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Abstract

When applied to numerical CSPs, the branch and
prune algorithm (BPA) computes a sharp covering
of the solution set. The BPA is therefore imprac-
tical when the solution set is large, typically when
it has a dimension larger than four or five which is
often met in underconstrained problems. The pur-
pose of this paper is to present a new search tree
exploration strategy for BPA that hybridizes depth-
first and breadth-first searches. This search strat-
egy allows the BPA discovering potential solutions
in different areas of the search space in early stages
of the exploration, hence allowing an anytime us-
age of the BPA. The merits of the proposed search
strategy are experimentally evaluated.
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set. But this premature paving is not very useful if the dearc
tree is explored depth-first (DFS) or breadth-first (BFS)SDF
quickly converges te-boxes that are too close to one another
to be representative of the solution set (see the left part of
Figure 1); BFS computes a homogeneous paving but finds no
e-box at all if stopped too early (see the center graphic of Fig
ure 1; note that such a sharp paving cannot be computed for
larger solution sets, making BFS useless in such cases).

The search strategy used in an anytime BPA should quickly
find e-boxes that areepresentativeof the solution set:e-
boxes should be discovered uniformly on a continuous con-
nected component in the solution set, while every connected
components should be reached by sosr@oxes in early
stages of the search. Two such strategies are introduced in
the present paper. Thmost distant-first strateg{MDFS)
is introduced in Section 3.1; it consists in exploring thafle
of the search tree that maximizes the distance ta-thexes
found so far. This strategy has good asymptotic properties
(cf. Proposition 1), but lacks efficiency for quickly findiag

We consider numerical CSPs (i.e. variables domains are comroxes. Thalepth and most distant-first strateMDFS) is
tinuous, usually intervals of reals) with equality and inaly
ity constraints. NCSPs with less equations than variagfes t
ically have continuous (infinite) solution sets. For exagnpl
the solution set of the NCSP

< (:L‘,y) ) ([_272]7 [_272]) ) {xQ +y2 = 1} > (1)

is the circle of radiud centered or{0,0), a continuous set

of dimensionl.

ous applications, e.g. desig@henouarcet al, 2007 and
robotics[Merlet, 2000.

This kind of NCSPs are met in numer-

introduced in Section 3.2; it is a greedy approximation ef th
MDFS, the latter being hybridized with a depth-first search
to force a quick discovery af-boxes. Although the DMDFS
does not possess the good theoretical properties of the MDFS
it shows a very good behavior on the presented experiments
(cf. Section 4). The right part of Figure 1 shows the paving
obtained using the DMDFS strategy. Skboxes have been
found instead o066 using the DFS, but they are morepre-
sentativethan those obtained by the DFS.

Related Work

Branch and prune algorithms (BPASYan Hentenryclet
al., 1997 solve NCSPs alternating filtering and branching Recently[Goldsztejn and Granvilliers, 2098an improved
in order to explore exhaustively the search space followind3PA has been proposed to tackle NCSPs with manifolds of
a search tree. Usually the stopping criterion is the sizé®f t solutions. However, this technique is based on the BFS and
domains: they are processed until they reach a minimum sizthus typically cannot be used to approximate solution sets o
e. The BPA hence returnsegpaving, i.e. a sharp enclosure of dimension higher than four or five.
the solution set made efboxes (box domains whose size is  When the solution set has a nonempty interior (typically
smaller thare). See different pavings of the CSP (1) on Fig- when the NCSP involves only inequality constraints), BPAs
ure 1. However, as soon as the solution set is too large (e.gan be improved by computing interior boxes, i.e. boxes that
when the number of variables exceeds the number of equaontain only solutions. However, the BPA still accumulates
tions by more than four), computingsgpaving is impractical  boxes on the boundary of the solution set, a subspace having
due to the huge number of boxes needed. a dimension equal to that of the problem minus one. Thus,

The BPA is however intrinsically anytime, since when most of high dimensional solution sets remain out of reach of
stopped prematurely one still gets an enclosure of theiealut usual BPAs with interior box computation.
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Figure 1: From left to right: The depth-first, the breadtistfaind the depth and most distant-first strategies stoppediad
bisections for the CSP (1). Eaetbox, fore = 1072, is pointed by an arrows6 for DFS,0 for BFS ands for DMDFS).

Interleaved DFYMeseguer, 1997consists in starting a [ Algorithm 1: Generic Branch and Prune Algorithm.
DFS at each node obtained after a BFS limited to a reason- INput: C = {c1,...,em}, [x] € IR", € > 0

ably low depth. However, this search strategy cannot give

rise to an anytime algorithm: determining an adequate depth | Slip?éoit;ag?%%;c])>7 o]}
for the initial BFS is very difficult; too small it prevents-lo 2 € '

cal consistencies to be efficient enough, but too big it weld 3 while,ﬁ £ () do

combinatorial explosion. 4 ([x], £) — Extract(L);

2 Interval Analysis 2 'f‘ W:gd@g) S {E[LT}G?

To tackle CSPs with continuous domains, a key issue is to 7 else

prove properties on continuum of real numbers. Intervakana| s T « Split([x]);

ysis handles this problem in an efficient way by using compu: ¢ T « Map(Contracte, T)?;
tations on floating point numbers. We recall here some basigs 10 L «— Insert(L, T\{0});
which are required to understand the paper. More details canq; end

be found in[Neumaier, 1990; Jauliet al,, 2001. 12 end

Interval analysis is mainly used to perform rigorous filter-| 15 retyrn &:
ing through so-called interval contractors. An intervahco
tractor for a constraint on n variables with solution set

pe S R™ s a functionContract, : IR" — IR™ that sat-  gyiract andInsert which handle the list of boxes to be
isfies the following relations: processed (current leaves of the search-tree). A DFS is im-
1. Contract.([z]) C [z]; plemented managing the list as a stack (LIFO), while a BFS

2 Vg (T clz] Az e pc) — 2 € Contract,([z]). is obtained managing the list as a queue (FIFO).

Here, intervals are denoted with bracketed symbolsTdnd Search- ; ;
is the set of closed intervals. This definition is extended3 ch-tree Exploration Strategies

to a set of constraint§ identifying C to the conjunction of ~The goal of the proposed exploration strategies is to find

its constraints. Hence; € pc is true if and only if every ~Poxes in an order that is useful in an anytime algorithm, i.e.
constraint inC is true forz. Such contractors for standard €-boxes must spread across the search space in early stages.
equality and inequality constraints can be implementedigusi . =

several techniquedNeumaier, 1990; Collavizzet al, 1999 31 TheMost Distant-First Strategy

among which th& B—consistency (also known as hull consis- In order to spread-boxes across the search space, the search

etal, 1994 play key roles in the resolution of numerical CSP. the e-boxes found so far. Formally, being givem e-boxes

These filtering techniques are typically used in a branch an§ = {[x1],--.,[xm]}, we wish the nexe-box [x;,+1] to
prune algorithm (BPA, described in Algorithm 1). This al- maximize the cost function defined by
gorithm alternates filtering and branching so as to compute a MinDist (%) := min{d(x, [x1]), ..., d(x, [xn])}, (2)

sharp enclosure of the solution set. The output of the algo- [xil,--.[xm

rithm is a set ofe-boxes whose union contains all the solu-je. to maximize the distance to the closesiox found so
tions of the CSP. These boxes can be post-processed in ordgk. The distance is an arbitrary distance between elements
to check if they actually contain some soluttoiThe search

Strategy inthe generic BPA is parametrized by the proomureaﬂer f|X|ng enough variables in order to obtain a well constrained
. system, cf[Kearfott, 2009

Ythis post-process usually applies to under-constrained systems *Map(f, {z1,...,zm}) = {f(z1),..., f(zm)}.



of the search space. It is extended to sets considering theroof. The functionMinDist will be used without the ex-

maximum distance between elements of these sets: plicit reference to the-boxes[x4],..., [x,,] in the sequel.
First, we claim that there exist* € [x*] € L such that

(), [y]) = max d(z, ) (3)  MinDist(x*) = d*, and thusMinDist([x*]) > d*. This is
yely] due to the fact that every boxes 6fare non-empty and hull

consistent, and thus contain at least one CSP solution. Thus

d* obviously corresponds to a CSP solution that belongs to a

box of £ (the solutions belonging tex;] for & < m having a

lower MinDist).

X Now, because of the MDFS, when thdox [Xpmt1] IS €X-
tracted at Line 4, it satisfies

which, though not a distance anymore, still satisfies tlari
gular inequality.

The most distant-first strategy (MDFS) is defined by
choosing among all leaves of the search tree the one that m
imizes (2). This is implemented in Algorithm 1 as follows:

(@) The boxeg \{0} are inserted int& at Line 10 accord- L L
ing to MinDist[x,j ... [x,,] SO that the list is maintained Vx] € £, MinDist([x]) < MinDist([xm+1]).  (9)

5.

sorted decreasingly. Thus in particulatMinDist([x*]) < MinDist([x,,;1]) and
(b) Each time a newe-box is found, the list£ is  d* < MinDist([x,,+1]) is proved to hold. Agx,,+1] con-
sorted decreasingly according to the new criteriatains at least a solutiax, we have proved

MinDist just after Line 6.

DI e, b e 2] JUSEATLETLING MinDist(x) < d* < MinDist([xnt1]).  (10)

(c) The first element of is extracted at Line 4. : | 0 )
_— . . But finally asx € [x,,21] and wid([x,,11]) < € we
At the beginning of the search, rebox is yet available and mt mt
MinDist{y,] . [x,.] IS undefined. The strategy is thus startedhf/lv.eg(’i’ [ijll\]/%' IS) E’[and i[hui stn;irgﬁ t; gtrr?;f\slvimat
with a depth-first search to quickly find out the fiesbox. |(101)ncolr§c€§()je themrolts)f( Xm1])] < € 9 0
Whene tends toward), the (m + 1)** e-box found using proot.

the MDFS asymptotically converges to the actual most distan  The global hull consistency is necessary in Proposition 1.

solution o Though usual consistencies are not as strong as the optimal
max [BI}IHD[;S‘D](X) (4)  hull consistency, their efficiency increases as the width of
) Ho ] interval decreases, and thus Proposition 1 is an asymptotic
To prove this property, we need the following lemma. property of the MDFS for sma.
Lemma 1. Provided thatd is extended to sets using), Proposition 1 shows that the MDFS actually solves a con-
d([y], [z]) < e implies| MinDist([y]) — MinDist([z])| < e. strained optimization problem to find the solution of the
. o NCSP that maximizes the distance to the solutions found
Proof. There exist somé j € {1,...,m} such that so far. Thus one can think of using other methods to solve
R _ this optimization problem. However, our experiments have
MinDist = d([x4], 5 - . : . ;
[xl]lf.l..,[;lsn]([yb (bil: [¥1) ©) shown that local optimizers, including genetic algorithiohs
MinDist ([z]) = d([x;],[z])- (6) not converge to good enoygh solutions to be used in place of
[x1],e s [%m] MDEFS, while global optimizers are too slow.
Suppose, without loss of generality, thaf[x;],[y]) < 32 Mixing the M ost Distant and Depth-First
d([x,], [z]). We also suppose that# j, the other case be- Strategies

ing similar and simpler. By the triangular inequality, wesba . . .
d([xi], [2]) < d([xi], [y]) +d([y], [z]), which is less thar by The BPA with a MDFS can be used as an anytime algorithm

g : , , since it produces-boxes that are well distributed. However,
Wg ﬁtz;]vzslfw’e\;\é?g?ebgrc()sgv tehgta VE([x;), [2]) < d(lxil, [2]). as it solves a global optimization problem to find each new
e-box, it cannot be efficient in general. The search strategy
d([x:], [y]) < d([xj],[2]) < d([xi],[y]) + €, (7)  proposed in this section is an approximation of the MDFS

. o that finds representativeboxes much quicker. To this end,
which finally implies|d([x:], [y]) — d([x;], [z])| <. L' the MDFS is hybridized with the depth-first strategy, so as to

Then, the following proposition shows that the MDFS keep the advantages of both approaches, i.e. a quick discov-

asymptotically converges to arbitrarily sharp approxiore 1Y of e-boxes which are still rep_resentative of the solgtion
of the global maximum of (4). set. The depth and most distant-first strategy (DMDFS) is de-

. . ) ) fined by keeping the points (b) and (c) of the MDFS and by
Proposition 1. Consider Algorithm 1 wher€ontracte im- modifying (a) to

plements the global hull consistency. Lete-boxesS =

{[x1],...,[xm]} be found by Algorithm 1 and suppose that (@) The boxesT\{(} are inserted at the beginning Gfat
at this pointZ # (). Then the next-box [x,, 1] found using Line 10 (LIFO).
the MDFS contains a solutioxi which satisfies Thus, the DMDFS search-tree is reorganized according to

the distance to the-boxes found so far each time a new

ja* = [,12/1[]{?33551("” s6 ) box is found. An additional heuristic is used for choosing
] ] among the boxes at the same depth: the one that maximizes
whered" is the global optimum of4). MinDist(x,],.._.x,.] iS explored first. This is performed in (&)



.....

sorting decreasingly w.r.tMinDist [y, [x,,] the boxes in 4.1 A Simply Connected Solution Set

T\{0} before inserting them in front of. We wish here to verify the repartition of the first so-
The DMDFS does not have as good asymptotic propertieftions computed by the MDFS and the DMDFS in-
as MDFS: it implements a greedy optimization of (4) insteadside one connected component. We consider the CSP
of a global optimization. The following example shows a sit- ((z, ), ([-2,2], [-2, 2]), {1128 — 26 — 183z%y? + 4425y> +
uation where it does not converge to the global optimum.  11722y* + 662%y* — 21y° + 4422y% + 11y® < 0}). This

Example 1. Consider the situation depicted on the left of ©SP has a flour shaped solution set with areaThe first
Figure 2: we have already found orebox (black box) and 10 °-boxes obtained with the MDFS and the DMDFS are

the problems has six remaining solutioRs, . . . , x¢ (black shown on Figure 3. The MDFS behaves very well, while the

points) distributed into the two boxes to be processed tlighPMDFS is less good at the beginning of the search though
gray boxes). The solutioR, is the one that maximizes the yielding quite homogeneously distributed0 solutions. _
distance to the-box. However, the right hand side light gray ~ More formally, the distance between the closest solutions
box maximizedlinDist | (dashed line). Therefore, both the @mongm solutions placed on aregular grid inside a square of
MDFS and the DMDFS process this box first, bisecting andsurfacer is /7 /m. Therefore, a good repartition of solu-
filtering it, and finally give rise to the right hand side graph tions (withm large enough) should have an average distance
of Figure 2 where three boxes remain to be processed. to closest neighbor that converges to this ideal distance. A

In this situation, the MDFS and the DMDFS operate dif- Shown by Figure 4, both the MDFS and the DMDFS reach
ferently: the MDFS processes the box that maximizes the dighis asymptotically good repartition, though the standee
tance to thee-box among all three boxes, i.e. the light gray viation is slightly better for the MDFS. On the other hand,
box, and will eventually converge to,; while, the DMDFS ~ computing the firs200 solutions took27 seconds with the
processes the box that maximizes the distance te-thex ~ MDFS while only5 seconds with the DMDFS.

the b fl t depth only, i.e. dark b . . .
amor ie boxes of largest depth only, . dark 013y BOXey 5 - o ion Set with Multiple Connected
Components

%e now wish to verify that the search strategies quicklyneac

all connected components of the solution set. To this end, we
will measure the time needed to place at least @hex on

3.3 Implementation | ssues each connected components of a scalable CSP whose solu-

) ) _ , tion set consists ofi non-overlapping balls in a space of di-
Sorting operations performed in (a), (&') and (b) are vesy fa mensionn. The balls have radius and a random center in
provided that the distance to the closesiox found so far [—100,100]". This solution set is naturally obtained with a

. disjunction of constraints, but also corresponds to theviel
min{d([x], i), d(l], [xzl) - dllx], [xm])} - (11) ing conjunction of constraints:

However, experiments reported in Section 4 show that th
DMDFS computes well distributedboxes while being much
quicker than MDFS.

is stored together with boxes insideand updated when nec- n

essary. The most expensive operation is the computation of Z(x” )t —1 = oy (j=1.n) (14)
the new distances to the closesbox in (b) : When a new L o

€-box [x,,+1] is found, the number

min{d([x], [x1]), d([x], [x]), ., d([x], msa])} (12) ljy <o (15)

must be computed for each béx € £. This must be done
using the following identity:

i=1

We have variech from 2 to 14 and measured the average
time on 10 different random problems for = 1076. The
(12) = min{ (11), d([x], [Xm41]}, (13) MDFS already failed fom = 3 and therefore does not ap-
pear in the following comparison. The DMDFS has been
which saves most of the computations reusing (11) for theested with both hull-consistency and box-consistency, al

computation of (12). though hull-consistency is foreseen to be more efficient on
this NCSP since it has one occurence of each variable in each
4 Experiments constraint.

. . . . A natural competitor to our strategies is the Monte Carlo
Th:js tiecg?\;'nggsgn:ﬁ expenmg?ts slhowmg ﬂl]at the MtD';%pproach, which here consists in randomly generating solu-
and the oth cover uniformly a simply connectedyiq, candidates in the variables domains. However, this ran
solution set, and quickly reach all connected components ofy 1, search must be hybridized with a local search since the
a solution set that has several ones. They will also illtstra

. , - probability of obtaining a solution at random is quasi-null
mg%sgmn 1 and demonstrate the practical efficiency ef th £, the |ocal search, two state of the art optimizers have

: _ been used, namely knittand donlp2. In order to appl
Experiments have been carried out onlah GHz Intel y . PPy
Pentium M based computer. The algorithms used for filtering  SAvailable atht t p: / / ww. zi ena. coml knitro. ht m

are based on the interval library PROFIL/BIARnueppel, “Available at http://wwwfp. ncs. anl . gov/ OTC/
1994. Gui de/ Sof t war eGQui de/ Bl ur bs/ donl p2. htmi .
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Figure 2: Situation where DMDFS does not converge to the satuwtion as MDFS.

Figure 3: First 1, 3, 5, 7 and 200 solutions found using the I8pper graphics) and DMDFS (lower graphics).
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Figure 4: Average distance to the closest neighbor obtanetbsed inside theé standard deviation hull, for the MDFS (left)
and the DMDFS (right). The asymptotic ideal distarge /m is shown in dashed line.
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Figure 5: Time needed in seconds by each tested method to tteae connected components of the Section 4.2 NCSP, w.r.t.
n. As expected, hull-consistency provides better timings thox-consistency on these NCSP.

them to our problem, we have transformed our NCSP into afiCollavizzaet al, 1999 H. Collavizza, F. Delobel, and
optimization problem either with a constant objective func M. Rueher. Comparing Partial ConsistencieReliable
tion when they accept equation constraints (donlp2) or with  Comp, 1:1-16, 1999.

a least-square objective function on the violation _of theae_q [Goldsztejn and Granvilliers, 20D8\.  Goldsztejn ~ and
tions when they do not handle equation constraints (_knltro) L. Granvilliers. A New Framework for Sharp and Efficient
Both methods have been used with their default settings af- pacoiution of NCSP with Manifolds of Solutions. In
ter verifying that these settings prove to be optimal for the Proceedings of CP 2008/olume 5202/2008 oLNCS

problem we address. ages 190—204. 2008
Figure 5 shows that the DMDFS allows tackling prob- pag ' '

lems that are out of reach of random searches even when hidaulinetal, 2001 L. Jaulin, M. Kieffer, O. Didrit, and

bridized with efficient local searches. E. Walter. Applied Interval Analysis with Examples
in Parameter and State Estimation, Robust Control and
5 Conclusion Robotics Springer-Verlag, 2001.

Two new search-tree exploration strategies for branch anH<earfott, 2009 R.B. Kearfott. Interval Analysis: Verify-
prune algorithms have been proposed. They both allow us- ing Feasibility. In C.A. Floudas and P.M. Pardalos, ed-
ing the BPA as an anytime algorithm by spreading solutions itors, Encyclopedia of Optimizationpages 1730-1733.
across the solution set in early stages of the search. The Springer, 2009.

most distant-first strategy (MDFS) has good asymptotic prop[Knueppel, 199% O. Knueppel. PROFIL/BIAS - A Fast In-

erties but is not very efficient in practice. The depth andtmos  terval Library. Computing 53(3-4):277—287, 1994.
distant-first strategy (DMDFS) is a hybridization of the DFS

Lhomme, 1998 O. Lhomme. Consistency Techniques for
_and the MDFS that t_akes advanta_\ge of both. The DMDFé Numeric CSPs. IfProceedings of IJCAI 199dages 232—
is very promising as it allows tackling NCSPs with large so-

. ; . . 238, 1993.
lution set while only a very few techniques are available for
searching representative solutions of such CSPs. Reportélylerlet, 2000 J.P. Merlet. Parallel robots Kluwer, Dor-
experiments have confirmed the practical applicabilityhes t drecht, 2000.

search strategy and shown that local search approaches cdeseguer, 1997P. Meseguer.  Interleaved depth-first

not compete on tested benchmarks. It is worthwhile noting search. InProceedings of IJCAI 199pages 1382-1387,
that our strategies are not restricted to numerical CSRgsin  1997.

the BPA applies also in the discrete case. We thus plan to a;r
ply it to mixed discrete-continuous CSPs met in design prob-
lems and other applicative domains.
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