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Abstract. In this paper a new circuit sat based encoding of booleanutaris
proposed. It makes an original use of the concept of relseintodels introduced
by Boufkhad to polynomially translate any formula in congtive normal form
(CNF) to a circuit sat representation (a conjunction of gated clauses). Our
proposed encoding preserves the satisfiability of the maigormula. The set of
models of the obtained circuit w.r.t. the original set ofiahtes is a subset of the
models (with special characteristics) of the original falaa Each gate represents
both a subset of clauses from the original CNF formula and af seew additional
clauses which constrains the set of models to those with@astructure. Using
two variant of restrictive models, our circuit sat basedoeling leads to a con-
junction of two sub-formulas: a set of gates and a horn foarie also provided
a connection between our encoding and the satisfiabilith@friginal formula
i.e. when the input formula is satisfiable, our proposedsietion delivers a full
circuit formula. A new incremental preprocessing procesieisigned leading to
interesting experimental improvements of Minisat a stitéie-art satisfiability
solver. Finally, using our circuit encoding, on many SATtamges interesting
results are also obtained wrt. the backdoor set computptigolem.

1 Introduction

Propositional satisfiability (SAT) is the problem of decigiwhether a boolean formula
in conjunctive normal form (CNF) is satisfiable. SAT is onetloé most studied NP-
Complete problems because of its theoretical and pradgtigadrtance. Encouraged by
the impressive progress in practical solving of SAT, vasiapplications ranging from
formal verification to planning are encoded and solved uSiAg. Most of the more
successful complete solvers are based on the backtradhsalgorithm called Davis
Putnam Logemann Loveland (DPLL) procedure. Such basicitthigois enhanced with
many important pruning techniques such as learning, erténge of boolean constraint
propagation, preprocessing, symmetries breaking etcirfipact of these different im-
provements depends on the kind of instances to be solvedeXanple, learning is
more useful when solving instances encoding real worldlprob than on random gen-
erated ones. Another important aspect for efficient SATiagleoncerns the problem
encoding. Traditionally, most solvers work on a formulaashed in conjunctive nor-
mal form (CNF). However, encoding knowledge under CNF cateftesome structural



knowledge that would be more apparent in more expressiygogitional logic repre-
sentation formalisms, and that could prove useful in thelwt®n step [14,9, 8, 17].
To take benefit from such structural knowledge, recent wbhek& addressed this issue
following two different paths of research. The first one usereded boolean formula
(nonCNF [17], boolean functions [14], pseudo boolean qairds [3]) for problem en-
coding. Whereas the second one, try to recover and/or tocgestructural knowledge
from CNF encoding (symmetries [1], functional dependes[8k equivalence [10]).
Clearly, it is generally agreed that using CNF is convenienéfficient design of SAT
solver. The same arguments are used in the constraintasditist problem (CSP) to
justify the translation of non-binary instances to binanes. More recently, different
works in both SAT and CSP propose to model and to solve prablesing more gen-
eral representation language. At the same time encodihgralie CSP (resp. SAT) in
SAT (resp. CSP) is also a subject of many interesting rebemocks (see [4]).

These two different approaches for exploiting structuralperties have their own
justification and advantages. Obviously, when some us#ifuttsires are given during
the specification phase of the problem, it is more convengahcode these informa-
tions and to exploit them in both approaches. On the contvéngn some structures
are not given and need to be detected automatically, thevappito be used for prob-
lem encoding depends on the efficiency of the techniquestiatan design for their
detection and on the benefit that we can obtain in the resolpfiase.

In this paper, we follow the second approach which consisidetecting hidden
structures of CNF formula. More precisely, based on two iptevrelated works pro-
posed by Purdom [13] (complementary search) to avoid seadindancies and by
Boufkhad [2] on exploiting the restrictive solution (satut that has special character-
istics), we propose a new and original encoding of any foaniulconjunctive normal
as a conjunction of boolean functions (gates) and clauseash Bate represents both a
subset of clauses from the original CNF formula and a set of additional clauses
which constrains the set of models to those with specialagharistics. Using auxiliary
variables, we obtain a polynomial circuit sat based enapdihich preserves the sat-
isfiability of the original formula. Using two restrictiveaviants of models, we obtain
a circuit sat formula where the remaining clauses belongttaaable class (horn or
reverse-horn). We also prove that a formula is satisfialbleuf proposed circuit sat
encoding delivers a full circuit formula. Consequentlyyenng the hole CNF formula
with a set of gates is intractable in the general case.

As mentioned in [15], many classes of instances derived flagit circuit (e.g.
property checking) may contain a portion of circuit-dedwdauses that describe the
hardware part and a non circuit part made of clauses thatidesoore general proper-
ties. Interestingly enough, our proposed translatiorvdedia circuit sat formula where
the circuit part contains a set of covered gates (i.e. theselsrepresenting such gates
appears in the original formula) and a set of derived gates the interaction between
different part of the formula.

The circuit sat formula obtained by our encoding can be atqaan different ways.
First as proposed recently, particularly when dealing witltances encoding EDA ap-
plications, one can exploit promising circuit SAT solveriag11, 17] or hierarchical



SAT solving as in [12]. Secondly, SAT solvers can be used emiéw CNF formula
obtained from the circuit sat formula. We can also explatderived circuit sat formula
to compute a strong backdoor set of variables [19, 8].

The paper is organized as follows. After some preliminafiniteons, works related
to our proposed approach are discussed. The circuit satl xsgeslation of CNF for-
mula is then presented (section 4). In section 5, intergsgfinements are described.
Our circuit encoding of SAT instances is exploited in twofeliént ways defined in
section 6 and evaluated in section 7.

2 Technical background

Let B be a boolean (i.e. propositional) language of formulag uithe standard way,
using usual connectives/( A, -, =, <) and a set of propositional variables.GNF
formula X is a set (interpreted as a conjunction)aduses where a clause is a set
(interpreted as a disjunction) bferals. A literal is a positive or negated propositional
variable. Let us recall that any boolean formula can be tased to CNF using linear
Tseitin encoding [18]. Aunit (resp.binary) clause is a clause of size 1 (resp. 2). A
unit literal is the unique literal of a unit clause. We notgresp.m) the number of
variables (resp. clauses) af V(X) (resp.L(X)) is the set of variables (resp. literals)
occurring inX. The set£(Y) is the union of positive literal€*(X') and negative
literals £~ (X). A set of literalsS C L(X) is consistent ifffl € S, -l ¢ S. We denote
S as{-l|l € S} the complement of. For a given formulaZ and a literall € £(X),
we can rewrite¥ as(l vV a(l)) A (=l V a(=l)) A T', wherea(l) = Veesjed ¢ — {1}
(resp.a(—l) = Veexjiecd ¢ — {—l}) andI” = {c|c € X, cn {l,~l} = 0}. We define
X Az notedX(x) as a formula obtained froy' by assigninge the truth-valuerue.
Formally ¥ (z) = {C|C € X, {z,—z} N C =0} U{C\{-z}|C € ¥, ~x € C}.

An interpretationof a boolean formula is an assignment of truth val{tese, false}
to its variables. Amodel(solution) of a formula is an interpretation that satisfies the
formula. Accordingly, SAT consists in finding a model of a CiiFmula when such a
model does exist or in proving that such a model does not.exist

Let us now introduce some definitions and notations on direresentation (or
gates).

A (boolean) gatds an expression of the form = f(z1,...,z), wheref is a
standard connective amo#y, A} and wherey andz; are propositional literals, that is
defined as follows :

-y = Alxy,...,zx) represents the set of clausgg vV —x1 V ...V —zg, —y V
x1,...,wyVx}, translating the requirement that the truth valug of determined
by the conjunction of the truth values of s.t.i € [1..k];

- y=V(z1,...,z) representsthe set of claudesy Va1 V.. . Vag, yV-xy, ..., yV
T}



Moreover, a gatewy = A(x1,...,xx) (resp.—y = V(x1,...,xx)) IS equivalent to
y=V(-z1,...,xg) (respy = A(—zq, ..., "x) ).

For a given gatg, we defineC'N F'(g) as the set of clauses encodingA proposi-
tional variabley (resp.z1, . . ., xx) is anoutput variable(resp. arénput variable$ of a
gate of the formy = f(z,...,z}), wherez] € {z;, —xz;}.

A propositional variable: is anoutput (dependent) variable of a set of gaités:
is an output variable of at least one gate in the setinput (independent) variable of
a set of gategs an input variable of a gate which is not an output varialblihe set of
gates. LelG be a set of gates, we defif@ = >, s |9/ st. |g| is the number of its
input variables.

A gate is satisfied under a given boolean interpretatiorhdf left and right hand
sides of the gate are simultaneoustyie or false under this interpretation. An inter-
pretation satisfies a set of gates iff each gate is satisfiddruhis interpretation. Such
an interpretation is called a model of this set of gates.

Finally, we define aircuit satformula as a conjunction of gate§)(and clauses
(C). Itis called a full circuit, wherC' = 0.

3 Related Works

Our approach is inspired by two related works of Purdom [18] Boufkhad [2]. In
[13], P. Purdom has proposed an original branching crite¢called complementary
search) to avoid redundancy during search.

Property 1 (Purdom [13])Let X be a CNF formulaj be a branching literal thel is
satisfiable iff2 (1) is satisfiable o&(—l) A —a(—l) is satisfiable.

As noted by Purdom, the exploitation of the property 1 regpidditional clauses
that can be derived by translating the formula(—!) in Disjunctive Normal Form
(DNF) to a CNF formula. This drawback was also noted by Gatld @rbani [6] :"Pur-
dom’s branching criterion succeeds in reducing the sizéhefdearch tree but a price
must be paid. In fact, the formula must be transformed inéostiandard form of set of
clauses, which might be quite costl§ror this reason, the property above is only ex-
ploited whene(—l) is reduced to a single clause (the literdloccurs only once irt).
The negation of such a clause is a set of unit clauses.

In [2], Boufkhad has defined a concept of restrictive sotutibhis kind of solution
has special characteristics that can be checked in polyaidimie and each satisfiable
formula has at least one of these special solution. Thréantaof solution has been
proposed : Negative Prime Solution (NPS), Positive Primatm (PPS) and Locally
Optimized Solution (LOS) (see definition 1). Using suchnieve models, Boufkhad
and Dubois obtained a new theoretical upper bound of thahlotd of random 3-SAT
formula [5]. Similary to Purdom, another use proposed byfBoad [2] is to add new



clauses to the formula in order to restrict its set of modelerily those with special
characteristics.

Definition 1 (NPS, PPS [2])An NPS (resp. PPS) is a solution such that variables as-
signed the value false (resp. true) cannot be individualerted totrue (resp. false)
without contradicting the formula.

Furthermore, Boufkhad [2] introduced the notion of Localiptimized Solution
(LOS) relative to a truth assignmefit It is called optimized in the sense that no better
solution can be found by just inverting the value of a vaegallis said locally optimized
relative to a truth assignmeftbecause the value assigned to any variatitesS (called
the reference value af in S) is preferred to the opposite one. Any satisfiable formula
has at least one LOS relative to any truth assignnSeiaf.

Property 2 (Boufkhad [2])Let X' be a CNF,S € £(X) a consistent set of literals and
C = Neg(lV-a(-l)). Xis satisfiable if and only itZ A C'is satisfiable.

From the proof of the property [2], it follows that any sotuiito X AC' is a LOS relative
to S of X.

Obviously, the two properties 1 and 2 are very similar. F@& $ame reasons as in
Purdom, only literals that occur at most twice are considléne[2]. Then, the size
of the additional clauses is less than 3.

4 Circuit based encoding

In this section, we present our circuit based encoding of @\fula. Our proposed
approach is based on the results presented in the previctisrseOur main goal is to
avoid the drawback behind the approaches proposed by Puaddmoufkhad.

The results presented in this section can be summarizedla#/do First, using
auxiliary variables, we avoid the main drawback of Purdomh Boufkhad approaches
i.e. the additional constraints can be obtained using fitiege approach. Second, the
conjunction of the original formula and the additional civamt lead to a circuit sat
formula. A connection between full circuit encoding andshésfiability of the original
formula is established.

Property 3.Let ¥ = (I V a(l)) A (-l V a(=l)) A I’ be a CNF.X is satisfiable iff
(I =a(=) AV a(l)) AT is satisfiable

Proof. The proof is straightforward. Indeed, the conjunction & tivo formula(—! v
a(—l)) € X and the added formul@l Vv —«(-l)) can be characterized using a an
equation of the fornfl = «(-1)), wherea(—1) is a conjunction of clauses. The rest of
the proof is a consequence of the property?2.

The following property shows how the equatiba «(—l) (see. property 3) can be
translated in linear time to a set of boolean gates usindianxivariables.



Property 4.Let! = «a(-l) = A(l1,...,lm,c1...,cx) be a boolean equation, where
|e;] > 1. Lety; be an auxiliary variable representing a clauseThe gate(l = «(-l))
and{l = A(l1, .-, b, y1,---5Yk),y1 = V(c1),...,yx = V(ck)} are equivalent for
SAT.

Obviously, if a(—1) is reduced to a unique clausg no auxiliary variable is intro-
ducedi.el = V().

In the following examples, we illustrate the applicationpsbperties 3 and 4 to
different formulas.

Example 1.Let us consider the following CNF formulel = (z1 Va3) A (mx1 V 25) A
(mx1 V —ma V xg) A (mxy Ve V —xg) A (22 V —xg Voxs). Applying the properties
3 and 4 to the literak; we obtain 3 gatest; = A(xs,y1,y2), y1 = V(—ze,x3) and
Y2 = V(w2, ~74)

Example 2.Lety = F/\(ﬁ:vl V=xo Vs \/.%'4)/\(ﬁ$4 \/,Tl)/\(ﬁ.%'4 \/.I'g)/\(ﬁ.%‘4 \/,Tg)

be a CNF formula encoding the gatéz, = A(z1, 22, z3)). To illustrate the detection

of such explicit gate, we consider two distinct case. Fifstx, ¢ L£(I"), applying the
properties 3 and 4 to the literal, we detect the same gajeln the second case, where
x4 € L(I)i.e.{(-xaVy(—24))} C I', we detecta gat¢ (x4 = A(x1, 22,23, ...)),

the gatey’ include the gatg and other auxiliary variables introduced to represent the
clauses iny(—z4).

The example 2 shows that when some clauses of the originaularexpress a gate
(explicit gate), our approach can recover such gates inyasieple way. The question
of recovering explicit gates has been subject of intergstiarks by [8, 15]. Properties
3 and 4 describe one step in our encoding. Given a consistémf diterals .S, our
proposed translation iterates the application of the alpowperties on each literal ¢f.
The algorithm 1 describes the encoding of any CNF as a cisatiformula. It produces
a set of gates and a set of clauses. Combination of both setgiigalent wrt. SAT to
the original formula.

Definition 2. Let X’ be a CNF formula,S a consistent set of literals and a set of
gates obtained by applyin@ircuitSat(X, S). We defineov(X, G) the set of clauses
of X' covered byg as{c|c € (-l V a(-l)andl € S} i.e. clauses considered in the for
loop (line 5, algothme 1). Dually, we definecov(X,G) = X — cov(X, G).

Let us note that the set of uncovered clause§’afan be obtained frorg and X
i.e.uncov(X,G).

Theorem 1. Algorithm 1 is a correct circuit sat encoding and its worssedaime com-
plexity isO(n x m).

Proof. At each step (while loop) a literal is selected fréhprocessed by the application
of the property 3 and 4 and then removed frdmConsequently, the while loop is run



Algorithm 1 CircuitSat(inX' : CNF, in S : set of literals, oug : set of gates)
1:.6=0

2: while S # () do

3 select a literal from S
4: In=10

5. for ¢; € a(-l) do
6
7
8

if |ci| < 2then

In=InU{c}
: else
9: g=GU{yi = V(a)}
10: In=InU{y}
11: end if
12: end for

13: G=GuU{l=A(In)}
14: S=85-{l}
15: end while

exactly|S| times. The obtained formul&(\ uncov(X, G)) is circuit sat formula which
is equivalent wrt. SAT ta¥ (property 2).

ComplexityLet consider the case wheji€| = n. The while loop is run at most times
(line 3 and line 14). The for loop is run at mosttimes which is an upper bound of the
number of clauses in(—l). Consequently, we obtain a worst case time complexity of
n X m.O

Property 5. Let X be a CNF.S is a model ofY iff the set of gateg; obtained by
CircuitSat(X, S) is a full circuit encoding i.euncov(X, G) = ()

Proof. First, asS is a model ofY, thenVe € X, S Nc # (). Using S in CircuitSat
algorithm at each iteration of the while loop, we consideiteral I € S (line 3). As
-l € S, at each iteration the set of clausesV «(-l) (line 5) are covered by the
added gates. These clauses correspond to the clausegddiigfic S. Iterating such

a process(CircuiSat covers all the clauses df. The converse is also true. From the
setS of consistent literals considered BYircuitSat for covering all the clauses df,
one can construct a mod&f = S of X. Indeed, each time a literalc S is processed
(line 3), we cover all the clauses containingy These clauses are satisfied-hly(—l is
added taS’). As all the clauses oF' are covered, the constructed $ktis a model of
.

From the Property 5, we can deduce several interestingtsesul

— for unsatisfiable formula, our circuit sat encoding can eatlto a full circuit en-
coding.

— if aformulais entirely covered usingircuitSat, then the formula is satisfiable.

— in the general case, finding a full circuit encoding is intaéde.



Consequently, the Algorithm 1 can be seen as an incompléeisfiShility solver.
Indeed, if the input formula is entirely covered by a set of gates, theris satisfi-
able (Property 5). However, if the formuld is not totally covered, then we can not
conclude on the satisfiability of'. In this last case, a circuit sat formula with interest-
ing features is obtained. Indeed, the circuit formula eecadditional clauses i.e. any
model of the circuit sat formula is a restrictive model (e@.3\ PPS, LOS) of the orig-
inal formula. Interestingly enough, all the auxiliary \atsles introduced by the circuit
encoding are output variables, then their value can bem@ted (implied) after assign-
ing truth values to the variables of the original formulan8equently, any SAT solver
can be used on the CNF representation of the circuit sat flacriusuch a case, one
can limit branching to the variables of the original formatao the strong backdoor set
as proposed in [8].

As our proposed algorithm is based on the two properties Baifave considerS
as a complete assignment of the variable&'oit is important to note that any model of
circuit sat formula is a LOS of with respect taS. Obviously, if we considet = £
(resp.S = L7), then any model of the circuit formula is an NPS (resp. PH3h®
original formulaX’'. In these last two cases, the obtained circuit sat is desthly the
following property.

Property 6. Let X be a CNF. IfS = L% (resp.S = L7) then CircuitSat(X, S)
delivers a set of gates such that all clauses df not covered by are positive (resp.
negative).

Proof. The proof is straightforward. If we considéras the set of all positive literals
(resp. negatives literals), all clausesXfcontaining a negative literal (resp. a positive
literal) are covered (line 5). Consequently, wheris a satisfiable horn (resp. reverse
horn) formula, using = L1 (X) (resp.S = £1(X)), we obtain a full circuit formula.

In the following example, we show that on structured SATanses, our algorithm
CircuitSAT (X, S) can deliver interesting new constraints.

Example 3 (Pigeon hole problent)et us consider the well known pigeon hole prob-
lem. The problem PH(n) consists in putting all th@igeons intar — 1 different holes
such that each hole contain at most one pigeon. To encodartiitem in CNF formula
we needh x (n— 1) propositional variables! withi € {1,...,n},j € {1,...,n—1}.
Each variabl@a-z expresses that the pigeors in the holej. The CNF formulaP H (n)
contains two kind of clauses. (\(p} V p?...p' '),1 < i < n encoding that the
pigeoni is not left free (must be put in a hole) apd—p! vV —pl),1 <j<n—1,1<

i < k < n expressing that two different pigeonsandk) can not be put in the same
holej. Applying the algorithm 1 using positive literal§{ (X)), we obtaina x (n—1)
gates. Each gatgis of the formp} = A(=p}, —ph...p5_ 1, p, 1, ... —pl,) which ex-
presses a new interesting implicit information (see@h€ F'(g)): “each hole contains
exactly one pigeon”. On real world problem, we expect thaiagproach might deduce
interesting and meaningful knowledge.



5 circuit sat encoding: refinements

In this section, we present interesting refinements of treiitiencoding. Let us moti-
vate them with the following example.

Example 4.Let ¥ = {c1,c2,¢3,¢4,¢5} be @a CNF ste; = (21 V 23 V —x3), €2 =
(xa Vo V —x3), c3 = (23 V 74 V 22), ca = (21 V 22 V x3), 5 = (T4 V —21)
andS = {—x1,z2, "x3, ~x4). The set of gates obtained B¥ircuitSat(X, S)is G =
G1 UG, UGs such that :

= G = {2zl = Ay1,92), 11 = V(22,773), y2 = V(~w2,73) }.
—_ g2 = {ZCQ = \/(Il,xg)}.

— Gz = {—~w3 = A(y3,94), Y3 = V(—Ta, 22), Yya = V(x1, x2) }.
= Gy = {24 = N(y5, 771), y5 = V (22, 723)}.

Remark 1.In the example 4, we can remark that :

1. Sis a model ofY anduncov(X, G) = () (Property 5),

2. the gatey; = V(z2, ~23) andys = V(z2, ~3) represent the same boolean func-
tion \/(IQ, _|£C3),

3. the clausey is covered three times by;, G> andgs.

Dealing with multiple definitions

To reduce the number of auxiliary variables, one needs talawuwch multiple functional
definition (case 2). It is achieved by a simple modificatiothaf Algorithm 1. Indeed,

in the for loop before processing a clauseone needs to search in the current set of
gatesj for a gatey; = V(c;) st.j < 4. In such a case we ugg instead of introducing

a new auxiliary variabley;. The variabley; is then added to the current set of input
variables/n. The complexity of searching for multiple definition is@(|G|).

Reducing multiple clauses covering

It is obvious that the circuit sat formula obtained by theoailhm 1 depends on the
setS of literals and on the heuristic used to select the nextditdine 3). To reduce

the number of times each clause is covered, different h@gisan be designed. In this
paper, the next literdlwhich appears in the maximum number of uncovered clauses is
selected. ISNL(uncov(X, G)) = (), then no new clause can be covered and the process
is ended. The while condition (line 2) is substituted withn L(uncov(X, G)) # 0).

Partial encoding of CNF

Our approach is also dependent on the choseS eétiterals (see property 6). One can
be interested in considering a specific set of literals tecowly a sub-formulaof’. In

our approach, one can specify some preferences on the s&trafd or on the clauses

to be covered. For example, preferences on literals canfbedausing an upper bound

k on the number of occurrencesin This parameter can be used to make the approach
incremental and adaptable to a given problem. Given a setafépped clauses, the



second approach tries to cover in priority such preferradsgs. For clases, preference
can be given to those of the intractable part of the formutaaAexample, covering the
non horn part of the formula might lead circuit-horn formutais can be very useful,

if we are interested in computing the bakdoor sets (seeose6)i As unit propagation
is complete on horn formula, one can use a SAT or Circuit Sawethe circuit part of
the formula, while the horn part is only determined by bonleanstraint propagation.

All the refinements presented above are integrated in ouleimgntation of the
CircuitSAT encoding.

Finally, as shown in Property 5, the task of encoding a CNkitda as full circuit one

is intractable in the general case. Let us mention anothesilple way (not considered
in this paper) to minimize the size of the uncovered set afsda of a given formula,
concern the use stochastic local search to find an approxiswdiition i.e a solution
which satisfy a maximum number of clauses. Using such besipoted solution a

better covering of the formula might be achieved.

6 Handling circuit sat formula

In this section, we briefly discuss the usefulness of our @sed approach. Different
paths are sketched in order to take advantage of the cilduigpresentation.

Circuit sat formula & backdoor sets

The first circuit sat formula can be exploited for derivingefud hidden structure of
a given problem instance. Following the recent approachgsed in [8] (LSAT) for
computing backdoor sets, we show that our circuit sat remtasion is suitable for
computing such structure. The notion of (strong) Backdotmoduced by Williams-
etal in [19] is an active research topic because of its caimmeto problem hardness. A
set of variables forms a backdoor for a given formula if thexists an assignment to
these variables such that the simplified formula can be datvpolynomial time. Such
a set of variables is called a strong backdoor if any assightoehese variables leads
to a tractable sub-formula. This kind of structure is reddtethe notion of independent
variables (see section 2) [16, 7]. In the general case, thef $eput variables is not a
strong backdoor set, because of the possible recursivatiefmin the set of gates. In
[8], using graph representation, the strong backdoor ségfised as the union of the
set of input variables and the set of variables from the cyateet of the graph.

Let us remind that computing the smallest strong backdoan iSP-hard problem.
In practice, approximating (in polynomial time) a strongk@oor of “reasonable” size
is an interesting and important issue. The main drawbackefpproach proposed in
[8] is that on many SAT instances the set of recovered gatsqunit propagation) is
either small or empty. Consequently, the CNF part coversge laumber of the original
clauses, then the set of independent variables tends to etiviae variables of the
original formula.

As we have shown in section 4, our proposed encoding caredeliset of gates and
a horn CNF part (see. property 6). Consequently, only thefsgdtes are considered in



the computation of the strong backdoor. Interestingly gigour approach is adaptive,
i.e. can be parametrized in order to cover the intractabtegbthe formula (see section
5).

Circuit SAT based preprocessing

Our circuit encoding deliver an interesting polynomialgmacessing technique. Indeed,
the circuit formula, encoding a given instance is more qaiirstd than the original one.
Our preprocessing technique is made of two different steps :

1. generating a circuit formula using partial circuit enicdas defined in section 5.
More precisely, the generated circuit formula is obtaingdhtocessing a set of
literals.S with a number of occurrences bounded by a given congtant

2. translating the circuit formula (obtained in the firsgyteo CNF.

7 Experiments

We have experimented the aforementioned CircuitSAT emgpdn the last SAT com-
petitions benchmarksh¢ t p: / / www. sat conpeti ti on. or g). To show the use-
fulness of our circuit sat encoding, two kind of experimearts conducted. First, fol-
lowing the approach by Ostrowski-etal [8], strong backds®is are computed using as
input the circuit formula obtained by our proposed circuiteding. Secondly, our cir-
cuit sat encoding is used as a preprocessing i.e. a new Ctufalis generated from
its circuit encoding leading to more constrained instar{ses section 6). Minisat-2.0
is then used to solve the instance with and without our piegssing. All experiments
have been conducted on Pentium 1V, 3Ghz under linux Fedora £o

Intable 7, experimental evaluation is illustrated by oftlsenber of gates#gates),
number of auxiliary variables#aV ar), number of independent variablegil ar),
number of variables in the cycle cutsgtSet, the size of the strong backdoor set
(#sB = #iVar + #cSet) and by the cumulated (circuit encodirgstrong back-
door set computation) cup-timeifnes) in seconds. As the se&t of literals used for
encoding a given instance is reduced to the positive lgeshthe instanceq = L1),
all the non covered clauses are horn. Consequently, the ewaflnitial horn clauses
(#horn) and the remaining number of horn clause# ¢rn) after the translation are
also given. This experimental evaluation shows clearlyeffieiency of our proposed
encoding, on all instances the cumulated time is less thansenond. In term of the
backdoor size, our approach is competitive with Ostrovesil-published results [8].
On many classes of instances, the size of the strong backsi@amout 50 % of the
number of variables. Note that for flat200-1, phnf-sizeldleH 0 (see example 3) no
auxiliary variables are needed. On the these instancessitive literals occurs exactly
one time. Furthermore the remaining not covered horn ctaiss#ill close to the initial
number of horn clauses. For the pigeon hole instance, thébauof horn clauses re-
main the same. Indeed, as the horn clauses are totally negatine of them is covered
usingS = L.



instance F#ovar #cla| #horn||#rHorn|#gates|#aV ar|#iV ar|#cSet| #sB|time
qg1-08 512 148 957 23608 23609 236 179 182 56/ 238 0.16
par32-1 317 10271 3831 3330 579) 4903 852 843 1695 0.20
logistics.d | 4713 21991 19621 1121 6100 4234 2473 1518 3991 0.13
bmc-galileo963 624 326 999 188 64§ 136 873 40621 28 790 30 655 857339 228 1.0Q
flat200-1 600 2237 2037 2037 200 0 400 0| 400 0.05
phnf-size10|61 6493157 12(02361 046 850 086 35 344 0| 18 03025 qu 43 150 7.60Q
hole-10 110 561 550 550 11 0 99 0 99 0.01
uuf250-1 250 1065 556 288 1244 108 76/ 10 182 0.01
Table 1. Circuit encoding and strong backdoor set computation

The scatter plots given in figure 1 illustrate the compaeat®sults of the state-
of-the-art solver Minisat-2.0 on the original instances @m instance obtained using
our proposed preprocessing with different boukdsinging from0 to 3. The bound
k = 0 corresponds to the results obtained on the original instave tested all thg39
instances corresponding to the crafted and industriagoaiees. Each dot witlit,, ¢,)
coordinates corresponds to a given SAT instance. Dots gbesge. below) the diagonal
indicate instances where the original formula is solvetefase.tx < ty (resp. slower
i.e.tx > ty) than the preprocessing one. For clarity reason, only fests solved in
more than one second are presented in figure 1. Indeed, && #asily solved instances
the preprocessing is not necessary.

1000

100 |-

Minisat + preprocessing

Minisat + preprocessin

1000

1000

100 |

Fig. 1. Minisat-2.0 with and without preprocessing

1000

All these results are summarized in table 2. The number af loleibw (resp. above)
the diagonal corresponding to the number of instances vthergreprocessing improve
#imp (resp. decreasgdec) the Minisat performances are reported. The total number
of solved instances#{solved) and the total cpu-time in secondsi.e) are also given.
The best results are obtained with boune: 3. Indeed, Minisat on the preprocessed
instance is able to solvemore instances within the time limit set %0 seconds.



bound #imp|#dec|#solved|time(sc.)
k=0 - - 463 | 279 368
k=1 113 | 90 461 | 280959
k=2 108 | 94 460 | 281 322
k=3 107 | 104 | 468 | 277 308

Table 2. All instances : summary of results

The table 3 gives a detailed picture of these promising teskbbrk = 1 andk =
3, time in seconds needed for processing the instameet{me) and for solving the
instance tun-time) is also reported. We are actually conducting extensiveexyents
using greater values for the bouhdto determine the maximum value bfleading to
better improvements.

k=20 k=1 k=3
instance SAT||run-time||run-time|pre-time||run-time|prep-time
Sgp6-6-10 Y 296.6 74.8 3.9 847.7 4.7
mod2-rand3bip-sat-220|-3Y 1054 29.7 0.1 31.86 0.1
strips-gripper-14t27 Y - - 0.4 61.4 0.4
dead-dnd009 N 327.2] 297.0 0.3 7337 0.1
pbl-00100 N - 354.4 0.1 106.5 0.1
grid-pbl-0070 N - - 0.1 150.1 0.1
QG6.gensys-ukn001 N 728.1 - 0.1 298.8 0.1
clauses-6 Y 749.3 - 8.3 - 14.1
gensys-icl005 N 543.1 286.0 0.1 596.9 0.1

Table 3. Minisat-2.0 with and without preprocessing : a detailedyie

8 Conclusion

In this paper, we have proposed an original new circuit saetha&ncoding of CNF
formula. It makes an original use of the concept of restrictnodels introduced by
Boufkhad to polynomially translate any formula in conjumetnormal form (CNF) to
a circuit sat representation (a conjunction of gates andsels). The derived circuit
sat formula is equivalent with respect to SAT to the origiGdlF. Depending on the
characteristics of the considered restrictive solutiam, variants have been proposed.
We proved that when they are used, a formula made of a comunaftgates and horn
(or reverse horn) clauses can be obtained. We also providedraection between our
encoding and the satisfiability of the original formula. 8t interesting refinements
and different ways to handle the circuit sat formula are peggl. Last but not least,
our encoding can also be used to recover explicit gates dred oteaningful structural
knowledge. Our formal and informal analysis demonstraa¢ time can obtain several
advantage by exploiting our circuit sat encoding. The expental results show two



possible use of the circuit sat encoded formula. First,ltesn the strong backdoor set
computation problem are very encouraging. Secondly, aremental preprocessing
(using bounds on the occurrences number of literals) leanfgdresting improvements
with respect to Minisat-2.0 a state-of-the-art Satisfigbgdolver.
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