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Abstract

We consider elliptic operators A on a bounded domain, that are compact perturbations of
a selfadjoint operator. We first recall some spectral properties of such operators: localization
of the spectrum and resolvent estimates. We then derive a spectral inequality that measures
the norm of finite sums of root vectors of A through an observation, with an exponential
cost. Following [LR95], we deduce the construction of a control for the non-selfadjoint
parabolic problem ∂tu+ Au = Bg. In particular, the L2 norm of the control that achieves
the extinction of the lower modes of A is estimated. Examples and applications are provided
for systems of weakly coupled parabolic equations and for the measurement of the level sets
of finite sums of root functions of A.
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1 Introduction

1.1 Results in an abstract setting

Various methods have been developed to prove the null-controllability of parabolic equations
{
∂tu+Au = Bg
u|t=0 = u0

(1)

where A is of elliptic type, and B is a bounded operator (for instance a distributed control).
A large number of such results are based on the seminal papers of either G. Lebeau and
L. Robbiano [LR95] or A. Fursikov and O.Yu. Imanuvilov [FI96]. The first approach has been
used for the treatment of self-adjoint operators A. The second approach also permits to adress
non-selfadjoint operators and semilinear equations. Each method has advantages. We shall
focus on those of the Lebeau-Robbiano method. First, this method only relies on elliptic
Carleman estimates that are simpler to produce than their parabolic counterparts as needed
for the Fursikov-Immanuvilov approach. Second, it enlights some fundamental properties of
the elliptic operator A through a spectral inequality. This type of spectral inequality, further
investigated in [LZ98] and [JL99], has a large field of applications, like the measurement of the
level sets of sums of root functions (see [JL99] or Section 7). For control issues, it yields the cost
of the null-controllability of the low frequencies of the elliptic operator A. Finally, based on this
fine spectral knowledge of A, this approach gives an explicit iterative construction of the control
function, using both the partial controllability result and the natural parabolic dissipation.

In this paper, we extend the method of [LR95] for the abstract parabolic system (1) to cases
in which A is a non-selfadjoint elliptic operator. More precisely, we treat the case where A is a
small perturbation of a selfadjoint operator, under certain spectral assumptions. We suppose
A = A0 + A1 where A1 is a relatively compact perturbation of an elliptic selfadjoint operator
A0. We first obtain spectral inequalities of the following type. Denoting by Πα the projector
on the spectral subspaces of A associated to eigenvalues with real part less than α, we have,
for some θ ≥ 1/2

‖Παw‖H ≤ CeDα
θ ‖B∗Παw‖Y , w ∈ H. (2)

Here, B∗ ∈ L(H;Y ) denotes a bounded observation operator and the state space H and the
observation space Y are Hilbert spaces. Typically, B∗ = 1ω is a distributed observation. This
spectral inequality yields the cost of the measurement of some finite sums of root-vectors of A
through the partial observation B∗, in terms of the largest eigenvalue of A in the considered
spectral subspace. The difficulty here is not in the elliptic estimates since Carleman inequalities
remains unchanged under the addition of lower order terms, but in the spectral theory of
the non-selfadjoint operator A. This motivates the exposition of the spectral theory of such
operators in Section 2, following [Agr94].

Inequalities of the type of (2) were first established in [LR95] for the Laplace operator under
a relatively different form. In fact, the inequality proved in [LR95] reads

‖Παw+‖2
H + ‖Παw−‖2

H ≤ CeD
√
α
∥∥∥ϕB∗

(
et

√
AΠαw+ + e−t

√
AΠαw−

)∥∥∥
2

L2(0,T ;Y )
, w+, w− ∈ H,

(3)
where ϕ(t) is a smooth cut-off function. Here, in the non-selfadjoint case, we prove a spectral
inequality of the form

‖Παw‖H ≤ CeDα
θ
∥∥∥ϕB∗

(
et

√
AΠα + e−t

√
AΠα

)
w
∥∥∥
L2(0,T ;Y )

, w ∈ H. (4)
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We also prove that such an inequality is sufficient to deduce controllability results (in the
case θ < 1). Spectral inequality of the form (2) first appeared in [LZ98] and [JL99] for the
Laplace operator with θ = 1/2. Comments can be made about the two different forms of
spectral inequalities, (2) on the one hand, and (3), (4) on the other hand, that involves an
integration with respect to an additional variable. Both types can be proved with interpolation
inequalities (like (12) or (14) below), themselves following from local Carleman inequalities.
The interpolation inequality (12) used to prove (3) exhibits a spacialy distributed observation,
whereas the interpolation inequality (14), used to prove (2) is characterized by a boundary
observation at time t = 0. This latter form is more convenient to use for control results (see
Section 6). Yet, for systems, the derivation of such an interpolation inequality with boundary
observation at time t = 0 is open (see Section 5).

In Section 4, we deduce from the spectral inequality (4) the construction of a control function
for the parabolic problem (1). Following [LR95] and an idea that goes back to the work of
D.L. Russell [Rus73], the spectral inequality yields the controllability of the parabolic system

on the related finite dimensional spectral subspace ΠαH with a control cost of the form CeCα
θ
.

In the case θ < 1, we can then construct a control to the full parabolic equation (1). We
improve the method of [LR95] from a spectral point of view. The proof of the controllability
in [LR95] relies on the Hilbert basis property of the eigenfunctions of the Laplace operator.
Here we only use some resolvent estimate away from the spectrum. No (Hilbert or Riesz) basis
property is required in the construction.

The main results of this article can be summarized as follows

• Starting from an interpolation inequality of the Lebeau-Robbiano type (12) (resp. (14)),
the spectral inequality (4) (resp. (2)) holds (see Theorem 3.2, resp. 3.3).

• The spectral inequality (4) (resp. (2)) implies that the control cost needed to drive any

initial datum to (I − Πα)H is bounded by CeCα
θ

(see Theorem 4.10, resp. Proposition
6.2).

• In the case θ < 1, the non-selfadjoint parabolic system (1) is null-controllable in any
positive time (see Theorem 4.13).

The question of the optimality of the power θ in these spectral inequalities remains open.
For an elliptic operator A, in the results we obtain, the power θ increases linearly with the
space dimension n: θ ≈ max{1/2;n/2 − cst}. In the selfadjoint case however, the spectral
inequalities (2) and (4) always hold with θ = 1/2, and the controllability result always follows.
The power 1/2 is known to be optimal in this case (see [JL99] or [LL09]). Moreover, thanks to
global parabolic inequalities, the controlability result of Theorem 4.13 is in general known to be
true, independently on θ (see [FI96]). We are thus led to consider that the spectral inequalities
should be true with θ = 1/2: the power θ we obtain does not seem to be natural but only
technical.

Since θ ≈ max{1/2;n/2 − cst}, our controllability results, obtained for θ < 1, are limited
to small dimensions n. This problem arises in all the applications we give. In fact, in each of
them, the power θ is the limiting point of the theory. The origin of the dimension-depending
term n/2− cst in θ cannot be found in the elliptic estimates or in the control theory described
above, but only in the resolvent estimates we use (see Section 2). If one wants to improve our
results, one has to improve the resolvent estimates of [Agr94] (maybe taking into account that
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A is a differential operator). On the contrary, if one wants to prove the optimality of the power
θ, one needs to produce lower bounds for the resolvent of A. In any case, it does not seem to
be an easy task at all.

Remark 1.1. Note that we can replace A by A+λ in (1) without changing the controllability
properties of the parabolic problem. More precisely, suppose that the problem

{
∂tv + (A+ λ)v = Bf
v|t=0 = u0

is null-controllable in time T > 0 by a control function f . Then, the control function g = eλtf
drives the solution of Problem (1) to zero in time T and has the same regularity as f . Hence,
in the sequel, we shall consider that the operator A is sufficiently positive without any loss of
generality.

Remark 1.2. In the sequel, C will denote a generic constant, whose value may change from
line to line.

1.2 Some applications

We give several applications of such a spectral approach in Sections 5, 6 and 7.

This work has first been motivated by the problem of Section 5, i.e. the null-controllability
in any time T > 0 of parabolic systems of the type





∂tu1 + P1u1 + au1 + bu2 = 0 in (0, T ) × Ω,
∂tu2 + P2u2 + cu1 + du2 = 1ωg in (0, T ) × Ω,
u1|t=0 = u0

1 , u2|t=0 = u0
2 in Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(5)

where Pi = −div(ci∇·), i = 1, 2, are selfadjoint elliptic operators, ω is a non-empty subset of
the bounded open set Ω ⊂ R

n, and a, b, c, d are bounded functions of x ∈ Ω and the coupling
factor b does not vanish in an open subset O ⊂ Ω. Such parabolic systems have already
been investigated. The first result was stated in [Ter00] in the context of insensitizing control
(thus, one of the equations is backward in time). In this work, a positive answer to the null-
controllability problem (5) is given in the case a = c = d = 0, b = 1O and O∩ω 6= ∅. The control
problem (5) was then solved in [ABD06] and [GBPG06] in the case O ∩ ω 6= ∅. In all these
references, the authors used global parabolic Carleman estimates to obtain an observability
estimate. They can thus treat time-dependant coefficients and semilinear reaction-diffusion
problems. To the author’s knowledge, the null-controllability in the case O∩ω = ∅ remains an
open problem. A recent step in this direction has been achieved in [KT09], proving approximate
controllability by a spectral method in the case a = c = d = 0, b = 1O without any condition
on O ∩ ω.

The field of coupled systems of d parabolic equations, d ≥ 2, has also been investigated
in [ABDGB07] where the authors show a Kalman-type rank condition in the case where the
coefficients are constant and in [GBT] where the authors show the controllability of a cascade
system with nonvanishing variable coupling coefficients by one control force.

Here, we obtain a spectral inequality of the type (4) with θ = max{1/2;n/2 − 1} for the
operator

A =

(
P1 + a b
c P2 + d

)

4



with the measurement on only one component. As opposed to the results of [ABD06] and
[GBPG06], we can provide an estimation on the control cost of low modes for System (5).
The null-controllability of (5) follows from the method described above in the case n ≤ 3
(corresponding to θ < 1 in the spectral inequality).

In Section 6, we address the fractional power controllability problem

{
∂tu+Aνu = Bg
u|t=0 = u0 ∈ H,

that has been solved in the selfadjoint case in [MZ06] and [Mil06]. We prove the null-controllabi-
lity in any time T > 0 when ν > θ. The case ν ≤ θ is open. In particular when ν = 1, it allows
us to give an estimation on the control cost of low modes for the following heat equation with
a transport term 




∂tu− ∆u+ b · ∇u+ cu = 1ωg in (0, T ) × Ω,
u|t=0 = u0 in Ω,

u = 0 on (0, T ) × ∂Ω.
(6)

In the case n ≤ 2 (corresponding to θ < 1 in the spectral inequality), this estimate is sufficient
to recover the null-controllability of (6).

In section 7, we are not concerned with controllability issues, but with the measurement
of the (n − 1)-dimensional Hausdorff measure of the level sets of sums of root functions of
A = −∆ + b · ∇ + c on the n-dimensional compact manifold Ω. Yet, the technique and the
estimates used here are the same as in the other sections. We obtain the following estimate, for
sums of root functions associated with eigenvalues of real part lower than α, i.e. ϕ ∈ ΠαL

2(Ω),
we have

Hn−1({ϕ = K}) ≤ C1α
θ + C2 , θ = max

{
1

2
;
n− 1

2

}
.

This type of inequality has already been proved in the selfadjoint case for the Laplace operator.
In [DF88] and [DF90], H. Donnelly and C. Fefferman showed, for ϕ an eigenfunction associated
with the eigenvalue α, the estimate Hn−1({ϕ = K}) ≤ Cα1/2. This was generalized to sums
of eigenfunctions associated with eigenvalues lower than α in [JL99]. We generalize this last
result for operators that are lower order perturbations of the Laplace operator. Here, however,
θ is in general strictly greater than 1/2.

Acknowledgements. The author wishes to thank O. Glass and J. Le Rousseau for very
fruitful discussions, helpful comments and encouragements. The author also wishes to thank
L. Robbiano for discussions about the article [LR95].

2 Spectral theory of perturbated selfadjoint operators

To prepare the following sections, we shall first recall a theorem about the spectral theory of
some operators close to being selfadjoint. This result can be presented with numerous variations
and refinements. This subject has been a well-developped research field since the 60′s. The first
step of the theory is the Keldysh theorem on the completeness of the root vectors of a weakly
perturbed compact selfadjoint operator (see [GK69] for more precisions). The main result here,
Theorem 2.5, was first proved by A.S. Markus and by D.S. Katsnel’son [Kat67]. A simplified
proof was given later by A.S. Markus and V.I. Matstaev with Matsaev’s method of “artificial
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lacuna”. This proof is presented in the book [Mar88, Chapter 1] by A.S. Markus in the more
general case of weak perturbations of certain normal operators. For later use in the following
sections, we sharpen some of the results as given by M.S. Agranovich [Agr94], following the
steps of his proof.

Let H be a separable Hilbert space, (·, ·)H be the scalar product on H and ‖.‖H be the
associated norm. The set of bounded linear operators on H is denoted by L(H) and is equiped
with the subordinated norm ‖·‖L(H). As usual, for a given operator A on H, we denote by D(A)
its domain, by ρ(A) its resolvent set, i.e., the subset of C where the resolvent RA(z) = (z−A)−1

is defined and bounded, and by Sp(A) = C \ ρ(A) its spectrum.

Proposition 2.1. Let A = A0 +A1 be an operator on H. Assume that

(a) Re(Au, u)H ≥ 0 for all u ∈ D(A),

(b) A0 : D(A0) ⊂ H → H is selfadjoint, positive, with a dense domain and compact resolvent,

(c) A1 : D(A1) ⊂ H → H is q-subordinate to A0, i.e., there exist k0 > 0 and q ∈ [0, 1) such

that for every u ∈ D(A
1/2
0 ), |(A1u, u)H | ≤ k0

2 ‖A1/2
0 u‖2q

H ‖u‖2−2q
H .

We then have,

(i) D(A) = D(A0) ⊂ D(A1) ⊂ H and A has a dense domain and a compact resolvent,

(ii) Sp(A) ⊂ Oqk0 = {z ∈ C,Re(z) ≥ 0, | Im(z)| < k0|z|q}

(iii) ‖RA(z)‖L(H) ≤ 2
d(z,Sp(A0)) ≤ 2

d(z,R+) for z ∈ C \Oq2k0, where d(z, S) denotes the euclidian
distance from z to the subset S of C.

Remark 2.2. Note that the subordination assumption (b) can be found under the different
forms:

• D(Aq0) ⊂ D(A1), and ‖A1u‖H ≤ C‖Aq0u‖H for u ∈ D(Aq0) in [Agr76];

• D(A0) ⊂ D(A1), and ‖A1u‖H ≤ C‖A0u‖qH‖u‖
1−q
H for u ∈ D(A0) in [Mar88, Chapter 1];

• ‖A1A
−q
0 ‖L(H) = C < +∞ in [Dzh94].

Replacing Assumption (b) by one of these assertions does not change the conclusions of Propo-
sition 2.1 and Theorem 2.5.

Remark 2.3. Point (i) implies that Sp(A) contains only isolated eingenvalues, with finite
multiplicity and without any accumulation point. Furthermore, for every λ ∈ Sp(A), the
sequence of iterated null-spaces Nk = N((A− λ)k) is stationary.

For what follows, we shall need the spectrum of A to be located in a “parabolic neighbor-
hood” of the real positive axis. We note that there exist λ0 > 0, K0 > 0 such that

Sp(A+ λ0) ⊂ Oqk0 + λ0 ⊂ Oq2k0 + λ0 ⊂ Pq
K0

= {z ∈ C,Re(z) ≥ 0, | Im(z)| < K0 Re(z)q} , (7)

see Figure 1. We now fix λ0 and K0 satisfying this assumption. Referring to Remark 1.1, we
shall work with the operator A+ λ0, yet writing A for simplicity.
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Im(z) ∂P
q
K0

Re(z)

γk ∂O
q
2k0

+ λ0

αk−1 αkλ0

I0

α0

Ik−1 IkI1

α1

Figure 1: Complex contours around the spectrum of A

Definition 2.4. Let (αk)k∈N ⊂ R+ be an increasing sequence, 0 < α0 < α1 < · · · < αk < · · ·
tending to +∞, and such that αk /∈ Re(Sp(A)), for every k ∈ N. Then, we set Ik = {z ∈
C,Re(z) = αk, | Im(z)| ≤ K0α

q
k} and by γk, we denote the positively oriented contour delimited

by the vertical line segments Ik on the right and Ik−1 on the left and by the parabola ∂Pq
K0

on
the upper and the lower side (see Figure 1). We also define the associated spectral projectors

Pk =
1

2iπ

∫

γk

RA(z)dz.

Note that the spectral projector Pk is a projector on the characteristic subspaces of A
associated with the eigenvalues that are inside γk. The projectors satisfy the identity PkPj =
δjkPk. Moreover, thanks to Remark 2.3, the projectors Pk, k ∈ N, have finite rank.

We can now state the main spectral result, that can (at least partially) be found under
different forms in [Agr76], [Mar88, Chapter 1], [Agr94], [Dzh94].

Theorem 2.5. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · be the spectrum of the selfadjoint operator
A0. We assume the additional condition that there exists p > 0 such that lim supj→∞ λjj

−p >
0. Then, setting β = max{0, p−1 − (1 − q)}, there exists a sequence (αk)k∈N ⊂ R+ as in
Definition 2.4 such that for some C > 0

‖RA(z)‖L(H) ≤ eCα
β
k , k ∈ N, z ∈ Ik. (8)

Remark 2.6. Note that Proposition 2.1 point (iii) implies that ‖RA(z)‖L(H) ≤ 2
K0α

q
k
≤ 2

K0α
q
0

for z ∈ γk ∩ ∂Pq
K0

. Thus the resolvent estimate (8), ‖RA(z)‖L(H) ≤ eCα
β
k holds for all z ∈ γk.

Remark 2.7. Comments can be made about this theorem and its proof:

• The idea of the proof of Theorem 2.5 is to find uniform gaps around vertical lines Re(z) =
αk in the spectrum of A, to be sure that the resolvent RA is well-defined in these regions.
To find such gaps, one proves the existence of sufficiently large gaps in the spectrum of
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A0 and places αk in these zones. The results presented in [Agr76], [Mar88, Chapter 1],
[Agr94], [Dzh94] are in fact a bit stronger than Theorem 2.5 since they contain not only
the resolvent estimate (8) but also some basis properties.

• In the case p(1 − q) ≥ 1 one can prove a Riesz basis property for the subspaces PkH,
i.e. one can write H =

⊕
k∈N

PkH and there exists c > 0 such that for all u ∈ H,
c−1‖u‖2

H ≤∑k∈N
‖Pku‖2

H ≤ c‖u‖2
H .

• In the case p(1 − q) < 1 one can prove a weaker basis property (so-called Abel basis) for
the subspaces PkH.

For α ∈ R+ we define the spectral projector on the characteristic subspace of H associated
with the eigenvalues of real part less than max{αk;αk ≤ α}:

Πα =
∑

αk≤α
Pk =

1

2iπ

∫

Γα

RA(z)dz =
1

2iπ

∫
S

αk≤α γk

RA(z)dz,

where Γα is the positively oriented contour delimited by the vertical line segments Re(z) =
max{αk;αk ≤ α} on the right and Re(z) = α0 > 0 on the left and by the parabola Pq

K0
on the

upper and the lower side.

On each finite dimensional subspace PkH (or equivalently ΠαH) we have a holomorphic
calculus for A (e.g. see [Kat80]); given a holomorphic function f , we have

f(A)Pk = f(APk) =
1

2iπ

∫

γk

f(z)RA(z)dz ∈ L(PkH).

In the subsequent sections, we shall consider the adjoint problem of the abstract parabolic
system (1), involving A∗ = A0 + A∗

1. The spectral theory of A and A∗ and their respective
functional calculus are connected by the following proposition (see [Kat80]).

Proposition 2.8. Let f be a holomorphic function, γ a positively oriented contour in C\Sp(A).
We denote f̌ : z 7→ f(z̄), fγ(A) = 1

2iπ

∫
γ f(z)RA(z)dz and γ the positively oriented complex

conjugate contour of γ. Then, γ is a contour in C \ Sp(A∗) and (fγ(A))∗ = f̌γ(A∗).

With this new notation, fγk(A) = f(A)Pk = f(APk). Noting that with the choices made
above, γk = γk, Γα = Γα, we obtain

Pk(A
∗) = 1γk(A∗) = (1γk(A))∗ = Pk(A)∗ = P ∗

k

and Πα(A∗) = (Πα(A))∗ = Π∗
α. More generally, if f̌ = f , we have fγk(A∗) = (fγk(A))∗ and

fΓα(A∗) =
(
fΓα(A)

)∗
.

Example 2.9. For t ∈ R, the functions f(z) = etz or f(z) = et
√
z (taking for

√
z the principal

value of the square root of z ∈ C) or f(z) =
∫

R
ψ(t)e−itzdt (ψ being a real function) fulfill the

property f̌ = f . For all these functions, we have fγk(A∗) = (fγk(A))∗, fΓα(A∗) =
(
fΓα(A)

)∗
.

This will be used in the following sections.

Remark 2.10. Note that ‖RA∗(z)‖L(H) = ‖RA(z̄)‖L(H). As a consequence, any sequence
satisfying (8) for A also satisfies (8) for A∗.
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In the course of the construction of a control function that we present below, we shall need
a precise asymptotics of the increasing sequence (αk)k∈N, that is not given in [Agr94]. We first
remark that if (αk)k∈N is a sequence satisfying properties (i)− (iii) of Theorem 2.5, then every
subsequence of (αk)k∈N also satisfies these properties. We shall thus seek a minimal growth for
the asymptotics of (αk)k∈N.

For µ ∈ R, we set N (µ) = #{k ∈ N, λk ∈ Sp(A0), λk ≤ µ}. Here, we prove the following
proposition.

Proposition 2.11. If the eigenvalues of A0 satisfy the following asymptotics: N (µ) = m0µ
1

p +

o(µ
1

p ), as µ → +∞, then, for all δ > 1 we can choose the sequence (αn)n∈N such that there
exists N ∈ N and for every n ≥ N , we have δn−1 ≤ αn ≤ δn.

First note that the assumption we make here for the asymptotics of the eigenvalues is
stronger than that made in Theorem 2.5 for it implies λk ∼k→∞ Ckp.
To prove Proposition 2.11, we briefly recall how the sequence (αk)k∈N is built in [Agr94]. Every
αn is in the interval [µn − hµqn, µn + hµqn], where (µn)n∈N is a sequence increasing to infinity

such that #{k ∈ N, λk ∈ Sp(A0), λk ∈ [µn−hµqn, µn+hµqn]} ≤ Cµβn. We thus need to show the
existence of such a sequence (µn)n∈N, having a precise asymptotics as n goes to infinity. This
is the aim of Lemma 2.12 below, replacing [Agr94, Lemma 7]. With such a result, for all fixed
δ > 1 we can build (αn)n∈N such that there exists N ∈ N and for every n ≥ N , αn satisfies
δn−1 ≤ αn ≤ δn. We can then follow the proof of [Agr94] to finish that of Proposition 2.11,
estimating the resolvent on vertical lines Re(z) = C ∈ [µn − hµqn, µn + hµqn].

Lemma 2.12. We set r = p−1 and recall that β = max{0, r − 1 + q}. Assume that

N (µ) = m0µ
r + o(µr) as µ→ +∞. (9)

Then, for every h > 0, δ > 1, there exist C > 0 and N ∈ N such that for every n ≥ N , there
exists µn such that [µn − hµqn, µn + hµqn] ⊂ [δn−1, δn] and N (µn + hµqn)−N (µn − hµqn) ≤ Cµβn.

Proof. We proceed by contradiction. Let h > 0, δ > 0, and suppose that

∀C > 0,∀N ∈ N,∃n0 ≥ N + 1,∀µ satisfying [µ− hµq, µ+ hµq] ⊂ [δn0−1, δn0 ],
we have N (µ+ hµq) −N (µ− hµq) > Cµβ.

(10)

We choose 0 < ε < m0. From the asymptotics (9) of N , there exists N0 ∈ N such that for every
n ≥ N0,

(m0 − ε)δnr ≤ N (δn) ≤ (m0 + ε)δnr. (11)

Let us fix C ≥ 2hδβ+1

δ−1 (m0 + ε + 1) and N ∈ N such that N ≥ N0, and for all n ≥ N + 1,

(m0 − ε)δnr − 2hδβ+1

δ−1 (m0 + ε + 1)δnβ ≥ 0. Such a N exists since β ≤ r + q − 1 < r. Then for
these C and N , Assumption (10) gives the existence of n0 ≥ N + 1 ≥ N0 + 1 such that for
every µ satisfying [µ− hµq, µ+ hµq] ⊂ [δn0−1, δn0 ], we have N (µ+ hµq)−N (µ− hµq) > Cµβ .

We denote by ⌊x⌋ the floor function. In the interval [δn0−1, δn0 ], there are at least
⌊
δn0−δn0−1

2hδn0q

⌋

disjoint intervals of the type [µ−hµq, µ+hµq], each containing more than Cδ(n0−1)β eigenvalues
of A0. Hence,

N (δn0) −N (δn0−1) ≥ Cδ(n0−1)β

⌊
δn0 − δn0−1

2hδn0q

⌋
≥ Cδ(n0−1)β

(
δ − 1

2hδ
δn0(1−q) − 1

)
.

9



Then, taking into account the lower bound on C and the asymptotics (11) for n = n0 − 1 ≥
N ≥ N0, we obtain

N (δn0) ≥ (m0 + ε+ 1)δn0β+n0(1−q) − 2hδβ+1

δ−1 (m0 + ε+ 1)δ(n0−1)β + (m0 − ε)δr(n0−1)

≥ (m0 + ε+ 1)δn0(β+1−q),

since n0 ≥ N+1. The asymptotics (11) for n0 gives N (δn0) ≤ (m0+ε)δn0r ≤ (m0+ε)δn0(β+1−q)

since β ≥ r − 1 + q. This yields a contradiction and concludes the proof of the lemma.

3 Spectral inequality for perturbated selfadjoint elliptic oper-

ators

In this section, we prove in an abstract setting some spectral inequalities where the norm of a
finite sum of root vectors of A is bounded by a partial measurement of these root vectors. For
the proof, we assume that some interpolation inequality holds. This inequality will be proved
in the case of different elliptic operators in Section 5.

Such interpolation inequality were used in [LR95] and [LZ98] to achieve a spectral inequality
of the type we prove here. Note that this type of spectral inequality can however be obtained
by other means (e.g. doubling properties [AE08], or directly from global Carleman estimates
[BHL08]).

Here, we suppose that A = A0 + A1 : D(A) ⊂ H −→ H satisfies some of the spectral
properties of Section 2, i.e. (a) − (c) of Proposition 2.1 and the resolvent estimate (8) of
Theorem 2.5. We define the following Sobolev spaces based on the selfadjoint operator A0.

Definition 3.1. For s ∈ N and τ1 < τ2, we set

Hs(τ1, τ2) =
s⋂

n=0

Hs−n
(
τ1, τ2;D(A

n/2
0 )

)
,

which is a Hilbert space with the natural norm

‖v‖Hs(τ1,τ2) =

( ∑

n+m≤s
‖∂mt An/20 v‖2

L2(τ1,τ2;H)

)1/2

≈
( s∑

n=0

‖v‖2

Hs−n
“

τ1,τ2;D(A
n/2

0
)
”

)1/2

.

Note that H0(τ1, τ2) = L2(τ1, τ2;H).
Let Y be another Hilbert space, B∗ ∈ L(H,Y ) be a bounded operator. Let T0 be a positive
number, ϕ ∈ C∞

0 (0, T0; C), ϕ 6= 0 and θ = max{1/2, p−1 − (1 − q)} = max{1/2, β}.

Theorem 3.2. Suppose that there exist C ′ > 0, ζ ∈ (0, T0/2) and ν ∈ (0, 1] such that for every
v ∈ H2(0, T0)

‖v‖H1(ζ,T0−ζ) ≤ C ′‖v‖1−ν
H1(0,T0)

(
‖ϕB∗v‖L2(0,T0;Y ) + ‖(−∂2

t +A∗)v‖H0(0,T0)

)ν
. (12)

Then, there exist positive constants C,D such that for every positive α, for all w ∈ Π∗
αH,

‖w‖H ≤ CeDα
θ
∥∥∥ϕB∗

(
et

√
A∗

+ e−t
√
A∗
)
w
∥∥∥
L2(0,T0;Y )

. (13)
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In other situations, we can prove another interpolation inequality with an observation at
the boundary t = 0. In this case, we obtain a simpler spectral inequality, involving no time
integration in the observation term.

Theorem 3.3. Suppose that there exist C ′ > 0, ζ ∈ (0, T0/2) and ν ∈ (0, 1] such that for every
v ∈ H2(0, T0) satisfying v(0) = 0, we have

‖v‖H1(ζ,T0−ζ) ≤ C ′‖v‖1−ν
H1(0,T0)

(
‖B∗∂tv(0)‖Y + ‖(−∂2

t +A∗)v‖H0(0,T0)

)ν
. (14)

Then, there exist positive constants C,D such that for every positive α, for all w ∈ Π∗
αH,

‖w‖H ≤ CeDα
θ ‖B∗w‖Y . (15)

The estimation of the constant in the inequality in terms of the maximal eigenvalue in the
finite sum is the key point in the control applications below.

Proof of Theorem 3.2. For w ∈ Π∗
αH, we set

v(t) =
(
et

√
A∗

+ e−t
√
A∗
)
w =

1

2iπ

∫

Γα

(
et

√
z + e−t

√
z
)
RA∗(z)w dz.

We have v ∈ H2 (0, T0;H) ∩ H1 (0, T0;D(A)) ⊂ H2(0, T0) as D(A) = D(A0). We first notice
that (−∂2

t +A∗)v = 0. Second, we have to estimate every single term of

‖v‖2
H1(0,T0) = ‖v‖2

L2(0,T0;H) + ‖∂tv‖2
L2(0,T0;H) + ‖A1/2

0 v‖2
L2(0,T0;H) :

‖v‖H ≤
∥∥∥
(
et

√
A∗

+ e−t
√
A∗
)

Π∗
α

∥∥∥
L(H)

‖w‖H

≤
∥∥∥∥

1

2iπ

∫

Γα

(
et

√
z + e−t

√
z
)
RA∗(z)dz

∥∥∥∥
L(H)

‖w‖H

≤ Cmes (Γα) sup
z∈Γα

‖RA∗(z)‖L(H) sup
z∈Γα

∣∣∣et
√
z + e−t

√
z
∣∣∣ ‖w‖H

≤ CαeC(αβ+t
√
α)‖w‖H

since mes (Γα) ≤ Cα, ‖RA∗(z)‖L(H) ≤ eCα
β

from Estimate (8) of Theorem 2.5, Remark 2.10
and, ∣∣∣et

√
z + e−t

√
z
∣∣∣ ≤ 2etRe(

√
z),

with Re(
√
z) ≤

√
|z| ≤ C

√
α for z ∈ Γα.

Thus, for some C > 0, ‖v‖L2(0,T0;H) ≤ CeCα
θ‖w‖H . Concerning the second term in

‖v‖H1(0,T0), we have

‖∂tv‖L2(0,T0;H) =
∥∥∥
√
A∗
(
et

√
A∗ − e−t

√
A∗
)
w
∥∥∥
L2(0,T0;H)

,

and similar computations show that ‖∂tv‖L2(0,T0;H) ≤ CeCα
θ‖w‖H . In order to estimate the

third term in ‖v‖H1(0,T0), we use Assumption (a) of Proposition 2.1, observing that for all
u ∈ H,

‖A1/2
0 u‖2

H = (A0u, u)H = (A∗u, u)H − (A∗
1u, u)H

≤ (A∗u, u)H +
k0

2
‖A1/2

0 u‖2q
H ‖u‖2−2q

H

≤ (A∗u, u)H +
k0

2

(
qε

1

q ‖A1/2
0 u‖2

H + (1 − q)ε
− 1

1−q ‖u‖2
H

)
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for every positive ε and every q ∈ (0, 1), thanks to Young’s inequality. We then choose ε such

that γ
2 qε

1

q ≤ 1
2 and we obtain for every u ∈ H,

‖A1/2
0 u‖2

H ≤ C
(
(A∗u, u)H + ‖u‖2

H

)
≤ C

(
‖A∗u‖H‖u‖H + ‖u‖2

H

)
.

The same estimate is obvious in the case q = 0. Similar computations as those performed above

yield ‖A1/2
0 v‖L2(0,T0;H) ≤ CeCα

θ‖w‖H , and we have finally

‖v‖H1(0,T0) ≤ CeCtα
θ‖w‖H , w ∈ Π∗

αH.

We now produce a lower bound for the left-hand-side of (12). We first notice that the operator(
et

√
A∗

+ e−t
√
A∗
)

Π∗
α is an isomorphism on Π∗

αH and we compute an upper bound for its

inverse:
∥∥∥∥
[(
et

√
A∗

+ e−t
√
A∗
)

Π∗
α

]−1
∥∥∥∥
L(H)

=

∥∥∥∥
1

2iπ

∫

Γα

(
et

√
z + e−t

√
z
)−1

RA∗(z)dz

∥∥∥∥
L(H)

≤ Cmes (Γα)eCα
β

sup
z∈Γα

∣∣∣et
√
z + e−t

√
z
∣∣∣
−1

≤ CαeC(αβ+t
√
α) sup
z∈Γα

1

|e2t
√
z + 1| .

Then, we have
|e2t

√
z + 1| ≥ e2tRe(

√
z) − 1 ≥ 2tRe(

√
z) ≥ 2t

√
α0, (16)

since Re(
√
z) ≥ √

α0 > 0 on Γα. Hence, for some constant C > 0,
∥∥∥∥
[(
et

√
A∗

+ e−t
√
A∗
)

Π∗
α

]−1
∥∥∥∥
L(H)

≤ C

t
eC(αβ+t

√
α).

Concerning the left-hand-side of (12), we thus have the following lower bound:

‖v‖2
H1(ζ,T0−ζ) ≥ ‖v‖2

L2(ζ,T0−ζ;H) ≥
∫ T0−ζ

ζ

∥∥∥∥
[(
et

√
A∗

+ e−t
√
A∗
)

Π∗
α

]−1
∥∥∥∥
−2

L(H)

dt ‖w‖2
H

≥ Ce−2Cαβ

∫ T0−ζ

ζ
t2e−2tC

√
αdt ‖w‖2

H

≥ Ce−2Cαβ
ζ2

∫ T0−ζ

ζ
e−2tC

√
αdt ‖w‖2

H

≥ Ce−2Cαβ
ζ2 e

−T0C
√
α

√
α

sinh
(
C
√
α(T0 − 2ζ)

)
‖w‖2

H

≥ Cζ2(T0 − 2ζ)e−C(αβ+
√
α)‖w‖2

H ≥ Ce−Cα
θ‖w‖2

H .

The interpolation inequality (12) then gives

Ce−Cα
θ‖w‖H ≤

(
CeCα

θ‖w‖H
)1−ν ∥∥∥ϕB∗

(
et

√
A∗

+ e−t
√
A∗
)
w
∥∥∥
ν

L2(0,T0;Y )
.

Dividing both side by ‖w‖1−ν
H , we finally obtain the existence of positive constants C,D such

that for every positive α, for all w ∈ Π∗
αH,

‖w‖H ≤ CeDα
θ
∥∥∥ϕB∗

(
et

√
A∗

+ e−t
√
A∗
)
w
∥∥∥
L2(0,T0;Y )

.
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Proof of Theorem 3.3. This proof follows the same; for w ∈ Π∗
αH, we take

v(t) = (A∗)−1/2 sinh(t
√
A∗)w =

1

2iπ

∫

Γα

sinh(t
√
z)√

z
RA∗(z)w dz,

instead of v(t) =
(
et

√
A∗

+ e−t
√
A∗
)
w, see [LZ98], [JL99]. It satisfies (−∂2

t + A∗)v = 0,

v(0) = 0 and ∂tv(0) = w. We also have v ∈ H2(0, T0) and ‖v‖H1(0,T0) ≤ CeCtα
θ‖w‖H as

above. Only the lower bound for ‖v‖H1(ζ,T0−ζ) has to be proved. To begin with, the operator

(A∗)−1/2 sinh(t
√
A∗)Π∗

α is an isomorphism on Π∗
αH and we compute an upper bound for its

inverse:
∥∥∥∥
[
(A∗)−1/2 sinh(t

√
A∗)Π∗

α

]−1
∥∥∥∥
L(H)

=

∥∥∥∥∥
1

2iπ

∫

Γα

(
sinh(t

√
z)√

z

)−1

RA∗(z)dz

∥∥∥∥∥
L(H)

≤ CαeCα
β

sup
z∈Γα

∣∣∣∣
√
z

sinh(t
√
z)

∣∣∣∣

≤ Cα3/2eCα
β

sup
z∈Γα

1

|et
√
z − e−t

√
z|

≤ Cα3/2eC(αβ+t
√
α) sup
z∈Γα

1

|e2t
√
z − 1| .

Then, |e2t
√
z−1| ≥ e2tRe(

√
z)−1, and (16) gives a lower bound for ‖v‖H1(ζ,T0−ζ) ≥ ‖v‖L2(ζ,T0−ζ;H)

as in the preceeding proof. The conclusion follows as in the proof of Theorem 3.2.

4 From the spectral inequality to a parabolic control

In this section we construct a control for the parabolic abstract problem (1). We follow the
method introduced by G. Lebeau and L. Robbiano in [LR95]. The non-selfadjoint nature of
the problem requires however modifications in their approach.

Let H and Y be two Hilbert spaces, H standing for the state space and Y the control space.
We suppose that B ∈ L(Y,H) is a bounded control operator and A is an unbounded operator
A : D(A) ⊂ H −→ H that satisfies all the spectral properties of Section 2, i.e. (a) − (c) (and
thus also (i) − (iii)) of Proposition 2.1, the resolvent estimate (8) of Theorem 2.5, and the
asymptotics given by Proposition 2.11. In particular, the properties (a)− (c) of Proposition 2.1
imply that −A generates a C0-semigroup of contraction on H. If we take u0 in H, Problem (1)
is then well-posed in H.

Let T0 be a positive number, ϕ ∈ C∞
0 (0, T0; C), ϕ 6= 0, and B∗ ∈ L(H,Y ) the adjoint

operator of B, i.e., such that (By, h)H = (B∗h, y)Y for every y ∈ Y , h ∈ H. We assume
that the result of Theorem 3.2, (i.e. the spectral inequality (13)) holds. An example will be
given in Section 5. We shall first interpret this spectral inequality (13) of Theorem 3.2 as an
observability estimate for an elliptic evolution problem.

Remark 4.1. Note that if we suppose the spectral inequality (15) of Theorem 3.3 instead of
(13), the construction of the control function follows that of [Mil06] or [LL09] and is much
simpler. In fact, the spectral inequality (15) directly yields an observability inequality for the
partial problem (27) and implies an analogous of Theorem 4.9. This proof can be found in
Section 6, taking ν = 1. Section 4.4 then ends the proof of the null-controllability. Note that in
this case, there is no restriction on the subordination number q (in Proposition 4.5, we require
q < 3/4) since there is no need of the regularisation with a Gevrey function.
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4.1 Elliptic controllability on ΠαH with initial datum in PkH

From the spectral inequality (13), we deduce a controllability result for a family of (finite
dimensional) elliptic evolution problems. Let first Gα be the following gramian operator

Gα =

∫ T0

0

(
et

√
A + e−t

√
A
)

ΠαB|ϕ(t)|2B∗
(
et

√
A∗

+ e−t
√
A∗
)

Π∗
αdt.

Lemma 4.2. The operator Gα in an isomorphism from Π∗
αH onto ΠαH. We denote by G−1

α

the inverse of Gα on ΠαH.

Then, there exists D0 > 0 and for every s ∈ N there exists Cs such that for every T0 > 0,
α > 0, k ∈ N

∗ satisfying αk ≤ α, for every vk ∈ PkH, the function

hk(t) = |ϕ(t)|2B∗
(
et

√
A∗

+ e−t
√
A∗
)
G−1
α vk (17)

satisfies

(i) hk ∈ C∞
0 (0, T0;Y );

(ii) ‖∂st hk‖L∞(0,T0;Y ) ≤ Csα
s
2 eD0αθ‖vk‖H ;

(iii) for all w ∈ Π∗
αH, (vk, w)H =

(
Bhk,

(
et

√
A∗

+ e−t
√
A∗
)
w
)
L2(0,T0;H)

.

Remark 4.3. Here, we could actually take the “initial datum” v in ΠαH and the result and
its proof remain the same. We have choosen to take v in PkH since it is the precise result we
use in Proposition 4.5, in particular to prove the estimate (iii) of Proposition 4.5, which in turn
is a key point in the proof of Theorem 4.10 below.

Proof. We first observe that the spectral inequality (13) implies that Gα in an isomorphism
from Π∗

αH onto ΠαH.
Then, we note that point (ii) implies (i), and is itself a direct consequence of expression

(17) where B∗ is bounded and ‖G−1
α ‖L(H) ≤ CeD0αθ

from the spectral inequality (13).
Finally, we check that (iii) holds. For w ∈ Π∗

αH, we compute
(
Bhk,

(
et

√
A∗

+ e−t
√
A∗
)
w
)
L2(0,T0;H)

=
(
B|ϕ(t)|2B∗

(
et

√
A∗

+ e−t
√
A∗
)
G−1
α vk,

(
et

√
A∗

+ e−t
√
A∗
)
w
)
L2(0,T0;H)

=

((∫ T0

0

(
et

√
A + e−t

√
A
)

ΠαB|ϕ(t)|2B∗
(
et

√
A∗

+ e−t
√
A∗
)

Π∗
αdt

)

︸ ︷︷ ︸
Gα

G−1
α vk, w

)

H

= (vk, w)H .

Remark 4.4. Lemma 4.2 corresponds to a null-controlability property on [0, T0] in ΠαH for
the elliptic control problem with initial condition in PkH





−∂2
t u+Au = ΠαBhk,

u|t=0 = 0,

∂tu|t=0 = v ∈ PkH,

u|t=T0
= ∂tu|t=T0

= 0,
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whose dynamics remains in ΠαH for every t ∈ [0, T0]. The adjoint problem is the following,
well-posed in Π∗

αH: 



−∂2
t z +A∗z = 0,

z|t=T0
= w ∈ Π∗

αH,

∂tz|t=T0
= 0.

The estimation of the “cost” of the control hk is the key point for the following parabolic
partial controllability properties.

4.2 Parabolic controllability on ΠαH with initial datum in PkH

From the elliptic controlability result of Lemma 4.2, we now deduce a corresponding parabolic
controllability result. The main tools here are the transformation introduced in [Rus73] and a
Paley-Wiener-type theorem.

Proposition 4.5. We suppose that the subordination number satisfies q < 3
4 and we fix γ >

max{2(1−q)
3−4q , 1}. Then, for all T > 0 there exists D1 > 0 and for every s ∈ N there exists Cs

such that for every 0 < T < T , α > 0, k ∈ N
∗ satisfying αk ≤ α, for every uk,0 ∈ PkH, there

exists a control function Gk such that:

(i) Gk ∈ C∞
0 (0, T ;Y );

(ii) ‖∂stGk‖L∞(0,T ;Y ) ≤ CsT
−2γs exp

(
D1(α

θ + 1
T γ + (Tαk)

γ
2γ−1 ) − Tαk−1

)
‖uk,0‖H ;

(iii) for all w ∈ Π∗
αH, −(uk,0, e

−TA∗
w)H =

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

.

Remark 4.6. For technical requirements, that can be found in the proof of Lemma 8.1 in
Appendix 8.1, we have assumed that the subordination q of A1 to A0 is less than 3

4 here. This
will be the case in all the applications we present in Section 5.

Remark 4.7. The new variable T here is the time in which we want to control the full equation
(29), appearing in Section 4.4.

Proof. From Lemma 4.2, we have for any positive T0 (that will be fixed equal to 1 below): for
all vk ∈ PkH, there exists hk (that we know with precision) such that for all w ∈ Π∗

αH,

(vk, w)H = (vk, P
∗
kw)H =

(
Bhk,

(
et

√
A∗

+ e−t
√
A∗
)
P ∗
kw
)
L2(0,T0;H)

=

(∫ T0

0

(
et

√
A + e−t

√
A
)
PkBhk(t)dt, w

)

H

=

(∫ T0

0

(
1

2iπ

∫

γk

(
et

√
z + e−t

√
z
)
RA(z)dz

)
Bhk(t)dt, w

)

H

=

(
1

2iπ

∫

γk

RA(z)B

∫ T0

0

(
et

√
z + e−t

√
z
)
hk(t)dt dz, w

)

H

.

We introduce the Fourier-Laplace transform of a function:

f̂(z) =

∫

R

f(t)e−itzdt, z ∈ C.
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If f ∈ C∞
0 (0, T0;Y ), then f̂ is an entire function with values in Y . We write f̂ ∈ H(C;Y ).

Recalling that hk ∈ C∞
0 (0, T0;Y ), we have ĥk ∈ H(C;Y ) and

(vk, w)H =

(
1

2iπ

∫

γk

RA(z)B
(
ĥk(i

√
z) + ĥk(−i

√
z)
)
dz, w

)

H

. (18)

From Lemma 4.2 (ii), taken with s = 0, we obtain ‖ĥk(z)‖Y ≤ C0e
D0αθ

eT0| Im(z)|‖vk‖H . Fol-
lowing [Rus73] and [LR95], we set

Qk(−iz2) = ĥk(iz) + ĥk(−iz),

and note that Qk(z) is an entire function with respect to z. We now have for every vk ∈ PkH,
the existence of Qk ∈ H(C;Y ) such that for all w ∈ Π∗

αH,

(vk, w)H =

(
1

2iπ

∫

γk

RA(z)BQk(−iz)dz, w
)

H

, (19)

with Qk satisfying

‖Qk(z)‖Y ≤ C0e
D0αθ

eT0

√
|z|‖vk‖H . (20)

The goal is now to see Qk as the Fourier-Laplace transform of a regular function with
compact support in (0, T ). However, (a Hilbert-valued version of) the Paley-Wiener theorem
[Hör83, Theorem 15.1.5] indicates that the inverse Fourier transform of Qk is only in the dual
space (G2(R;Y ))′ of the space of Gevrey functions of order 2. With the convolution by a
function e ∈ Gσ, σ ∈ (1, 2), i.e. by multiplying Qk by ê, we can now regularize the inverse
Fourier transform of Qk.

We fix T0 = 1 and set σ = 2 − 1
γ ∈ (1, 2). Since we have required that q < 3

4 and

γ > max{2(1−q)
3−4q , 1}, the Gevrey index σ = 2 − 1

γ satisfies σ > 1
2(1−q) what is equivalent to

q < 1− 1
2σ . Under these conditions, Lemma 8.1 of Appendix 8.1 gives the existence of a Gevrey

function e ∈ Gσ satisfying (the constants ci are positive)





supp(e) = [0, 1] and 0 < e(t) ≤ 1 for all t ∈ (0, 1),

|ê(z)| ≤ c1e
−c2|z|

1
σ if Im(z) ≤ 0,

|ê(z)| ≥ c3e
−c4|z|

1
σ in − iPq

K0T 1−q = −i{z ∈ C,Re(z) ≥ 0, | Im(z)| < K0T 1−q Re(z)q}.
(21)

The parabola Pq
K0T 1−q is choosen here so that for every k ∈ N, for every z ∈ γk ⊂ Pq

K0
(defined

in (7)), we have T z ∈ Pq
K0T 1−q and the lower bound of (21) holds.

We set, for T < T ,
ĝk(z) = ê(Tz)Qk(z) ∈ H(C;Y ),

and because of (20) and the first two points of (21), ĝk(z) satisfies the following estimates

‖ĝk(z)‖Y ≤ C0e
T Im(z)eD0αθ

e
√

|z|‖vk‖H for every z ∈ C, (22)

‖ĝk(z)‖Y ≤ C0c1e
−c2|Tz|

1
σ eD0αθ

e
√

|z|‖vk‖H if Im(z) ≤ 0. (23)
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From (22), (23) and the Paley-Wiener-type theorem given in Proposition 8.3 in Appendix
8.2, there exists gk ∈ C∞

0 (0, T ;Y ) such that ĝk(z) =
∫

R
gk(t)e

−iztdt for every z ∈ C. The
function gk is then given by gk(t) = 1

2π

∫
R
ĝk(τ)e

iτtdτ . From (23), gk satisfies the estimates

‖∂st gk‖L∞(0,T ;Y ) ≤
C0c1
2π

eD0αθ

∫

R

|τ |se−c2|Tτ |
1
σ e

√
|τ |dτ‖vk‖H , s ∈ N.

The Laplace method [Erd56] applied to this integral (only dependent on s and γ) finally implies
that there exists C > 0 and for every s ∈ N there exists Cs > 0 such that for every T > 0,
α > 0, k ∈ N

∗ such that αk ≤ α, for every vk ∈ PkH,

‖∂st gk‖L∞(0,T ;Y ) ≤ Cse
D0αθ

T−2γse
C

Tγ ‖vk‖H . (24)

Let us now properly construct the control function that satisfies the three assertions of the
proposition. We first note that for T < T , the operators ê(−iTA) and e−TA are two isomor-
phisms of PkH since the holomorphic functions ê(−iTz) and e−Tz do not vanish in Pq

K0
.

Given uk,0 ∈ PkH, we set vk = −[ê(−iTA)]−1e−TAuk,0 ∈ PkH and gk the associated con-
trol function given as preceeding. We set Gk(t) = gk(T − t), which satisfies point (i) of the
proposition. From (24), we obtain

‖∂stGk‖L∞(0,T ;Y ) ≤ Cse
D0αθ

T−2γse
C

Tγ ‖[ê(−iTA)]−1Pk‖L(H)‖e−TAPk‖L(H)‖uk,0‖H . (25)

We can estimate

‖[ê(−iTA)]−1Pk‖L(H) =

∥∥∥∥
1

2iπ

∫

γk

1

ê(−iTz)RA(z)dz

∥∥∥∥
L(H)

≤ 1

2π
mes(γk) sup

z∈γk

1

|ê(−iTz)| sup
z∈γk

‖RA(z)‖L(H)

≤ Cαk sup
z∈γk

1

|ê(−iTz)| sup
z∈γk

‖RA(z)‖L(H)

≤ C ′αk sup
z∈γk

c−1
3 ec4|Tz|

1
σ eCα

β
k

≤ C ′′e ec4(|Tαk|
1
σ +αθ),

where we have used the third property of the Gevrey function e given in (21) and the resolvent
estimate (8) of Theorem 2.5 on γk. A similar estimate for ‖e−TAPk‖L(H) gives

‖e−TAPk‖L(H) ≤ Cαke
−Tαk−1+Cαθ

.

We finally obtain from (25) that for all T > 0 there exists D1 > 0 and for every s ∈ N there
exists Cs > 0 such that for every 0 < T < T , α > 0, k ∈ N

∗ such that αk ≤ α, for every
uk,0 ∈ PkH,

‖∂stGk‖L∞(0,T ;Y ) ≤ Cse
D1αθ

T−2γse
D1
Tγ eD1|Tαk|

1
σ e−Tαk−1‖uk,0‖H . (26)

Point (ii) of the proposition is thus proved recalling that 1
σ = γ

2γ−1 . To prove (iii), we compute

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

, with w ∈ Π∗
αH. We have

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

=
(
Bgk, e

−tA∗
w
)
L2(0,T ;H)

=
(
e−tABgk, w

)
L2(0,T ;H)

=

(∫ T

0

(
1

2iπ

∫

γk

e−tzRA(z)dz

)
Bgk(t)dt, w

)

H

=

(
1

2iπ

∫

γk

RA(z)B

∫ T

0
e−tzgk(t)dtdz, w

)

H

17



As supp(gk) ⊂ (0, T ), we obtain

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

=

(
1

2iπ

∫

γk

RA(z)Bĝk(−iz)dz, w
)

H

=

(
1

2iπ

∫

γk

RA(z)Bê(−iTz)Qk(−iz)dz, w
)

H

=

(
ê(−iTA)

1

2iπ

∫

γk

RA(z)BQk(−iz)dz, w
)

H

because the holomorphic calculus gives for φ ∈ H(C; C) and ψ ∈ H(C;H)

(
1

2iπ

∫

γk

φ(z)RA(z)dz

)(
1

2iπ

∫

γk

RA(z)ψ(z)dz

)
=

1

2iπ

∫

γk

φ(z)RA(z)ψ(z)dz.

From (19), we then have

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

=

(
1

2iπ

∫

γk

RA(z)BQk(−iz)dz, ê(−iTA∗)w

)

H
= (vk, ê(−iTA∗)w)H

as ê(−iTA∗)w ∈ Π∗
αH. Recalling that vk = −[ê(−iTA)]−1e−TAuk,0, we have obtained that the

function Gk constructed here satisfies for all w ∈ Π∗
αH

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

=
(
−[ê(−iTA)]−1e−TAuk,0, ê(−iTA∗)w

)
H

= −
(
e−TAuk,0, w

)
H
,

for every uk,0 ∈ PkH. Point (iii) is thus proved. This concludes the proof of Proposition 4.5.

Remark 4.8. Proposition 4.5 is a null-controlability property on [0, T ] in the finite dimensional
space ΠαH for the parabolic control problem :





∂tu+Au = ΠαBGk,
u|t=0 = uk,0 ∈ PkH,

u|t=T = 0.

This also means that for every initial datum u0,k ∈ PkH and T > 0, there exists Gk ∈
C∞

0 (0, T ;Y ) such that the solution of

{
∂tu+Au = BGk,
u|t=0 = uk,0 ∈ PkH,

satisfies Παu(T ) = 0.

4.3 Parabolic controllability on ΠαH

We shall now combine the controllability results for initial datum in PkH, αk ≤ α to obtain
a null-controllability result for an initial datum in ΠαH. The norm of the control function
Gα will be estimated to prepare for the next section, where a control for an arbitrary initial
condition in H is constructed.

{
∂tu+Au = ΠαBGα
u|t=0 = u0 ∈ ΠαH.

(27)
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Theorem 4.9. For the control problem (27), for every positive T , for every γ sufficiently large,
there exists a control function Gα ∈ C∞

0 (0, T ;Y ) driving u0 to 0 in time T with a cost given by
‖Gα‖L∞(0,T ;Y ) ≤ C exp

(
D(αθ + 1

T γ )
)
‖u0‖H .

Actually, we prove the following more precise result.

Theorem 4.10. Let q < 3
4 and γ > max{2(1−q)

3−4q , 1}. For all T > 0, there exists D > 0 and for
every s ∈ N there exists Cs such that for every 0 < T < T , α > 0, for every u0 ∈ ΠαH, there
exists a control function Gα such that :

(i) Gα ∈ C∞
0 (0, T ;Y );

(ii) ‖∂stGα‖L∞(0,T ;Y ) ≤ CsT
−2γs exp

(
D(αθ + 1

T γ )
)
‖u0‖H ;

(iii) for all w ∈ Π∗
αH, −(u0, e

−TA∗
w)H =

(
BGα, e

−(T−t)A∗
w
)
L2(0,T ;H)

.

Proof. We write u0 =
∑

αk≤α Pku0 ∈ ΠαH, with Pku0 ∈ PkH and Proposition 4.5 gives for
every k the existence of a control function Gk satisfying:
{

for all w ∈ Π∗
αH, −(Pku0, e

−TA∗
w)H =

(
BGk, e

−(T−t)A∗
w
)
L2(0,T ;H)

;

‖∂stGk‖L∞(0,T ;Y ) ≤ CsT
−2γs exp

(
D1(α

θ + 1
T γ + (Tαk)

γ
2γ−1 ) − Tαk−1

)
‖Pku0‖H

(28)

We set
Gα =

∑

αk≤α
Gk ∈ C∞

0 (0, T ;Y ).

and (i) is clear as the sum is finite. To prove (iii), given w ∈ Π∗
αH, we simply compute

−(u0, e
−TA∗

w)H =
∑

αk≤α
−
(
Pku0, e

−TA∗

w
)
H

=
∑

αk≤α

(
BGk, e

−(T−t)A∗

w
)
L2(0,T ;H)

=
(
BGα, e

−(T−t)A∗

w
)
L2(0,T ;H)

.

We now prove point (ii). Here, we use the asymptotic estimation for the sequence (αk)k∈N

given in Proposition 2.11. Let δ > 1, there exists N ∈ N such that δk−1 ≤ αk ≤ δk if k ≥ N .
We then have

‖∂stGα‖L∞(0,T ;Y ) ≤
∑

αk≤α
‖∂stGk‖L∞(0,T ;Y )

≤ CsT
−2γseD1(αθ+ 1

Tγ )
∑

αk≤α
eD1(Tαk)

γ
2γ−1 −Tαk−1‖Pku0‖H

≤ CsT
−2γseD1(αθ+ 1

Tγ )‖u0‖H
∑

αk≤α
eD1(Tδk)

γ
2γ−1 −Tδk−2

.

It remains to estimate the sum. Recalling that γ
2γ−1 < 1, the function x 7→ eD1x

γ
2γ−1 −δ−2x is

bounded on R+ by a constant κ = κ(γ, δ). We thus have

∑

αk≤α
eD1(Tδk)

γ
2γ−1 −Tδk−2 ≤ Nκ+

∑

k≥N
αk≤α

κ ≤ κ

(
N +

ln(α)

ln(δ)

)
.

Finally, changing the constants Cs, we conclude that

‖∂stGα‖L∞(0,T ;Y ) ≤ CsT
−2γs exp

(
D(αθ +

1

T γ
)

)
‖u0‖H .
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Remark 4.11. Here, we have constructed a control in C∞
0 (0, T ;Y ). In the case Y = H and

for every p ∈ N, B∗ ∈ L(D(Ap)), we are able to construct with the same techniques a control
function in C∞

0 (0, T ;
⋂
p∈N

D(Ap)), following [LR95].

4.4 Decay property for the semigroup and construction of the final control

We shall now conclude the proof of the main controllability theorem. We consider the full
controllability problem: given T > 0, we construct a control function g such that the solution
of the problem {

∂tu+Au = Bg,
u|t=0 = u0 ∈ H,

(29)

satisfies u(T ) = 0 in H. The proof uses both the partial control result of Theorem 4.9 and the
decay rate of the semigroup generated by −A, once restricted to (I − Πα)H. We first prove
an estimate of this decay rate. We denote by (SA(t))t∈R+∗ the C0-semigroup of contraction
generated by −A.

Proposition 4.12. There exist C > 0 and Ñ ∈ N such that for every k ≥ Ñ , t ≥ 1
αk

,

‖SA(t)(I − Παk
)‖L(H) ≤ CeCα

θ
k−tαk .

Proof. From [Paz83, Theorem 1.7.7] we first write the semigroup generated by −A(I −Παk
) as

an integral over the infinite positively oriented contour ∂Pq
K0

SA(t)(I − Παk
) = SA(I−Παk

)(t) =
1

2iπ

∫

∂Pq
K0

e−tzRA(I−Παk
)(z) dz.

We set Λk = {z ∈ Pq
K0
,Re(z) ≥ αk}, ∂Λ+

k = {z ∈ ∂Λk,Re(z) > αk, Im(z) ≥ 0} and ∂Λ−
k =

{z ∈ ∂Λk,Re(z) > αk, Im(z) ≤ 0} so that ∂Λk = ∂Λ+
k ∪ Ik ∪ ∂Λ−

k and is a positively oriented
contour.

Since RA(I−Παk
) is holomorphic in C \ Λk, we may shift the path of integration from ∂Pq

K0

to ∂Λk without changing the value of the integral. Hence,

SA(t)(I − Παk
) =

1

2iπ

∫

∂Λk

e−tzRA(z) dz

=
1

2iπ

∫

∂Λ+

k

e−tzRA(z) dz +
1

2iπ

∫

Ik

e−tzRA(z) dz +
1

2iπ

∫

∂Λ−
k

e−tzRA(z) dz,

where ∥∥∥∥∥

∫

∂Λ+

k

e−tzRA(z) dz

∥∥∥∥∥
L(H)

≤
∫ ∞

αk

Ce−tx dx ≤ C
e−tαk

t
,

since RA(z) is uniformly bounded on ∂Λ0 from Proposition 2.1 point (iii). The same estimate
holds for the integral over ∂Λ−

k . Finally estimate (8) of Theorem 2.5 gives

∥∥∥∥
∫

Ik

e−tzRA(z) dz

∥∥∥∥
L(H)

≤ Cαqke
Cαθ

k−tαk .
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Then, for some C > 0, we obtain the following estimation of the semigroup

‖SA(t)(I − Παk
)‖L(H) ≤ C

(
eCα

θ
k−tαk +

e−tαk

t

)
, t > 0.

Thus, taking Ñ ∈ N such that for k ≥ Ñ , 1
αk

≥ e−Cα
θ
k , we finally obtain

‖SA(t)(I − Παk
)‖L(H) ≤ CeCα

θ
k−tαk , k ≥ Ñ , t ≥ 1

αk
,

and the proposition is proved.

For the sake of completeness, we now construct the control function for the parabolic prob-
lem (29), following [LR95]. The decay rate proved below shows that we have now to restrict
ourselves to the case θ < 1, i.e. p−1 + q < 2. We recall that N is an integer such that for all
n ≥ N , δn−1 ≤ αn ≤ δn (see Proposition 2.11).

Theorem 4.13. Suppose that q < 3
4 and θ < 1. Then, for every T > 0, u0 ∈ H, there exists a

control function g ∈ C∞
0 (0, T ;Y ) such that the solution u of the problem (29) satisfies u(T ) = 0.

Proof. We first fix ρ and γ > max{2(1−q)
3−4q , 1} such that 0 < ρ < min{ 1

γ ,
1−θ
θ }. We set Tj =

Kδ−jρθ, K being such that
∑

j∈N
2Tj = T . We divide the time interval [0, T ] =

⋃
j∈N

[aj , aj+1],
with (aj)j∈N such that a0 = 0 and aj+1 = aj + 2Tj . Hence, limj→∞ aj = T .
For uj ∈ ΠαjH, we define by Gαj (uj , Tj) the control function given by Theorem 4.10 that drives
uj to zero in time Tj , which in particular satisfies the estimate (ii) of this theorem.

We set J0 an integer such that J0 ≥ max{N, Ñ} (so that δj−1 ≤ αj ≤ δj for j ≥ J0 and the
decay rate of Proposition 4.12 holds) and Tj ≥ δ−(j−1) ≥ α−1

j for every j ≥ J0. We now define
the control function g:

• if t ≤ aJ0
, we set g = 0, and u(t) = SA(t)u0;

• if j ≥ J0, t ∈ (aj , aj + Tj ], we set g = Gαj (Παju(aj), Tj), and

u(t) = SA(t− aj)u(aj) +

∫ t

aj

SA(t− s)Bg(s)ds;

• if j ≥ J0, t ∈ (aj + Tj , aj+1], we set g = 0, and

u(t) = SA(t− aj − Tj)u(aj + Tj).

We recall that ‖SA(t)‖L(H) ≤ 1 because we have required A to be positive. During the first
phase 0 ≤ t ≤ aJ0

, we simply have ‖u(aJ0
)‖H ≤ ‖u0‖H . The choice of the control function

during the second phase implies for j ≥ J0, Παju(aj + Tj) = 0 and

‖u(aj + Tj)‖H ≤ C exp
(
Cδjθ + Cδjγρθ

)
‖u(aj)‖H ≤ exp

(
C ′δjθ

)
‖u(aj)‖H ,

as γρ < 1.
Finally, during the third phase, the decay rate of the semigroup is given for j ≥ J0 by

Proposition 4.12 and we then have

‖u(aj+1)‖H ≤ C exp
(
Cδjθ − Tjδ

j−1
)
‖u(aj + Tj)‖H ≤ exp

(
C ′′δjθ −Kδj(1−ρθ)

)
‖u(aj + Tj)‖H
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Combining the estimations given on the three phases, we obtain for j ≥ J0

‖u(aj+1)‖H ≤ exp

( j∑

k=J0

C ′′δkθ −Kδk(1−ρθ)
)
‖u0‖H .

Because of our choice ρ < 1−θ
θ , we have 1 − ρθ > θ, and for some c > 0,

( j∑

k=J0

C ′′δkθ −Kδk(1−ρθ)
)

≤ c exp
(
−cδj(1−ρθ)

)
,

and thus for every j ≥ J0,

‖u(aj+1)‖H ≤ c exp
(
−cδj(1−ρθ)

)
‖u0‖H . (30)

From Theorem 4.10 point (ii) and Estimate (30), we have

‖∂st g‖L∞(0,T ;Y ) ≤ sup
j≥J0

{
CsT

−2γs
j exp

(
D(αθj +

1

T γj
)

)
‖u(aj)‖H

}

≤ sup
j≥J0

{
Csδ

2jρθγs exp
(
D(δjθ +Kδjργθ) − cδ(j−1)(1−ρθ)

)
‖u0‖H

}
< +∞,

following the same estimations as above. Thus, g ∈ C∞
0 (0, T ;Y ). This implies in particular

that the solution u of (29) is continuous with values in H. Hence, from (30) we directly obtain

‖u(T )‖H = lim
j→∞

‖u(aj+1)‖H = 0,

and u(T ) = 0 in H.

5 Application to the controllability of parabolic coupled sys-

tems

In this section, we apply the abstract results proved in the previous sections to second order
elliptic operators and to the controllability of parabolic systems. In the following, we first check
that the assumptions of Proposition 2.1 and Theorem 2.5 for these elliptic operators are fulfilled
and we prove the interpolation inequality (12). Sections 3 and 4 then directly yield the spectral
inequality and the controllability results.

We are concerned with the system





∂tu1 + P1u1 + au1 + bu2 = 0 in (0, T ) × Ω,
∂tu2 + P2u2 + cu1 + du2 = 1ωg in (0, T ) × Ω,
u1|t=0 = u0

1 , u2|t=0 = u0
2 in Ω,

u1 = u2 = 0 on (0, T ) × ∂Ω,

(31)

where Ω is an open connected subset of R
n with n ≤ 3 (a compact connected Riemannian

manifold with or without boundary of dimension n ≤ 3). We suppose that ∂Ω is at least of
class C2. The function 1ω(x) stands for the characteristic function of the open subset ω ⊂ Ω
and a, b, c, d ∈ L∞(Ω). Here, Pi, i = 1, 2, denotes a positive elliptic selfadjoint operator on Ω:

22



Piu = −divx(ci(x)∇xu) where ci(x) is a symmetric uniformly elliptic matrix, i.e. ci ∈W 1,∞(Ω)
and there exists C > 0 such that for every x ∈ Ω, ξ ∈ R

n, ξ · ci(x)ξ ≥ C|ξ|2. We set
H = (L2(Ω))2, D(A0) = (H2(Ω) ∩H1

0 (Ω))2, and

A0 =

(
P1 0
0 P2

)
and A1 =

(
a b
c d

)
.

Referring to Remark 1.1, we shift A = A0 +A1 by a λ0 > 0 sufficiently large so that Equation
(7) is satisfied. We carry on the analysis with the operator A+λ0, which we write A by abuse of
notation. Then, the operator A satisfies the assumptions (a)− (c) of Proposition 2.1 with q = 0
since A1 is bounded in H. Moreover, for µ ∈ R+ the number of eigenvalues of the operator Pi
lower than µ is given by the Weyl asymptotics Ni(µ) = miµ

n/2 + o(µn/2) as µ → +∞. Thus,
for A, N is given by N (µ) = N1(µ) + N2(µ) = (m1 + m2)µ

n/2 + o(µn/2) and A satisfies the
assumption of Proposition 2.11 and that of Theorem 2.5 with p = 2/n. The assumption θ < 1
of Theorem 4.13 is satisfied if and only if n/2 − 1 < 1, i.e., n ≤ 3.

We set Y = L2(Ω) as the control space and the operator B is given by B : g −→
(0,1ωg)

T , and is bounded from L2(Ω) to (L2(Ω))2 and its adjoint is B∗ : (u1, u2)
T −→ 1ωu2 ∈

L
(
(L2(Ω))2;L2(Ω)

)
.

Now, it remains to prove the interpolation inequality (12) to apply Theorem 3.2.

Proposition 5.1. Let T0 > 0, ζ ∈ (0, T0/2). Suppose that there exists an open subset O ⊂ Ω,
O ∩ ω 6= ∅ such that the coupling coefficient b ∈ L∞(Ω) satisfies |b(x)| ≥ b0 > 0 for almost
every x ∈ O. Then, there exist C > 0, ϕ ∈ C∞

0 (0, T0) and ν ∈ (0, 1) such that for every

v ∈
(
H2((0, T0) × Ω)

)2
, v|(0,T0)×∂Ω = 0, we have

‖v‖(H1((ζ,T0−ζ)×Ω))2 ≤ C‖v‖1−ν
(H1((0,T0)×Ω))2

(
‖ϕB∗v‖L2(Ω) + ‖(−∂2

t +A∗)v‖(L2((0,T0)×Ω))2

)ν
.

(32)

Proof. We first prove (32) with ‖ϕB∗v‖L2(Ω) replaced by ‖v‖L2(V ) with V ⊂ (0, T0)×O∩ω. In
a second step, thanks to local elliptic energy estimates, we eliminate the first component and
obtain (32).

Here, the time variable does not play a particular role. Thus, for the sake of clarity, we
simplify the notation, denoting by ∇ the time-space gradient (∂t,∇x)

T , by div the time-space

divergence ∂t + divx, by Ci the time-space diffusion matrices Ci =

(
1 0
0 ci

)
, and by −∆i the

time-space elliptic operators

−∆i = −∂2
t + Pi = −∂2

t − divx(ci∇x·) = −div(Ci∇·).

We also set

Ã∗ = −∂2
t +A∗ =

(
−∆1 + a c

b −∆2 + d

)
.

We also denote by (·, ·) the L2 scalar product on L2((0, T0) × Ω) or (L2((0, T0) × Ω))n+1, ‖ · ‖
the associated norms, and by (·, ·)i, i = 1, 2, the L2 scalar product defined by

(ξ, ξ′)i = (ciξ, ξ
′) , ξ, ξ′ ∈ (L2((0, T0) × Ω))n+1 , i = 1, 2,
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and ‖ · ‖i the associated norm. With the assumptions made on ci, the norms ‖ · ‖i and ‖ · ‖ are
equivalent on (L2((0, T0) × Ω))n+1.

We first state local Carleman estimates for Ã∗. These are direct consequences of the classical
local Carleman estimates for the elliptic operators ∆i. We first choose a local weight function φ
satisfying a subellipticity condition with respect to both ∆1 and ∆2 (which can be done taking
φ = eλψ for λ sufficiently large and ψ satisfying |∇ψ| ≥ C > 0, see [Hör63, Chapter 8], [LR95]
or [LL09]). Then there exists h1 > 0 and C > 0 such that for every w ∈ (C∞

0 ((0, T0) × Ω))2,
w = (w1, w2)

T , and 0 < h < h1,

h‖eφ/hwi‖2 + h3‖eφ/h∇wi‖2 ≤ Ch4‖eφ/h∆iwi‖2 , i = 1, 2

(see [LR95], or [FI96] in the case ci ∈ W 1,∞). Adding these two estimates and absorbing the

zero-order terms for h sufficiently small, we directly obtain the same estimate for Ã∗:

h‖eφ/hw‖2 + h3‖eφ/h∇w‖2 ≤ Ch4‖eφ/hÃ∗w‖2 , ∇w =

(
∇w1

∇w2

)
.

By optimizing in h (see [LR95]), these local Carleman estimates yield local interpolation esti-
mates of the form

‖v‖(H1(B(3r)))2 ≤ C‖v‖1−ν
(H1((0,T0)×Ω))2

(
‖v‖(H1(B(r)))2 + ‖Ã∗v‖(L2((0,T0)×Ω))2

)ν
,

where B(r) denote concentric balls of radium r.
Similar estimates at the boundary (0, T0)×∂Ω are also direct consequences of the Carleman

estimates at the boundary for a scalar elliptic operator.
Then, following [LR95], these local interpolation inequalities can be “propagated”, so that

we obtain the following global interpolation inequality, with two observations in H1 norm,
localized in any nonempty open subset W of (ζ, T0 − ζ) × Ω:

‖v‖(H1((ζ,T0−ζ)×Ω))2 ≤ C‖v‖1−ν
(H1((0,T0)×Ω))2

(
‖v‖(H1(W ))2 + ‖Ã∗v‖(L2((0,T0)×Ω))2

)ν
. (33)

Let us take the open subsets W , V , and U such that W ⊂ V , V ⊂ U , and U ⊂ (0, T0)×O∩ω.
Elliptic regularity for the operators ∆i, i = 1, 2, shows that there exists C > 0 such that

‖v‖H1(W ) ≤ C(‖Ã∗v‖ + ‖v‖L2(V )).

It finally remains to eliminate one of the two observations with energy estimates. In fact,
we prove that

‖v1‖L2(V ) ≤ C(‖Ã∗v‖ + ‖v2‖L2(U)).

We write f = (f1, f2)
T = Ã∗v, i.e.

{
f1 = −∆1v1 + av1 + cv2,
f2 = −∆2v2 + bv1 + dv2.

(34)

Let χ be a cut-off function such that χ ∈ C∞
0 (U), 0 ≤ χ ≤ 1, and χ = 1 on V ⊂ U . We set

η = χτ , η1 = χτ+1, η2 = χτ−1,

for a real number τ > 2, so that η, η1, η2 and χτ−2 are also cut-off functions of the same type.
We notice that ∇η1 = η(τ + 1)∇χ and ∇η = η2τ∇χ, where ∇χ is a bounded function.
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We form the scalar product of the second equation of (34) by η2v1

(η2v1, bv1) = (η2v1, f2) − (η2v1, dv2) + (η2v1,∆2v2).

The third term can be estimated as follows, using the equivalence of the norms ‖ · ‖2 and ‖ · ‖:

(η2v1,∆2v2) = −(η∇v1, η∇v2)2 − (v1(2η∇η),∇v2)2
≤ C

(
ε1‖η1∇v1‖2 +

1

ε1
‖η2∇v2‖2 + ε2‖ηv1‖2 +

1

ε2
‖η2∇v2‖2

)
,

for every positive ε1 and ε2, thanks to Young’s inequality. Hence,

(η2v1, bv1) ≤ C
(
ε1‖η1∇v1‖2 + 1

ε1
‖η2∇v2‖2 + ε2‖ηv1‖2 + 1

ε2
‖η2∇v2‖2

)

+|(η2v1, f2)| + |(η2v1, dv2)|.
(35)

Moreover, forming the scalar product of the first equation of (34) by δ1η
2
1v1 and the second

one by δ2η
2
2v2 for δ1, δ2 > 0, we obtain

{
0 = δ1(η

2
1v1,∆1v1) + δ1(η

2
1v1, f1) − δ1(η

2
1v1, av1) − δ1(η

2
1v1, cv2),

0 = δ2(η
2
2v2,∆2v2) + δ2(η

2
2v2, f2) − δ2(η

2
2v2, dv2) − δ2(η

2
2v2, bv1),

(36)

with
δ1(η

2
1v1,∆1v1) = −δ1‖η2

1∇v1‖2
1 − δ1(v1(2η1∇η1),∇v1)1

≤ −δ1‖η1∇v1‖2
1 + C

(
δ1ε3‖η1∇v1‖2

1 + δ1
ε3
‖ηv1‖2

1

)
,

(37)

and similarly

δ2(η
2
2v2,∆2v2) ≤ −δ2‖η2∇v2‖2

2 + C

(
δ2ε3‖η2∇v2‖2

2 +
δ2
ε3

‖v2∇η2‖2
2

)
(38)

for all positive ε3.
Replacing (37) and (38) in (36), and adding (35) and (36), we obtain, for positive constants

C0,K0

(η2v1, bv1) ≤ C0

{
|(η2v1, f2)| + |(η2v1, dv2)| + ε1‖η1∇v1‖2 + 1

ε1
‖η2∇v2‖2 + ε2‖ηv1‖2

+ 1
ε2
‖η2∇v2‖2 + δ1|(η2

1v1, f1)| + δ1|(η2
1v1, av1)| + δ1|(η2

1v1, cv2)|
+δ2|(η2

2v2, f2)| + δ2|(η2
2v2, dv2)| + δ2|(η2

2v2, bv1)| + δ1ε3‖η1∇v1‖2 + δ1
ε3
‖ηv1‖2

+δ2ε3‖η2∇v2‖2 + δ2
ε3
‖v2∇η2‖2

}
−K0

{
δ1‖η1∇v1‖2 + δ2‖η2∇v2‖2

}
,

where we used the equivalence between the norms ‖ · ‖1, ‖ · ‖2 and ‖ · ‖ to write everything in
terms of ‖ · ‖. Note that all the positive parameters δi, εj have not been fixed yet. Now we
suppose that b ≥ b0 > 0 on U . The case b ≤ −b0 < 0 follows the same. We thus have,

b0‖ηv1‖2 ≤ (η2v1, bv1) ≤ C0 {J1 + J2} +K0J3 (39)

where J1 contains only the terms without gradient, and





J3 = −δ1‖η1∇v1‖2 − δ2‖η2∇v2‖2,
J2 = ε1‖η1∇v1‖2 + 1

ε1
‖η2∇v2‖2 + 1

ε2
‖η2∇v2‖2 + δ1ε3‖η1∇v1‖2

+δ2ε3‖η2∇v2‖2 + δ2
ε3
‖v2∇η2‖2.
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The term C0J2 +K0J3 in (39) is thus non-positive as soon as the conditions

{
C0(ε1 + δ1ε3) −K0δ1 ≤ 0,

C0(
1
ε1

+ 1
ε2

+ δ2ε3) −K0δ2 ≤ 0

are satisfied. In this case, we obtain from (39) b0‖ηv1‖2 ≤ C0J1. Let us now estimate C0J1,
using that a, b, c, d ∈ L∞ and Young’s inequality with the parameters 1, ε2 or ε4 > 0:

C0J1 ≤ C1

{
ε2‖ηv1‖2 + 1

ε2
‖f2‖2 + 1

ε2
‖ηv2‖2 + δ1‖ηv1‖2 + δ1‖f1‖2 + δ1‖ηv2‖2

+δ2‖η2v2‖2 + δ2‖f2‖2 + ε4δ2‖ηv1‖2 + δ2
ε4
‖χτ−2v2‖2 + δ1

ε3
‖ηv1‖2

}

≤ C1

(
ε2 + δ1 + ε4δ2 + δ1

ε3

)
‖ηv1‖2 + C(δi, εj)

(
‖χτ−2v2‖2 + ‖f1‖2 + ‖f2‖2

)
.

If we choose the parameters such that C1

(
ε2 + δ1 + ε4δ2 + δ1

ε3

)
≤ b0

2 , since we now have

b0‖ηv1‖2 ≤ C0J1, we then obtain

‖ηv1‖2
L2(V ) ≤ C(δi, εj)

(
‖v2‖2

L2(U) + ‖f1‖2 + ‖f2‖2
)
,

‖v1‖L2(V ) ≤ C
(
‖v2‖L2(U) + ‖Ã∗v‖

)
.

Recalling that the open subset U is chosen such that U ⊂ (0, T0) × O ∩ ω, we take ϕ ∈
C∞

0 (0, T0; C), with ϕ = 1 on the time support of U and we have

‖v2‖L2(U) ≤ ‖ϕB∗v‖L2(Ω).

The proof of the proposition is complete.

It only remains to note that it is possible to choose the parameters δi, εj satisfying





δ1(C0ε3 −K0) + C0ε1 ≤ 0,
δ2(C0ε3 −K0) + C0(

1
ε1

+ 1
ε2

) ≤ 0,

ε2 + δ1 + ε4δ2 + δ1
ε3

≤ b0
2C1

.

This can be done, fixing first ε2 + δ1 ≤ b0
6C1

and ε3 < min{1, K0

C0
}. Second, choosing ε1 ≤

δ1(
K0

C0
− ε3), the first condition is satisfied. Third, we can fix δ2 sufficiently large so that the

second condition is satisfied and finally ε4 such that ε4δ2 ≤ b0
6C1

and the last condition is
fulfilled.

As a consequence of Proposition 5.1, the spectral inequality (13) of Theorem 3.2, the partial
controllability result of Theorem 4.10 and the null-controllability result of Theorem 4.13 hold
in this case. Under the assumptions made above, in particular those of Proposition 5.1, the
coupled parabolic system (31) is null-controllable in any positive time by a control function
g ∈ C∞

0 (0, T ;L2(Ω)). Note that in this context, the spectral inequality (13) corresponds to
the estimation of a finite sum of root vectors of A by a localized measurement of only one
component of this finite sum of root vectors.

Remark 5.2. In the local energy estimates made in the proof, we see that the assumption
O ∩ ω 6= ∅ is crucial. In the case O ∩ ω = ∅, the spectral inequality and the null-controllability
remain open problems to the author’s knowledge .
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Remark 5.3. In the case where the operator A is selfadjoint (i.e. b = c in (31)), the spectral
inequality (13) is much easier to prove, once the interpolation inequality (32) holds. This
spectral inequality can take the following form. We denote by (µj)j∈N the eigenvalues of
A = A∗ and {(φj , ψj)T }j∈N the associated eigenfunctions, that form a Hilbert basis of (L2(Ω))2.
Then, for every open subset U ⊂ (0, T ) × O, there exist C > 0 such that for every sequence
(aj , bj)j∈N ⊂ C and α > 0, we have

∑

µj≤α

(
|aj |2 + |bj |2

)
≤ CeC

√
α

∥∥∥∥∥∥

∑

µj≤α

(
aje

√
µjt + bje

−√
µjt
)
ψj

∥∥∥∥∥∥

2

L2(U)

.

Following the proof of [LR95] or Section 4, it yields the controllability of the coupled problem
(31), without restriction on the dimension of Ω.

Remark 5.4. The same proof also yields a spectral inequality, a partial controllability and a
null-controlabillity result for the following cascade system of d equations with one control force





∂tu1 + P1u1 + 1ω1
u2 = 0,

∂tu2 + P2u2 + 1ω2
u3 = 0,
· · ·

∂tud−1 + Pd−1ud−1 + 1ωd−1
ud = 0,

∂tud + Pdud = 1ωd
g,

uj|t=0 = u0
j , j ∈ {1 · · · d},

uj = 0 on (0, T ) × ∂Ω , j ∈ {1 · · · d}.

Note that the null-controllability result is a particular case of the article [GBT]. We have

here to suppose that
d⋂

j=1

ωj 6= ∅. The spaces here are the same as above, the operator A0 is

diag(P1 · · ·Pd) and A1 is 


0 1ω1

. . .
. . .
. . . 1ωd

0



.

The above analysis directly yields the spectral inequality (13) of Theorem 3.2 and the partial
control result of Theorem 4.10. The null-controlabillity result of Theorem 4.13 in any positive
time, by only one control function g ∈ C∞

0 (0, T ;L2(Ω)) holds, supposing that Ω ⊂ R
n, n ≤ 3.

6 Application to the controllability of a fractional order parabolic

equation

Following [MZ06] and [Mil06], we give here an application of the spectral inequality (15) of
Theorem 3.3 to the null-controllability of the following parabolic-type problem in which the
dynamics is given by a fractional power of the non-selfadjoint operator A. We only treat the
“good” case, i.e., when the power ν > 0 is sufficiently large. In this case, the selfadjoint problem
is null-controllable. We consider {

∂tu+Aνu = Bg
u|t=0 = u0 ∈ H.

(40)
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Here, we define (D(Aν),−Aν) as the infinitesimal generator of the strongly continuous semi-
group

1

2iπ

∫

∂Pq
K0

e−tz
ν
RA(z) dz = SAν (t),

or equivalently one of the following expressions (see [Haa06]),

Aν =
1

2iπ
lim
t→0+

∫

∂Pq
K0

zνe−tz
ν
RA(z) dz = (A+ I)m

1

2iπ

∫

∂Pq
K0

zν(z + 1)−mRA(z) dz

=

[
1

2iπ

∫

∂Σ
z−νRA(z) dz

]−1

,

where m ∈ N, m ≥ ν + 1, and Σ = {z ∈ C, arg(z) ≤ arctan(K0α
q−1
0 ),Re(z) ≥ α0} denotes a

sector containing the spectrum of A. Here, we have to suppose that the operator A is positive,
since Remark 1.1 does not hold in the case ν 6= 1. In the case ν /∈ N, we choose the principal
value of the fractional root. Hence, on each finite-dimensional subspace PkH, we can write Aν

in terms of the functional calculus AνPk =
1

2iπ

∫

γk

zνRA(z) dz. Moreover, from Proposition 2.8

we have (AνPk)
∗ = (A∗)νP ∗

k . The same holds with Πα instead of Pk.
We now assume that the spectral inequality (15) of Theorem 3.3 holds for A and we obtain

the following partial controllability result for ∂t + Aν . It is the analogous of Theorem 4.9,
supposing the spectral inequality (15) instead of (13). Note that in this case we have no
additional restriction on the subordination number q (as opposed to the statement of Theorem
4.13). The proof follows that of [Mil06] or [LL09]. However, when A is not selfadjoint, the
operator Aν is not necessarily positive. As a consequence, we also have to treat the possibly
non-positive low frequencies of Aν . This problem does not arise when A is positive selfadjoint
since Aν is always positive.

For ν > 0, we define Nν = min{k ∈ N,Re(zν) > 0,∀z ∈ Ik}, such that Aν(I − Παk
) (and

also A∗ν(I − Π∗
αk

)) is a positive operator if k ≥ Nν .

Proposition 6.1. Let α ≥ αNν . The partial control problem
{
∂tu+Aνu = ΠαBg
u|t=0 = u0 ∈ ΠαH,

(41)

is null-controllable in any positive time T by a control function satisfying

‖g‖L2(0,T ;H) ≤ CT−1/2eCTα
ν
Nν

+Cαθ‖u0‖H .

Note that the additional cost eCTα
ν
Nν of the control function is needed to handle the expo-

nentially increasing low frequencies.

Proof. The adjoint system of (41) is
{

−∂tw +A∗νw = 0
w|t=T = wT ∈ Π∗

αH.

Thus w(0) ∈ Π∗
αH and w(t) = etA

∗ν
w(0). We first estimate

‖e−tA∗ν
Π∗
αk
‖L(H) =

∥∥∥∥
1

2iπ

∫

Γk

e−tz
ν
RA∗(z) dz

∥∥∥∥
L(H)

≤ 1

2π

(∫

ΓαNν

∥∥e−tzν
RA∗(z)

∥∥
L(H)

dz +

∫
S

αNν
<αk≤α γk

∥∥e−tzν
RA∗(z)

∥∥
L(H)

dz

)
.
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The second term is bounded by CeCα
θ
sup e−tRe(zν) ≤ CeCα

θ
since Re(zν) ≥ 0 on each γk,

αNν < αk ≤ α. Concerning the first term, we have Re(zν) ≥ −CανNν
for z ∈ ΓNν and thus

∫

ΓαNν

∥∥e−tzν
RA∗(z)

∥∥
L(H)

dz ≤ CeCTα
ν
Nν

+Cαθ

.

We thus obtain the estimate ‖e−tA∗ν
Π∗
αk
‖L(H) ≤ CeCTα

ν
Nν

+Cαθ

. We then have the observability
inequality

T‖w(0)‖2
H ≤

∫ T

0

(
CeCTα

ν
Nν

+Cαθ
)2

‖w(t)‖2
Hdt ≤ CeCTα

ν
Nν

+Cαθ‖B∗w‖2
L2(0,T ;Y )

from (15) applied to w(t) ∈ Π∗
αH. By duality, the proposition is proved.

The same type of estimates as those performed in the proof of Proposition 4.12 gives the
following decay property, for k sufficiently large (k ≥ Nν), for some constant 0 < c < 1,

‖SAν (t)(I − Παk
)‖L(H) ≤ CeCα

θ
k−ctαν

k , t ≥ 1

αk
.

We finally have the analogous of Theorem 4.13, which proof follows the same (choosing J0 ≥
Nν).

Proposition 6.2. Suppose that ν > θ. For every T > 0, for every u0 ∈ H, there exists a
control function g ∈ L2(0, T ;Y ) such that the solution u of the problem (40) satisfies u(T ) = 0.

In the case where A is a second order selfadjoint elliptic operator, the spectral inequality
(15) always holds for θ = 1/2, and ν > 1/2 is necessary and sufficient for the null-controllability
(see [MZ06] and [Mil06]). Here, with the estimations we have proved, the case 1/2 < ν ≤ θ is
open.

Example 6.3. For Ω ⊂ R
n and ω a non-empty subset of Ω, we take H = Y = L2(Ω),

D(A0) = H2∩H1
0 (Ω), A0 = −∆ and A1 = b ·∇+c with b, c ∈ L∞(Ω; C) such that A is positive.

Here, B∗ a localized observation, i.e. B∗ = B = 1ω ∈ L(L2(Ω)). Under the conditions above,
Proposition 2.1 is valid with q = 1/2 and the assumption of Theorem 2.5 is satisfied for p = 2/n.
Moreover, the interpolation inequality (14) is well known in this case: In fact, it originates from
Carleman inequalities [LR95], which form is invariant under changes in the operator by lower
order terms. Hence, the spectral inequality (15) of Theorem 3.3 holds for θ = max{1/2, n−1

2 }.
Proposition 6.2 gives the null-controllability of the problem





∂tu+ (−∆ + b · ∇ + c)νu = 1ωg in (0, T ) × Ω,
u|t=0 = u0 in Ω,

u = 0 on (0, T ) × ∂Ω,

in any time T > 0 for any n ∈ N, ν > max{1/2, n−1
2 }.

7 Application to level sets of sums of root functions

Following Jerison and Lebeau [JL99], we give here an application of the spectral inequality (15)
of Theorem 3.3 to the measurement of the level sets of finite sums of root functions in term
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of the largest eigenvalue. The operator involved here is a non-selfadjoint perturbation of the
Laplace operator.

Let Ω be a bounded open set in R
n (or a n-dimensional Riemannian compact manifold

with or without boundary). We set H = Y = L2(Ω). Let −∆ be the Laplace operator on Ω
and P (x,D) a differential operator of order d ∈ {0, 1}, such that A1 = P (x,D) is a relatively
compact perturbation of A0 = −∆, with dirichlet boundary conditions. We set A = A0 +A1 =
−∆ + P (x,D) and take for B∗ a localized observation, i.e. B∗ = B = 1ω ∈ L(L2(Ω)) for some
nonempty open subset ω ⊂ Ω.

First note that under the conditions above, Proposition 2.1 is valid with q = d/2 < 1 and
assumption (a) of Theorem 2.5 is satisfied for p = 2/n. Moreover, the interpolation inequality
(14) holds in this case (see Example 6.3 above). Note that a function ϕ is a sum of root
functions of the operator A associated with eigenvalues of real part lower than max{αk;αk ≤ α}
if ϕ ∈ ΠαL

2(Ω). From Theorem 3.3, we have the following spectral inequality: there exists
positive constants C,D such that for every positive α, for all ϕ ∈ ΠαL

2(Ω) (the dual space
Π∗
αL

2(Ω) does not play any role here),

‖ϕ‖L2(Ω) ≤ CeDα
θ ‖ϕ‖L2(ω) , θ = max

{
1

2
;
n+ d

2
− 1

}
. (42)

Assume now that Ω is real-analytic, and, moreover the differential operator P (x,D) has real-
analytic coefficients. Under these conditions, the operator −∂2

t +A is real-analytic hypoelliptic
on R × Ω [Tre80, Theorem 5.4], and ϕ ∈ ΠαL

2(Ω) implies that ϕ is real-analytic. We denote
by Hn−1 the (n − 1)-dimensional Hausdorff measure on Ω. We can now state the analogous
of the result of Jerison and Lebeau [JL99] for the class of non-selfadjoint elliptic operators we
consider.

Theorem 7.1. For every level set K ∈ R, there exist positive constants C1, C2 such that for
all α > 0 and ϕ ∈ ΠαL

2(Ω),

Hn−1({ϕ = K}) ≤ C1α
θ + C2 , θ = max

{
1

2
;
n+ d

2
− 1

}
. (43)

The proof follows exactly the same of [JL99] and uses arguments from [DF88] and [DF90].

This estimations (42) and (43) are known to be optimal for the Laplace operator, with
θ = 1/2, see [JL99]. As a consequence, one cannot hope to have better estimates in the cases
where n+d

2 − 1 ≤ 1
2 , i.e. n ≤ 3 if A = −∆ + c(x) and n ≤ 2 if A = −∆ + b(x) · ∇ + c(x).

However in the case n+d
2 − 1 > 1

2 , the results (42), (43) do not seem to be optimal.

8 Appendix

8.1 Properties of the Gevrey function e ∈ Gσ, 1 < σ < 2

Here, we prove the existence of the Gevrey function e that is needed in the proof of Proposi-
tion 4.5.

Lemma 8.1. For every σ > 1, B0 > 0 and κ ≤ 1 − 1
2σ , there exists a Gevrey function e ∈ Gσ

such that
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(i) supp(e) = [0, 1] and 0 < e(t) ≤ 1 for all t ∈ (0, 1) ;

(ii) |ê(z)| ≤ c1e
−c2|z|

1
σ if Im(z) ≤ 0

(iii) |ê(z)| ≥ c3e
−c4|z|

1
σ in −iPκ

B0

where the constants ci are positive and −iPκ
B0

= −i {z ∈ C,Re(z) ≥ 0, | Im(z)| < B0 Re(z)κ}.

Proof. The function

e0(t) = exp
(
−t

−1

σ−1 − (1 − t)
−1

σ−1

)

is in Gσ and satisfies the properties (i) and (ii).
We aim to prove a lower bound for |ê0(z)| as |z| → ∞ in the parabola −iPκ

B0
. To have a

precise estimation, we develop in detail the Laplace method, following [Erd56]. Let κ and B0

two positive integers. For β < B0, we estimate

ê0(−i(s+ iβsκ)) =

∫ 1

0
exp

(
−t

−1

σ−1 − (1 − t)
−1

σ−1

)
exp(−(s+ iβsκ)t)dt

=

∫ s
σ−1

σ

0
exp

(
s

1

σ (−u
−1

σ−1 − u)
)

exp
(
−(1 − s−

σ−1

σ u)−
1

σ−1 − iβusκ+
1

σ
−1
)
s−

σ−1

σ du

after the rescaling change of variable t = s−
σ−1

σ u. We then set ω = s
1

σ the increasing parameter,

h(u) = −u
−1

σ−1 − u and

gβ(ω, u) = exp
(
−(1 − ω−(σ−1)u)−

1

σ−1 − iβuω1+σ(κ−1)
)
,

such that we write

ê0(−i(s+ iβsκ)) = I(ω, β) =

∫ ωσ−1

0
ω−(σ−1)eωh(u)gβ(ω, u)du.

The function h(u) is negative on R+∗, concave and h(u) < h(a) < 0 for u 6= a with a =

(σ − 1)−
σ−1

σ > 0.
Following the Laplace method, we then split the integral I(ω, β) in three parts. The most
important contribution comes from the region where h reaches its maximum. We write

I(ω, β) = ω−(σ−1)(I1(ω, β) + I2(ω, β) + I3(ω, β)), (44)

with

I1(ω, β) =

∫ a−η

0
eωh(u)gβ(ω, u)du , I2(ω, β) =

∫ a+η

a−η
eωh(u)gβ(ω, u)du

I3(ω, β) =

∫ ωσ−1

a+η
eωh(u)gβ(ω, u)du

(45)

for η > 0, sufficiently small, that will be fixed below.

We first treat the main contribution I2: Morse Lemma [GS94] implies that for η sufficiently
small, there exists two positive constants ν1 and ν2 and a diffeomorphism H : (a − η, a +

η) −→ (−ν1, ν2) such that h ◦ H−1(x) = h(a) − x2

2 for x ∈ (−ν1, ν2). Moreover, the jacobian
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J(x) = |det(dH−1)|(x) satisfies J(0)2 = |h′′(a)|−1.
With this change of variable, we obtain

I2(ω, β) =

∫ ν2

−ν1
gβ(ω,H−1(x))eωh(a)−

ωx2

2 J(x)dx.

Setting y =
√

ω
2x, we obtain

I2(ω, β) =

√
2

ω
eωh(a)

∫

R

1(−ν1,ν2)

(√
2

ω
y

)
J

(√
2

ω
y

)
gβ

(
ω,H−1

(√
2

ω
y

))
e−y

2

dy.

The modulus of the integrand is clearly bounded on R by Ce−y
2

, independent of ω and inte-
grable. Let us study the asymptotics of the integrand as ω → +∞.

gβ

(
ω,H−1

(√
2
ωy
))

= exp

(
−
(
1 − ω−(σ−1)H−1

(√
2
ωy
))− 1

σ−1

)

× exp
(
−iβH−1

(√
2
ωy
)
ω1+σ(κ−1)

)
.

The first exponential converges when ω → +∞. In fact, setting

ψ(ω, y) = 1(−ν1,ν2)

(√
2

ω
y

)
J

(√
2

ω
y

)
exp


−

(
1 − ω−(σ−1)H−1

(√
2

ω
y

))− 1

σ−1


 ,

we have
ψ(ω, y) −→ e−1J(0) = e−1|h′′(a)|− 1

2 , as ω → +∞.

For the second exponential in gβ (the oscillating part), as H−1(0) = a, we write H−1(x) =
a+ xK(x) where K ∈ C∞(R) and we have

exp

(
−iβH−1

(√
2

ω
y

)
ω1+σ(κ−1)

)
= exp

(
−iβω1+σ(κ−1)

(
a+

√
2

ω
yK

(√
2

ω
y

)))

= exp
(
−iβω1+σ(κ−1)a

)
exp

(
−i

√
2βω

1

2
+σ(κ−1)yK

(√
2

ω
y

))
.

We may thus write

I2(ω, β) =

√
2

ω
eωh(a) exp

(
−iβω1+σ(κ−1)a

)
Ĩ2(ω, β),

where

Ĩ2(ω, β) =

∫

R

ψ(ω, y) exp

(
−i

√
2βω

1

2
+σ(κ−1)yK

(√
2

ω
y

))
e−y

2

dy.

The integrand in Ĩ2(ω, β) converges as ω → +∞ under the condition 1
2 + σ(κ − 1) ≤ 0. By

sommated convergence, we have

Ĩ2(ω, β) −→ L(β) =

√
π

e
|h′′(a)|− 1

2 , if
1

2
+ σ(κ− 1) < 0,
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and

Ĩ2(ω, β) −→ L(β) =

√
π

e
|h′′(a)|− 1

2 exp

(
−β

2K(0)2

2

)
, if

1

2
+ σ(κ− 1) = 0.

Moreover, similar arguments show that Ĩ2(ω, β) − L(β) is C1([−B0, B0]) with respect to the
variable β. Then there exists k0 such that for every ω sufficiently large

∣∣∣∣∣
∂(Ĩ2 − L)

∂β
(ω, β)

∣∣∣∣∣ ≤ k0, β ∈ [−B0, B0].

Thus, Ĩ2 − L is uniformly Lipschitz with respect to the variable β and tends to zero for every
fixed β as ω −→ +∞. Lemma 8.2 below implies that for all ε > 0, there exists ω0 > 0 such
that |Ĩ2(ω, β) − L(β)| < ε for ω > ω0 and β ∈ [−B0, B0].

We now address the terms I1 and I3 in (45). As h(u) < h(a) < 0 for u 6= a, we can write
h(a−η) = h(a)−C− and h(a+η) = h(a)−C+ with C+, C− > 0, depending only on η. Because
h increases on (0, a], decreases on [a,+∞), and |gβ | ≤ 1, we have

|I1(ω, β)| ≤ aeωh(a)e−ωC− , |I3(ω, β)| ≤ ωσ−1eωh(a)e−ωC+ .

Finally, for every fixed κ ≤ 1 − 1
2σ , we can write

I(ω, β) =
√

2ω
1

2
−σeωh(a)

(
exp

(
−iβω1+σ(κ−1)a

)
Ĩ2(ω, β) +D(ω, β)

)

with |D(ω, β)| ≤ Cωσ−
1

2 e−C±ω and Ĩ2 converging to a non-zero limit uniformly in β.

As a consequence, there exist C1, C2 > 0 and ω0 > 0 such that

|I(ω, β)| ≥ C1e
−C2ω, ω > ω0, β ∈ [−B0, B0].

Switching back to the variable s = ωσ, we then have for some s0 > 0

|ê0(−i(s+ iβsκ))| ≥ C1e
−C2s

1
σ , s > s0, β ∈ [−B0, B0].

To conclude the lemma, we now set e(t) = e−s0te0(t) that is also in Gσ and satisfies Prop-
erty (i). For z ∈ C, we have ê(z) = ê0(z− is0) and (ii) holds. Property (iii) follows from what
precedes.

Lemma 8.2. Let K be a compact set and I(ω, x) a function defined on R+×K, that is uniformly
Lipschitz on R+ ×K with respect to the variable x ∈ K, i.e.,

∃k0 > 0, |I(ω, x2) − I(ω, x1)| ≤ k0|x2 − x1|, ω ∈ R+, x1, x2 ∈ K.

If for every x ∈ K, limω→+∞ I(ω, x) = 0, then limω→+∞ maxx∈K I(ω, x) = 0.
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8.2 A Paley-Wiener-type theorem

Here we prove a Paley-Wiener-type theorem adapted to the situation of Proposition 4.5

Proposition 8.3. Let Y be a separable Hilbert space and f ∈ H(C;Y ) satisfying for positive
constants CN , Cε:

‖f(z)‖Y ≤ Cεe
ε|z|eT Im(z),∀ε > 0, z ∈ C; (46)

‖f(τ)‖Y ≤ CN (1 + |τ |)−N ,∀N ∈ N, τ ∈ R. (47)

Then, there exists u ∈ C∞
0 (0, T ;Y ) such that û(z) = f(z), z ∈ C.

Proof. Let (ej)j∈N be a Hilbert basis of Y . For every j, z 7→ (f(z), ej)Y ∈ H(C; C). Equa-
tion (46) gives |(f(z), ej)Y | ≤ Cεe

ε|z|eT Im(z),∀ε > 0, z ∈ C, and the Paley-Wiener theo-
rem [Hör83, Theorem 15.1.5] then implies that there exists an analytic functional uj carried
by (0, T ) (see [Hör90, Chapter 9] for a precise definition) such that ûj(z) = (f(z), ej)Y , z ∈ C.
Moreover, (47) yields |ûj(τ)| ≤ CN (1 + |τ |)−N ,∀N ∈ N, τ ∈ R and thus, uj ∈ C∞

0 (0, T ; C).

We now set u =
∑

j∈N
ujej and observe that u ∈ L2(R;Y )

‖u‖2
L2(R;Y ) =

∑

j∈N

‖uj‖2
L2(R) =

1

2π

∑

j∈N

‖ûj‖2
L2(R) =

1

2π

∑

j∈N

‖(f(·), ej)Y ‖2
L2(R) =

1

2π
‖f‖2

L2(R;Y ).

We note that supp(u) ⊂ (0, T ) since supp(uj) ⊂ (0, T ) for all j ∈ N. Hence the Fourier-Laplace
transform of u is an entire function, satisfying, for z ∈ C

(û(z), ek)Y =



∫ T

0

∑

j∈N

uj(t)e
−itzej dt, ek



Y

=

∫ T

0

∑

j∈N

uj(t)e
−itz (ej , ek)Y dt = ûk(z).

Thus,

û(z) =
∑

j∈N

ûj(z)ej =
∑

j∈N

(f(z), ej)Y ej = f(z)

and f is the Fourier-Laplace of u. Finally, (47) yields ‖û(τ)‖Y ≤ CN (1+ |τ |)−N ,∀N ∈ N, τ ∈ R

and thus u ∈ C∞.
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[Hör83] L. Hörmander. The Analysis of Linear Partial Differential Operators, volume II.
Springer-Verlag, 1983.
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