
HAL Id: hal-00421709
https://hal.science/hal-00421709

Submitted on 2 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Circuit Based Encoding of CNF Formula
Gilles Audemard, Lakhdar Saïs

To cite this version:
Gilles Audemard, Lakhdar Saïs. Circuit Based Encoding of CNF Formula. Tenth International
Conference on Theory and Applications of Satisfiability Testing(SAT’07), 2007, Lisbon, Portugal.
pp.16–21. �hal-00421709�

https://hal.science/hal-00421709
https://hal.archives-ouvertes.fr

Circuit Based Encoding of CNF formula

Gilles Audemard and Lakhdar Saı̈s

CRIL CNRS – Université d’Artois
rue Jean Souvraz SP-18

F-62307 Lens Cedex France
{audemard,sais}@cril.univ-artois.fr

Abstract. In this paper a new circuit sat based encoding of boolean formula is
proposed. It makes an original use of the concept of restrictive models introduced
by Boufkhad to polynomially translate any formula in conjunctive normal form
(CNF) to a circuit sat representation (a conjunction of gates and clauses). Our
proposed encoding preserves the satisfiability of the original formula. The set of
models of the obtained circuit w.r.t. the original set of variables is a subset of the
models (with special characteristics) of the original formula. Each gate represents
both a subset of clauses from the original CNF formula and a set of new additional
clauses which constrains the set of models to those with a special structure. Using
two variant of restrictive models, our circuit sat based encoding leads to a con-
junction of two sub-formulas: a set of gates and a horn formula. We also provided
a connection between our encoding and the satisfiability of the original formula
i.e. when the input formula is satisfiable, our proposed translation delivers a full
circuit formula. A new incremental preprocessing process is designed leading to
interesting experimental improvements of Minisat a state-of-the-art satisfiability
solver. Finally, using our circuit encoding, on many SAT instances interesting
results are also obtained wrt. the backdoor set computationproblem.

1 Introduction

Propositional satisfiability (SAT) is the problem of deciding whether a boolean formula
in conjunctive normal form (CNF) is satisfiable. SAT is one ofthe most studied NP-
Complete problems because of its theoretical and practicalimportance. Encouraged by
the impressive progress in practical solving of SAT, various applications ranging from
formal verification to planning are encoded and solved usingSAT. Most of the more
successful complete solvers are based on the backtrack search algorithm called Davis
Putnam Logemann Loveland (DPLL) procedure. Such basic algorithm is enhanced with
many important pruning techniques such as learning, extended use of boolean constraint
propagation, preprocessing, symmetries breaking etc. Theimpact of these different im-
provements depends on the kind of instances to be solved. Forexample, learning is
more useful when solving instances encoding real world problems than on random gen-
erated ones. Another important aspect for efficient SAT solving concerns the problem
encoding. Traditionally, most solvers work on a formula encoded in conjunctive nor-
mal form (CNF). However, encoding knowledge under CNF can flatten some structural

knowledge that would be more apparent in more expressive propositional logic repre-
sentation formalisms, and that could prove useful in the resolution step [14, 9, 8, 17].
To take benefit from such structural knowledge, recent workshave addressed this issue
following two different paths of research. The first one use extended boolean formula
(nonCNF [17], boolean functions [14], pseudo boolean constraints [3]) for problem en-
coding. Whereas the second one, try to recover and/or to deduce structural knowledge
from CNF encoding (symmetries [1], functional dependencies[8], equivalence [10]).
Clearly, it is generally agreed that using CNF is convenientfor efficient design of SAT
solver. The same arguments are used in the constraint satisfaction problem (CSP) to
justify the translation of non-binary instances to binary ones. More recently, different
works in both SAT and CSP propose to model and to solve problems using more gen-
eral representation language. At the same time encoding either the CSP (resp. SAT) in
SAT (resp. CSP) is also a subject of many interesting research works (see [4]).

These two different approaches for exploiting structural properties have their own
justification and advantages. Obviously, when some useful structures are given during
the specification phase of the problem, it is more convenientto encode these informa-
tions and to exploit them in both approaches. On the contrary, when some structures
are not given and need to be detected automatically, the approach to be used for prob-
lem encoding depends on the efficiency of the techniques thatone can design for their
detection and on the benefit that we can obtain in the resolution phase.

In this paper, we follow the second approach which consists in detecting hidden
structures of CNF formula. More precisely, based on two previous related works pro-
posed by Purdom [13] (complementary search) to avoid searchredundancies and by
Boufkhad [2] on exploiting the restrictive solution (solution that has special character-
istics), we propose a new and original encoding of any formula in conjunctive normal
as a conjunction of boolean functions (gates) and clauses. Each gate represents both a
subset of clauses from the original CNF formula and a set of new additional clauses
which constrains the set of models to those with special characteristics. Using auxiliary
variables, we obtain a polynomial circuit sat based encoding which preserves the sat-
isfiability of the original formula. Using two restrictive variants of models, we obtain
a circuit sat formula where the remaining clauses belong to atractable class (horn or
reverse-horn). We also prove that a formula is satisfiable iff our proposed circuit sat
encoding delivers a full circuit formula. Consequently, covering the hole CNF formula
with a set of gates is intractable in the general case.

As mentioned in [15], many classes of instances derived fromlogic circuit (e.g.
property checking) may contain a portion of circuit-derived clauses that describe the
hardware part and a non circuit part made of clauses that describe more general proper-
ties. Interestingly enough, our proposed translation delivers a circuit sat formula where
the circuit part contains a set of covered gates (i.e. the clauses representing such gates
appears in the original formula) and a set of derived gates from the interaction between
different part of the formula.

The circuit sat formula obtained by our encoding can be exploited in different ways.
First as proposed recently, particularly when dealing withinstances encoding EDA ap-
plications, one can exploit promising circuit SAT solver asin [11, 17] or hierarchical

SAT solving as in [12]. Secondly, SAT solvers can be used on the new CNF formula
obtained from the circuit sat formula. We can also exploit the derived circuit sat formula
to compute a strong backdoor set of variables [19, 8].

The paper is organized as follows. After some preliminary definitions, works related
to our proposed approach are discussed. The circuit sat based translation of CNF for-
mula is then presented (section 4). In section 5, interesting refinements are described.
Our circuit encoding of SAT instances is exploited in two different ways defined in
section 6 and evaluated in section 7.

2 Technical background

Let B be a boolean (i.e. propositional) language of formulas built in the standard way,
using usual connectives (∨, ∧, ¬, ⇒, ⇔) and a set of propositional variables. ACNF
formula Σ is a set (interpreted as a conjunction) ofclauses, where a clause is a set
(interpreted as a disjunction) ofliterals. A literal is a positive or negated propositional
variable. Let us recall that any boolean formula can be translated to CNF using linear
Tseitin encoding [18]. Aunit (resp.binary) clause is a clause of size 1 (resp. 2). A
unit literal is the unique literal of a unit clause. We noten (resp.m) the number of
variables (resp. clauses) ofΣ. V(Σ) (resp.L(Σ)) is the set of variables (resp. literals)
occurring inΣ. The setL(Σ) is the union of positive literalsL+(Σ) and negative
literalsL−(Σ). A set of literalsS ⊂ L(Σ) is consistent iff∀l ∈ S,¬l /∈ S. We denote
S as{¬l|l ∈ S} the complement ofS. For a given formulaΣ and a literall ∈ L(Σ),
we can rewriteΣ as(l ∨ α(l)) ∧ (¬l ∨ α(¬l)) ∧ Γ , whereα(l) = ∀c∈Σ|l∈c∪ c − {l}
(resp.α(¬l) = ∀c∈Σ|¬l∈c∪ c − {¬l}) andΓ = {c|c ∈ Σ, c ∩ {l,¬l} = ∅}. We define
Σ ∧ x notedΣ(x) as a formula obtained fromΣ by assigningx the truth-valuetrue.
FormallyΣ(x) = {C|C ∈ Σ, {x,¬x} ∩ C = ∅} ∪ {C\{¬x}|C ∈ Σ,¬x ∈ C}.

An interpretationof a boolean formula is an assignment of truth values{true, false}
to its variables. Amodel(solution) of a formula is an interpretation that satisfies the
formula. Accordingly, SAT consists in finding a model of a CNFformula when such a
model does exist or in proving that such a model does not exist.

Let us now introduce some definitions and notations on circuit representation (or
gates).

A (boolean) gateis an expression of the formy = f(x1, . . . , xk), wheref is a
standard connective among{∨, ∧} and wherey andxi are propositional literals, that is
defined as follows :

– y = ∧(x1, . . . , xk) represents the set of clauses{y ∨ ¬x1 ∨ . . . ∨ ¬xk,¬y ∨
x1, . . . ,¬y∨xk}, translating the requirement that the truth value ofy is determined
by the conjunction of the truth values ofxi s.t.i ∈ [1..k];

– y = ∨(x1, . . . , xk) represents the set of clauses{¬y∨x1∨. . .∨xk, y∨¬x1, . . . , y∨
¬xk};

Moreover, a gate¬y = ∧(x1, . . . , xk) (resp.¬y = ∨(x1, . . . , xk)) is equivalent to
y = ∨(¬x1, . . . ,¬xk) (resp.y = ∧(¬x1, . . . ,¬xk)).

For a given gateg, we defineCNF (g) as the set of clauses encodingg. A proposi-
tional variabley (resp.x1, . . . , xk) is anoutput variable(resp. areinput variables) of a
gate of the formy = f(x′

1, . . . , x
′
k), wherex′

i ∈ {xi,¬xi}.

A propositional variablez is anoutput (dependent) variable of a set of gatesiff z
is an output variable of at least one gate in the set. Aninput (independent) variable of
a set of gatesis an input variable of a gate which is not an output variable of the set of
gates. LetG be a set of gates, we define|G| =

∑
∀g∈G |g| st. |g| is the number of its

input variables.

A gate is satisfied under a given boolean interpretation iff the left and right hand
sides of the gate are simultaneouslytrue or false under this interpretation. An inter-
pretation satisfies a set of gates iff each gate is satisfied under this interpretation. Such
an interpretation is called a model of this set of gates.

Finally, we define acircuit sat formula as a conjunction of gates (G) and clauses
(C). It is called a full circuit, whenC = ∅.

3 Related Works

Our approach is inspired by two related works of Purdom [13] and Boufkhad [2]. In
[13], P. Purdom has proposed an original branching criterion (called complementary
search) to avoid redundancy during search.

Property 1 (Purdom [13]).Let Σ be a CNF formula,l be a branching literal thenΣ is
satisfiable iffΣ(l) is satisfiable orΣ(¬l) ∧ ¬α(¬l) is satisfiable.

As noted by Purdom, the exploitation of the property 1 requires additional clauses
that can be derived by translating the formula¬α(¬l) in Disjunctive Normal Form
(DNF) to a CNF formula. This drawback was also noted by Gallo and Urbani [6] :”Pur-
dom’s branching criterion succeeds in reducing the size of the search tree but a price
must be paid. In fact, the formula must be transformed into the standard form of set of
clauses, which might be quite costly”. For this reason, the property above is only ex-
ploited whenα(¬l) is reduced to a single clause (the literal¬l occurs only once inΣ).
The negation of such a clause is a set of unit clauses.

In [2], Boufkhad has defined a concept of restrictive solution. This kind of solution
has special characteristics that can be checked in polynomial time and each satisfiable
formula has at least one of these special solution. Three variant of solution has been
proposed : Negative Prime Solution (NPS), Positive Prime Solution (PPS) and Locally
Optimized Solution (LOS) (see definition 1). Using such restrictive models, Boufkhad
and Dubois obtained a new theoretical upper bound of the threshold of random 3-SAT
formula [5]. Similary to Purdom, another use proposed by Boufkhad [2] is to add new

clauses to the formula in order to restrict its set of models to only those with special
characteristics.

Definition 1 (NPS, PPS [2]).An NPS (resp. PPS) is a solution such that variables as-
signed the value false (resp. true) cannot be individually inverted totrue (resp.false)
without contradicting the formula.

Furthermore, Boufkhad [2] introduced the notion of LocallyOptimized Solution
(LOS) relative to a truth assignmentS. It is called optimized in the sense that no better
solution can be found by just inverting the value of a variable. It is said locally optimized
relative to a truth assignmentS because the value assigned to any variablex in S (called
the reference value ofx in S) is preferred to the opposite one. Any satisfiable formula
has at least one LOS relative to any truth assignmentS [2].

Property 2 (Boufkhad [2]).Let Σ be a CNF,S ∈ L(Σ) a consistent set of literals and
C =

∧
l∈S(l ∨ ¬α(¬l)). Σ is satisfiable if and only ifΣ ∧ C is satisfiable.

From the proof of the property [2], it follows that any solution toΣ∧C is a LOS relative
to S of Σ.

Obviously, the two properties 1 and 2 are very similar. For the same reasons as in
Purdom, only literals that occur at most twice are considered in [2]. Then, the size
of the additional clauses is less than 3.

4 Circuit based encoding

In this section, we present our circuit based encoding of CNFformula. Our proposed
approach is based on the results presented in the previous section. Our main goal is to
avoid the drawback behind the approaches proposed by Purdomand Boufkhad.

The results presented in this section can be summarized as follows. First, using
auxiliary variables, we avoid the main drawback of Purdom and Boufkhad approaches
i.e. the additional constraints can be obtained using linear time approach. Second, the
conjunction of the original formula and the additional constraint lead to a circuit sat
formula. A connection between full circuit encoding and thesatisfiability of the original
formula is established.

Property 3. Let Σ = (l ∨ α(l)) ∧ (¬l ∨ α(¬l)) ∧ Γ be a CNF.Σ is satisfiable iff
(l = α(¬l)) ∧ (l ∨ α(l)) ∧ Γ is satisfiable

Proof. The proof is straightforward. Indeed, the conjunction of the two formula(¬l ∨
α(¬l)) ∈ Σ and the added formula(l ∨ ¬α(¬l)) can be characterized using a an
equation of the form(l = α(¬l)), whereα(¬l) is a conjunction of clauses. The rest of
the proof is a consequence of the property 2.2

The following property shows how the equationl = α(¬l) (see. property 3) can be
translated in linear time to a set of boolean gates using auxiliary variables.

Property 4. Let l = α(¬l) = ∧(l1, . . . , lm, c1 . . . , ck) be a boolean equation, where
|ci| > 1. Let yi be an auxiliary variable representing a clauseci. The gate(l = α(¬l))
and{l = ∧(l1, . . . , lm, y1, . . . , yk), y1 = ∨(c1), . . . , yk = ∨(ck)} are equivalent for
SAT.

Obviously, ifα(¬l) is reduced to a unique clauseci, no auxiliary variable is intro-
duced i.e.l = ∨(ci).

In the following examples, we illustrate the application ofproperties 3 and 4 to
different formulas.

Example 1.Let us consider the following CNF formulaΣ = (x1 ∨x3)∧ (¬x1 ∨x5)∧
(¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x4 ∨ x5). Applying the properties
3 and 4 to the literalx1 we obtain 3 gates:x1 = ∧(x5, y1, y2), y1 = ∨(¬x2, x3) and
y2 = ∨(x2,¬x4)

Example 2.LetΣ = Γ ∧(¬x1∨¬x2∨¬x3∨x4)∧(¬x4∨x1)∧(¬x4∨x2)∧(¬x4∨x3)
be a CNF formula encoding the gateg (x4 = ∧(x1, x2, x3)). To illustrate the detection
of such explicit gate, we consider two distinct case. First,if ¬x4 /∈ L(Γ), applying the
properties 3 and 4 to the literalx4 we detect the same gateg. In the second case, where
¬x4 ∈ L(Γ) i.e.{(¬x4∨γ(¬x4))} ⊂ Γ , we detect a gateg′ (x4 = ∧(x1, x2, x3, . . .)),
the gateg′ include the gateg and other auxiliary variables introduced to represent the
clauses inγ(¬x4).

The example 2 shows that when some clauses of the original formula express a gate
(explicit gate), our approach can recover such gates in a very simple way. The question
of recovering explicit gates has been subject of interesting works by [8, 15]. Properties
3 and 4 describe one step in our encoding. Given a consistent set of literalsS, our
proposed translation iterates the application of the aboveproperties on each literal ofS.
The algorithm 1 describes the encoding of any CNF as a circuitsat formula. It produces
a set of gates and a set of clauses. Combination of both sets isequivalent wrt. SAT to
the original formula.

Definition 2. Let Σ be a CNF formula,S a consistent set of literals andG a set of
gates obtained by applyingCircuitSat(Σ, S). We definecov(Σ,G) the set of clauses
of Σ covered byG as{c|c ∈ (¬l ∨ α(¬l)andl ∈ S} i.e. clauses considered in the for
loop (line 5, algothme 1). Dually, we defineuncov(Σ,G) = Σ − cov(Σ,G).

Let us note that the set of uncovered clauses ofΣ can be obtained fromG andΣ
i.e.uncov(Σ,G).

Theorem 1. Algorithm 1 is a correct circuit sat encoding and its worst case time com-
plexity isO(n × m).

Proof.At each step (while loop) a literal is selected fromS, processed by the application
of the property 3 and 4 and then removed fromS. Consequently, the while loop is run

Algorithm 1 CircuitSat(inΣ : CNF, inS : set of literals, outG : set of gates)
1: G = ∅
2: while S 6= ∅ do
3: select a literall from S

4: In = ∅
5: for ci ∈ α(¬l) do
6: if |ci| < 2 then
7: In = In ∪ {ci}
8: else
9: G = G ∪ {yi = ∨(ci)}

10: In = In ∪ {yi}
11: end if
12: end for
13: G = G ∪ {l = ∧(In)}
14: S = S − {l}
15: end while

exactly|S| times. The obtained formula (G∧uncov(Σ,G)) is circuit sat formula which
is equivalent wrt. SAT toΣ (property 2).

ComplexityLet consider the case where|S| = n. The while loop is run at mostn times
(line 3 and line 14). The for loop is run at mostm times which is an upper bound of the
number of clauses inα(¬l). Consequently, we obtain a worst case time complexity of
n × m. 2

Property 5. Let Σ be a CNF.S is a model ofΣ iff the set of gatesG obtained by
CircuitSat(Σ, S) is a full circuit encoding i.e.uncov(Σ,G) = ∅

Proof. First, asS is a model ofΣ, then∀c ∈ Σ, S ∩ c 6= ∅. UsingS in CircuitSat
algorithm at each iteration of the while loop, we consider a literal l ∈ S (line 3). As
¬l ∈ S, at each iteration the set of clauses¬l ∨ α(¬l) (line 5) are covered by the
added gates. These clauses correspond to the clauses satisfied byl ∈ S. Iterating such
a process,CircuiSat covers all the clauses ofΣ. The converse is also true. From the
setS of consistent literals considered byCircuitSat for covering all the clauses ofΣ,
one can construct a modelS′ = S of Σ. Indeed, each time a literall ∈ S is processed
(line 3), we cover all the clauses containing¬l. These clauses are satisfied by¬l (¬l is
added toS′). As all the clauses ofΣ are covered, the constructed setS′ is a model of
Σ. 2

From the Property 5, we can deduce several interesting results :

– for unsatisfiable formula, our circuit sat encoding can not lead to a full circuit en-
coding.

– if a formula is entirely covered usingCircuitSat, then the formula is satisfiable.
– in the general case, finding a full circuit encoding is intractable.

Consequently, the Algorithm 1 can be seen as an incomplete Satisfiability solver.
Indeed, if the input formulaΣ is entirely covered by a set of gates, thenΣ is satisfi-
able (Property 5). However, if the formulaΣ is not totally covered, then we can not
conclude on the satisfiability ofΣ. In this last case, a circuit sat formula with interest-
ing features is obtained. Indeed, the circuit formula encode additional clauses i.e. any
model of the circuit sat formula is a restrictive model (eg. NPS, PPS, LOS) of the orig-
inal formula. Interestingly enough, all the auxiliary variables introduced by the circuit
encoding are output variables, then their value can be determined (implied) after assign-
ing truth values to the variables of the original formula. Consequently, any SAT solver
can be used on the CNF representation of the circuit sat formula. In such a case, one
can limit branching to the variables of the original formulaor to the strong backdoor set
as proposed in [8].

As our proposed algorithm is based on the two properties 2 and3, if we considerS
as a complete assignment of the variables ofΣ, it is important to note that any model of
circuit sat formula is a LOS ofΣ with respect toS. Obviously, if we considerS = L+

(resp.S = L−), then any model of the circuit formula is an NPS (resp. PPS) of the
original formulaΣ. In these last two cases, the obtained circuit sat is described by the
following property.

Property 6. Let Σ be a CNF. IfS = L+ (resp.S = L−) thenCircuitSat(Σ, S)
delivers a set of gatesG such that all clauses ofΣ not covered byG are positive (resp.
negative).

Proof. The proof is straightforward. If we considerS as the set of all positive literals
(resp. negatives literals), all clauses ofΣ containing a negative literal (resp. a positive
literal) are covered (line 5). Consequently, whenΣ is a satisfiable horn (resp. reverse
horn) formula, usingS = L+(Σ) (resp.S = L+(Σ)), we obtain a full circuit formula.

In the following example, we show that on structured SAT instances, our algorithm
CircuitSAT (Σ, S) can deliver interesting new constraints.

Example 3 (Pigeon hole problem).Let us consider the well known pigeon hole prob-
lem. The problem PH(n) consists in putting all then pigeons inton − 1 different holes
such that each hole contain at most one pigeon. To encode thisproblem in CNF formula
we needn×(n−1) propositional variablespj

i with i ∈ {1, . . . , n}, j ∈ {1, . . . , n−1}.
Each variablepj

i expresses that the pigeoni is in the holej. The CNF formulaPH(n)
contains two kind of clauses. (i)

∧
(p1

i ∨ p2
i . . . pn−1

i), 1 ≤ i ≤ n encoding that the
pigeoni is not left free (must be put in a hole) and

∧
(¬pj

i ∨ ¬pj
k), 1 ≤ j ≤ n − 1, 1 ≤

i < k ≤ n expressing that two different pigeons (i andk) can not be put in the same
holej. Applying the algorithm 1 using positive literals (L+(Σ)), we obtainn× (n−1)
gates. Each gateg is of the formpi

j = ∧(¬pi
1,¬pi

2 . . . pi
j−1, p

i
j+1, . . .¬pi

n) which ex-
presses a new interesting implicit information (see theCNF (g)): “each hole contains
exactly one pigeon”. On real world problem, we expect that our approach might deduce
interesting and meaningful knowledge.

5 circuit sat encoding: refinements

In this section, we present interesting refinements of the circuit encoding. Let us moti-
vate them with the following example.

Example 4.Let Σ = {c1, c2, c3, c4, c5} be a CNF st.c1 = (x1 ∨ x2 ∨ ¬x3), c2 =
(x4 ∨ x2 ∨ ¬x3), c3 = (x3 ∨ ¬x4 ∨ x2), c4 = (x1 ∨ ¬x2 ∨ x3), c5 = (x4 ∨ ¬x1)
andS = {¬x1, x2,¬x3,¬x4). The set of gates obtained byCircuitSat(Σ, S) is G =
G1 ∪ G2 ∪ G3 such that :

– G1 = {¬x1 = ∧(y1, y2), y1 = ∨(x2,¬x3), y2 = ∨(¬x2, x3)}.
– G2 = {x2 = ∨(x1, x3)}.
– G3 = {¬x3 = ∧(y3, y4), y3 = ∨(¬x4, x2), y4 = ∨(x1,¬x2)}.
– G4 = {¬x4 = ∧(y5,¬x1), y5 = ∨(x2,¬x3)}.

Remark 1.In the example 4, we can remark that :

1. S is a model ofΣ anduncov(Σ,G) = ∅ (Property 5),
2. the gatesy1 = ∨(x2,¬x3) andy5 = ∨(x2,¬x3) represent the same boolean func-

tion∨(x2,¬x3),
3. the clausec4 is covered three times by:G1, G2 andG3.

Dealing with multiple definitions
To reduce the number of auxiliary variables, one needs to avoid such multiple functional
definition (case 2). It is achieved by a simple modification ofthe Algorithm 1. Indeed,
in the for loop before processing a clauseci, one needs to search in the current set of
gatesG for a gateyj = ∨(ci) st. j < i. In such a case we useyj instead of introducing
a new auxiliary variableyi. The variableyj is then added to the current set of input
variablesIn. The complexity of searching for multiple definition is inO(|G|).

Reducing multiple clauses covering
It is obvious that the circuit sat formula obtained by the algorithm 1 depends on the
setS of literals and on the heuristic used to select the next literal (line 3). To reduce
the number of times each clause is covered, different heuristics can be designed. In this
paper, the next literall which appears in the maximum number of uncovered clauses is
selected. IfS∩L(uncov(Σ,G)) = ∅, then no new clause can be covered and the process
is ended. The while condition (line 2) is substituted with(S ∩ L(uncov(Σ,G)) 6= ∅).

Partial encoding of CNF
Our approach is also dependent on the chosen setS of literals (see property 6). One can
be interested in considering a specific set of literals to cover only a sub-formula ofΣ. In
our approach, one can specify some preferences on the set of literals or on the clauses
to be covered. For example, preferences on literals can be defined using an upper bound
k on the number of occurrences inΣ. This parameter can be used to make the approach
incremental and adaptable to a given problem. Given a set of preferred clauses, the

second approach tries to cover in priority such preferred clauses. For clases, preference
can be given to those of the intractable part of the formula. As an example, covering the
non horn part of the formula might lead circuit-horn formula. This can be very useful,
if we are interested in computing the bakdoor sets (see section 6). As unit propagation
is complete on horn formula, one can use a SAT or Circuit Solver on the circuit part of
the formula, while the horn part is only determined by boolean constraint propagation.

All the refinements presented above are integrated in our implementation of the
CircuitSAT encoding.

Finally, as shown in Property 5, the task of encoding a CNF formula as full circuit one
is intractable in the general case. Let us mention another possible way (not considered
in this paper) to minimize the size of the uncovered set of clauses of a given formula,
concern the use stochastic local search to find an approximate solution i.e a solution
which satisfy a maximum number of clauses. Using such best computed solution a
better covering of the formula might be achieved.

6 Handling circuit sat formula

In this section, we briefly discuss the usefulness of our proposed approach. Different
paths are sketched in order to take advantage of the circuit sat representation.

Circuit sat formula & backdoor sets

The first circuit sat formula can be exploited for deriving useful hidden structure of
a given problem instance. Following the recent approach proposed in [8] (LSAT) for
computing backdoor sets, we show that our circuit sat representation is suitable for
computing such structure. The notion of (strong) Backdoor introduced by Williams-
etal in [19] is an active research topic because of its connection to problem hardness. A
set of variables forms a backdoor for a given formula if thereexists an assignment to
these variables such that the simplified formula can be solved in polynomial time. Such
a set of variables is called a strong backdoor if any assignment to these variables leads
to a tractable sub-formula. This kind of structure is related to the notion of independent
variables (see section 2) [16, 7]. In the general case, the set of input variables is not a
strong backdoor set, because of the possible recursive definitions in the set of gates. In
[8], using graph representation, the strong backdoor set isdefined as the union of the
set of input variables and the set of variables from the cyclecutset of the graph.

Let us remind that computing the smallest strong backdoor isan NP-hard problem.
In practice, approximating (in polynomial time) a strong backdoor of “reasonable” size
is an interesting and important issue. The main drawback of the approach proposed in
[8] is that on many SAT instances the set of recovered gates (using unit propagation) is
either small or empty. Consequently, the CNF part covers a large number of the original
clauses, then the set of independent variables tends to cover all the variables of the
original formula.

As we have shown in section 4, our proposed encoding can deliver a set of gates and
a horn CNF part (see. property 6). Consequently, only the setof gates are considered in

the computation of the strong backdoor. Interestingly enough, our approach is adaptive,
i.e. can be parametrized in order to cover the intractable part of the formula (see section
5).

Circuit SAT based preprocessing

Our circuit encoding deliver an interesting polynomial preprocessing technique. Indeed,
the circuit formula, encoding a given instance is more constrained than the original one.
Our preprocessing technique is made of two different steps :

1. generating a circuit formula using partial circuit encoding as defined in section 5.
More precisely, the generated circuit formula is obtained by processing a set of
literalsS with a number of occurrences bounded by a given constantk.

2. translating the circuit formula (obtained in the first step) to CNF.

7 Experiments

We have experimented the aforementioned CircuitSAT encoding on the last SAT com-
petitions benchmarks (http://www.satcompetition.org). To show the use-
fulness of our circuit sat encoding, two kind of experimentsare conducted. First, fol-
lowing the approach by Ostrowski-etal [8], strong backdoorsets are computed using as
input the circuit formula obtained by our proposed circuit encoding. Secondly, our cir-
cuit sat encoding is used as a preprocessing i.e. a new CNF formula is generated from
its circuit encoding leading to more constrained instances(see section 6). Minisat-2.0
is then used to solve the instance with and without our preprocessing. All experiments
have been conducted on Pentium IV, 3Ghz under linux Fedora Core 4.

In table 7, experimental evaluation is illustrated by of thenumber of gates (#gates),
number of auxiliary variables (#aV ar), number of independent variables (#iV ar),
number of variables in the cycle cutset#cSet, the size of the strong backdoor set
(#sB = #iV ar + #cSet) and by the cumulated (circuit encoding+ strong back-
door set computation) cup-time (times) in seconds. As the setS of literals used for
encoding a given instance is reduced to the positive literals of the instance (S = L+),
all the non covered clauses are horn. Consequently, the number of initial horn clauses
(#horn) and the remaining number of horn clauses (rHorn) after the translation are
also given. This experimental evaluation shows clearly theefficiency of our proposed
encoding, on all instances the cumulated time is less than one second. In term of the
backdoor size, our approach is competitive with Ostrowski-etal published results [8].
On many classes of instances, the size of the strong backdooris about 50 % of the
number of variables. Note that for flat200-1, phnf-size10, hole-10 (see example 3) no
auxiliary variables are needed. On the these instances all positive literals occurs exactly
one time. Furthermore the remaining not covered horn clauses is still close to the initial
number of horn clauses. For the pigeon hole instance, the number of horn clauses re-
main the same. Indeed, as the horn clauses are totally negative, none of them is covered
usingS = L+.

instance #var #cla #horn #rHorn #gates #aV ar #iV ar #cSet #sB time

qg1-08 512 148 957 23 608 23 608 236 176 182 56 238 0.16
par32-1 3 176 10 277 3 831 3 330 5 791 4 903 852 843 1 695 0.20
logistics.d 4 713 21 991 19 621 11 216 6 100 4 234 2 473 1 518 3 991 0.13
bmc-galileo963 624 326 999 188 648 136 873 40 621 28 790 30 655 8 57339 228 1.00
flat200-1 600 2 237 2 037 2 037 200 0 400 0 400 0.05
phnf-size10 61 6493157 1202361 046 850 086 35 348 0 18 03025 12043 150 7.60
hole-10 110 561 550 550 11 0 99 0 99 0.01
uuf250-1 250 1 065 556 288 1 246 1 086 76 108 182 0.01

Table 1.Circuit encoding and strong backdoor set computation

The scatter plots given in figure 1 illustrate the comparative results of the state-
of-the-art solver Minisat-2.0 on the original instances and on instance obtained using
our proposed preprocessing with different boundsk ranging from0 to 3. The bound
k = 0 corresponds to the results obtained on the original instance. We tested all the739
instances corresponding to the crafted and industrial categories. Each dot with(tx, ty)
coordinates corresponds to a given SAT instance. Dots above(resp. below) the diagonal
indicate instances where the original formula is solved faster i.e.tx < ty (resp. slower
i.e. tx > ty) than the preprocessing one. For clarity reason, only instances solved in
more than one second are presented in figure 1. Indeed, for these easily solved instances
the preprocessing is not necessary.

 1

 10

 100

 1000

 1 10 100 1000

M
in

is
at

 +
 p

re
pr

oc
es

si
ng

Minisat

 1

 10

 100

 1000

 1 10 100 1000

M
in

is
at

 +
 p

re
pr

oc
es

si
ng

Minisat

k = 1 k = 3

Fig. 1. Minisat-2.0 with and without preprocessing

All these results are summarized in table 2. The number of dots below (resp. above)
the diagonal corresponding to the number of instances wherethe preprocessing improve
#imp (resp. decrease#dec) the Minisat performances are reported. The total number
of solved instances (#solved) and the total cpu-time in seconds (time) are also given.
The best results are obtained with boundk = 3. Indeed, Minisat on the preprocessed
instance is able to solve5 more instances within the time limit set to900 seconds.

bound #imp #dec #solved time(sc.)

k = 0 - - 463 279 368
k = 1 113 90 461 280 959
k = 2 108 94 460 281 322
k = 3 107 104 468 277 308

Table 2.All instances : summary of results

The table 3 gives a detailed picture of these promising results. Fork = 1 andk =
3, time in seconds needed for processing the instance (pre-time) and for solving the
instance (run-time) is also reported. We are actually conducting extensive experiments
using greater values for the boundk, to determine the maximum value ofk leading to
better improvements.

k = 0 k = 1 k = 3

instance SAT run-time run-time pre-time run-time prep-time

sgp 6-6-10 Y 296.6 74.8 3.9 847.7 4.7
mod2-rand3bip-sat-220-3Y 105.4 29.7 0.1 31.86 0.1
strips-gripper-14t27 Y - - 0.4 61.4 0.4
dead-dnd009 N 327.2 297.0 0.1 733.7 0.1
pbl-00100 N - 354.4 0.1 106.5 0.1
grid-pbl-0070 N - - 0.1 150.1 0.1
QG6.gensys-ukn001 N 728.1 - 0.1 298.8 0.1
clauses-6 Y 749.3 - 8.3 - 14.1
gensys-icl005 N 543.1 286.0 0.1 596.9 0.1

Table 3.Minisat-2.0 with and without preprocessing : a detailed picture

8 Conclusion

In this paper, we have proposed an original new circuit sat based encoding of CNF
formula. It makes an original use of the concept of restrictive models introduced by
Boufkhad to polynomially translate any formula in conjunctive normal form (CNF) to
a circuit sat representation (a conjunction of gates and clauses). The derived circuit
sat formula is equivalent with respect to SAT to the originalCNF. Depending on the
characteristics of the considered restrictive solution, two variants have been proposed.
We proved that when they are used, a formula made of a conjunction of gates and horn
(or reverse horn) clauses can be obtained. We also provided aconnection between our
encoding and the satisfiability of the original formula. Several interesting refinements
and different ways to handle the circuit sat formula are proposed. Last but not least,
our encoding can also be used to recover explicit gates and other meaningful structural
knowledge. Our formal and informal analysis demonstrate that one can obtain several
advantage by exploiting our circuit sat encoding. The experimental results show two

possible use of the circuit sat encoded formula. First, results on the strong backdoor set
computation problem are very encouraging. Secondly, an incremental preprocessing
(using bounds on the occurrences number of literals) leads to interesting improvements
with respect to Minisat-2.0 a state-of-the-art Satisfiability solver.

References

1. Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah. Solving difficult
instances of boolean satisfiability in the presence of symmetry. Transactions on Computer
Aided Design, 2003.

2. Yacine Boufkhad.Aspects probabilistes et algorithmiques du problème de satisfiabilité. phd
thesis, Université de Paris 6, Laboratoire d’ Informatique de Paris 6 (LIP6), December 1996.

3. H. Dixon, M. Ginsberg, and A. Parkes. Generalizing boolean satisfiability I: Background
and survey of existing work.Journal of Artificial Intelligence Research, 21:193–243, 2004.

4. L. Drake, A. Frisch, I. Gent, and T. Walsh. Automatically reformulating SAT-encoded CSP.
In Proceedings of workshop on reformulating CSP (CP), 2002.

5. Olivier Dubois and Yacine Boufkhad. A general upper boundfor the satisfiability threshold
of randomr-SAT formulae.Journal of Algorithms, 24(2):395–420, August 1997.

6. G. Gallo and G. Urbani. Algorithms for testing the satisfiability of propositional formulae.
journal of logic programming, 7(1):45–61, July 1989.

7. E. Giunchiglia, M. Maratea, and A. Tacchella. Dependent and independent variables in
propositional satisfiability. Inproceedings of European Conference on Logics in Artificial
Intelligence, volume 2424 ofLNCS, pages 296–307, 2002.

8. E. Gregoire, B. Mazure, R. Ostrowski, and L. Sais. Automatic extraction of functional de-
pendencies. Inproceedings of SAT, volume 3542 ofLNCS, pages 122–132, 2005.

9. Henry A. Kautz, David McAllester, and Bart Selman. Exploiting variable dependency in
local search. In”Abstracts of the Poster Sessions of IJCAI-97”, 1997.

10. Chu Min Li. Equivalency reasoning to solve a class of hardsat problems. Information
Processing Letters, 76:75–81, 2000.

11. F. Lu, L. Wang, K. Cheng, and R. Huang. A circuit sat solverwith signal correlation guided
learning. Inproceedings of international conference DATE, pages 892–897, 2003.

12. Y. Novikov and R. Brinkmann. Foundations of hierarchical SAT solving. InProceedings of
International Workshop on Boolean Problems, pages 103–142, 2004.

13. P. W. Purdom. Solving satisfiability with less searching. IEEE transactions on pattern
analysis ans machine intelligence, PAMI-6(4):510–513, July 1984.

14. Antoine Rauzy, Lakhdar Saı̈s, and Laure Brisoux. Calculpropositionnel : vers une extension
du formalisme. InActes des Cinquièmes Journèes Nationales sur la Résolution Pratique de
Problèmes NP-complets (JNPC’99), pages 189–198, Lyon, 1999.

15. J Roy, I. Markov, and V. Bertacco. Restoring circuit structure from SAT instances. Inpro-
ceedings of international workshop on Logic and synthesis, 2004.

16. B. Selman, H. Kautz, and D. McAllester. Ten challenges inpropositional reasoning and
search. Inproceedings of IJCAI, 1997.

17. C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL search. In
proceedings of international conference CP, pages 663–678, 2004.

18. G. Tseitin. On the complexity of proofs in propositionallogics. Automation of Reasoning:
Classical Papers in Computational Logic, 2, 1967.

19. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. Inproceed-
ings of IJCAI, pages 1173–1178, 2003.

