemma 7]. With such a result, for all fixed δ > 1 we can build (α n ) n∈N such that there exists N ∈ N and for every n ≥ N , α n satisfies δ n-1 ≤ α n ≤ δ n . We can then follow the proof of [START_REF] Agranovich | On series with respect to root vectors of operators associated with forms having symmetric principal part[END_REF] to finish that of Proposition 2.11, estimating the resolvent on vertical lines Re

(z) = C ∈ [µ n -hµ q n , µ n + hµ q n ].
Lemma 2.12. We set r = p -1 and recall that β = max{0, r -1 + q}. Assume that

N (µ) = m 0 µ r + o(µ r ) as µ → +∞. ( 9 
)
Then, for every h > 0, δ > 1, there exist C > 0 and N ∈ N such that for every n ≥ N , there exists

µ n such that [µ n -hµ q n , µ n + hµ q n ] ⊂ [δ n-1 , δ n ] and N (µ n + hµ q n ) -N (µ n -hµ q n ) ≤ Cµ β n .
Proof. We proceed by contradiction. Let h > 0, δ > 0, and suppose that

∀C > 0, ∀N ∈ N, ∃n 0 ≥ N + 1, ∀µ satisfying [µ -hµ q , µ + hµ q ] ⊂ [δ n 0 -1 , δ n 0 ], we have N (µ + hµ q ) -N (µ -hµ q ) > Cµ β . (10) 
We choose 0 < ε < m 0 . From the asymptotics (9) of N , there exists N 0 ∈ N such that for every

n ≥ N 0 , (m 0 -ε)δ nr ≤ N (δ n ) ≤ (m 0 + ε)δ nr . ( 11 
) Let us fix C ≥ 2hδ β+1 δ-1 (m 0 + ε + 1) and N ∈ N such that N ≥ N 0 , and for all n ≥ N + 1, (m 0 -ε)δ nr -2hδ β+1 δ-1 (m 0 + ε + 1)δ nβ ≥ 0. Such a N exists since β ≤ r + q -1 < r.
Then for these C and N , assumption (10) gives the existence of n 0 ≥ N + 1 ≥ N 0 + 1 such that for every µ satisfying [µ -hµ q , µ + hµ q ] ⊂ [δ n 0 -1 , δ n 0 ], we have N (µ + hµ q ) -N (µ -hµ q ) > Cµ β . We denote by x the floor function. In the interval [δ n 0 -1 , δ n 0 ], there are at least δ n 0 -δ n 0 -1 2hδ n 0 q disjoint intervals of the type [µ-hµ q , µ+hµ q ], each containing more than Cδ (n 0 -1)β eigenvalues of A 0 . Hence,

N (δ n 0 ) -N (δ n 0 -1 ) ≥ Cδ (n 0 -1)β δ n 0 -δ n 0 -1 2hδ n 0 q ≥ Cδ (n 0 -1)β δ -1 2hδ δ n 0 (1-q) -1 .
Then, taking into account the lower bound on C and the asymptotics (11) for n = n 0 -1 ≥ N ≥ N 0 , we obtain

N (δ n 0 ) ≥ (m 0 + ε + 1)δ n 0 β+n 0 (1-q) -2hδ β+1 δ-1 (m 0 + ε + 1)δ (n 0 -1)β + (m 0 -ε)δ r(n 0 -1) ≥ (m 0 + ε + 1)δ n 0 (β+1-q) ,
since n 0 ≥ N +1. The asymptotics (11) for n 0 gives N (δ n 0 ) ≤ (m 0 +ε)δ n 0 r ≤ (m 0 +ε)δ n 0 (β+1-q) since β ≥ r -1 + q. This yields a contradiction and concludes the proof of the lemma.

Spectral inequality for perturbated selfadjoint elliptic operators

In this section, we prove in an abstract setting some spectral inequalities where the norm of a finite sum of root vectors of A is bounded by a partial measurement of these root vectors. For the proof, we assume that some interpolation inequality holds. This inequality will be proved in the case of different elliptic operators in Section 5. Such interpolation inequality were used in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and [START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF] to achieve a spectral inequality of the type we prove here. Note that this type of spectral inequality can however be obtained by other means (e.g. doubling properties [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF], or directly from global Carleman estimates [START_REF] Boyer | Discrete carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF]).

Here, we suppose that A = A 0 + A 1 : D(A) ⊂ H -→ H satisfies some of the spectral properties of Section 2, i.e. (a) -(c) of Proposition 2.1 and the resolvent estimate (8) of Theorem 2.5. We define the following Sobolev spaces based on the selfadjoint operator A 0 . Definition 3.1. For s ∈ N and τ 1 < τ 2 , we set

H s (τ 1 , τ 2 ) = s n=0 H s-n τ 1 , τ 2 ; D(A n/2 0 ) ,
which is a Hilbert space with the natural norm

v H s (τ 1 ,τ 2 ) = n+m≤s ∂ m t A n/2 0 v 2 L 2 (τ 1 ,τ 2 ;H) 1/2 ≈ s n=0 v 2 H s-n " τ 1 ,τ 2 ;D(A n/2 0 ) " 1/2 . Note that H 0 (τ 1 , τ 2 ) = L 2 (τ 1 , τ 2 ; H). Let Y be another Hilbert space, B * ∈ L(H, Y ) be a bounded operator. Let T 0 be a positive number, ϕ ∈ C ∞ 0 (0, T 0 ; C), ϕ = 0 and θ = max{1/2, p -1 -(1 -q)} = max{1/2, β}.
Theorem 3.2. Suppose that there exist C > 0, ζ ∈ (0, T 0 /2) and ν ∈ (0, 1] such that for every v ∈ H 2 (0, T 0 )

v H 1 (ζ,T 0 -ζ) ≤ C v 1-ν H 1 (0,T 0 ) ϕB * v L 2 (0,T 0 ;Y ) + (-∂ 2 t + A * )v H 0 (0,T 0 ) ν . ( 12 
)
Then, there exist positive constants C, D such that for every positive α, for all w ∈ Π * α H,

w H ≤ Ce Dα θ ϕB * e t √ A * + e -t √ A * w L 2 (0,T 0 ;Y ) . (13) 
In other situations, we can prove another interpolation inequality with an observation at the boundary t = 0. In this case, we obtain a simpler spectral inequality, involving no time integration in the observation term.

Theorem 3.3. Suppose that there exist C > 0, ζ ∈ (0, T 0 /2) and ν ∈ (0, 1] such that for every v ∈ H 2 (0, T 0 ) satisfying v(0) = 0, we have

v H 1 (ζ,T 0 -ζ) ≤ C v 1-ν H 1 (0,T 0 ) B * ∂ t v(0) Y + (-∂ 2 t + A * )v H 0 (0,T 0 ) ν . ( 14 
)
Then, there exist positive constants C, D such that for every positive α, for all w ∈ Π * α H,

w H ≤ Ce Dα θ B * w Y . ( 15 
)
The estimation of the constant in the inequality in terms of the maximal eigenvalue in the finite sum is the key point in the control applications below.

Proof of Theorem 3.2. For w ∈ Π * α H, we set

v(t) = e t √ A * + e -t √ A * w = 1 2iπ Γα e t √ z + e -t √ z R A * (z)w dz. We have v ∈ H 2 (0, T 0 ; H) ∩ H 1 (0, T 0 ; D(A)) ⊂ H 2 (0, T 0 ) as D(A) = D(A 0 ). We first notice that (-∂ 2 t + A * )v = 0.
Second, we have to estimate every single term of

v 2 H 1 (0,T 0 ) = v 2 L 2 (0,T 0 ;H) + ∂ t v 2 L 2 (0,T 0 ;H) + A 1/2 0 v 2 L 2 (0,T 0 ;H) : v H ≤ e t √ A * + e -t √ A * Π * α L(H) w H ≤ 1 2iπ Γα e t √ z + e -t √ z R A * (z)dz L(H) w H ≤ C meas (Γ α ) sup z∈Γα R A * (z) L(H) sup z∈Γα e t √ z + e -t √ z w H ≤ Cαe C(α β +t √ α) w H since meas (Γ α ) ≤ Cα, R A * (z) L(H) ≤ e Cα β from estimate (8) of Theorem 2.5, Remark 2.10 and, e t √ z + e -t √ z ≤ 2e t Re( √ z) , with Re( √ z) ≤ |z| ≤ C √ α for z ∈ Γ α . Thus, for some C > 0, v L 2 (0,T 0 ;H) ≤ Ce Cα θ w H . Concerning the second term in v H 1 (0,T 0 ) , we have ∂ t v L 2 (0,T 0 ;H) = √ A * e t √ A * -e -t √ A * w L 2 (0,T 0 ;H)
, and similar computations show that ∂ t v L 2 (0,T 0 ;H) ≤ Ce Cα θ w H . In order to estimate the third term in v H 1 (0,T 0 ) , we use assumption (a) of Proposition 2.1, observing that for all u ∈ H,

A 1/2 0 u 2 H = (A 0 u, u) H = (A * u, u) H -(A * 1 u, u) H ≤ (A * u, u) H + k 0 2 A 1/2 0 u 2q H u 2-2q H ≤ (A * u, u) H + k 0 2 qε 1 q A 1/2 0 u 2 H + (1 -q)ε -1 1-q u 2 H
for every positive ε and every q ∈ (0, 1), thanks to Young's inequality. We then choose ε such that γ 2 qε 1 q ≤ 1 2 and we obtain for every u ∈ H,

A 1/2 0 u 2 H ≤ C (A * u, u) H + u 2 H ≤ C A * u H u H + u 2 H .
The same estimate is obvious in the case q = 0. Similar computations as those performed above yield A 1/2 0 v L 2 (0,T 0 ;H) ≤ Ce Cα θ w H , and we have finally

v H 1 (0,T 0 ) ≤ Ce Cα θ w H , w ∈ Π * α H.
We now produce a lower bound for the left-hand side of (12). We first notice that the operator

e t √ A * + e -t √ A * Π *
α is an isomorphism on Π * α H and we compute an upper bound for its inverse:

e t √ A * + e -t √ A * Π * α -1 L(H) = 1 2iπ Γα e t √ z + e -t √ z -1 R A * (z)dz L(H) ≤ C meas (Γ α )e Cα β sup z∈Γα e t √ z + e -t √ z -1 ≤ Cαe C(α β +t √ α) sup z∈Γα 1 |e 2t √ z + 1|
.

Then, we have

|e 2t since Re( √ z) ≥ √ α 0 > 0 on Γ α . Hence, for some constant C > 0, e t √ A * + e -t √ A * Π * α -1 L(H) ≤ C t e C(α β +t √ α) .
Concerning the left-hand-side of (12), we thus have the following lower bound:

v 2 H 1 (ζ,T 0 -ζ) ≥ v 2 L 2 (ζ,T 0 -ζ;H) ≥ T 0 -ζ ζ e t √ A * + e -t √ A * Π * α -1 -2 L(H) dt w 2 H ≥ Ce -2Cα β T 0 -ζ ζ t 2 e -2tC √ α dt w 2 H ≥ Ce -2Cα β ζ 2 T 0 -ζ ζ e -2tC √ α dt w 2 H ≥ Ce -2Cα β ζ 2 e -T 0 C √ α √ α sinh C √ α(T 0 -2ζ) w 2 H ≥ Cζ 2 (T 0 -2ζ)e -C(α β + √ α) w 2 H ≥ Ce -Cα θ w 2 H .
The interpolation inequality (12) then gives

Ce -Cα θ w H ≤ Ce Cα θ w H 1-ν ϕB * e t √ A * + e -t √ A * w ν L 2 (0,T 0 ;Y )
.

Dividing both side by w 1-ν H , we finally obtain the existence of positive constants C, D such that for every positive α, for all w ∈ Π * α H,

w H ≤ Ce Dα θ ϕB * e t √ A * + e -t √ A * w L 2 (0,T 0 ;Y )
.

Proof of Theorem 3.3. This proof follows the same; for w ∈ Π * α H, we take

v(t) = (A * ) -1/2 sinh(t √ A * )w = 1 2iπ Γα sinh(t √ z) √ z R A * (z)w dz, instead of v(t) = e t √ A * + e -t √ A * w, see [LZ98], [JL99]. It satisfies (-∂ 2 t + A * )v = 0, v(0) = 0 and ∂ t v(0) = w.
We also have v ∈ H 2 (0, T 0 ) and v H 1 (0,T 0 ) ≤ Ce Cα θ w H as above. Only the lower bound for v H 1 (ζ,T 0 -ζ) has to be proved. To begin with, the operator (A * ) -1/2 sinh(t √ A * )Π * α is an isomorphism on Π * α H and we compute an upper bound for its inverse:

(A * ) -1/2 sinh(t √ A * )Π * α -1 L(H) = 1 2iπ Γα sinh(t √ z) √ z -1 R A * (z)dz L(H) ≤ Cαe Cα β sup z∈Γα √ z sinh(t √ z) ≤ Cα 3/2 e Cα β sup z∈Γα 1 |e t √ z -e -t √ z | ≤ Cα 3/2 e C(α β +t √ α) sup z∈Γα 1 |e 2t √ z -1| . Then, |e 2t √ z -1| ≥ e 2t Re( √ z) -1, and (16) gives a lower bound for v H 1 (ζ,T 0 -ζ) ≥ v L 2 (ζ,T 0 -ζ;H)
as in the preceding proof. The conclusion follows as in the proof of Theorem 3.2.

From the spectral inequality to a parabolic control

In this section we construct a control for the parabolic abstract problem (1). We follow the method introduced by G. Lebeau and L. Robbiano in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. The non-selfadjoint nature of the problem requires however modifications in their approach.

Let H and Y be two Hilbert spaces, H standing for the state space and Y the control space. We suppose that B ∈ L(Y, H) is a bounded control operator and A is an unbounded operator A : D(A) ⊂ H -→ H that satisfies all the spectral properties of Section 2, i.e. (a) -(c) (and thus also (i) -(iii)) of Proposition 2.1, the resolvent estimate (8) of Theorem 2.5, and the asymptotics given by Proposition 2.11. In particular, the properties (a) -(c) of Proposition 2.1 imply that -A generates a C 0 -semigroup of contraction on H. If we take u 0 in H, problem (1) is then well-posed in H.

Let T 0 be a positive number, ϕ ∈ C ∞ 0 (0, T 0 ; C), ϕ = 0, and B * ∈ L(H, Y ) the adjoint operator of B, i.e., such that (By, h) H = (B * h, y) Y for every y ∈ Y , h ∈ H. We assume that the result of Theorem 3.2, (i.e. the spectral inequality (13)) holds. An example will be given in Section 5. We shall first interpret this spectral inequality (13) of Theorem 3.2 as an observability estimate for an elliptic evolution problem.

Remark 4.1. Note that if we suppose the spectral inequality (15) of Theorem 3.3 instead of (13), the construction of the control function follows that of [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF] or [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators[END_REF] and is much simpler. In fact, the spectral inequality (15) directly yields an observability inequality for the partial problem (27) and implies an analogous of Theorem 4.9. This proof can be found in Section 6, taking ν = 1. Section 4.4 then ends the proof of the null-controllability. Note that in this case, there is no restriction on the subordination number q (in Proposition 4.5, we require q < 3/4) since there is no need of the regularisation with a Gevrey function.

Elliptic controllability on Π α H with initial datum in P k H

From the spectral inequality (13), we deduce a controllability result for a family of (finite dimensional) elliptic evolution problems. Let first G α be the following gramian operator

G α = T 0 0 e t √ A + e -t √ A Π α B|ϕ(t)| 2 B * e t √ A * + e -t √ A * Π * α dt.
Lemma 4.2. The operator G α in an isomorphism from Π * α H onto Π α H. We denote by G -1 α the inverse of G α on Π α H.

Then, there exists D 0 > 0 and for every s ∈ N there exists C s such that for every

T 0 > 0, α > 0, k ∈ N * satisfying α k ≤ α, for every v k ∈ P k H, the function h k (t) = |ϕ(t)| 2 B * e t √ A * + e -t √ A * G -1 α v k (17) satisfies (i) h k ∈ C ∞ 0 (0, T 0 ; Y ); (ii) ∂ s t h k L ∞ (0,T 0 ;Y ) ≤ C s α s 2 e D 0 α θ v k H ; (iii) for all w ∈ Π * α H, (v k , w) H = Bh k , e t √ A * + e -t √ A * w L 2 (0,T 0 ;H) .
Remark 4.3. Here, we could actually take the "initial datum" v in Π α H and the result and its proof remain the same. We have chosen to take v in P k H since it is the precise result we use in Proposition 4.5, in particular to prove the estimate (iii) of Proposition 4.5, which in turn is a key point in the proof of Theorem 4.10 below.

Proof. We first observe that the spectral inequality (13) implies that G α in an isomorphism from Π * α H onto Π α H. Then, we note that point (ii) implies (i), and is itself a direct consequence of expression (17) where B * is bounded and G -1 α L(H) ≤ Ce D 0 α θ from the spectral inequality (13). Finally, we check that (iii) holds. For w ∈ Π * α H, we compute

Bh k , e t √ A * + e -t √ A * w L 2 (0,T 0 ;H) = B|ϕ(t)| 2 B * e t √ A * + e -t √ A * G -1 α v k , e t √ A * + e -t √ A * w L 2 (0,T 0 ;H) = T 0 0 e t √ A + e -t √ A Π α B|ϕ(t)| 2 B * e t √ A * + e -t √ A * Π * α dt Gα G -1 α v k , w H = (v k , w) H .
Remark 4.4. Lemma 4.2 corresponds to a null-controllability property on [0, T 0 ] in Π α H for the elliptic control problem with initial condition in

P k H        -∂ 2 t u + Au = Π α Bh k , u |t=0 = 0, ∂ t u |t=0 = v ∈ P k H, u |t=T 0 = ∂ t u |t=T 0 = 0, whose dynamics remains in Π α H for every t ∈ [0, T 0 ]. The adjoint problem is the following, well-posed in Π * α H:    -∂ 2 t z + A * z = 0, z |t=T 0 = w ∈ Π * α H, ∂ t z |t=T 0 = 0.
The estimation of the "cost" of the control h k is the key point for the following parabolic partial controllability properties.

4.2 Parabolic controllability on Π α H with initial datum in P k H

From the elliptic controllability result of Lemma 4.2, we now deduce a corresponding parabolic controllability result. The main tools here are the transformation introduced in [Rus73] and a Paley-Wiener-type theorem.

Proposition 4.5. We suppose that the subordination number satisfies q < 3 4 and we fix γ > max{ 2(1-q) 3-4q , 1}. Then, for all T > 0 there exists D 1 > 0 and for every s ∈ N there exists C s such that for every 0 < T < T , α > 0, k ∈ N * satisfying α k ≤ α, for every u k,0 ∈ P k H, there exists a control function G k such that:

(i) G k ∈ C ∞ 0 (0, T ; Y ); (ii) ∂ s t G k L ∞ (0,T ;Y ) ≤ C s T -2γs exp D 1 (α θ + 1 T γ + (T α k ) γ 2γ-1 ) -T α k-1 u k,0 H ; (iii) for all w ∈ Π * α H, -(u k,0 , e -T A * w) H = BG k , e -(T -t)A * w L 2 (0,T ;H) .
Remark 4.6. For technical requirements, that can be found in the proof of Lemma 8.1 in Appendix 8.1, we have assumed that the subordination q of A 1 to A 0 is less than 3 4 here. This will be the case in all the applications we present in Section 5.

Remark 4.7. The new variable T here is the time in which we want to control the full equation (29), appearing in Section 4.4.

Proof. From Lemma 4.2, we have for any positive T 0 (that will be fixed equal to 1 below): for all v k ∈ P k H, there exists h k (that we know with precision) such that for all w ∈ Π * α H,

(v k , w) H = (v k , P * k w) H = Bh k , e t √ A * + e -t √ A * P * k w L 2 (0,T 0 ;H) = T 0 0 e t √ A + e -t √ A P k Bh k (t)dt, w H = T 0 0 1 2iπ γ k e t √ z + e -t √ z R A (z)dz Bh k (t)dt, w H = 1 2iπ γ k R A (z)B T 0 0 e t √ z + e -t √ z h k (t)dt dz, w H .
We introduce the Fourier-Laplace transform of a function:

f (z) = R f (t)e -itz dt, z ∈ C. If f ∈ C ∞ 0 (0, T 0 ; Y ), then f is an entire function with values in Y . We write f ∈ H(C; Y ). Recalling that h k ∈ C ∞ 0 (0, T 0 ; Y ), we have ĥk ∈ H(C; Y ) and (v k , w) H = 1 2iπ γ k R A (z)B ĥk (i √ z) + ĥk (-i √ z) dz, w H . (18) 
From Lemma 4.2 (ii), taken with s = 0, we obtain ĥk (z) Y ≤ C 0 e D 0 α θ e T 0 | Im(z)| v k H . Following [START_REF] Russell | A unified boundary controllability theory for hyperbolic and parabolic partial differential equations[END_REF] and [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we set

Q k (-iz 2 ) = ĥk (iz) + ĥk (-iz),
and note that Q k (z) is an entire function with respect to z. We now have for every

v k ∈ P k H, the existence of Q k ∈ H(C; Y ) such that for all w ∈ Π * α H, (v k , w) H = 1 2iπ γ k R A (z)BQ k (-iz)dz, w H , (19) 
with

Q k satisfying Q k (z) Y ≤ C 0 e D 0 α θ e T 0 √ |z| v k H . ( 20 
)
The goal is now to see Q k as the Fourier-Laplace transform of a regular function with compact support in (0, T ). However, (a Hilbert-valued version of) the Paley-Wiener theorem [Hör83, Theorem 15.1.5] indicates that the inverse Fourier transform of Q k is only in the dual space (G 2 (R; Y )) of the space of Gevrey functions of order 2. With the convolution by a function e ∈ G σ , σ ∈ (1, 2), i.e. by multiplying Q k by ê, we can now regularize the inverse Fourier transform of Q k .

We fix T 0 = 1 and set σ = 2 -1 γ ∈ (1, 2). Since we have required that q < 3 4 and γ > max{ 2(1-q) 3-4q , 1}, the Gevrey index σ = 2 -1 γ satisfies σ > 1 2(1-q) what is equivalent to q < 1 -1 2σ . Under these conditions, Lemma 8.1 of Appendix 8.1 gives the existence of a Gevrey function e ∈ G σ satisfying (the constants c i are positive)

      
supp(e) = [0, 1] and 0 < e(t) ≤ 1 for all t ∈ (0, 1),

|ê(z)| ≤ c 1 e -c 2 |z| 1 σ if Im(z) ≤ 0, |ê(z)| ≥ c 3 e -c 4 |z| 1 σ in -iP q K 0 T 1-q = -i{z ∈ C, Re(z) ≥ 0, | Im(z)| < K 0 T 1-q Re(z) q }.
(21) The parabola P q K 0 T 1-q is chosen here so that for every k ∈ N, for every z ∈ γ k ⊂ P q K 0 (defined in (7)), we have T z ∈ P q K 0 T 1-q and the lower bound of (21) holds.

We set, for

T < T , ĝk (z) = ê(T z)Q k (z) ∈ H(C; Y ),
and because of (20) and the first two points of (21), ĝk (z) satisfies the following estimates

ĝk (z) Y ≤ C 0 e T Im(z) e D 0 α θ e √ |z| v k H for every z ∈ C, (22) ĝk 
(z) Y ≤ C 0 c 1 e -c 2 |T z| 1 σ e D 0 α θ e √ |z| v k H if Im(z) ≤ 0. ( 23 
)
From ( 22), ( 23) and the Paley-Wiener-type theorem given in Proposition 8.3 in Appendix 8.2, there exists g k ∈ C ∞ 0 (0, T ; Y ) such that ĝk (z) = R g k (t)e -izt dt for every z ∈ C. The function g k is then given by g k (t) = 1 2π R ĝk (τ )e iτ t dτ . From (23), g k satisfies the estimates

∂ s t g k L ∞ (0,T ;Y ) ≤ C 0 c 1 2π e D 0 α θ R |τ | s e -c 2 |T τ | 1 σ e √ |τ | dτ v k H , s ∈ N.
The Laplace method [START_REF] Erdélyi | Asymptotic expansions[END_REF] applied to this integral (only dependent on s and γ) finally implies that there exists C > 0 and for every s ∈ N there exists C s > 0 such that for every T > 0,

α > 0, k ∈ N * such that α k ≤ α, for every v k ∈ P k H, ∂ s t g k L ∞ (0,T ;Y ) ≤ C s e D 0 α θ T -2γs e C T γ v k H . (24) 
Let us now properly construct the control function that satisfies the three assertions of the proposition. We first note that for T < T , the operators ê(-iT A) and e -T A are two isomorphisms of P k H since the holomorphic functions ê(-iT z) and e -T z do not vanish in P q K 0 . Given u k,0 ∈ P k H, we set v k = -[ê(-iT A)] -1 e -T A u k,0 ∈ P k H and g k the associated control function given as preceding. We set G k (t) = g k (T -t), which satisfies point (i) of the proposition. From (24), we obtain

∂ s t G k L ∞ (0,T ;Y ) ≤ C s e D 0 α θ T -2γs e C T γ [ê(-iT A)] -1 P k L(H) e -T A P k L(H) u k,0 H . ( 25 
)
We can estimate

[ê(-iT A)] -1 P k L(H) = 1 2iπ γ k 1 ê(-iT z) R A (z)dz L(H) ≤ 1 2π meas(γ k ) sup z∈γ k 1 |ê(-iT z)| sup z∈γ k R A (z) L(H) ≤ Cα k sup z∈γ k 1 |ê(-iT z)| sup z∈γ k R A (z) L(H) ≤ C α k sup z∈γ k c -1 3 e c 4 |T z| 1 σ e Cα β k ≤ C e e c 4 (|T α k | 1 σ +α θ ) ,
where we have used the third property of the Gevrey function e given in (21) and the resolvent estimate (8) of Theorem 2.5 on γ k . A similar estimate for e -T A P k L(H) gives

e -T A P k L(H) ≤ Cα k e -T α k-1 +Cα θ .
We finally obtain from (25) that for all T > 0 there exists D 1 > 0 and for every s ∈ N there exists C s > 0 such that for every 0

< T < T , α > 0, k ∈ N * such that α k ≤ α, for every u k,0 ∈ P k H, ∂ s t G k L ∞ (0,T ;Y ) ≤ C s e D 1 α θ T -2γs e D 1 T γ e D 1 |T α k | 1 σ e -T α k-1 u k,0 H . (26) 
Point (ii) of the proposition is thus proved recalling that 1 σ = γ 2γ-1 . To prove (iii), we compute

BG k , e -(T -t)A * w L 2 (0,T ;H) , with w ∈ Π * α H. We have BG k , e -(T -t)A * w L 2 (0,T ;H) = Bg k , e -tA * w L 2 (0,T ;H) = e -tA Bg k , w L 2 (0,T ;H) = T 0 1 2iπ γ k e -tz R A (z)dz Bg k (t)dt, w H = 1 2iπ γ k R A (z)B T 0 e -tz g k (t)dtdz, w H As supp(g k ) ⊂ (0, T ), we obtain BG k , e -(T -t)A * w L 2 (0,T ;H) = 1 2iπ γ k R A (z)Bĝ k (-iz)dz, w H = 1 2iπ γ k R A (z)Bê(-iT z)Q k (-iz)dz, w H = ê(-iT A) 1 2iπ γ k R A (z)BQ k (-iz)dz, w
H because the holomorphic calculus gives for φ ∈ H(C; C) and ψ ∈ H(C; H)

1 2iπ γ k φ(z)R A (z)dz 1 2iπ γ k R A (z)ψ(z)dz = 1 2iπ γ k φ(z)R A (z)ψ(z)dz.
From (19), we then have

BG k , e -(T -t)A * w L 2 (0,T ;H) = 1 2iπ γ k R A (z)BQ k (-iz)dz, ê(-iT A * )w H = (v k , ê(-iT A * )w) H as ê(-iT A * )w ∈ Π * α H. Recalling that v k = -[ê(-iT A)] -1 e -T A u k,0 , we have obtained that the function G k constructed here satisfies for all w ∈ Π * α H BG k , e -(T -t)A * w L 2 (0,T ;H) = -[ê(-iT A)] -1 e -T A u k,0 , ê(-iT A * )w H = -e -T A u k,0 , w H ,
for every u k,0 ∈ P k H. Point (iii) is thus proved. This concludes the proof of Proposition 4.5.

Remark 4.8. Proposition 4.5 is a null-controllability property on [0, T ] in the finite dimensional space Π α H for the parabolic control problem :

   ∂ t u + Au = Π α BG k , u |t=0 = u k,0 ∈ P k H, u |t=T = 0.
This also means that for every initial datum u 0,k ∈ P k H and T > 0, there exists G k ∈ C ∞ 0 (0, T ; Y ) such that the solution of

∂ t u + Au = BG k , u |t=0 = u k,0 ∈ P k H, satisfies Π α u(T ) = 0.

Parabolic controllability on Π α H

We shall now combine the controllability results for initial datum in P k H, α k ≤ α to obtain a null-controllability result for an initial datum in Π α H, i.e., for the problem

   ∂ t u + Au = Π α BG α u |t=0 = u 0 ∈ Π α H u |t=T = 0. ( 27 
)
The norm of the control function G α will be estimated to prepare for the next section, where a control for an arbitrary initial condition in H is constructed.

Theorem 4.9. For the control problem (27), for every positive T , for every γ sufficiently large, there exists a control function G α ∈ C ∞ 0 (0, T ; Y ) driving u 0 to 0 in time T with a cost given by G α L ∞ (0,T ;Y ) ≤ C exp D(α θ + 1 T γ ) u 0 H . Actually, we prove the following more precise result.

Theorem 4.10. Let q < 3 4 and γ > max{ 2(1-q) 3-4q , 1}. For all T > 0, there exists D > 0 and for every s ∈ N there exists C s such that for every 0 < T < T , α > 0, for every u 0 ∈ Π α H, there exists a control function G α such that :

(i) G α ∈ C ∞ 0 (0, T ; Y ); (ii) ∂ s t G α L ∞ (0,T ;Y ) ≤ C s T -2γs exp D(α θ + 1 T γ ) u 0 H ; (iii) for all w ∈ Π * α H, -(u 0 , e -T A * w) H = BG α , e -(T -t)A * w L 2 (0,T ;H) . Proof.
We write u 0 = α k ≤α P k u 0 ∈ Π α H, with P k u 0 ∈ P k H and Proposition 4.5 gives for every k the existence of a control function G k satisfying:

for all w ∈ Π * α H, -(P k u 0 , e -T A * w) H = BG k , e -(T -t)A * w L 2 (0,T ;H) ; ∂ s t G k L ∞ (0,T ;Y ) ≤ C s T -2γs exp D 1 (α θ + 1 T γ + (T α k ) γ 2γ-1 ) -T α k-1 P k u 0 H (28)
We set

G α = α k ≤α G k ∈ C ∞ 0 (0, T ; Y ).
and (i) is clear as the sum is finite. To prove (iii), given w ∈ Π * α H, we simply compute

-(u 0 , e -T A * w) H = α k ≤α -P k u 0 , e -T A * w H = α k ≤α BG k , e -(T -t)A * w L 2 (0,T ;H) = BG α , e -(T -t)A * w L 2 (0,T ;H)
.

We now prove point (ii). Here, we use the asymptotic estimation for the sequence (α k ) k∈N given in Proposition 2.11. Let δ > 1, there exists

N ∈ N such that δ k-1 ≤ α k ≤ δ k if k ≥ N .
We then have

∂ s t G α L ∞ (0,T ;Y ) ≤ α k ≤α ∂ s t G k L ∞ (0,T ;Y ) ≤ C s T -2γs e D 1 (α θ + 1 T γ ) α k ≤α e D 1 (T α k ) γ 2γ-1 -T α k-1 P k u 0 H ≤ C s T -2γs e D 1 (α θ + 1 T γ ) u 0 H α k ≤α e D 1 (T δ k ) γ 2γ-1 -T δ k-2 .
It remains to estimate the sum. Recalling that γ 2γ-1 < 1, the function

x → e D 1 x γ 2γ-1 -δ -2
x is bounded on R + by a constant κ = κ(γ, δ). We thus have

α k ≤α e D 1 (T δ k ) γ 2γ-1 -T δ k-2 ≤ N κ + k≥N α k ≤α κ ≤ κ N + ln(α) ln(δ) .
Finally, changing the constants C s , we conclude that

∂ s t G α L ∞ (0,T ;Y ) ≤ C s T -2γs exp D(α θ + 1 T γ ) u 0 H .
Remark 4.11. Here, we have constructed a control in C ∞ 0 (0, T ; Y ). In the case Y = H and for every p ∈ N, B * ∈ L(D(A p )), we are able to construct with the same techniques a control function in C ∞ 0 (0, T ; p∈N D(A p )), following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Decay property for the semigroup and construction of the final control

We shall now conclude the proof of the main controllability theorem. We consider the full controllability problem: given T > 0, we construct a control function g such that the solution of the problem

∂ t u + Au = Bg, u |t=0 = u 0 ∈ H, (29) 
satisfies u(T ) = 0 in H. The proof uses both the partial control result of Theorem 4.9 and the decay rate of the semigroup generated by -A, once restricted to (I -Π α )H. We first prove an estimate of this decay rate. We denote by (S A (t)) t∈R + * the C 0 -semigroup of contraction generated by -A.

Proposition 4.12. There exist C > 0 and N ∈ N such that for every

k ≥ N , t ≥ 1 α k , S A (t)(I -Π α k ) L(H) ≤ Ce Cα θ k -tα k .
Proof. From [Paz83, Theorem 1.7.7] we first write the semigroup generated by -A(I -Π α k ) as an integral over the infinite positively oriented contour

∂P q K 0 S A (t)(I -Π α k ) = S A(I-Πα k ) (t) = 1 2iπ ∂P q K 0 e -tz R A(I-Πα k ) (z) dz. We set Λ k = {z ∈ P q K 0 , Re(z) ≥ α k }, ∂Λ + k = {z ∈ ∂Λ k , Re(z) > α k , Im(z) ≥ 0} and ∂Λ - k = {z ∈ ∂Λ k , Re(z) > α k , Im(z) ≤ 0} so that ∂Λ k = ∂Λ + k ∪ I k ∪ ∂Λ -
k and is a positively oriented contour.

Since R A(I-Πα k ) is holomorphic in C \ Λ k , we may shift the path of integration from ∂P q K 0 to ∂Λ k without changing the value of the integral. Hence,

S A (t)(I -Π α k ) = 1 2iπ ∂Λ k e -tz R A (z) dz = 1 2iπ ∂Λ + k e -tz R A (z) dz + 1 2iπ I k e -tz R A (z) dz + 1 2iπ ∂Λ - k e -tz R A (z) dz,
where

∂Λ + k e -tz R A (z) dz L(H) ≤ ∞ α k Ce -tx dx ≤ C e -tα k t ,
since R A (z) is uniformly bounded on ∂Λ 0 from Proposition 2.1 point (iii). The same estimate holds for the integral over ∂Λ - k . Finally estimate (8) of Theorem 2.5 gives

I k e -tz R A (z) dz L(H) ≤ Cα q k e Cα θ k -tα k .
Combining the estimations given on the three phases, we obtain for j ≥ J 0 u(a j+1 ) H ≤ exp

j k=J 0 C δ kθ -Kδ k(1-ρθ) u 0 H .
Because of our choice ρ < 1-θ θ , we have 1 -ρθ > θ, and for some c > 0,

j k=J 0 C δ kθ -Kδ k(1-ρθ) ≤ c exp -cδ j(1-ρθ) ,
and thus for every j ≥ J 0 ,

u(a j+1 ) H ≤ c exp -cδ j(1-ρθ) u 0 H . ( 30 
)
From Theorem 4.10 point (ii) and Estimate (30), we have

∂ s t g L ∞ (0,T ;Y ) ≤ sup j≥J 0 C s T -2γs j exp D(α θ j + 1 T γ j ) u(a j ) H ≤ sup j≥J 0 C s δ 2jρθγs exp D(δ jθ + Kδ jργθ ) -cδ (j-1)(1-ρθ) u 0 H < +∞,
following the same estimations as above. Thus, g ∈ C ∞ 0 (0, T ; Y ). This implies in particular that the solution u of ( 29) is continuous with values in H. Hence, from (30) we directly obtain u(T ) H = lim j→∞ u(a j+1 ) H = 0, and u(T ) = 0 in H.

Application to the controllability of parabolic coupled systems

In this section, we apply the abstract results proved in the previous sections to second order elliptic operators and to the controllability of parabolic systems. In the following, we first check that the assumptions of Proposition 2.1 and Theorem 2.5 for these elliptic operators are fulfilled and we prove the interpolation inequality (12). Sections 3 and 4 then directly yield the spectral inequality and the controllability results.

We are concerned with the system

       ∂ t u 1 + P 1 u 1 + au 1 + bu 2 = 0 in (0, T ) × Ω, ∂ t u 2 + P 2 u 2 + cu 1 + du 2 = 1 ω g in (0, T ) × Ω, u 1|t=0 = u 0 1 , u 2|t=0 = u 0 2 in Ω, u 1 = u 2 = 0 on (0, T ) × ∂Ω, ( 31 
)
where Ω is an open connected subset of R n with n ≤ 3 (a compact connected Riemannian manifold with or without boundary of dimension n ≤ 3). We suppose that ∂Ω is at least of class C 2 . The function 1 ω (x) stands for the characteristic function of the open subset ω ⊂ Ω and a, b, c, d ∈ L ∞ (Ω). Here, P i , i = 1, 2, denotes a positive elliptic selfadjoint operator on Ω:

P i u = -div x (c i (x)∇ x u)
where c i (x) is a symmetric uniformly elliptic matrix, i.e. c i ∈ W 1,∞ (Ω) and there exists C > 0 such that for every

x ∈ Ω, ξ ∈ R n , ξ • c i (x)ξ ≥ C|ξ| 2 . We set H = (L 2 (Ω)) 2 , D(A 0 ) = (H 2 (Ω) ∩ H 1 0 (Ω)) 2
, and

A 0 = P 1 0 0 P 2 and A 1 = a b c d .
Referring to Remark 1.1, we shift A = A 0 + A 1 by a λ 0 > 0 sufficiently large so that Eq. ( 7) is satisfied. We carry on the analysis with the operator A + λ 0 , which we write A by abuse of notation. Then, the operator A satisfies the assumptions (a) -(c) of Proposition 2.1 with q = 0 since A 1 is bounded in H. Moreover, for µ ∈ R + the number of eigenvalues of the operator P i lower than µ is given by the Weyl asymptotics

N i (µ) = m i µ n/2 + o(µ n/2 ) as µ → +∞. Thus, for A, N is given by N (µ) = N 1 (µ) + N 2 (µ) = (m 1 + m 2 )µ n/2 + o(µ n/2
) and A satisfies the assumption of Proposition 2.11 and that of Theorem 2.5 with p = 2/n. The assumption θ < 1 of Theorem 4.13 is satisfied if and only if n/2 -1 < 1, i.e., n ≤ 3.

We set Y = L 2 (Ω) as the control space and the operator B is given by B : g -→ (0, 1 ω g) T , and is bounded from L 2 (Ω) to (L 2 (Ω)) 2 and its adjoint is

B * : (u 1 , u 2 ) T -→ 1 ω u 2 ∈ L (L 2 (Ω)) 2 ; L 2 (Ω) .
Now, it remains to prove the interpolation inequality (12) to apply Theorem 3.2.

Proposition 5.1. Let T 0 > 0, ζ ∈ (0, T 0 /2). Suppose that there exists an open subset O ⊂ Ω, O ∩ ω = ∅ such that the coupling coefficient b ∈ L ∞ (Ω) satisfies |b(x)| ≥ b 0 > 0 for almost every x ∈ O. Then, there exist C > 0, ϕ ∈ C ∞ 0 (0, T 0 ) and ν ∈ (0, 1) such that for every v ∈ H 2 ((0, T 0 ) × Ω) 2 , v |(0,T 0 )×∂Ω = 0, we have v (H 1 ((ζ,T 0 -ζ)×Ω)) 2 ≤ C v 1-ν (H 1 ((0,T 0 )×Ω)) 2 ϕB * v L 2 ((0,T 0 )×Ω) + (-∂ 2 t + A * )v (L 2 ((0,T 0 )×Ω)) 2 ν . (32) 
Proof. We first prove (32) with ϕB * v L 2 ((0,T 0 )×Ω) replaced by v L 2 (V ) with V ⊂ (0, T 0 )×O∩ω. In a second step, thanks to local elliptic energy estimates, we eliminate the first component and obtain (32).

Here, the time variable does not play a particular role. Thus, for the sake of clarity, we simplify the notation, denoting by ∇ the time-space gradient (∂ t , ∇ x ) T , by div the time-space divergence ∂ t + div x , by C i the time-space diffusion matrices C i = 1 0 0 c i , and by -∆ i the time-space elliptic operators

-∆ i = -∂ 2 t + P i = -∂ 2 t -div x (c i ∇ x •) = -div(C i ∇•).
We also set

A * = -∂ 2 t + A * = -∆ 1 + a c b -∆ 2 + d .
We also denote by (•, •) the L 2 scalar product on L 2 ((0, T 0 ) × Ω) or (L 2 ((0, T 0 ) × Ω)) n+1 , • the associated norms, and by (•, •) i , i = 1, 2, the L 2 scalar product defined by

(ξ, ξ ) i = (c i ξ, ξ ) , ξ, ξ ∈ (L 2 ((0, T 0 ) × Ω)) n+1 , i = 1, 2,
and • i the associated norm. With the assumptions made on c i , the norms • i and • are equivalent on (L 2 ((0, T 0 ) × Ω)) n+1 .

We first state local Carleman estimates for A * . These are direct consequences of the classical local Carleman estimates for the elliptic operators ∆ i . We first choose a local weight function φ satisfying a subellipticity condition with respect to both ∆ 1 and ∆ 2 (which can be done taking φ = e λψ for λ sufficiently large and ψ satisfying |∇ψ| ≥ C > 0, see [Hör63, Chapter 8], [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] or [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators[END_REF]). Then there exists h 1 > 0 and C > 0 such that for every w ∈ (C ∞ 0 ((0, T 0 ) × Ω)) 2 , w = (w 1 , w 2 ) T , and 0

< h < h 1 , h e φ/h w i 2 + h 3 e φ/h ∇w i 2 ≤ Ch 4 e φ/h ∆ i w i 2 , i = 1, 2
(see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], or [START_REF] Fursikov | Controllability of evolution equations[END_REF] in the case c i ∈ W 1,∞ ). Adding these two estimates and absorbing the zero-order terms for h sufficiently small, we directly obtain the same estimate for A * :

h e φ/h w 2 + h 3 e φ/h ∇w 2 ≤ Ch 4 e φ/h A * w 2 , ∇w = ∇w 1 ∇w 2 .
By optimizing in h (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]), these local Carleman estimates yield local interpolation estimates of the form

v (H 1 (B(3r))) 2 ≤ C v 1-ν (H 1 ((0,T 0 )×Ω)) 2 v (H 1 (B(r))) 2 + A * v (L 2 ((0,T 0 )×Ω)) 2 ν ,
where B(r) denote concentric balls of radium r. Similar estimates at the boundary (0, T 0 ) × ∂Ω are also direct consequences of the Carleman estimates at the boundary for a scalar elliptic operator.

Then, following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], these local interpolation inequalities can be "propagated", so that we obtain the following global interpolation inequality, with two observations in H 1 norm, localized in any nonempty open subset W of (ζ, T 0 -ζ) × Ω:

v (H 1 ((ζ,T 0 -ζ)×Ω)) 2 ≤ C v 1-ν (H 1 ((0,T 0 )×Ω)) 2 v (H 1 (W )) 2 + A * v (L 2 ((0,T 0 )×Ω)) 2 ν . (33) 
Let us take the open subsets W , V , and U such that W ⊂ V , V ⊂ U , and U ⊂ (0, T 0 ) × O ∩ ω. Elliptic regularity for the operators ∆ i , i = 1, 2, shows that there exists C > 0 such that

v H 1 (W ) ≤ C( A * v + v L 2 (V ) ).
It finally remains to eliminate one of the two observations with energy estimates. In fact, we prove that

v 1 L 2 (V ) ≤ C( A * v + v 2 L 2 (U ) ). We write f = (f 1 , f 2 ) T = A * v, i.e. f 1 = -∆ 1 v 1 + av 1 + cv 2 , f 2 = -∆ 2 v 2 + bv 1 + dv 2 . ( 34 
)
Let χ be a cut-off function such that χ ∈ C ∞ 0 (U ), 0 ≤ χ ≤ 1, and χ = 1 on V ⊂ U . We set

η = χ τ , η 1 = χ τ +1 , η 2 = χ τ -1 ,
for a real number τ > 2, so that η, η 1 , η 2 and χ τ -2 are also cut-off functions of the same type. We notice that ∇η 1 = η(τ + 1)∇χ and ∇η = η 2 τ ∇χ, where ∇χ is a bounded function.

We form the scalar product of the second equation of (34) by

η 2 v 1 (η 2 v 1 , bv 1 ) = (η 2 v 1 , f 2 ) -(η 2 v 1 , dv 2 ) + (η 2 v 1 , ∆ 2 v 2 ).
The third term can be estimated as follows, using the equivalence of the norms • 2 and • :

(η 2 v 1 , ∆ 2 v 2 ) = -(η∇v 1 , η∇v 2 ) 2 -(v 1 (2η∇η), ∇v 2 ) 2 ≤ C ε 1 η 1 ∇v 1 2 + 1 ε 1 η 2 ∇v 2 2 + ε 2 ηv 1 2 + 1 ε 2 η 2 ∇v 2 2 ,
for every positive ε 1 and ε 2 , thanks to Young's inequality. Hence,

(η 2 v 1 , bv 1 ) ≤ C ε 1 η 1 ∇v 1 2 + 1 ε 1 η 2 ∇v 2 2 + ε 2 ηv 1 2 + 1 ε 2 η 2 ∇v 2 2 +|(η 2 v 1 , f 2 )| + |(η 2 v 1 , dv 2 )|. (35) 
Moreover, forming the scalar product of the first equation of (34) by δ 1 η 2 1 v 1 and the second one by δ 2 η 2 2 v 2 for δ 1 , δ 2 > 0, we obtain

0 = δ 1 (η 2 1 v 1 , ∆ 1 v 1 ) + δ 1 (η 2 1 v 1 , f 1 ) -δ 1 (η 2 1 v 1 , av 1 ) -δ 1 (η 2 1 v 1 , cv 2 ), 0 = δ 2 (η 2 2 v 2 , ∆ 2 v 2 ) + δ 2 (η 2 2 v 2 , f 2 ) -δ 2 (η 2 2 v 2 , dv 2 ) -δ 2 (η 2 2 v 2 , bv 1 ), (36) 
with

δ 1 (η 2 1 v 1 , ∆ 1 v 1 ) = -δ 1 η 2 1 ∇v 1 2 1 -δ 1 (v 1 (2η 1 ∇η 1 ), ∇v 1 ) 1 ≤ -δ 1 η 1 ∇v 1 2 1 + C δ 1 ε 3 η 1 ∇v 1 2 1 + δ 1 ε 3 ηv 1 2 1 , (37) 
and similarly

δ 2 (η 2 2 v 2 , ∆ 2 v 2 ) ≤ -δ 2 η 2 ∇v 2 2 2 + C δ 2 ε 3 η 2 ∇v 2 2 2 + δ 2 ε 3 v 2 ∇η 2 2 2 (38) 
for all positive ε 3 . Replacing (37) and ( 38) in (36), and adding (35) and (36), we obtain, for positive constants

C 0 , K 0 (η 2 v 1 , bv 1 ) ≤ C 0 |(η 2 v 1 , f 2 )| + |(η 2 v 1 , dv 2 )| + ε 1 η 1 ∇v 1 2 + 1 ε 1 η 2 ∇v 2 2 + ε 2 ηv 1 2 + 1 ε 2 η 2 ∇v 2 2 + δ 1 |(η 2 1 v 1 , f 1 )| + δ 1 |(η 2 1 v 1 , av 1 )| + δ 1 |(η 2 1 v 1 , cv 2 )| +δ 2 |(η 2 2 v 2 , f 2 )| + δ 2 |(η 2 2 v 2 , dv 2 )| + δ 2 |(η 2 2 v 2 , bv 1 )| + δ 1 ε 3 η 1 ∇v 1 2 + δ 1 ε 3 ηv 1 2 +δ 2 ε 3 η 2 ∇v 2 2 + δ 2 ε 3 v 2 ∇η 2 2 -K 0 δ 1 η 1 ∇v 1 2 + δ 2 η 2 ∇v 2 2 ,
where we used the equivalence between the norms • 1 , • 2 and • to write everything in terms of • . Note that all the positive parameters δ i , ε j have not been fixed yet. Now we suppose that b ≥ b 0 > 0 on U . The case b ≤ -b 0 < 0 follows the same. We thus have,

b 0 ηv 1 2 ≤ (η 2 v 1 , bv 1 ) ≤ C 0 {J 1 + J 2 } + K 0 J 3 (39)
where J 1 contains only the terms without gradient, and

   J 3 = -δ 1 η 1 ∇v 1 2 -δ 2 η 2 ∇v 2 2 , J 2 = ε 1 η 1 ∇v 1 2 + 1 ε 1 η 2 ∇v 2 2 + 1 ε 2 η 2 ∇v 2 2 + δ 1 ε 3 η 1 ∇v 1 2 +δ 2 ε 3 η 2 ∇v 2 2 + δ 2 ε 3 v 2 ∇η 2 2 .
The term C 0 J 2 + K 0 J 3 in (39) is thus non-positive as soon as the conditions

C 0 (ε 1 + δ 1 ε 3 ) -K 0 δ 1 ≤ 0, C 0 ( 1 ε 1 + 1 ε 2 + δ 2 ε 3 ) -K 0 δ 2 ≤ 0
are satisfied. In this case, we obtain from (39) b 0 ηv 1 2 ≤ C 0 J 1 . Let us now estimate C 0 J 1 , using that a, b, c, d ∈ L ∞ and Young's inequality with the parameters 1, ε 2 or ε 4 > 0:

C 0 J 1 ≤ C 1 ε 2 ηv 1 2 + 1 ε 2 f 2 2 + 1 ε 2 ηv 2 2 + δ 1 ηv 1 2 + δ 1 f 1 2 + δ 1 ηv 2 2 +δ 2 η 2 v 2 2 + δ 2 f 2 2 + ε 4 δ 2 ηv 1 2 + δ 2 ε 4 χ τ -2 v 2 2 + δ 1 ε 3 ηv 1 2 ≤ C 1 ε 2 + δ 1 + ε 4 δ 2 + δ 1 ε 3 ηv 1 2 + C(δ i , ε j ) χ τ -2 v 2 2 + f 1 2 + f 2 2 .
If we choose the parameters such that

C 1 ε 2 + δ 1 + ε 4 δ 2 + δ 1 ε 3 ≤ b 0 2 , since we now have b 0 ηv 1 2 ≤ C 0 J 1 , we then obtain ηv 1 2 L 2 (V ) ≤ C(δ i , ε j ) v 2 2 L 2 (U ) + f 1 2 + f 2 2 , v 1 L 2 (V ) ≤ C v 2 L 2 (U ) + A * v .
Recalling that the open subset U is chosen such that U ⊂ (0, T 0 ) × O ∩ ω, we take ϕ ∈ C ∞ 0 (0, T 0 ; C), with ϕ = 1 on the time support of U and we have

v 2 L 2 (U ) ≤ ϕB * v L 2 ((0,T 0 )×Ω) .
The proof of the proposition is complete.

It only remains to note that it is possible to choose the parameters δ i , ε j satisfying

   δ 1 (C 0 ε 3 -K 0 ) + C 0 ε 1 ≤ 0, δ 2 (C 0 ε 3 -K 0 ) + C 0 ( 1 ε 1 + 1 ε 2 ) ≤ 0, ε 2 + δ 1 + ε 4 δ 2 + δ 1 ε 3 ≤ b 0 2C 1 .
This can be done, fixing first

ε 2 + δ 1 ≤ b 0 6C 1 and ε 3 < min{1, K 0 C 0 }. Second, choosing ε 1 ≤ δ 1 ( K 0 C 0 -ε 3 )
, the first condition is satisfied. Third, we can fix δ 2 sufficiently large so that the second condition is satisfied and finally ε 4 such that ε 4 δ 2 ≤ b 0 6C 1 and the last condition is fulfilled.

As a consequence of Proposition 5.1, the spectral inequality (13) of Theorem 3.2, the partial controllability result of Theorem 4.10 and the null-controllability result of Theorem 4.13 hold in this case. Under the assumptions made above, in particular those of Proposition 5.1, the coupled parabolic system (31) is null-controllable in any positive time by a control function g ∈ C ∞ 0 (0, T ; L 2 (Ω)). Note that in this context, the spectral inequality (13) corresponds to the estimation of a finite sum of root vectors of A by a localized measurement of only one component of this finite sum of root vectors.

Remark 5.2. In the local energy estimates made in the proof, we see that the assumption O ∩ ω = ∅ is crucial. In the case O ∩ ω = ∅, the spectral inequality and the null-controllability remain open problems to the author's knowledge .

Remark 5.3. In the case where the operator A is selfadjoint (i.e. b = c in (31)), the spectral inequality (13) is much easier to prove, once the interpolation inequality (32) holds. This spectral inequality can take the following form. We denote by (µ j ) j∈N the eigenvalues of A = A * and {(φ j , ψ j ) T } j∈N the associated eigenfunctions, that form a Hilbert basis of (L 2 (Ω)) 2 . Then, for every open subset U ⊂ (0, T ) × O, there exist C > 0 such that for every sequence (a j , b j ) j∈N ⊂ C and α > 0, we have

µ j ≤α |a j | 2 + |b j | 2 ≤ Ce C √ α µ j ≤α a j e √ µ j t + b j e -√ µ j t ψ j 2 L 2 (U )
.

Following the proof of [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] or Section 4, it yields the controllability of the coupled problem (31), without restriction on the dimension of Ω.

Remark 5.4. The same proof also yields a spectral inequality, a partial controllability and a null-controllability result for the following cascade system of d equations with one control force

                   ∂ t u 1 + P 1 u 1 + 1 ω 1 u 2 = 0, ∂ t u 2 + P 2 u 2 + 1 ω 2 u 3 = 0, • • • ∂ t u d-1 + P d-1 u d-1 + 1 ω d-1 u d = 0, ∂ t u d + P d u d = 1 ω d g, u j|t=0 = u 0 j , j ∈ {1 • • • d}, u j = 0 on (0, T ) × ∂Ω , j ∈ {1 • • • d},
where P j = -div(c j (x)∇•) for some symmetric uniformly elliptic matrices c j . Note that the null-controllability result is a particular case of the article [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic pdes by one control force[END_REF]. We have to suppose that d j=1 ω j = ∅. The spaces here are the same as above, the operator A 0 is diag(P

1 • • • P d ) and A 1 is       0 1 ω 1 . . . . . . . . . 1 ω d-1 0      
.

The above analysis directly yields the spectral inequality (13) of Theorem 3.2 and the partial control result of Theorem 4.10. The null-controllability result of Theorem 4.13 in any positive time, by only one control function g ∈ C ∞ 0 (0, T ; L 2 (Ω)) holds, supposing that Ω ⊂ R n , n ≤ 3.

6 Application to the controllability of a fractional order parabolic equation

Following [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF] and [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF], we give here an application of the spectral inequality (15) of Theorem 3.3 to the null-controllability of the following parabolic-type problem in which the dynamics is given by a fractional power of the non-selfadjoint operator A. We only treat the "good" case, i.e., when the power ν > 0 is sufficiently large. In this case, the selfadjoint problem is null-controllable. We consider

∂ t u + A ν u = Bg u |t=0 = u 0 ∈ H. (40) 
Here, we define (D(A ν ), -A ν ) as the infinitesimal generator of the strongly continuous semigroup 1 2iπ ∂P q K 0 e -tz ν R A (z) dz = S A ν (t), or equivalently one of the following expressions (see [START_REF] Haase | The Functional Calculus for Sectorial Operators[END_REF]),

A ν = 1 2iπ lim t→0 + ∂P q K 0 z ν e -tz ν R A (z) dz = (A + I) m 1 2iπ ∂P q K 0 z ν (z + 1) -m R A (z) dz = 1 2iπ ∂Σ z -ν R A (z) dz -1
, where m ∈ N, m ≥ ν + 1, and Σ = {z ∈ C, arg(z) ≤ arctan(K 0 α q-1 0 ), Re(z) ≥ α 0 } denotes a sector containing the spectrum of A. Here, we have to suppose that the operator A is positive, since Remark 1.1 does not hold in the case ν = 1. In the case ν / ∈ N, we choose the principal value of the fractional root. Hence, on each finite-dimensional subspace P k H, we can write A ν in terms of the functional calculus

A ν P k = 1 2iπ γ k z ν R A (z) dz. Moreover, from Proposition 2.8
we have (A ν P k ) * = (A * ) ν P * k . The same holds with Π α instead of P k . We now assume that the spectral inequality (15) of Theorem 3.3 holds for A and we obtain the following partial controllability result for ∂ t + A ν . It is the analogous of Theorem 4.9, supposing the spectral inequality (15) instead of (13). Note that in this case we have no additional restriction on the subordination number q (as opposed to the statement of Theorem 4.13). The proof follows that of [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF] or [START_REF] Rousseau | On carleman estimates for elliptic and parabolic operators[END_REF]. However, when A is not selfadjoint, the operator A ν is not necessarily positive. As a consequence, we also have to treat the possibly non-positive low frequencies of A ν . This problem does not arise when A is positive selfadjoint since A ν is always positive.

For ν > 0, we define

N ν = min{k ∈ N, Re(z ν ) > 0, ∀z ∈ I k }, such that A ν (I -Π α k ) (and also A * ν (I -Π * α k )) is a positive operator if k ≥ N ν . Proposition 6.1. Let α ≥ α Nν . The partial control problem ∂ t u + A ν u = Π α Bg u |t=0 = u 0 ∈ Π α H, (41) 
is null-controllable in any positive time T by a control function satisfying

g L 2 (0,T ;H) ≤ CT -1/2 e CT α ν Nν +Cα θ u 0 H .
Note that the additional cost e CT α ν Nν of the control function is needed to handle the exponentially increasing low frequencies.

Proof. The adjoint system of (41) is

-∂ t w + A * ν w = 0 w |t=T = w T ∈ Π * α H. Thus w(0) ∈ Π * α H and w(t) = e tA * ν w(0). We first estimate e -tA * ν Π * α k L(H) = 1 2iπ Γ k e -tz ν R A * (z) dz L(H) ≤ 1 2π Γα Nν e -tz ν R A * (z) L(H) dz + S α Nν <α k ≤α γ k e -tz ν R A * (z) L(H) dz .
7 Application to level sets of sums of root functions Following Jerison and Lebeau [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF], we give here an application of the spectral inequality (15) of Theorem 3.3 to the measurement of the level sets of finite sums of root functions in term of the largest eigenvalue. The operator involved here is a non-selfadjoint perturbation of the Laplace operator.

Let Ω be a bounded open set in R n (or a n-dimensional Riemannian compact manifold with or without boundary). We set H = Y = L 2 (Ω). Let -∆ be the Laplace operator on Ω and P (x, D) a differential operator of order d ∈ {0, 1}, such that A 1 = P (x, D) is a relatively compact perturbation of A 0 = -∆, with dirichlet boundary conditions. We set A = A 0 + A 1 = -∆ + P (x, D) and take for B * a localized observation, i.e. B * = B = 1 ω ∈ L(L 2 (Ω)) for some nonempty open subset ω ⊂ Ω.

First note that under the conditions above, Proposition 2.1 is valid with q = d/2 < 1 and assumption (a) of Theorem 2.5 is satisfied for p = 2/n. Moreover, the interpolation inequality (14) holds in this case (see Example 6.4 above). Note that a function ϕ is a sum of root functions of the operator A associated with eigenvalues of real part lower than max{α k ; α k ≤ α} if ϕ ∈ Π α L 2 (Ω). From Theorem 3.3, we have the following spectral inequality: there exists positive constants C, D such that for every positive α, for all ϕ ∈ Π α L 2 (Ω) (the dual space Π * α L 2 (Ω) does not play any role here),

ϕ L 2 (Ω) ≤ Ce Dα θ ϕ L 2 (ω) , θ = max 1 2 ; n + d 2 -1 . (42) 
Assume now that Ω is real-analytic, and, moreover the differential operator P (x, D) has realanalytic coefficients. Under these conditions, the operator -∂ 2 t + A is real-analytic hypoelliptic on R × Ω [Tre80, Theorem 5.4], and ϕ ∈ Π α L 2 (Ω) implies that ϕ is real-analytic. We denote by H n-1 the (n -1)-dimensional Hausdorff measure on Ω. We can now state the analogous of the result of Jerison and Lebeau [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF] for the class of non-selfadjoint elliptic operators we consider.

Theorem 7.1. For every level set K ∈ R, there exist positive constants C 1 , C 2 such that for all α > 0 and ϕ ∈ Π α L 2 (Ω),

H n-1 ({ϕ = K}) ≤ C 1 α θ + C 2 , θ = max 1 2 ; n + d 2 -1 . (43) 
The proof follows exactly the same of [JL99] and uses arguments from [START_REF] Donnelly | Nodal sets of eigenfunctions on riemannian manifolds[END_REF] and [START_REF] Donnelly | Nodal sets of eigenfunctions: Riemannian manifolds with boundary[END_REF].

This estimations (42) and ( 43) are known to be optimal for the Laplace operator, with θ = 1/2, see [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF]. As a consequence, one cannot hope to have better estimates in the cases where n+d

2 -1 ≤ 1 2 , i.e. n ≤ 3 if A = -∆ + c(x) and n ≤ 2 if A = -∆ + b(x) • ∇ + c(x)
. However in the case n+d 2 -1 > 1 2 , the results (42), (43) do not seem to be optimal.

Appendix

8.1 Properties of the Gevrey function e ∈ G σ , 1 < σ < 2

Here, we prove the existence of the Gevrey function e that is needed in the proof of Proposition 4.5.

Lemma 8.1. For every σ > 1, B 0 > 0 and κ ≤ 1 -1 2σ , there exists a Gevrey function e ∈ G σ such that (i) supp(e) = [0, 1] and 0 < e(t) ≤ 1 for all t ∈ (0, 1) ;

(ii) |ê(z)| ≤ c 1 e -c 2 |z| 1 σ if Im(z) ≤ 0 (iii) |ê(z)| ≥ c 3 e -c 4 |z| 1 σ in -iP κ B 0
where the constants c i are positive and -iP

κ B 0 = -i {z ∈ C, Re(z) ≥ 0, | Im(z)| < B 0 Re(z) κ }.
Proof. The function e 0 (t) = exp -t

-1 σ-1 -(1 -t) -1 σ-1
is in G σ and satisfies the properties (i) and (ii).

We aim to prove a lower bound for |ê 0 (z)| as |z| → ∞ in the parabola -iP κ B 0 . To have a precise estimation, we develop in detail the Laplace method, following [START_REF] Erdélyi | Asymptotic expansions[END_REF]. Let κ and B 0 two positive integers. For β < B 0 , we estimate ê0 (-i(s + iβs κ )) =

1 0 exp -t -1 σ-1 -(1 -t) -1 σ-1 exp(-(s + iβs κ )t)dt = s σ-1 σ 0 exp s 1 σ (-u -1 σ-1 -u) exp -(1 -s -σ-1 σ u) -1 σ-1 -iβus κ+ 1 σ -1 s -σ-1 σ du
after the rescaling change of variable t = s -σ-1 σ u. We then set ω = s 1 σ the increasing parameter, h(u) = -u -1 σ-1 -u and g β (ω, u) = exp -(1 -ω -(σ-1) u) -1 σ-1 -iβuω 1+σ(κ-1) , such that we write ê0 (-i(s + iβs κ )) = I(ω, β) = ω σ-1 0 ω -(σ-1) e ωh(u) g β (ω, u)du.

The function h(u) is negative on R + * , concave and h(u) < h(a) < 0 for u = a with a = (σ -1) -σ-1 σ > 0. Following the Laplace method, we then split the integral I(ω, β) in three parts. The most important contribution comes from the region where h reaches its maximum. We write I(ω, β) = ω -(σ-1) (I 1 (ω, β) + I 2 (ω, β) + I 3 (ω, β)), for η > 0, sufficiently small, that will be fixed below.

We first treat the main contribution I 2 : Morse Lemma [START_REF] Grigis | Microlocal Analysis for Differential Operators[END_REF] implies that for η sufficiently small, there exists two positive constants ν 1 and ν 2 and a diffeomorphism H : (a -η, a + η) -→ (-ν 1 , ν 2 ) such that h • H -1 (x) = h(a) -x 2 2 for x ∈ (-ν 1 , ν 2 ). Moreover, the jacobian J(x) = | det(dH -1 )|(x) satisfies J(0) 2 = |h (a)| -1 . With this change of variable, we obtain

I 2 (ω, β) = ν 2
-ν 1 g β (ω, H -1 (x))e ωh(a)-ωx 2 2 J(x)dx.

Setting y = ω 2 x, we obtain

I 2 (ω, β) = 2 ω e ωh(a) R 1 (-ν 1 ,ν 2 )
2 ω y J 2 ω y g β ω, H -1 2 ω y e -y 2 dy.

The modulus of the integrand is clearly bounded on R by Ce -y 2 , independent of ω and integrable. Let us study the asymptotics of the integrand as ω → +∞.

g β ω, H -1 2 ω y = exp -1 -ω -(σ-1) H -1 2 ω y -1 σ-1 × exp -iβH -1
2 ω y ω 1+σ(κ-1) .

The first exponential converges when ω → +∞. In fact, setting

ψ(ω, y) = 1 (-ν 1 ,ν 2 ) 2 ω y J 2 ω y exp   -1 -ω -(σ-1) H -1 2 ω y -1 σ-1   ,
we have ψ(ω, y) -→ e -1 J(0) = e -1 |h (a)| -1 2 , as ω → +∞.

For the second exponential in g β (the oscillating part), as H -1 (0) = a, we write H -1 (x) = a + xK(x) where K ∈ C ∞ (R) and we have exp -iβH -1 2 ω y ω 1+σ(κ-1) = exp -iβω 1+σ(κ-1) a + 2 ω yK 2 ω y = exp -iβω 1+σ(κ-1) a exp -i √ 2βω

1 2 +σ(κ-1) yK 2 ω y .

We may thus write To conclude the lemma, we now set e(t) = e -s 0 t e 0 (t) that is also in G σ and satisfies property (i). For z ∈ C, we have ê(z) = ê0 (z -is 0 ) and (ii) holds. Property (iii) follows from what precedes.

Lemma 8.2. Let K be a compact set and I(ω, x) a function defined on R + ×K, that is uniformly Lipschitz on R + × K with respect to the variable x ∈ K, i.e., ∃k 0 > 0, |I(ω, x 2 ) -I(ω, x 1 )| ≤ k 0 |x 2 -x 1 |, ω ∈ R + , x 1 , x 2 ∈ K.

If for every x ∈ K, lim ω→+∞ I(ω, x) = 0, then lim ω→+∞ max x∈K I(ω, x) = 0. We now set u = j∈N u j e j and observe that u ∈ L 2 (R; Y )

u 2 L 2 (R;Y ) = j∈N u j 2 L 2 (R) = 1 2π j∈N ûj 2 L 2 (R) = 1 2π j∈N (f (•), e j ) Y 2 L 2 (R) = 1 2π f 2 L 2 (R;Y ) .
We note that supp(u) ⊂ (0, T ) since supp(u j ) ⊂ (0, T ) for all j ∈ N. Hence the Fourier-Laplace transform of u is an entire function, satisfying, for z ∈ C 

  2, are selfadjoint elliptic operators, ω is a non-empty subset of the bounded open set Ω ⊂ R n , and a, b, c, d are bounded functions of x ∈ Ω and the coupling factor b does not vanish in an open subset O ⊂ Ω. Such parabolic systems have already been investigated. The first result was stated in [Ter00] in the context of insensitizing control (thus, one of the equations is backward in time). In this work, a positive answer to the nullcontrollability problem (5) is given in the case a = c = d = 0, b = 1 O and O∩ω = ∅. The control problem (5) was then solved in [ABD06] and [GBPG06] in the case O ∩ ω = ∅. In all these references, the authors used global parabolic Carleman estimates to obtain an observability estimate. They can thus treat time-dependant coefficients and semilinear reaction-diffusion problems. To the author's knowledge, the null-controllability in the case O ∩ ω = ∅ remains an open problem. A recent step in this direction has been achieved in [KT09], proving approximate controllability by a spectral method in the case a = c = d = 0, b = 1 O without any condition on O ∩ ω.

with I 1

 1 (ω, β) = a-η 0 e ωh(u) g β (ω, u)du , I 2 (ω, β) = a+η a-η e ωh(u) g β (ω, u)du I 3 (ω, β) = ω σ-1 a+η e ωh(u) g β (ω, u)du (45)

I 2

 2 (ω, β) = 2 ωe ωh(a) exp -iβω 1+σ(κ-1) a I 2 (ω, β),whereI 2 (ω, β) = R ψ(ω, y) exp -i √ 2βω1 2 +σ(κ-1) yK 2 ω y e -y 2 dy.The integrand in I 2 (ω, β) converges as ω → +∞ under the condition 1 2 + σ(κ -1) ≤ 0. By summated convergence, we haveI 2 (ω, β) -→ L(β) = arguments show that I 2 (ω, β) -L(β) is C 1 ([-B 0 , B 0 ]) with respect to the variable β. Then there exists k 0 such that for every ω sufficiently large∂( I 2 -L) ∂β (ω, β) ≤ k 0 , β ∈ [-B 0 , B 0 ].Thus, I 2 -L is uniformly Lipschitz with respect to the variable β and tends to zero for every fixed β as ω -→ +∞. Lemma 8.2 below implies that for all ε > 0, there existsω 0 > 0 such that | I 2 (ω, β) -L(β)| < ε for ω > ω 0 and β ∈ [-B 0 , B 0 ].We now address the terms I 1 and I 3 in (45). As h(u) < h(a) < 0 for u = a, we can write h(a -η) = h(a) -C -and h(a + η) = h(a) -C + with C + , C -> 0, depending only on η. Because h increases on (0, a], decreases on [a, +∞), and |g β | ≤ 1, we have|I 1 (ω, β)| ≤ ae ωh(a) e -ωC -, |I 3 (ω, β)| ≤ ω σ-1 e ωh(a) e -ωC + .Finally, for every fixed κ ≤ 1 -1 2σ , we can writeI(ω, β) = √ 2ω 1 2 -σ e ωh(a) exp -iβω 1+σ(κ-1) a I 2 (ω, β) + D(ω, β)with |D(ω, β)| ≤ Cω σ-1 2 e -C ± ω and I 2 converging to a non-zero limit uniformly in β.As a consequence, there exist C 1 , C 2 > 0 and ω 0 > 0 such that|I(ω, β)| ≥ C 1 e -C 2 ω , ω > ω 0 , β ∈ [-B 0 , B 0 ].Switching back to the variable s = ω σ , we then have for some s 0 > 0|ê 0 (-i(s + iβs κ ))| ≥ C 1 e -C 2 s 1 σ , s > s 0 , β ∈ [-B 0 , B 0 ].

8. 2 A

 2 Paley-Wiener-type theoremHere we prove a Paley-Wiener-type theorem adapted to the situation of Proposition 4.5 Proposition 8.3. Let Y be a separable Hilbert space and f ∈ H(C; Y ) satisfying for positive constants C N , C ε :f (z) Y ≤ C ε e ε|z| e T Im(z) , ∀ε > 0, z ∈ C; (46) f (τ ) Y ≤ C N (1 + |τ |) -N , ∀N ∈ N, τ ∈ R.(47)Then, there existsu ∈ C ∞ 0 (0, T ; Y ) such that û(z) = f (z), z ∈ C.Proof. Let (e j ) j∈N be a Hilbert basis of Y . For every j, z → (f (z), e j ) Y ∈ H(C; C). Equation (46) gives |(f (z), e j ) Y | ≤ C ε e ε|z| e T Im(z) , ∀ε > 0, z ∈ C, and the Paley-Wiener theorem [Hör83, Theorem 15.1.5] then implies that there exists an analytic functional u j carried by (0, T ) (see [Hör90, Chapter 9] for a precise definition) such that ûj (z) = (f (z), e j ) Y , z ∈ C. Moreover, (47) yields |û j (τ )| ≤ C N (1 + |τ |) -N , ∀N ∈ N, τ ∈ R and thus, u j ∈ C ∞ 0 (0, T ; C).

  j (t)e -itz e j dt, e k j (t)e -itz (e j , e k ) Y dt = ûk (z). Thus, û(z) = j∈N ûj (z)e j = j∈N (f (z), e j ) Y e j = f (z) and f is the Fourier-Laplace of u. Finally, (47) yields û(τ ) Y ≤ C N (1 + |τ |) -N , ∀N ∈ N, τ ∈ R and thus u ∈ C ∞ .

√ z + 1| ≥ e 2t Re( √ z) -1 ≥ 2t Re( √ z) ≥ 2t √ α 0 ,(16)

Then, for some C > 0, we obtain the following estimation of the semigroup

Thus, taking N ∈ N such that for k ≥ N , 1 α k ≥ e -Cα θ k , we finally obtain

and the proposition is proved.

For the sake of completeness, we now construct the control function for the parabolic problem (29), following [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. The decay rate proved in Proposition 4.12 shows that we have now to restrict ourselves to the case θ < 1, i.e. p -1 + q < 2. We recall that N is an integer such that for all n ≥ N , δ n-1 ≤ α n ≤ δ n (see Proposition 2.11).

Theorem 4.13. Suppose that q < 3 4 and θ < 1. Then, for every T > 0, u 0 ∈ H, there exists a control function g ∈ C ∞ 0 (0, T ; Y ) such that the solution u of the problem (29) satisfies u(T ) = 0.

Proof. We first fix ρ and γ > max{ 2(1-q) 3-4q , 1} such that 0 < ρ < min{ 1 γ , 1-θ θ }. We set T j = Kδ -jρθ , K being such that j∈N 2T j = T . We divide the time interval [0, T ] = j∈N [a j , a j+1 ], with (a j ) j∈N such that a 0 = 0 and a j+1 = a j + 2T j . Hence, lim j→∞ a j = T . For u j ∈ Π α j H, we define by G α j (u j , T j ) the control function given by Theorem 4.10 that drives u j to zero in time T j , which in particular satisfies the estimate (ii) of this theorem. We set J 0 an integer such that J 0 ≥ max{N, N } (so that δ j-1 ≤ α j ≤ δ j for j ≥ J 0 and the decay rate of Proposition 4.12 holds) and T j ≥ δ -(j-1) ≥ α -1 j for every j ≥ J 0 . We now define the control function g:

• if t ≤ a J 0 , we set g = 0, and u(t) = S A (t)u 0 ;

• if j ≥ J 0 , t ∈ (a j , a j + T j ], we set g = G α j (Π α j u(a j ), T j ), and

• if j ≥ J 0 , t ∈ (a j + T j , a j+1 ], we set g = 0, and

We recall that S A (t) L(H) ≤ 1 because we have required A to be positive. During the first phase 0 ≤ t ≤ a J 0 , we simply have u(a J 0 ) H ≤ u 0 H . The choice of the control function during the second phase implies for j ≥ J 0 , Π α j u(a j + T j ) = 0 and

Finally, during the third phase, the decay rate of the semigroup is given for j ≥ J 0 by Proposition 4.12 and we then have

The second term is bounded by Ce Cα θ sup e -t Re(z ν ) ≤ Ce Cα θ since Re(z ν ) ≥ 0 on each γ k , α Nν < α k ≤ α. Concerning the first term, we have Re(z ν ) ≥ -Cα ν Nν for z ∈ Γ Nν and thus

We thus obtain the estimate e -tA * ν Π * α k L(H) ≤ Ce CT α ν Nν +Cα θ

. We then have the observability inequality

from (15) applied to w(t) ∈ Π * α H. By duality, the proposition is proved.

The same type of estimates as those performed in the proof of Proposition 4.12 gives the following decay property, for k sufficiently large (k ≥ N ν ), for some constant 0 < c < 1,

We finally have the analogous of Theorem 4.13, which proof follows the same (choosing J 0 ≥ N ν ).

Proposition 6.2. Suppose that ν > θ. For every T > 0, for every u 0 ∈ H, there exists a control function g ∈ L 2 (0, T ; Y ) such that the solution u of the problem (40) satisfies u(T ) = 0.

In the case where A is a second order selfadjoint elliptic operator, the spectral inequality (15) always holds for θ = 1/2, and ν > 1/2 is necessary and sufficient for the null-controllability (see [START_REF] Micu | On the controllability of a fractional order parabolic equation[END_REF] and [START_REF] Miller | On the controllability of anomalous diffusions generated by the fractional laplacian[END_REF]). Here, with the estimations we have proved, the case 1/2 < ν ≤ θ is open.

Remark 6.3. Using arguments of measure theory given in [START_REF] Wang | L ∞ -null controllability for the heat equation and its consequences for the time optimal control problem[END_REF], Proposition 6.2 still holds if we replace the control operator B in (40) by 1 E B, for any subset of positive measure E ⊂ (0, T ). This means that the control function g given by Proposition 6.2 can be chosen so that g(t) = 0 for t / ∈ E.

Example 6.4. For Ω ⊂ R n and ω a non-empty subset of Ω, we take

Under the conditions above, Proposition 2.1 is valid with q = 1/2 and the assumption of Theorem 2.5 is satisfied for p = 2/n. Moreover, the interpolation inequality ( 14) is well known in this case. In fact, it originates from Carleman inequalities [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], which form is invariant under changes in the operator by lower order terms. Hence, the spectral inequality (15) of Theorem 3.3 holds for θ = max{1/2, n-1 2 }. For any time T > 0 and E ⊂ (0, T ) satisfying meas(E) > 0, Proposition 6.2 and Remark 6.