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Frequency and dc magnetic field dependences of dynamic susceptibility in diluted paramagnets
LiYF4:Ho3+ have been measured at liquid helium temperatures in the ac and dc magnetic fields
parallel to the symmetry axis of a tetragonal crystal lattice. Experimental data are analyzed in the
framework of microscopic theory of relaxation rates in the manifold of 24 electron-nuclear sublevels
of the lowest non-Kramers doublet and the first excited singlet in the Ho3+ ground multiplet 5I8

split by the crystal field of S4 symmetry. The one-phonon transition probabilities were computed
using electron-phonon coupling constants calculated in the framework of exchange charge model
and were checked by optical piezospectroscopic measurements. The specific features observed in
field dependences of the in- and out-of-phase susceptibilities (humps and dips, respectively) at the
crossings (anti-crossings) of the electron-nuclear sublevels are well reproduced by simulations when
the phonon bottleneck effect and the cross-spin relaxation are taken into account.

PACS numbers: 71.15.Ap, 71.15.Mb, 71.15.Rf, 71.20.Be, 75.10.Pq

I. INTRODUCTION

In 1968 Hellwege et al.1 found an unusual non
monotonous behavior of the in-phase magnetic suscep-
tibility in parallel dc and ac magnetic fields with narrow
maxima at the dc field values corresponding to the cross-
ings of electron-nuclear sublevels of the ground-state of
diluted Ho3+ ions in LaCl3 at the temperature ∼1 K
and frequencies of the ac-field in the range 102 − 5.103

Hz. Recently, similar data were independently obtained
on the dynamic susceptibility of the diluted paramagnet
LiYF4:Ho3+ (0.1%) in the region of energy level cross-
ings in Ref. [2]. This latter study of the anisotropic rare-
earth spin dynamics in the classical regime was an ex-
tension of sub-Kelvin magnetization measurements, pre-
viously used to reveal the role of quantum fluctuations
of atomic magnets in the diluted LiYF4:Ho3+ system3,
similarly to the phenomenon of resonant tunneling of
single molecule magnets in presence of a large uniaxial
anisotropy4. In both [1] and [2] the observed peculiari-
ties of the susceptibility dynamics, measured at relatively
high temperature, relate to predictions of N. Bloember-
gen and co-workers in their classical study of the cross-
relaxation in spin systems5: ”...the susceptibility is usu-

ally plotted at constant frequency versus applied dc field.

There may easily occur a maximum in this plot, because

for certain values of the external field some pairs of lev-

els ... may become nearly equidistant”. The purpose of
the present paper is to investigate the microscopic ori-
gin of the susceptibility in diluted LiYF4:Ho3+ at liquid
helium temperatures, taking into account the different
effects of crystal-field, electron-phonon and hyperfine in-
teractions, as well as cross-relaxation processes. The ex-

tension of this many-body classical dynamics to the low-
temperature quantum case was previously adressed in
Refs.[2,3]. Nevertheless, many-spin quantum fluctuations
in highly anisotropic systems, such as co-tunneling pro-
cesses, have not been discussed on microscopic grounds
up to now. Therefore, to go further in the analysis of dy-
namical magnetic hysteresis loops measured at sub-kelvin
temperatures in the strongly out-of-equilibrium quantum
regime3,6, a clear understanding of the classical spin dy-
namics in LiYF4:Ho3+ is required. The quasi-resonant
absorption of radiofrequency (5-10 MHz) ultrasound and
ac magnetic field energy at the crossing points in the
CaWO4:Ho3+ crystal was observed in Ref.[7], and some
specific peculiarities of 19F nuclear relaxation rates at
the crossing points in LiYF4:Ho3+ were found in Ref.[8].
All these experimental findings give evidence for essential
variations of the relaxation rates in the electron-nuclear
subsystem, by orders of magnitude, within the vicinity
of energy level crossing points. In the present work, new
measurements of frequency, temperature and dc mag-
netic field dependences of the dynamic susceptibility in
LiYF4 single crystals containing different concentrations
of Ho3+ ions have been carried out. The experimental
data are analyzed in the framework of the microscopic
theory of the electron-phonon interaction in a gapped ti-
tled system. The existing data on spectral properties of
Ho3+ ions in LiYF4

9 and additional piezospectroscopic
studies described below allowed to obtain reliable val-
ues of electron-phonon coupling constants and rigorous
estimates of relaxation rates in the manifold of lower
electron-nuclear sublevels of the ground multiplet. Sim-
ulations based on the calculated values of kinetic param-
eters revealed remarkable differences between the com-
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puted and measured dependences of the dynamic sus-
ceptibility on the external parameters (frequency, tem-
perature, strength of the constant magnetic field). We
found it necessary to derive a more thorough theoreti-
cal approach accounting for the phonon bottleneck effect
and the cross-relaxation. A self-consistent description of
all specific features of the measured susceptibilities has
been achieved using parameters of the phonon and mag-
netic subsystems which have physical meaning. The pa-
per is arranged as follows: in the first section we derive
a general expression of the dynamic susceptibility, then
we describe the known spectral properties of impurity
Ho3+ ions in LiYF4 and calculate electron-phonon cou-
pling constants which are used to compute the relaxation
matrix in the space of lower 24 electron-nuclear sublevels
of the ground multiplet in the external magnetic field.
The next section contains results of experimental stud-
ies, and in the last section we compare measured and
simulated in- and out-of-phase susceptibilities.

II. THEORY OF DYNAMIC MAGNETIC

SUSCEPTIBILITY OF A DILUTED

PARAMAGNET

The dynamic susceptibility χ(ω) of a single paramag-
netic ion coupled to a phonon bath in the external mag-
netic field B = B0 +B1(ω, t) , (B1(ω, t) = B0

1 exp(−iωt),
is determined by the following expression:

χαβ(ω) =
Tr(ρ(t)∆mα)

B1β
. (1)

Here ∆m = m − 〈m〉0; m is the operator of the ion
magnetic moment, and 〈...〉0 defines an average value,
corresponding to the equilibrium single ion density ma-
trix ρ0(H0) = e−H0/kT /T r(e−H0/kT ) in absence of the
time dependent field. Time evolution of the density ma-
trix ρ(t) defined in the space of eigenfunctions |k〉 cor-
responding to eigenvalues Ek of the Hamiltonian H0 of
the unperturbed electronic (or electron-nuclear) system
can be described by the master equation for diagonal
elements ρnn = ρn and by simple exponential decay
of non-diagonal matrix elements (validity of this ”secu-
lar” approximation was discussed, in particular, in Refs.
[10,11]):

∂ρn

∂t
=

∑

k

Wnkρk (2)

∂ρnk

∂t
= −(γnk + iωnk)ρnk +

i

~
[mB1(ω, t), ρ]nk (3)

(n 6= k, ωnk = (En − Ek)/~)

When working with eq.(2) and (3) we implicitly sup-
pose that the equilibrium state is established in the
bath much faster than in the electronic subsystem. Be-
sides, we have omitted in the r.h.s. of eq.(2) the
terms −2Im

∑

k 6=n mB1(ω, t)ρkn/~,which do not con-
tribute to the linear response on the weak alternating
field B1(ω, t). The off-diagonal elements of the relax-
ation matrix Wnk = Wk→n are the transition proba-
bilities induced by the electron-phonon interaction. For
the one-phonon transitions,Wm→k = wmk[n(ωmk) + 1] if
the frequency of the transition ωmk > 0 and Wm→k =
wmkn(ωkm) if ωmk < 0 where wmk is the probability
of the spontaneous transition, and n(ωmk)is the phonon
occupation number. The diagonal element Wnn =
−

∑

k Wkn determines the lifetime of the corresponding
state n, and the coherence decay rate equals

γnk = −1

2
(Wnn + Wkk) + Γnk (4)

where the first term is caused by finite lifetimes, and
Γnk determines all additional contributions to the homo-
geneous broadening of the n → k transition.

Considering the energy of interaction with the time-
dependent field −mB1(ω, t) as a perturbation, we solve
equations of motion in the linear approximation:

ρn(t) = ρ0n + ∆ρn(ω)B1 exp(−iωt) (5)

where ∆ρn(0) = ρ0n(mnn − 〈m〉0)/kT
Postulating that the interaction with the phonon bath

tends to establish an equilibrium state at the instant
value of the magnetic field,

∑

k Wnkρ0k(H0 −mB1) = 0 ,
we obtain from eqs. (2)(3) and (4)

∆ρβ,n(ω) =
∑

kp

(iω1 + W)−1
nk Wkp∆mβ,ppρ0p/kT (6)

∆ρβ,nk(ω) =
mβ,nk(ρ0k − ρ0n)

~(ωnk − ω − iγnk)
(7)

The dynamic susceptibility (1) takes the form

χαβ(ω) = χ0
αβ − {iω

∑

nk

∆mα,nn(iω1 + W)−1
nk

×∆mβ,kkρ0k/kT }
+

∑

n,k 6=n

mα,nkmβ,kn(ρ0k − ρ0n)

×
(

1

~(ωnk − ω − iγnk)
− 1

~ωnk

)

(8)

where the well known expression for the static suscep-
tibility
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χ0
αβ =

∑

n

∆mα,nn∆mβ,nnρ0n/kT

+
∑

n,k 6=n

mα,nkmβ,kn

~ωnk
(ρ0k − ρ0n) (9)

has been used. The first line in eq. (8) coincides with
the expression presented in Ref. 12.

In the case of a finite concentration of paramagnetic
ions, we have to take into account interactions between
the ions (dipole-dipole, dimer or trimer exchange, virtual
phonon exchange) and the finite rate of a heat flow from
the phonon reservoir to the helium bath (the phonon bot-
tleneck effect). These interactions between paramagnetic
ions induce energy exchange (cross-relaxation), and the
master equation (2) contains additional nonlinear terms5:

ρ̇n =
∑

m

Wnmρm +
∑

mpl

[(WCR
np,lmρpρm − WCR

pn,mlρlρn)

−(WCR
np,lmρpρm − WCR

pn,mlρlρn)ad] (10)

Here WCR
np,lm is the probability of the simultaneous tran-

sitions m → l of one ion, and p → n of another ion.
According to the Fermi Golden rule, this transition prob-
ability can be written as follows5,13:

WCR
np,lm =

2π

~
〈|< n, l|H12|p, m >|〉Av δ(ωpn − ωlm) (11)

where H12is the Hamiltonian of interaction between the
ions, and 〈〉Av means a configuration averaging over the
distribution of the paramagnetic ions in the crystal lat-
tice. In the particular case of dipole-dipole interactions
between rare-earth magnetic moments m = gJµBJ( µB

is the Bohr magneton, J is the total angular momentum,
gJ is the Lande factor),the Hamiltonian H12 has the form

H12 =
(gJµB)2

R3
[J1J2 − 3(J1R)(J2R)/R2] (12)

where R is the vector connecting the ions. The last term
at the right-hand side of eq. (10), (...)ad, provides an
asymptotical approach to the equilibrium distribution of
populations in the electronic system isolated from the
phonon bath (in adiabatic conditions) due to the cross-
relaxation processes5.

Taking into account the distribution of the single ion
energies, we can write the transition probability (11) in
the following form:

WCR
np,lm = δ2

∑

αβγδ

gCR
αβγδ(ωpn − ωlm)kαβγδ ×

(< n|J1α|p >< l|J2β |m > ×
< p|J1γ |n >< m|J2α|l > +c.c.) (13)

where gCR
αβγδ(ω) is the cross-relaxation line shape func-

tion, δ is the average energy of the interaction in fre-
quency units (we can consider δ = (gJµB)2/~R3

0 with
R0 equal to a lattice constant as a scaling factor), and
kαβγδ are the average values of the corresponding dimen-
sionless lattice factors. The Hamiltonian (12) contains
only symmetrical products of the components of the an-
gular moments, J1αJ2β , and in a general case there are
21 independent parameters kαβγδ. However, this number
can be essentially diminished due to symmetry properties
of a concrete lattice (similarly to the elastic compliance
tensor). In particular, in a case of S4 local symmetry of
paramagnetic ions, we obtain

WCR
np,lmδ−2 = (14)

gCR
33 k33|Jnp

1z J lm
2z |2

+ gCR
11 k11(|Jnp

1+J lm
2− + Jnp

1−J lm
2+ |2)

+ gCR
66 k66(|Jnp

1+J lm
2+ − Jnp

1−J lm
2− |2)

+ gCR
12 k12(|Jnp

1+J lm
2+ + Jnp

1−J lm
2− |2)

+ gCR
44 k44[(|(Jnp

1+ + Jnp
1−)J lm

2z + Jnp
1z (J lm

2+ + J lm
2−)|2

+ |(Jnp
1+ − Jnp

1−)J lm
2z + Jnp

1z (J lm
2+ − J lm

2−)|2]
+ gCR

13 k13[J
np
1z J lm

2z (Jpn
1+Jml

2− + Jpn
1−Jml

2+) + c.c.]

+ gCR
16 k16[(J

np
1+J lm

2+ − Jnp
1−J lm

2−)(Jpn
1+Jml

2+ + Jpn
1−Jml

2−) + c.c.]

with Jab =< a|J |b >. Because a similar expression
may be obtained in a case of long range interactions be-
tween the paramagnetic ions through the field of elas-
tic lattice deformations (Hd

12 =
∑

pknm Anm
pk Cp

k (1)Cn
m(2)

where Ck
p (i) is the spherical tensor operating in the

space of states of the ion i, and Anm
pk are the coupling

constants14)we consider seven factors kab introduced in
(14) as the phenomenological parameters.

If the system is not far from equilibrium, equations
(10) can be linearized. We suppose that the adiabatic
density matrix is characterized by a single parameter,
the adiabatic temperature. The difference

T−1 − T−1
ad =

∑

n kEn∆ρnB1 − T−1〈H0∆mB1〉0
〈H2

0 〉0 − 〈H0〉20

between the lattice and adiabatic temperatures is deter-
mined from the condition that the average values of the
electronic energy H0 −mB1 obtained with the adiabatic
density matrix and with ρ(t) are equal. The master equa-
tion in the form (2) and the expression (8) for the dy-
namic susceptibility remain valid but with the additional
contributions to the relaxation matrix

Wnm = Wm→n (15)

+
∑

k

WCR
nk

[

δkm − ρ0k
(Ek − 〈H0〉0)(Em − 〈H0〉0)

〈H2
0 〉0 − 〈H0〉20

]
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where

WCR
nm =

∑

lp

(WCR
np,lmρ0p+WCR

nm,lpρ0p−WCR
pn,lmρ0n), (n 6= m)

(16)
Let us now take into account the finite relaxation rate of
the phonon subsystem15 considering equations of motion
for the phonon occupation numbers along with the (2)):

dn(ωmk)

dt
=

1

τph(ωmk)
[n(ωmk) − n0(ωmk)] (17)

+
wmkN

Pmk∆ωmk
(ρm[n(ωmk) + 1] − ρkn(ωmk))

here n0(ωmk) = [exp(~ωmk/kT ) − 1]−1 is the equilib-
rium occupation number of phonons at the resonance fre-
quency ωmk > 0 in the band with the width ∆ωmk, τph

is the phonon lifetime, N is the number of paramagnetic
ions per unit volume, Pmk is the density of states of res-
onant phonons (for the low-frequency acoustic phonons
Pmk = 3ω2

mk/2π2v3, where v is the average sound ve-
locity). The stationary solution of the linearized cou-
pled equations (2) and (17) brings about the same re-
sults as the solution of eq.(2) does (see eq.(8)), but with
the renormalized transition probabilities induced by the
phonon bottleneck:

W (r)
m→n = Wm→n

[

1 +
2π2v3τph(ωmn)Nwmn|ρ0m − ρ0n|

3ω2
mn∆ωmn[1 + iωτph(ωmn)]

]−1

(18)
To calculate the susceptibility, we need to know, first of

all, elements of the relaxation matrix W, i.e., the transi-
tion probabilities for each pair of states of a paramagnetic
ion induced by the electron-phonon interaction. At the
next step, the parameters of the cross-relaxation rates
and the phonon lifetimes introduced in expressions (14)
and (17), respectively, may be determined from a com-
parison of the calculated real and imaginary parts of the
susceptibility (8) with the experimental data.

III. SPECTRAL PROPERTIES OF ISOLATED

Ho3+ IONS IN LiYF4

The crystal lattice of LiYF4 has a space group C6
4h with

the lattice constants a = 0.5164 nm, c = 1.0741 nm.16

The Ho3+ ions substitute for Y3+ ions in the sites with
the point symmetry S4, coordinates of the four nearest
fluorine ions at the distance R1=0.2244 nm relative to
the Ho3+ ion in the site (000) equal (x y z), (-x -y z),
(x -y -z), (-x y -z), where x = (t-1/2)a, y = (1/2-p)a,
z = -qc, and p=0.2817; t=0.1645; q=0.0813. The next
nearest fluorine ions are at the distance R2=0.2297 nm,
they form a deformed tetrahedron as well with x = ta, y
= (1/2-p)a, z = (q-1/4)c).

The energy level pattern of the electronic 4f10 config-
uration of the Ho3+ ion in LiYF4 was studied in quite a

23  
49  

7  

58  
72  

5I8

5I6

5I5

0  

8680  
8686  

8783  

11240  
11248  

11252  
11254  

11327  

15491  

15620  

E/hc (cm-1)

5F5

FIG. 1: Optical singlet-doublet transitions in the absorption
spectrum of impurity Ho3+ ions in LiYF4 explored in the
piezospectroscopic measurements.

few works17,18,19, fragments of this pattern are shown in
Fig.1. The spectrum consists of singlets (Γ1 and Γ2) and
non-Kramers doublets ( Γ34) corresponding to irreducible
representations Γk of the S4 group. Being interested in
low temperature magnetic properties of the system, we
can consider only the lower part of the energy spectrum
described by the parameterized single ion Hamiltonian
operating in the space of 136 products |LSJJz > ⊗|IIz >
of the electronic and nuclear spin functions (there is only
one Holmium isotope 165Ho with the nuclear spin I=7/2,
L, S, J are the electronic orbital, spin and total angular
moments, respectively, the lowest electronic multiplet is
5I8):

H = H0+He−ph ; H0 = HCF +Hhf +HZ +HS (19)

Here

HCF = a2B
0
2O0

2 + a4(B
0
4O0

4 + B4
4O4

4 + B−4
4 O−4

4 )

+a6(B
0
6O0

6 + B4
6O4

6 + B−4
6 O−4

6 ) (20)

is the crystal field Hamiltonian ( Bk
p are the crystal

field parameters, O
|k|
p and O

−|k|
p are the real and imagi-

nary Stevens operators, respectively; a2 = α = −1/450,
a4 = β = −1/30030, a6 = γ = −5/(189.1432) are the
reduced matrix elements of the Stevens operators in the
manifold of the pure 5I8 states), Hhf is the Hamiltonian
of the magnetic hyperfine interaction (the electrostatic
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quadrupole interaction can be neglected), HZ = gJµBJB

is the electronic Zeeman energy in the magnetic field
B; the last two terms in (19), the Hamiltonian of the
electron-phonon interaction He−ph and the energy of in-
teraction with random lattice strains HS , are specified
below. As it was shown in [9], the submillimeter EPR

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

m=2

E
/h

c 
(c

m
-1
)

Magnetic field (B/ B)

m=0

FIG. 2: Electron-nuclear sublevels of the Ho3+ ground dou-
blet 5I8(Γ34) in the magnetic field B||c. The magnetic field
strength is given in units of ∆B = 23.74 mT.

spectra of Ho3+ ions in LiYF4 are well described by the
effective g-factor gJ =1.21 (slightly different from the
value 5/4 for the pure 5I8 multiplet), the hyperfine con-
stant A = 0.795 GHz, and the crystal field parameters
given in Table 1.

It should be noted that this set of the crystal field pa-
rameters is related to the crystallographic system of coor-
dinates (the quantization axis z is parallel to the crystal
c-axis). This statement is based on the earlier studies of
the piezo-spectroscopic and nonlinear Zeeman effects in
LiYF4:Tm3+ [20,21], and the anisotropic parastriction in
the concentrated paramagnets LiTmF4

22 and LiErF4
23.

The calculated hyperfine structure of the ground elec-
tronic doublet in an external magnetic field directed
along the crystal symmetry axis is shown in Fig.2. The
spectrum consists of the two nearly equidistant groups
of electron-nuclear sublevels with positive and negative
slopes, respectively. The electron-nuclear sublevels inter-
sect at the magnetic field values B ∼= |m′ +m|∆B, where
m,m′= Iz and, to first order in A, ∆B = A/2gJµB. We
can distinguish odd (Codd, |m′ − m| = ∆m = 2k) and
even (Ceven,|m′ − m| = ∆m =2k+1) crossing points at
magnetic field B = (2n + 1)∆B and B = 2n∆B, respec-
tively, (k,n =0,1,2,3). The mixing of the ground Γ34 dou-
blet with the excited singlets Γ1 and Γ2 by the magnetic
hyperfine interaction opens the gaps at the odd cross-
ing (anti-crossing) points with the maximum values for

p k Bk
p Bk

p (A1
g) Bk

p (A2
g)

Exp. Theo.

1 2 3 4 5

2 0 190.4 154 603 -891

4 0 -78.2 -89 125 718

4 4 -657.2 -700 2397 1434

4 -4 -568.6 -613 3700 717

6 0 -3.2 -2.1 113 -416

6 4 -364.0 -322 937 -843

6 -4 -222.3 -265 1738 -889

p k Bk
p (B1

g) Bk
p (B2

g)

Exp. Theo. Exp. Theo.

6 7 8 9 10

2 2 1644 1800 3814 3590

2 -2 1846 2070 -836 -1620

4 2 -454 -780 -1532 -1980

4 -2 1885 3660 1424 1900

6 2 188 230 -243 -730

6 -2 -543 -520 -658 -710

6 6 -858 -740 -1444 -1750

6 -6 -738 -990 -1245 -2010

p k Bpk,1(Eg) Bpk,2(Eg) p k Bpk,1(Eg) Bpk,1(Eg)

11 12 13 14 15 16

2 1 1951 3595 2 -1 -3595 1951

4 1 -2056 -1996 4 -1 1996 -2056

6 1 -1198 -256 6 -1 256 -1198

4 3 23372 16638 4 -3 16638 -23372

6 3 2093 -1674 6 -3 -1674 -2093

6 5 -7558 -600 6 -5 600 -7558

TABLE I: Crystal field parameters and electron-deformation
coupling constants (cm−1)

∆m = 2 of an order of 0.35 GHz (see Fig.2). However,
in addition to the avoided level crossings with ∆m = 2,
gaps of comparable values (∼0.28 GHz) were observed
at the odd crossing points for the electron-nuclear sub-
levels with ∆m = 0 in the EPR spectra of the isotopi-
cally enriched sample 7LiYF4:Ho3+ (0.1%)9. We sup-
pose that these splittings are induced by random strains
due to intrinsic lattice defects.As we shall see below, the
presence of random strains is confirmed by some specific
features of magnetic field dependences of the dynamic
susceptibility as well, and to account for the correspond-
ing random crystal field effects, we introduce the Hamil-
tonian Hs = a2(B

2
2O2

2 + B−2
2 O−2

2 ) with the initial val-
ues of parameters B2

2 = ∓0.4525 cm−1; B−2
2 = ±0.4752

cm−1 which has been already used in [9] to describe the
∆m = 0 anti-crossings observed in the EPR spectra of
the sample isotopically enriched in 7Li.

At low temperatures interactions between Ho3+ ions
play an important role in relaxation processes in the cou-
pled electron-nuclear subsystem2,3,6. For a pair of distant
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FIG. 3: Electron-nuclear sublevels of the ground state of a
pair of distant holmium ions in the magnetic field B||c. Ar-
rows show half-integer crossings

Ho3+ ions, the energies of lower 256 electron-nuclear sub-
levels versus the magnetic field are shown in Fig.3. This
figure presents a new plot of the sum of single ion ener-
gies related to a ground Γ34 doublet where the random
”rhombic” crystal field is taken into account. It is de-
scribed by the Hamiltonian HS and mainly affects the
electron-nuclear sublevels with the nuclear spin projec-
tions m = ±1/2. The corresponding shifts (about 0.01
cm−1) cause splittings of degenerate energy levels of a
dimer which are concentrated close to the centre of grav-
ity of the spectrum in Fig.3 (in particular, in zero mag-
netic field, 32 states have zero energy (8 with positive,
8 with negative, and 16 with zero slope in the magnetic
field). It is well seen in Fig.3 that there are many ad-
ditional crossings of the electron-nuclear sublevels in the
pair spectrum as compared to the single ion spectrum
(Fig.2), and the most important qualitative peculiarity
is the presence of half-integer crossings (Chi) at the mag-
netic field values B ∼= (n + 1/2)∆B for n=0,1...6.

Widths of transitions between the electron-nuclear
sublevels of the ground doublet and the first excited sin-
glet measured in EPR spectra are strongly dependent on
the holmium concentration9 at liquid helium tempera-
tures. Assuming a Gaussian distribution, the inhomo-
geneous broadening can be defined by the FWHM (full
width at half maximum) of 175 MHz9. According to
Ref.[24], frequencies of resonance transitions of the two
non-equivalent nearest neighbor fluorine nuclei in the
super-hyperfine 5F5-

5I8 spectrum equal 29.85 and 36.86
MHz. The corresponding widths of Ho3+ energy levels
due to the super-hyperfine interactions may be estimated
as 130 MHz, and the total linewidths at low concen-
trations (∼0.1%) are close to 300 MHz. The magnetic
dipole-dipole interactions dominate at holmium concen-
trations larger than 0.5%, and the observed line widths

exceed 1000 MHz in the sample containing about 1% of
impurity Ho3+ ions.

IV. MODELING OF THE ELECTRON-PHONON

INTERACTION AND SPIN-LATTICE

RELAXATION RATES

We shall consider interactions of impurity Ho3+ ions
with acoustical phonons with energies less than 40 K at
liquid helium temperatures (energies of optical phonons
in LiYF4 are larger than 100 K25). The corresponding
phonon wave lengths exceed essentially the lattice con-
stants, and we can use the lattice elasticity theory to
describe corresponding dynamic lattice deformations.

In the linear approximation, the Hamiltonian of the
electron-phonon interaction corresponding to the modu-
lation of the crystal field by elastic waves can be written
as26

He−ph =
∑

Γjλ

∑

pk

Bk
p,λ(Γj)eλ(Γj)apO

k
p (21)

+i
∑

α

ϑα

[

HCF + Hhf + HZ , (Jα + Iα)

]

here the first and second terms on the right describe the
electron-deformational and electron-rotational interac-
tions, respectively. Linear combinations eλ(Γj) of the de-
formation tensor components (eαβ) which transform ac-
cording to irreducible representations of the factor group
C4h of the lattice (e(A1

g) = ezz; e(A2
g) = (exx + eyy)/2;

e(B1
g) = exx − eyy; e(B2

g) = exy; e1(Eg) = exz; e2(Eg) =
eyz) and the rotation vector ϑ are linear in the phonon
annihilation (ajq) and creation (a+

jq) operators. In par-
ticular,

eαβ =
∑

q,j=jac

q√
Nm

[αβ, 1]

(

~

2ωj(q)

)1/2

(ajq + a+
j−q

)

(22)
where

[αβ, σ] =
1

2
(eα(jq0)q0β + σeβ(jq0)q0α) , σ = ±1 (23)

the sum is taken over acoustical branches jac of the lat-
tice vibrational spectrum, N is the number of unit cells
having the mass m, eα(jacq0) are the components of the
unit polarization vector in the elastic wave with the unit
propagation vector q0 = q/q and the frequency ωj(q).
The components of the rotation vector θγ are given by
the same expression (22) where [αβ,−1] is substituted
for [αβ, 1] and α 6= β 6= γ. Parameters of the electron-
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Bk
p (A1

g) = Bk
p,zz

Bk
p (A2

g) = Bk
p,xx + Bk

p,yy

Bk
p (B1

g) = (Bk
p,xx − Bk

p,yy)/2

Bk
p (B2

g) = 2Bk
p,xy

Bk
p,1(Eg) = 2Bk

p,xz

Bk
p,2(Eg) = 2Bk

p,yz

(24)

can be computed if the crystal field parameters Bh
p for an

impurity rare earth ion are known as explicit functions
of coordinates XλL,α, of the host lattice ions (the vector
RλL defines the equilibrium position of an ion λ in the
unit cell L). The corresponding calculations were carried
out in the framework of the exchange charge model of
the crystal field26. Parameters of the crystal field Hamil-
tonian are represented by a sum of two terms

Bk
p = e2Kk

p

∑

λL

[

−Zλ(1 − σp)
< rp >

Rp+1
λL

+
2(2p + 1)

7RλL
Sp(RλL)

]

Ok
p(ϑλL, ϕλL) (25)

related to the electrostatic fields of point lattice ions
with the effective charges eZλ and ”exchange” charges
at the neighbor ions proportional to the quadratic forms
of the overlap integrals of the 4f-electron and ligand
wave functions Ss =< 4f0|n′′s0 >, Sσ =< 4f0|n′′p0 >,
Sπ =< 4f1|n′′p1 > (only outer filled n′′s2 and n′′p6 elec-
tronic shells of ligand ions are considered):

Sp(R) = GsS
2
s (R) + GσS2

σ(R) + (2 − p(p + 1)

12
)GπS2

π(R)

(26)
Here Kk

p are the numerical coefficients26, σp are the
shielding constants, < rp > are the moments of the 4f
electron charge density, Ok

p(ϑ, ϕ) are the homogeneous
Stevens polynomials formed from the direction cosines
of ligand radius-vectors (the spherical coordinates of a
ligand are R, ϑ, ϕ relative to the rare earth ion at the
origin). Calculations were performed with σ2 = 0.579,
σ4 = σ6 = 027, < r2 > = 0.695, < r4 > = 1.219, < r6 >
= 4.502 (atomic units)28, the lattice sums were computed
by the Ewald method, the dependences of the overlap
integrals (computed with the radial wave functions from
Refs.[29,30]) on the distance R (in atomic units) between
the ions were approximated by functions S0 exp(−bR)
where S0=2.2298, 0.6535, 1.3239; b=1.2554, 0.88259,
1.1596 for s,σ and π bonds, respectively. The values of
the model parameters Gs = Gσ = 5.6, Gπ = 2.85 were
obtained from fitting the calculated crystal field energies
to the experimental data. The model results in the set
of crystal field parameters (Table 1, column 3) which are
well comparable with those found from the analysis of
the optical and EPR spectra (Table 1, column 2)9. The
coupling constants Bk

p,λ(Γj) in the Hamiltonian of the
electron-deformational interaction presented in Table 1

(columns 4,5,8,10,12,13,15,16) were calculated using the
same parameters of the model.

Now we have in hands all the data which are necessary
to calculate the single phonon transition probabilities in-
troduced in section 2:

Wm→f =
ω3

mf

π~ρ

∑

j=jac

∫

sin θdθdϕ

4πv5
j (θϕ)

× (27)

∣

∣

∣

∣

∣

∣

∑

αβ

< f |
∑

pk

Bk
p,αβ [αβ, +1]apO

k
p

+i~ωfm[αβ,−1]
∑

γ

εαβγ(Jγ + Iγ)|m >

∣

∣

∣

∣

∣

2

(n0(ωmf ) + 1)

Here εαβγ is the unit antisymmetric tensor, vj(θϕ) is the
sound velocity in the direction of the phonon wave vector
q determined by the angular coordinates θ and ϕ . The
integrals

∑

j=jα

∫

[αβ, σ][γδ, σ′]dΩ/4πv5
jα were computed

in Ref.[31].
The analysis of the magnetic field and temperature

dependences of the relaxation rates involved the numeri-
cal diagonalization of the matrix of the Hamiltonian H0

(see eq.(19)) for the fixed values of the magnetic field
(the matrix was constructed in the space of 136 functions
|5I8, JJz > ⊗|IIz > of the lowest multiplet), calculations
of transition probabilities for each pair of the electron-
nuclear sublevels using the corresponding eigenfunctions
of H0, and the diagonalization of the relaxation matrix
W. Fig.4 (a) shows the magnetic field dependences at
the temperature 2 K of the eigenvalues of the relaxation
matrix defined in the subspace of sublevels of the ground
doublet. In this case transitions are mainly induced by
the dynamic deformations of Bg symmetry between the
sublevels with the same projections of the nuclear spin.
However, mixing of wave functions of the ground doublet
with the wave functions of the excited singlets allows
transitions with the nuclear spin reverting as well. At
high magnetic fields (B >0.18 T), there are two sets of
solutions each consisting of eight branches correspond-
ing to allowed (fast relaxation rates exceeding 103s−1)
and forbidden (slow relaxation rates less than 102s−1)
transitions (of course, there is always a zero solution cor-
responding to the equilibrium state of the system). At
lower magnetic fields we see specific variations of four up-
per branches at the ∆m = 0 anti-crossings and of three
lower branches at the ∆m = 2 anti-crossings pointed
in Fig.2. The additional narrow peaks superimposed on
the broad peaks are caused by more narrow ∆m = −2
anti-crossings which are shifted from the ∆m = 2 anti-
crossings along the magnetic field axis because the spec-
trum is only approximately equidistant.

Fig.4(b) demonstrates a remarkably different behavior
of the considered single ion relaxation rates at the same
temperature, 2 K, when the transitions between the first
excited singlet and the ground doublet are taken into
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FIG. 4: Electron-phonon relaxation rates of a single Ho3+ ion
in the phonon bath at the temperature 2 K. (a) - calculated
eigenvalues of the relaxation matrix defined in the space of
16 electron-nuclear sublevels of the ground doublet, (b) - cal-
culated lower relaxation rates corresponding to one-phonon
transitions between all sublevels of the ground doublet and
the first singlet, (c) - relative energies of the electron-nuclear
sublevels of the first excited singlet in the magnetic field B||c.

account (these transitions are induced by lattice defor-
mations of Eg symmetry). There are again two sets of
fast and slow relaxation rates, but all rates become larger
by one-two orders of magnitude, the dips at the ∆m = 0
anti-crossings disappear, and six additional peaks in the
lower branches are observed due to the anti-crossings be-
tween the sublevels of the first excited singlet Γ2 which
are shown in Fig.4(c). It follows from the results of cal-
culations of the relaxation rates at liquid helium temper-
atures that the frequency dependence of the out-of-phase
susceptibility of Ho3+ ions should exhibit a maximum at
frequencies close to 105 − 106 Hz contrary to the ear-
lier observations2 of this maximum at frequencies below

103 Hz. This contradiction stimulated us to test the the-
ory by direct measurements of the electron-phonon cou-
pling constants in the piezospectroscopic experiments de-
scribed in the following section.

V. EXPRIMENTAL

A. Piezospectroscopic measurements

To determine parameters of the Hamiltonian (21) cor-
responding to the interaction of the Ho3+ ion with lattice
strains of Bg-symmetry, we measured splittings of nine
Γ34 doublets (see Fig.1) induced by the uniaxial stress
applied in the basis plane of the lattice. The sample
LiYF4 containing 1 at.% of holmium was grown by the
Bridgman-Stockebarger method and oriented with the X-
ray diffractometer. Experiments were performed at tem-
peratures 4.2 K and 77 K, the pressure p up to 220 MPa
was supplied along three different directions in the (001)
plane. Splittings of the optical lines corresponding to
singlet-doublet transitions in the σ polarized absorption
spectra (the wave vector of the incident light was parallel
to the c-axis) were measured directly or from the linear
dichroism signals20.

The uniaxial pressure in the plane (001) at the angle
ϕ relative to the a axis induces the following nonzero
components of the deformation tensor:



















e(A1
g) = −S13p

e(A2
g) = −(S11 + S12)p/2

e(B1
g) = −[(S11 − S12) cos 2ϕ + S16 sin 2ϕ]p

e(B2
g) = −(2S16 cos 2ϕ + S66 sin 2ϕ)p/4

Here Sij are the components of the elastic compliance
tensor of LiYF4 measured in Ref.[32], in particular, S11−
S12 = 18.6, S16 = 8.01, S66 = 57.7 (10−6/MPa). In the
linear approximation, the corresponding splitting of the
doublet with the wave functions |Γ34± > equals

∆(Γ34, ϕ) = 2

∣

∣

∣

∣

∣

∣

〈Γ34+|
∑

pk,i=1,2

Bk
p (Bi

g)e(B
i
g)apO

k
p |Γ34−〉

∣

∣

∣

∣

∣

∣

= p(C + D cos(4ϕ − ϕ0))
1/2 (28)

Using the data obtained at three different values of the
angle ϕ (see Table 2), we determined for each doublet
the corresponding deformation potentials C and D and
the directions ϕ0 of the petals of the four-fold rosettes
(28). Then the set of 16 electron-deformation parame-
ters Bk

p (Bi
g) (p k → 2 2, 2 -2, 4 2, 4 -2, 6 2, 6 -2, 6

6, 6 -6) was varied starting from the values obtained in
the framework of the exchange charge model (Table 1,
columns 8,10) to obtain the best estimations of the mea-
sured splittings. Results of the fitting procedure are given
in Table 1 (columns 7,9), and the calculated and experi-
mental splittings are compared in Table 2. We had only
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N Energy of Γ34 Splitting ∆(ϕ) (cm−1/100MPa)

(cm−1) ϕ = 5◦ ϕ = 30.7◦ ϕ = 45◦

1 5I8 0 0.33 (0.43) 0.67 (0.63) 0.53 (0.53)

2 5I8 72 1.12 (1.50) 1.50 (1.98) 1.14 (1.57)

3 5I6 8686 0.62 (0.37) 0.71 (0.35) 0.38 (0.21)

4 5I6 8783 1.90 (1.43) 2.20 (1.93) 2.00 (1.56)

5 5I5 11240 0.34 (0.49) 0.44 (0.45) 0.34 (0.30)

6 5I5 11248 0.43 (0.53) 0.50 (0.78) 0.53 (0.68)

7 5I5 11327 1.45 (1.33) 1.95 (1.77) 1.60 (1.42)

8 5F5 15491 0.52 (0.72) 0.67 (0.90 0.62 (0.85)

9 5F5 15620 1.01 (1.02) 1.18 (1.33) 0.82 (1.05)

TABLE II: Splittings of non-Kramers doublets in LiYF4:Ho3+

(1%) crystals axially compressed in the basis plane. Results
of calculations are in brackets.

18 independent nonlinear equations for 16 variables. It
should be noted that the positive direction of the b-axis
relative to the a-axis was unknown, and signs of angles
ϕ were checked in the fitting procedure. Possible errors
in the measured splittings (in particular, due to random
internal strains and errors in the orientation of the sam-
ple) are rather large ( ±0.15 cm−1/100 MPa), the linear
approximation for some closely spaced doublets (having
numbers 3,5,6 in Table 2) is not valid, and the param-
eters Bk

p (Bi
g) have not been determined unambiguously.

However, as it is seen in Table 1, the final set of pa-
rameters Bk

p (Bi
g) does not differ qualitatively from the

starting values. Thus, the model used in calculations
of the parameters of the electron-phonon interaction has
been additionally approved. A possible error in the es-
timations of the matrix elements of electronic operators
in the Hamiltonian of electron-phonon interaction (21)
which we need to calculate the transition probabilities
between the sublevels of the ground doublet does not ex-
ceed 24 %.

B. Measurements of the dynamic susceptibility

Earlier the dynamic susceptibility of diluted
LiY1−cHocF4 crystals with holmium concentrations
c=46 %, 16.7 % and 4.5 % was studied in Ref.[33-35] at
low temperatures with main attention for the spin-glass
behavior in a random dipolar-coupled Ising magnet.

In the present work, the dynamic susceptibility of
highly diluted LiY1−cHocF4 single crystals was measured
with a conventional SQUID magnetometer at frequencies
from 20 to 1200 Hz in the temperature range 1.75 - 4
K. Three samples with dimensions of 4x4x10 mm3 were
studied in collinear ac- and dc-magnetic fields parallel to
the c-axis of amplitude of 4 10−4 T and up to 0.25 T
respectively. The holmium concentrations in these sam-
ples (c=0.104 %; 0.157 %; 0.27 %) were determined by
a comparison of the measured low frequency suscepti-
bility with the calculated single ion static susceptibility.
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FIG. 5: (Color online) Measured and simulated magnetic field
dependences of the ac-susceptibility in LiYF4:Ho3+ (0.157 %)
at different temperatures ( ν= 800 Hz, B||c).

The in- and out-of-phase susceptibility was measured in
a more extended dc field, frequencies, temperatures and
concentrations, than in Ref [2], where the results of mea-
surements of the in- and out-of-phase susceptibilities at
frequencies 163 and 800 Hz in the sample with holmium
concentration c=0.04% were published.

The results presented in Figs.5 to 7 show the non
monotonous behavior with well pronounced peaks and
dips at different crossing points of the electron-nuclear
energy levels. In particular, the out-of-phase suscep-
tibility measured in the vicinity of the crossing points
for two holmium concentrations show an inversion of
the sign of Chi peaks (dips) with respect to the back-
ground (Fig.6). Fig.8 presents the frequency dependences
of the in- and out-of-phase susceptibilities at three dif-
ferent temperatures while the temperature and concen-
tration shifts of the out-of-phase susceptibility with fre-
quency are given in Fig.9. Note that in both cases the
dc magnetic field was taken in between two single-ion
electron-nuclear crossing points (38.5 mT, corresponding
to 1.62∆B). The temperature dependences of the in-
and out-of-phase susceptibilities at different ac frequen-
cies are shown in Fig.10.
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FIG. 6: (Color online) . Measured and simulated magnetic
field dependences of the ac-susceptibility at the temperature
1.75 K in LiYF4:Ho3+ samples with different holmium con-
centrations x (a,b - x = 0.104 %, c,d - x = 0.27 %, ν = 800
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netic field dependences of the ac-susceptibility in LiYF4:Ho3+

(0.104 %) in the region of high-field crossings at different tem-
peratures (ν = 1200 Hz, B||c).

VI. SIMULATIONS OF THE DYNAMIC

SUSCEPTIBILITY IN LiYF4 : Ho3+ AND

DISCUSSION

The experimental data presented in Figs.5-10 are ac-
companied by results of the corresponding simulations.
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FIG. 8: (Color online). Measured and simulated frequency de-
pendences of the dynamic susceptibility in LiYF4:Ho3+ (0.104
%) at different temperatures (B||c, B = 38.5 mT).

10 100 1000 10000
0

2

4

 3K
 3.5K
 4K

 
 

LiYF4:Ho3+ (0.104 %)

"(
cm

3 /m
ol

)

Frequency (Hz)

 1.75K
 2k
 2.5K

0

2

4

 

 

 

LiYF4:Ho3+ (0.157 %)
0

2

4

 

 

 

LiYF4:Ho3+ (0.27 %)
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FIG. 10: (Color online). Measured (symbols) and simulated
(solid curves) temperature dependences of the dynamic sus-
ceptibility in LiYF4:Ho3+ (0.104 %) at different frequencies
of the ac magnetic field (B||c, B = 38.5 mT).

Calculations of the susceptibilities involved the numeri-
cal diagonalization of the single ion Hamiltonian H0 (see
eq.(19)) in the space of 136 electron-nuclear states of the
lowest 5I8 multiplet for the fixed values of the external
magnetic field, the computing of the matrix elements of
electronic operators which are necessary to construct the
relaxation matrices (14) and (27), and at the last step
χ′(ω) = Reχzz(ω) and χ′′(ω) = Imχzz(ω) were obtained
at different frequencies and temperatures using the ex-
pression (8).

First of all, let us consider the frequency dependences
of the out-of-phase susceptibilities in Fig. 9 measured
at the dc magnetic field value of 1.62∆B, which is far
enough from the neighboring single-ion crossing points.
The maximum of the out-of-phase susceptibility shifts
to higher frequencies with the increasing temperature.
These shifts give evidence for the increasing relaxation
rates induced by the electron-phonon interaction. How-
ever, using the one-phonon transition probabilities calcu-
lated with the parameters of the electron-deformational
interaction from Table 1, we found the corresponding
maxima at the frequencies 104 − 105 Hz (see Fig.4 with
the plotted relaxation times), which are about two orders
of magnitude higher than the experimental values. Even
more, Fig.9 also shows a concentration dependence of
the maximum of the out-of-phase susceptibility, while it

is clear that single-ion electron-phonon interaction can-
not produce any dependence of the relaxation rate on
the concentration of relaxing ions. Thus, to fit the simu-
lated frequency dependences to the experimental curves,
we had to take into account the phonon bottleneck ef-
fect. The concentration dependence of the renormal-
ized transition probability (18) is determined by a fac-
tor Kmk = τph(ωmk)N/∆ωmk. Using the average sound
velocity v = 3.103 m/s32, the number of paramagnetic
ions per unit volume N = 2c/V (here V is the unit
cell volume which contains two Y3+ sites accessible for
holmium ions, c is the concentration determined from
measurements of χ′(ω → 0)), and the widths of spectral
distributions of the resonant phonons ∆ωmk = 2γmk =
300 MHz according to the EPR data on the widths of
the singlet-doublet transitions9, we found it necessary to
introduce two different phonon lifetimes independent on
temperature to describe the experimental data for the
sample with the concentration c=0.104% (see Figs.8 and
9). Namely, we used τph(ω) = τg ∼ 1µs for resonant
phonons with frequencies corresponding to transitions
between the electron-nuclear sublevels of the ground elec-
tronic doublet, and τph(ω) = τs ∼ 0.1µs for phonons
with frequencies corresponding to transitions between
the excited singlet and the ground doublet. Actually,
the transitions between the electron-nuclear sublevels of
the ground doublet are narrower than the transitions be-
tween the sublevels of the singlet and doublet crystal
field states, and the lifetimes τg and τs may differ less
than by order of magnitude. However, to fit the mea-
sured frequency dependences of the susceptibilities in the
samples with higher concentrations of holmium ions, we
had to diminish the factors Kmk by 1.48 (c=0.157%) and
2.7 (c=0.27%) times as compared with these factors for
c=0.104%. Thus, despite the increase of the concentra-
tion of the paramagnetic ions, the phonon bottleneck ef-
fect weakens due to broadening of the spectral bands of
the resonant phonons and possible decrease of the phonon
lifetimes.

To illustrate the phonon bottleneck effect on the relax-
ation rates, we present in Fig. 11(a) the calculated rates
in the sample with the concentration c=0.104% versus
the magnetic field. These rates are condensed within the
much narrower range as compared with the relaxation
rates represented in Figs.4(a,b), the damping effect of
the gaps at the ∆m = 0 crossings is partly restored due
to the strong suppression of the singlet-doublet transi-
tion probabilities, but there are still no remarkable vari-
ations of the lower branches at the crossing points which
may be expected in accordance with the measured field
dependences of the in- and out-of-phase susceptibilities
represented in Figs.5-7.

As it is seen in Fig.12 the magnetic field dependences
of χ′ and χ′′ obtained without phonon bottleneck and
cross-relaxation effects (with electron-phonon transition
probabilities only, curves 1,2) have nothing in common
with the experimental data (Figs.5-7). When making use
of electron-phonon transition probabilities renormalized
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by phonon bottleneck, we obtain the curves 3,4 show-
ing some overlap with the measured ones (the specific
humps and dips appear at the odd crossing points) but
their ”intensities” are lower than the experimental ones,
and also there is no sign of corresponding features at
even and half-integer crossings. However the results dra-
matically change when the cross-relaxation is taken into
account: in this case all crossing points manifest them-
selves properly (the curves 5,6) and are very close to the
experimental results.
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FIG. 11: The phonon bottleneck and cross relaxation effects
on the relaxation rates. (a) - the relaxation rates at the tem-
perature 2 K in the sample LiYF4:Ho3+ (0.104%) calculated
with the renormalized electron-phonon transition probabili-
ties due to the bottleneck effect, (b) - results of calculations
with the cross relaxation terms taken into account.

The cross-relaxation rates were calculated assuming
the Gaussian line shape gCR = (2π∆)−1 exp[−(ωpn −
ωlm)2/2∆2] of the spectral density of the energy reservoir
corresponding to interactions between the holmium ions.
It is enough to consider in (14) only three nonzero fit-
ting parameters, k12 and k66, which determine the tran-
sition probabilities within the manifold of the electron-
nuclear sublevels of the ground doublet, and k44, which
determines rates of the singlet-doublet transitions. For
the scaling factor δ = 2.108s−1, the fixed values of
k12 = k66 = 0.1 and k44 = 0.004 independent on the
concentration of the holmium ions were used in all cal-
culations. However, the dispersion ∆ of frequencies of
the cross-relaxation transitions depends on the concen-

0 2 4 6 8 10 12
0

2

4

6

8

6 4

5 3

2

A
c-

su
sc

ep
tib

ili
ty

 (c
m

3 /m
ol

)

Magnetic field (B/ B)

1  '  (a)
2  '' (a)
3  '  (b)
4  '' (b)
5  '  (c)
6  '' (c)

1

FIG. 12: The simulated ac-susceptibility of the LiYF4:Ho3+

(0.27%) sample at the frequency 800 Hz and the tempera-
ture 2 K, the magnetic field is declined from the c-axis by
1deg. a - the relaxation matrix contains only one-phonon
transition probabilities calculated with the electron-phonon
coupling constants presented in Table 1, b - the transition
probabilities are renormalized due to the phonon bottleneck
effect, c - the cross- relaxation terms are included.

tration, it was estimated from the EPR linewidths and
corrected from a comparison of the simulated field de-
pendences with the experimental data (∆ = 100, 120,
140 MHz for the gCR

44 line shape, and ∆ = 185, 200, 240
MHz for the gCR

12 and gCR
66 line shapes for samples with

concentrations 0.104, 0.157 and 0.27%, respectively). As
it is seen in Fig.11(b), the cross-relaxation rates play the
dominant role at all crossing points. The most impor-
tant result of the cross-relaxation processes is the appear-
ance of the low frequency (102 − 103s−1) branch in the
spectrum of relaxation rates with the well resolved max-
ima at the crossing points. It should be noted that the
calculated field dependences of the relaxation rates may
change remarkably when using another cross-relaxation
line shapes (the Lorentz distributions, in particular)11,
but to analyze this problem it is necessary to perform
measurements in the samples with a more wide range of
concentrations of paramagnetic ions.

Small peaks at the half-integer crossings in the field de-
pendences of χ′ (and the peaks and dips at these points
in the field dependences of χ′′) are induced by the cross-
relaxation singlet-doublet transitions (they disappear in
the simulated curves for k44=0). The value of the param-
eter k44 used in simulations (the results are represented
in Figs.5-7) coincides by an order of magnitude with the
estimation based on the assumption of the prevailing role
of the magnetic dipole-dipole interactions:

k44 = 2πca6
∑

(

3xz

r5

)2
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here the sum is taken over all Y 3+ sites, a is the lat-
tice constant, and c is the concentration of the impurity
holmium ions. However, values of the parameters k12

and k66 mentioned above are much larger than the simi-
lar estimations, and it is possible that the virtual phonon
exchange contributes essentially into the interaction be-
tween the holmium ions in the ground state, in particular,
due to strong coupling with the dynamic lattice deforma-
tions of Bg symmetry.

The peaks Cd in the high-field dependences of χ′ and
χ′′ close to the magnetic field value B = 8∆B in Fig.7
correspond to the anti-crossing of the electron-nuclear
sublevels of the excited singlet (see Fig.4). These peaks
appear due to a combined action of the random crys-
tal field (described by the Hamiltonian HS , see eq.(19))
and the cross-relaxation processes (singlet-doublet tran-
sitions). So, we had a possibility to determine indepen-
dently the k44 parameter from fitting intensities of Chi

peaks, and parameters of the Hamiltonian HS from fit-
ting intensities of the Cd peaks. The best fit was achieved
when the parameters B2

2 , B−2
2 from Ref.9 (see section III

above) were increased by a common factor of 1.5, 1.8
and 3.3 for samples studied in this work with holmium
concentrations 0.104%, 0.157% and 0.27%, respectively,
and natural abundances of Li isotopes. It should be
noted that we have not succeeded in exact description of
measured real and imaginary parts of the dynamic sus-
ceptibilities at any frequency, temperature and external
magnetic field values. In particular, we obtained correct
positions of the maxima in the frequency dependences
of the out-of phase susceptibilities, but the calculated
maximum values are higher than the measured data (see
Fig.9). The discrepancies between theory and experi-
ment in Fig.7 are the consequences of this lack of the
theory. However, the specific behavior of the suscepti-
bility in the vicinity of high field anti-crossings is repro-
duced by calculations as well. To derive a more elab-
orated model, we need additional experimental data at
higher frequencies.

It follows from the simulations that an additional nar-
row peak should split out from the peak Cd in the plot
of χ′ versus the magnetic field (see the curve 5 in Fig.12)
in the transverse magnetic field, in particular, due to a
rather small misalignment of the sample. Because such
a peak was not observed, we had good reasons to believe
that the samples were oriented with the accuracy better
than 1 degree.

Using the model parameters determined from the anal-
ysis of the frequency and field dependences of χ′ and χ′′,
we obtained a satisfactory description of the temperature
dependences as well (see Fig.10). The transformations of
the magnetic field dependences of the out-of-phase sus-
ceptibility at the fixed frequency in the vicinity of the
crossing points with temperature (Figs.5,7) or concen-
tration (Fig.6) can be explained as a result of strong
variation of relaxation rates with the magnetic field at
these points. If the effective relaxation rate exceeds the
frequency of the ac field, χ′′ has a dip, and if the re-

laxation rate is less than the frequency, χ′′ has a peak
at the crossing point. The corresponding ”peak to dip”
transformations can be easily recognized in Figs.5-7.

VII. CONCLUSION

We conclude that the microscopic model of a linear
non-resonant response of the electron-nuclear subsystem
in the highly diluted paramagnetic crystal LiYF4:Ho3+

on the weak ac field has been derived. The model op-
erates with a few phenomenological parameters intro-
duced to account for a finite heat capacity of the res-
onant phonons and cross-relaxation processes. The inde-
pendent on temperature finite phonon lifetimes of about
1 µs, comparable with the phonon time of flight between
the sample boundaries, have been determined from fit-
ting the results of calculations to the measured frequency
dependences of out-of-phase susceptibilities in the sam-
ples with different holmium concentrations. The parame-
ters of the interaction between paramagnetic ions, which
determine cross-relaxation rates, were obtained from fit-
ting the simulated dependences of in-phase and out-of-
phase susceptibilities on the external magnetic field. The
obtained value of the parameter k44, which defines co-
tunneling processes at half-integer crossing points in the
spectrum of a pair of Ho3+ ions, agrees with the estima-
tion based on the dipole-dipole mechanism of inter-ion
coupling. However, to present definite conclusions about
the most important terms in the Hamiltonian of inter-
action between the holmium ions, which are responsible
for the cross-relaxation processes at integer crossing and
anti-crossing points, it is necessary to derive a more elab-
orated theory of cross-relaxation than the high tempera-
ture approach of Ref.[5].

The model containing single-ion crystal-field includ-
ing random strains, electron-phonon transitions includ-
ing bottleneck, hyperfine and cross-spin interactions, is
comprehensive and can be used to predict the detailed
magnetization dynamics in LiYF4:Ho3+ crystals at ul-
tra low temperatures and at higher frequencies. Note
that half-integer transitions were observed at elevated
temperatures (above 1.5 K) only in ac susceptibility ex-
periments or at fast sweeping field in the low tempera-
ture (below 0.1 K) magnetization measurements where
the bottleneck effects stabilized an effective spin-phonon
temperature of half a Kelvin [2,3,6]. In the present the-
oretical approach half-integer transitions result from res-
onant cross-relaxation transitions involving sublevels of
the lower singlet with the activation energy of ∼10 K,
which is satisfactory to fit the experimental data taken
at liquid helium temperatures. A more detailed analysis
of the magnetization dynamics in the sweeping fields will
be presented in a separate paper. The theory may be ad-
ditionally tested by measurements of the ac susceptibility
and NMR in a tilted magnetic field. Finally, this theo-
retical approach may be also expanded to other magnetic
systems, in particular, the single molecule magnets.
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