
HAL Id: hal-00421462
https://hal.science/hal-00421462

Submitted on 2 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Splitting heuristics for disjunctive numerical constraints
Thomas Douillard, Christophe Jermann

To cite this version:
Thomas Douillard, Christophe Jermann. Splitting heuristics for disjunctive numerical constraints.
Symposium on Applied Computing, 2008, Brazil. p. 140-144, �10.1145/1363686.1363725�. �hal-
00421462�

https://hal.science/hal-00421462
https://hal.archives-ouvertes.fr


Splitting Heuristics for Disjunctive Numerical Constraints

Thomas Douillard
LINA - Université de Nantes, France

Thomas.Douillard@univ-nantes.fr

Christophe Jermann
LINA - Université de Nantes, France

Christophe.Jermann@univ-nantes.fr

ABSTRACT
Numerical constraint solving techniques operate in a branch&
prune fashion, using consistency enforcement techniques to
prune the search space and splitting operations to explore
it. Extensions address disjunctions of constraints as well,
but usually in a restrictive case and not �tting well the
branch&prune scheme. On the other hand, Ratschan has
recently proposed a general framework for �rst-order formu-
las whose atoms are numerical constraints. It extends the
notion of consistency to logical terms, but little is done with
respect to the splitting operation. In this paper, we explore
the potential of splitting heuristics that exploit the logical
structure of disjunctive numerical constraint problems in or-
der to simplify the problem along the search. First experi-
ments on CNF formulas show that interesting solving time
gains can be achieved by choosing the right splitting points.

Keywords
Numerical constraints; Disjunctions; Splitting heuristics

1. INTRODUCTION
Numerical constraint satisfaction problems (NCSP) are

de�ned as a set of constraints on variables with values in
domains that are subsets of R. A solution to a NCSP is an
assignment of values to the variables such that all the con-
straints are satis�ed, i.e., the constraints are considered in
conjunction. Though already expressive enough for a wide
range of problems (e.g., in robotics, chemistry, computer-
aided design or econometrics), the need for more expressive
formalisms arise in several application �elds: in design for in-
stance, an artifact to be de�ned may be composed of alterna-
tive constrained elements, each element possibly being itself
a composed constrained artifact; in molecular biology, genes
activate or inhibit chemical reactions depending on their
concentration; in formal program veri�cation, the control
structures enable alternative execution �ows. Several for-
malisms have been introduced to address these applications
(e.g. [8, 12]). In most cases they amount to introduce the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

possibility of expressing alternatives, guarded constraints,
activity constraints, and other constructs that could well be
expressed using logical connectors. It is then possible to
express these problems as quanti�er-free �rst-order logical
formulas whose atoms are numerical constraints, which we
call disjunctive numerical constraint satisfaction problems
(DNCSPs) in the following.
A lot of work has been done on dealing with disjunctions of

constraints, mostly in the discrete case [6, 7] but also in the
continuous case [13, 4, 10]. However, in the latter case, most
of the approaches consider a speci�c subclass on DNCSPs
(e.g., [13] cannot handle non-linear equations, [4] consid-
ers only convex constraints) or follow a speci�c algorithmic
scheme that cannot easily include the successful constraint
programming (CP) techniques developped for NCSPs ([10]
reasons on the logical structure following a SAT approach).
On the other hand Ratchan [11] has proposed an extension
of the CP framework to quanti�ed �rst-order logical formu-
las whose atoms are numerical constraints. Neglecting the
aspects of this framework that deal with quanti�ers, it is
possible to use it for DNCSPs. Though very general, this
framework does not make much use of the logical structure
of DNCSPs, concentrating its e�ort on handling quanti�ers.
However, the logical structure of DNCSPs let us expect a
great potential in intelligent search strategies. Indeed, the
logical structure of DNCSPs can be simpli�ed along the
search provided the right sub-search-spaces are isolated.
In this paper, we investigate this track of research and

analyze the practical interest of intelligent splitting heuris-
tics for DNCSPs. The rest of the paper is organized as fol-
lows: Section 2 recalls the necessary background; Section 3
introduces the concept of formula simpli�cation; Section 4
explores the potential of intelligent splitting heuristics for
DNCSPs and Section 5 presents the results for a selection of
splitting heuristics on CNF formulas, a subclass of DNCSPs.
Section 6 provides concluding remarks and future directions.

2. BACKGROUND
We denote F a quanti�er-free �rst-order logical formula

whose atoms are picked in a set C of numerical constraints
(equations and inequalities) on a set X of variables, each
variable xi being associated with a domain di ⊆ R. A solu-
tion to F is an assignment {x1 ← v1, . . . , xn ← vn} (vi ∈ di)
such that the formula is satis�ed by the assignment, i.e., the
logical value of each atom (each constraint is either true
or false on the assignment) makes the formula true. Such
a formula can be expressed using solely conjunctions and
disjunctions: any logical connector can be expressed using



only conjunction, disjunction and negation; negations can
be distributed downto the atoms; the negation of an atom
(a numerical constraint) can be expressed as another for-
mula (e.g.,¬(a = b) → (a < b) ∨ (a > b)). This is why we
call it a disjunctive numerical constraint problem.

Interval solving techniques for NCSPs
In case the formula F is just the conjunction of the con-
straints in C, it is called a numerical constraint satisfaction
problem (NCSP). The constraint programming approach to
NCSPs uses interval arithmetic [9] in order to control the
computation errors: each variable domain is represented
as an interval, the search space being thus de�ned as an
n-dimensional box. It yields correct and complete solving
methods that follow a branch&prune scheme: the initial box
B is pruned using narrowing operators based on numerical
local consistencies, then split into several subboxes (usually
two) each of which is recursively treated in the same way.
See [3] for instance for more details.

Interval solving techniques for DNCSPs
Ratschan has proposed a general framework for solving quan-
ti�ed formulas on numerical constraints [11]. It de�nes ex-
tensions of classical numerical consistencies and their asso-
ciated narrowing operators for each kind of logical term:
conjunction, disjunction and quanti�cation. Here we are in-
terested only in the �rst two:
Given a numerical constraint consistency C, a formula F

is C-consistent on a box B (denoted C(F, B)) i�
− if F = c (an atom) then C(F, B) = C(c, B);
− if F =

∧
Fi then C(F, B) =

∧ C(Fi, B);
− if F =

∨
Fi then C(F, B) =

∧ C(Fi, Bi) and B = H(
⋃

Bi)
where H(S) is the smallest box enclosing a subset S ∈ Rn

(called the hull of S).
The extension to atoms and conjunctions follows the stan-

dard de�nitions for NCSPs. The extension to disjunctions
follows the principle of constructive disjunction [6, 7]: a box
is consistent with a disjunction if it is the hull of the boxes
which are consistent with its alternatives.
Example 1. Consider the disjunction of 3 numerical con-

straints c1 : (x + 1)2 + (y − 1)2 = 1, c2 : (x − 2)2 + y2 = 1 and
c3 : (x − 3)2 + (y − 1)2 = 1 on variables x and y with values
in R (see Figure 1). The consistent domains for each individual
constraint are:

• c1 → x ∈ [−2, 0], y ∈ [0, 2]

• c2 → x ∈ [1, 3], y ∈ [−1, 1]

• c3 → x ∈ [2, 4], y ∈ [0, 2]

The domain consistent with c1 ∨ c2 ∨ c3 for x (resp. y) is the
hull of the union of the domains individually consistent with c1,
c2 and c3 for x (resp. y), i.e.:

• Dx = H([−2, 0] ∪ [1, 3] ∪ [2, 4]) = [−2, 4]

• Dy = H([0, 2] ∪ [−1, 1] ∪ [0, 2]) = [−1, 2]

The obtained domain for x contains a gap (see Figure 1), namely
the open interval (0, 1) which is inconsistent with all the alterna-
tives of the disjunction.

A weakness of the approach is that the logical structure of
the formula is not exploited during the search. However the
potential seems important since the pruning phase can infer
interesting numerical properties that can impact the logical
truth value of the formula: unsatis�able atomic constraints,
incompatible alternatives in disjunctions and even inconsis-
tent inner-spaces (aka gaps) as illustrated in Example 1.

Figure 1: Consistency of a disjunction

Ratschan proposes an implementation optimization that
discards the alternatives of disjunctions that have been proved
inconsistent by pruning. However the information available
after pruning could be used to simplify the formula fur-
ther and to select interesting splitting points, e.g. isolating
the di�erent alternatives of a disjunction. This is what we
present in the next sections.

3. SIMPLIFICATION OF DNCSPS
In this section, we formalize the concept of formula sim-

pli�cation which concretizes the connection between the nu-
merical and logical levels of a DNCSP. Whenever the domain
of a variable is modi�ed, either by pruning or splitting, it
is possible to simplify the DNCSP by computing the truth
value of the atoms of the formula and propagating these
truth values using four simple logical rules: F ∨ false → F ,
F ∨ true → true, F ∧ false → false and F ∧ true → F .
An atom in a DNCSP is a numerical constraint, i.e., an

equation or inequality. It is possible to determine that it
is inconsistent (truth value = false) by projecting the con-
straint onto the domain of each of the variables it constrains;
if one of the projections is empty, then the constraint is in-
consistent. Similarly, it is possible to project its negation to
determine if it is totally consistent (truth value = true), a
technique that was introduced in order to implement inner
consistencies [1]. If a constraint cannot be proved neither
inconsistent nor totally consistent, then its truth value is
undetermined.
The latter test is not very practical since inner consis-

tency is rarely used, but the former one is exactly the op-
eration performed by the narrowing operators employed in
the pruning phase of the branch&prune algorithm. Hence,
whenever a narrowing operator empties a domain during
pruning, the associated constraint is determined inconsis-
tent and the truth value propagation can be triggered, sim-
plifying the formula accordingly.

Example 2. Consider again the formula presented in Ex-
ample 1. In the box B = {[1.5, 2.5], [0.5, 1.5]} this formula can
be simpli�ed into c2 ∨ c3; indeed, as illustrated in Figure 2, c1
is consistent in B1 = {[−2, 0], [0, 2]} but B1 ∩ B = ∅, hence c1
can be removed, while c2 and c3 are respectively consistent in
B2 = {[1, 3], [−1, 1]} and in B3 = {[2, 4], [0, 2]}, boxes that both
intersect B; hence c2 and c3 must be kept.

Simpli�cation seems a great tool, however it applies only
when, by chance, an atom happen to be inconsistent. It is
however possible to favorize the occurrences of such cases



Figure 2: Simpli�cation of a formula.

by adopting intelligent splitting heuristics that exploit the
information gathered during the pruning phase.

4. SPLITTING HEURISTICS FOR DNCSPS
A splitting heuristic selects a variable domain to split and

associated splitting points. It is the NCSP counterpart of
the variable and value selection heuristics used in discrete
CSPs. Given a splitting heuristic, the corresponding split-
ting operator produces a set of subboxes by replacing in the
current box the selected domain by its subdomains between
two consecutive spliting points. The traditional heuristic
is roundrobin+bisection: domains are considered one after
the other cyclically and they are split into two halves. More
sophisticated heuristics have been proposed but they usu-
ally do not yield much gains except for speci�c classes of
problems [5, 14, 2]. However, the potential gain in de�n-
ing intelligent heuristics for DNCSPs appears great: a lot of
information (e.g., gaps and incompatible alternatives) col-
lected during the pruning operation is not used while it could
induce interesting simpli�cations.
For this purpose, we introduce the concept of interest-

ing points that represent potential splitting points and are
de�ned as the bounds of the boxes consistent with each indi-
vidual alternative in each disjunction of a formula. Indeed,
these bounds de�ne where each individual alternative is con-
sistent (only at the right of lower bounds and at the left of
upper bounds), i.e., where the gaps are (between consistent
subdomains) and which alternatives are incompatible (non
intersecting subdomains).
What makes a point "interesting" is that the correspond-

ing disjunction is necessarily simpli�ed in one of the sub-
boxes resulting from splitting at this point: at least one
alternative (the one whose lower (resp. upper) bound is the
considered interesting point) is inconsistent in the left (resp.
right) subdomain produced after splitting. Hence splitting
at interesting points always induces simpli�cation.

Example 3. After the pruning phase depicted in Figure 1
for the disjunction F = c1 ∨ c2 ∨ c3 presented in Example 1, the
interesting points are {0, 1, 2, 3} for x and {0, 1} for y. Suppose
that we choose to split the domain of y. Using standard bisection
the splitting point is 0.5 and the resulting subproblems cannot
be simpli�ed in the induced subboxes. On the contrary, splitting
the same domain along its interesting points yield much more
simpli�ed subproblems:
− F → c2 in the subbox {[−2, 4], [−1, 0]}),
− F → c1 ∨ c2 ∨ c3 in the subbox {[−2, 4], [0, 1]}),
− and F → c1 ∨ c3 in the subbox {[−2, 4], [1, 2]}).

We propose to de�ne heuristics that select the actual split-
ting points among the interesting ones. In principle it could
return several splitting points, yielding several subproblems
and resulting in non-binary search trees. However, the num-
ber of interesting points depends on the number of disjunc-
tions in the formula which is not bounded by its number of
variables nor atomic constraints; hence it could be arbitrar-
ily large, yielding memory consumption problems. In order
to reduce the number of actual splitting points, it is possible
to consider only the interesting points of a subformula (e.g.,
a single disjunction). Selecting the subformula, the variable
domain to split and the actual splitting points among the
considered interesting points is thus the key to obtain an
e�cient heuristic.
Numerous criteria can be used to help make this deci-

sion. They can be based, for example, on the induced sim-
pli�cation (local, i.e., only for the considered subformula, or
global), the sizes and equilibrium of the induced subboxes, or
the gaps they allow to elliminate. Instead of roaming among
a huge number of criteria and theoretical considerations on
them, we propose in the next section an experimental study
of a handful of quite natural strategies.

5. EXPERIMENTAL ANALYSIS
We compare 4 intelligent heuristics and 2 witnesses. All

use a �rst criterion to select a variable and a disjunction
whose interesting points may become splitting points, and
a second criterion to extract from the considered interesting
points the actual splitting points. In the end, if the set
of actual splitting points is empty they switch back to the
standard splitting method: roundrobin+bisection.

Selected heuristics
• largest gap (LG): the selected pair (x, d) maximizes
the volume of a single gap between the alternatives of d
in the domain of x; the actual splitting points are the
bounds of this gap. This heuristics produces binary
search trees.

• all gaps (AG): the selected pair (x, d) maximizes the
cumulated volume of all the gaps between the alter-
natives of d in the domain of x; the actual splitting
points are the bounds of these gaps. This heuristics
produces n-ary search trees.

• all interesting points, all gaps (AIPAG): the se-
lected pair (x, d) maximizes the cumulated volume of
all the gaps between the alternatives of d in the domain
of x; the actual splitting points are all the interesting
points of d relatively to x; hence, not only does this
heuristic removes gaps but it also simpli�es d as much
as possible. It produces n-ary search trees.

• all interesting points, roundrobin (AIPRR): the
variable x is selected in a roundrobin fashion and the
disjunction d is a random disjunction involving x; the
actual splitting points are all the interesting points of
d relatively to x; thus, this heuristic performs a fair ex-
ploration of the search space (roundrobin), exploiting
gaps if available and simplifying the formula as much
as possible. It produces n-ary search trees.

Our two witnesses are bisection (2S) and multisection
(KS). Both select the variable x in a round-robin fashion



and no disjunction; 2S then splits the domain of x into two
halves while KS splits it into k equilibrated parts, where k
is the average number of alternatives per disjunction in the
formula, i.e., an approximation of the number of possible
interesting points. KS is here to ensure that the observed
gains of intelligent strategies are not solely due to splitting
into several small subboxes instead of only 2. Since they are
not linked to any disjunction, neither 2S nor KS perform
simpli�cation when splitting. Note that simplifying the for-
mula with these heuristics would require testing the consis-
tency of the atoms (contrarily to splitting along interesting
points which already capture this information), a possibly
costly operation which will whatsoever be performed in the
next pruning phase.

Benchmark
In order to perform experiments on a broad scale, we have
implemented a DNCSP generator that produces well-constrained
problems composed of polynomial equations combined in a
CNF formula with parameterizable numbers of solutions,
variables, clauses and constraints per clauses. It generates
3 classes of problems: poly problems are composed of arbi-
trary polynomials; uniform problems are also composed of
arbitrary polynomials but in each clause they all cover the
same set of variables, a structure that augments the chances
of gaps; spheres problems are composed of n-dimensional
spheres (polynomials of degree 2), very structured problems
with high chances of gaps and simpli�cations. In each class,
we consider various generator parameterizations so that our
benchmark o�ers a representative set of 14 problems and
that the best heuristic solves most of these problems within
5 minutes, the time-out we have set.

Results
We have tested the 6 heuristics on a Pentium IV 2.8 GHz
with 1Gb of memory (STU1 = 33.64 seconds) with a tool
implemented from scratch in C++. In order to obtain re-
liable results, we run each heuristic on 25 instances of each
problem.

Table 1: Time-outs on 25 runs

Table 1 presents the number of time-outs per problems
per heuristic. In bold in this table the cases with more
time-outs than e�ective runs. The corresponding data are
1http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Benchmark.html

not presented in Table 2 since it would be unfair to compare
average solving times on very di�erent numbers of runs. The
two gray lines at the end of this table respectively present
the total number of time-outs per heuristic (line sum) and
the average time-out ratio per heuristic (line avg). KS
performs very poorly on more than half our benchmark.
AIPAG seems to be the best heuristic except perhaps for
poly problems. AIPRR performs poorly on spheres and
poly problems. The other heuristics perform similarly.

Table 2: Solving times in seconds

Table 2 presents the average solving time (white columns)
and the ratio to the best solving time (gray columns) for
the e�ective runs. The gray lines present respectively the
maximum ratio per heuristic (line max), the average ratio
per heuristic (line avg) and the number of times a heuristic
has been the best (line best). Again, AIPAG appears to be
the best and most stable heuristic: it obtains the highest
number of best, has an average ratio close to one (indicating
that it usually performs in times comparable to the best
heuristic) and its worst ratio (2.26) is attained for one poly
problem only whereas for all others it is less than 2. AIPRR
obtains very good results too, but we have to keep in mind
that it reaches the time-out very often when compared to
AIPAG (see Table 1); this emphasizes its unstability, even
in a single problem class like spheres. KS con�rms the
bad results already shown in Table 1: it is never the best
heuristic and regularly performs in more than twice the best
time. The other heuristics obtain similar results.

Analysis of the results
From these results and additional information we gathered
about the number of splitting operations, the number of in-
teresting points exploited, the number of simpli�cations due
to splitting, the volume of the eliminated gaps (information
we cannot reproduce here for space reasons) we can extract
the following trends:
- Sophisticated splitting heuristics are not expen-

sive and can yield interesting gains. In fact, though
the splitting times for intelligent heuristics (AG, AIPAG ,
AIPRR) are sometimes 30 times bigger than that of bi-
section, it remains in any case negligible in comparison to
the total solving time (usually less than 2%). This cost
is balanced by the gains these heuristics allow not only in
times but also tree depths and number of iterations of the
branch&prune algorithm.



- Exploiting only the gaps (LG, AG) does not bring
any gain compared to bisection. In fact, these heuris-
tics apply rarely: they fall back to standard bisection in 99%
cases in average for poly problems and 95% in average for
the two other classes of problems. A careful look at the logs
indicates that very few gaps appear during the solving once
the initial ones have been exploited.
- The gains observed using the interesting points

(AIPAG, AIPRR) does not come solely from the fact
these heuristics yield numerous small subboxes. In-
deed, KS is also a heuristic that splits boxes into numer-
ous subboxes but it obtains very poor results. This indi-
cates that choosing the splitting points among the interest-
ing points is crucial for obtaining good performances when
performing n-ary splits.
- Using all the interesting points (AIPRR, AIPAG)

is better than only the gaps (LG, AG). Indeed AIPRR
and AIPAG apply more than 70% of the cases in average,
i.e., they have a real impact on the solving, while the other
two often fall back to bisection. A thorough study of the
logs show that the simpli�cations obtained using all the in-
teresting points at each split help make appear gaps in later
iterations of the algorithm. This is why AIPAG applies more
than 90% of the cases on uniform and spheres problems.

6. CONCLUSION
We have formalized the connection between the logical

and numerical aspects of DNCSPs and proposed a simpli-
�cation principle that �ts well in the branch&prune algo-
rithm.
We have also investigated the potential of splitting heuris-

tics that exploit the logical structure of DNCSPs in order to
achieve greater simpli�cation. This potential is con�rmed
by �rst experiments on structured and unstructured prob-
lems of polynomial equations in CNF form. The results are
promising and open broad directions of research.
Our experiments show that interesting points can bring

good gains even if they do not bound a gap, but it is still
di�cult to distinguish the really interesting ones from the
others. This is however crucial for larger problems: pre-
liminary experiments on large problems (tens of variables
and constraints per clauses) show that the number of inter-
esting points explodes and then using all of them as done
by AIPRR and AIPAG is not practicable anymore. Future
works will address this limitation.
Preliminary experiments on problems issued from design

and control applications also show promising results. For
instance, we solved a conceptual design problem presented
in [15] modeled as a DNSCP with 19 variables, 6 disjunctions
(from 2 to 20 alternatives each), and 182 atomic constraints
(14 non-linear). 2S solves the problem in 5.84 seconds and is
the worse heuristic for this problem; AIPAG solves the prob-
lem in 2.37 seconds and is the best heuristic for this prob-
lem. This problem has a very speci�c, yet common in design
applications, structure. Indeed, some of its disjunctions rep-
resent catalog constraints, i.e., discrete choices among sets
of prefabricated components with di�erent characteristics.
The consistant domains of these disjunctions are composed
of isolated points with large holes in between. This explains
why AIPAG is so e�cient on this problem. We expect sim-
ilar results on other design and control applications which
have such speci�c structures.

7. REFERENCES
[1] F. Benhamou and F. Goualard. Universally quanti�ed

interval constraints. In 6th International Conference
on Principles and Practice of Constraint Programming
(CP'2000), in LNCS 1894, pages 67�82, 2000.

[2] G. Chabert. Techniques d'intervalles pour la résolution
de systèmes d'équations. PhD thesis, Université de
Nice-Sophia Antipolis, 2007.

[3] D. M. F. Benhamou and P. Van Hentenryck.
CLP(Intervals) revisited. In International Logic
Programming Symposium, pages 124�138, 1994.

[4] I. Grossmann. Review of nonlinear mixed-integer and
disjunctive programming techniques.

[5] C. M. H. Batnini and M. Rueher. Mind the gaps: A
new splitting strategy for consistency techniques. In
11th International Conference on Principles and
Practice of Constraint Programming, 2005.

[6] P. V. Hentenryck. Constraint satisfaction in logic
programming. MIT Press, 1989.

[7] O. Lhomme. An e�cient �ltering algorithm for
disjunction of constraints. In 9th International
Conference on Principles and Practice of Constraint
Programming, pages 904�908, 2003.

[8] S. Mittal and B. Falkenhaimer. Dynamic constraint
satisfaction problems. In 8th National Conference on
Arti�cial Intelligence, pages 25�32, 1990.

[9] R. Moore. Interval Analysis. Prentice-Hall, 1966.
[10] A. O. R. Nieuwenhuis and C. Tinelli. Solving SAT and

SAT Modulo Theories: From an abstract
Davis�Putnam�Logemann�Loveland procedure to
DPLL(T). Journal of the ACM, 53(6):937�977, 2006.

[11] S. Ratschan. E�cient solving of quanti�ed inequality
constraints over the real numbers. ACM Transactions
on Computational Logic, 7(4):723�748, 2006.

[12] D. Sabin and E. Freuder. Con�guration as composite
constraint satisfaction. In Arti�cial Intelligence and
Manufacturing Research Planning Workshop, pages
153�161, 1996.

[13] M. Salido and F. Barber. A polynomial algorithm for
continuous non-binary disjunctive csps: extended dlrs.
Knowledge-Based Systems, 16(5-6):277�285, 2003.

[14] J. S.-H. X.-H. Vu, M. Silaghi and B. Faltings.
Branch-and-prune search strategies for numerical
constraint solving. Technical Report
LIA-REPORT-2006-007, Swiss Federal Institute of
Technology (EPFL), 2006.

[15] A. Anglada. Introduction de mécanisme de �exibilité
dans les contraintes de domaines continues. PhD
thesis, Lip6, Université de Paris 6, October 2005.


