Frédéric Goualard

Christophe Jermann Lina

A Reinforcement Learning Approach to Interval Constraint Propagation

When solving systems of nonlinear equations with interval constraint methods, it has often been observed that many calls to contracting operators do not participate actively to the reduction of the search space. Attempts to statically select a subset of efficient contracting operators fail to offer reliable performance speed-ups. By embedding the recency-weighted average Reinforcement Learning method into a constraint propagation algorithm to dynamically learn the best operators, we show that it is possible to obtain robust algorithms with reliable performances on a range of sparse problems. Using a simple heuristic to compute initial weights, we also achieve significant performance speed-ups for dense problems.

Introduction

We consider the problem of finding tight enclosures for all the solutions of systems of nonlinear real equations1 :

f 1 (x 1 , . . . , x n) = 0 . . . f n (x 1 , . . . , x n) = 0 (1)
A successful approach associates interval domains to all variables and uses interval arithmetic [START_REF] Moore | Interval Analysis[END_REF] in a combination of contracting operators-to tighten the domains of the variables while retaining all solutions-and of an exploration algorithm that recursively splits domains.

An effective implementation of contracting operators relies on interval firstorder methods, which start from the initial domains and then solve each of the n unary equations (projections):

f i (I 1 , . . . , I i-1 , x i , I i+1 , . . . , I n) = 0 (2)
in turn, where I j is the current interval domain for x j . This process is iterated over all f i s until a fixed-point is reached (or, until the domains computed for the variables do not change too much).

For the linear case, the speed of convergence towards a solution depends heavily on the initial order of equations and variables, which defines the transversal, that is, the set of n projections (f i , x i) considered in Eq. [START_REF] Auer | Gambling in a rigged casino: the adversarial multi-armed bandit problem[END_REF]. A classical result states that equations and variables should be initially reordered so as to make the corresponding coefficient matrix strictly diagonal dominant [START_REF] Ortega | Iterative solutions of nonlinear equations in several variables[END_REF].

For the nonlinear case, it has been observed that nonlinear first-order methods are equally sensitive to the initial order of equations and variables that defines the n projections considered. However, to our knowledge, there is no sure-fire static method to select projections that ensures prompt convergence. What is more, it appears [START_REF] Granvilliers | A conservative scheme for parallel interval narrowing[END_REF][START_REF] Herbort | Improving the efficiency of a nonlinearsystem-solver using a componentwise newton method[END_REF][START_REF] Goualard | On the selection of a transversal to solve nonlinear systems with interval arithmetic[END_REF] that selecting more than n projections may sometime speed the solving process up.

The bc3 algorithm [START_REF] Benhamou | CLP(Intervals) revisited[END_REF] studied in this paper associates the good principles of first-order methods with a smart propagation algorithm devised by Mackworth [START_REF] Mackworth | Consistency in networks of relations[END_REF] to ensure consistency in a network of relations. It also uses clever numerical methods to reduce the computational burden of solving projections.

Contrary to standard first-order methods, bc3 considers all n 2 possible projections instead of only n of them, thereby avoiding a bad choice of a transversal. For sparse problems (those for which some variables do not occur in all equations), this is a reasonable strategy, since the number p of unary equations to solve is of the order of n. On the other hand, for large dense problems (i.e., n 2 n and p ≈ n 2), the number of univariate equations to solve makes this approach computationally too expensive. In addition, depending on the problems, many projections may never lead to any tightening of the domains of the variables, for reasons that are not clearly understood yet. To make things worse, there may exist subsets of efficient projections, but only transiently at some point in the computation process. Therefore, there is no point in trying to statically select a subset of projections to consider in bc3.

In this paper, we embed the recency-weighted average [START_REF] Sutton | Reinforcement learning: an introduction[END_REF] Reinforcement Learning method into bc3 to dynamically select the most efficient projections (that is, the ones leading to the maximum tightening of variables' domains). We experimentally show that the resulting algorithm outperforms bc3 for problems where no static transversal exists. We also present an heuristic to initialize weights associated to projections that leads to significant speed-ups with respect to bc3 when considering large dense problems with a static transversal.

In order to be reasonably self-content, we sketch the principles of interval constraint algorithms and we show the limits and weaknesses of bc3 in Section 2; We present in Section 3 how to add the recency-weighted average (rwa) Reinforcement Learning method to bc3 to address its shortcomings, and we describe the resulting algorithm, after having discussed how to fix the various parameters arising from the use of rwa. Our new algorithm is compared with bc3 on a set of standard problems in Section 4. Lastly, we compare our approach with previous related works in Section 5, and we outline directions for future researches in Section 6.

Interval Constraint Solving

Classical iterative numerical methods suffer from defects such as loss of solutions, absence of convergence, and convergence to unwanted attractors due to the use of but a very small subset of the real numbers on computers: floating-point numbers [13] (aka floats). At the end of the fifties, Moore [START_REF] Moore | Interval Analysis[END_REF]

∀A ∈ D φ ∀I ∈ D Φ : A ∈ I =⇒ φ(A) ∈ Φ(I)
Example 1 The natural interval extensions of addition and multiplication are defined by:

I 1 + I 2 = [I 1 + I 2 , I 1 + I 2] I 1 × I 2 = [min(I 1 I 2 , I 1 I 2 , I 1 I 2 , I 1 I 2), max(I 1 I 2 , I 1 I 2 , I 1 I 2 , I 1 I 2)]
Then, given the real function f (x, y) = x×x+y, we may define its natural interval extension by f (x, y) = x × x + y, and we have that, e.g., f ([2, 3], [-1, 5]) = [START_REF] Benhamou | Interval constraints, interval propagation[END_REF][START_REF]Contraintes, OPtimisation[END_REF].

Implementations of interval arithmetic use outward rounding to enlarge the domains computed so as not to violate the containment principle, should some bounds be unrepresentable with floating-point numbers [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF].

Many numerical methods have been extended to use interval arithmetic [START_REF] Neumaier | Interval methods for systems of equations[END_REF][START_REF] Ratschek | Interval methods[END_REF]. Given the system of nonlinear equations (1) and initial domains I 1 , . . . , I n for the variables, these methods are usually embedded into a branch-and-prune algorithm BaP (see Algorithm 1) that manages a set of boxes of domains to tighten. Starting from the initial box D = I 1 ו • •×I n , BaP applies a numerical method "prune" to tighten the domains in D around the solutions of System (1). It then bisects the resulting box along one of its dimensions whose width is larger than some specified threshold ε. The BaP algorithm eventually returns a set of boxes whose largest dimension has a width smaller than ε and whose union contains all the solutions to Eq. (1). Note, however, that some boxes may eventually contain zero, one, or more than one solution.

Interval nonlinear Gauss-Seidel is a possible implementation for prune. It considers the n unary projections:

f (1) 1 (x 1 , I 2 , . . . , I n) = 0 . . . f (n) n (I 1 , . . . , I n-1 , x n) = 0 (3)
and uses any unidimensional root-finding method to tighten the domain of each variable x i in turn. Using a unidimensional Newton-Raphson root-finder leads to the Gauss-Seidel-Newton method [START_REF] Ortega | Iterative solutions of nonlinear equations in several variables[END_REF], whose extension to intervals is the Herbort-Ratz method [START_REF] Herbort | Improving the efficiency of a nonlinearsystem-solver using a componentwise newton method[END_REF]. Let UN be the elementary step performed by one unidimensional Newton application to the projection f (j) i , where i and j may be different [START_REF] Ortega | Iterative solutions of nonlinear equations in several variables[END_REF]. As soon as D is moderately large, it is very likely that each projection constraint will have many "solutions" that are not solutions of the original real system, and whose discarding slows down the computation. The Newton method will also fail to narrow down the domain of some x i if there is more than one solution to the corresponding projection constraint for the current box D, thereby demanding more splitting in BaP. Achieving the right balance between the amount of work required by the prune method and the number of splitting performed overall is the key to maximum efficiency of BaP. In this very situation, experimental evidences show that trying harder to narrow down the domain of x i pays off [START_REF] Benhamou | CLP(Intervals) revisited[END_REF]. A way to do it is to ensure that the canonical intervals [I j , I j +] and [I j -, I j], whose bounds are two consecutive floating-point-numbers, are solutions of f (j) i (I 1 , . . . , I j-1 , x j , I j+1 , . . . , I n) = 0. Algorithm bc3revise [START_REF] Benhamou | CLP(Intervals) revisited[END_REF] ensures such a property (called box consistency of x j w.r.t. the constraint f i = 0 and D) for a projection f (j) i . A simple method to implement it combines a dichotomic process with Newton-Raphson steps to isolate the leftmost and rightmost solutions included in D of each projection constraint.

Example 2 Consider the constraint f (x) = (x -1.5)(x -2)(x -3) = 0 and the domain I = [START_REF] Auer | The non-stochastic multi-armed bandit problem[END_REF][START_REF] Benhamou | CLP(Intervals) revisited[END_REF] for x (See Fig. 1). The UN method leaves I unchanged because the derivative of f over the initial domain contains 0 while bc3revise narrows down I to I = [1.5, 3], which is the smallest interval included in I that contains all the solutions to the interval constraint f (x) = 0.

Initial domain

Domain after UN tightening Domain after bc3revise tightening Interval constraint methods [START_REF] Benhamou | Interval constraints, interval propagation[END_REF] combine interval arithmetic-to reliably solve a system of real equations without loss of solutions-and smart propagation algorithms [START_REF] Mackworth | Consistency in networks of relations[END_REF], to take advantage of its possible sparsity (some variables may not occur in all constraints).

f (x) = (x -1.5)(x -2)(x -3)
Algorithm bc3 [START_REF] Benhamou | CLP(Intervals) revisited[END_REF] (see Algorithm 2) is such a method, which relies on the pruning operator bc3revise to tighten domains. It is akin to a free-steering generalized nonlinear Gauss-Seidel method with a twist [START_REF] Goualard | On considering an interval constraint solving algorithm as a free-steering nonlinear gauss-seidel procedure[END_REF]: as shown in Algorithm 2, the set of projections on which bc3revise is applied contains all the possible projections from the equation system, and not n of them only.

Algorithm bc3, or one of its variations, is often used as a basis to reliably solve nonlinear constraint systems, though its use of the at most n 2 projections of a system of n equations on n variables makes it a bad choice for large dense problems due to the overwhelming number of projections it then has to consider. It is also sensitive to a problem that plagues other interval constraint algorithms, whereby many calls of the contracting operators lead to no reduction of the domains at all. Figure 2 shows this situation for bc3 on twelve standard test problems to be presented in Section 4: calls to bc3revise are separated into three categories (very effective calls leading to a reduction of domain size by more than 10%, effective calls leading to a reduction of domain size by less than 10%, and useless calls leading to no reduction at all). As we can see, the majority of the work performed is essentially useless for almost all problems.

Algorithm 2 The bc3 algorithm

[bc3] in: at most n 2 projections T = {(f i , x j) | i, j ∈ {1, . . . , n}} in/out: box of domains D = I1 × • • • × In begin 1 S ← T 2 while S = ∅ and D = ∅ do 3 (f i , x j) ← Choose a projection in S 4 D ← bc3revise(fi, xj, D) 5 if I j I j then
% The domain of x j has been narrowed down

6 if I j = ∅ then 7 %
We add to S all projections that rely on the domain of Since no fail-safe efficient strategy exists for choosing the right contracting operator (line 3 of Algorithm 2) at the right time, the standard implementation uses a queue to represent S (the contracting operators are applied in the order they are inserted).

x j 8 S ← S ∪ {(f β , xγ) ∈ T | xj occurs in f β } 9 endif 10 D ← D 11 endif 12 S ← S \ {(f i , x j)}
These inefficiencies may have two different non-exclusive causes: either some of the at most n 2 projections never lead to any reduction, and therefore only clutter the propagation queue; or the effectiveness of projections varies widely during the solving process and may oscillate from nothing to good.

In the first case, optimizing bc3 boils down to statically identifying the best projections and using only these ones; in the second case, we have to keep all n 2 projections and find a means to consider at any time during the solving process only those projections with good tightening potential. As the following examples show, it appears that, depending on the problem considered, both situations may arise. Consider the Moré-Cosnard problem [START_REF] Moré | Numerical solutions of nonlinear equations[END_REF] of dimension 6: Figure 3 shows the history of effectiveness (in ordinate, percentage of reduction obtained in the range [0, 1]) of each projection when solving it with bc3 (abscissa goes from the first use of (f i , x j) to its last use2). One may easily see that the only useful projections are the ones on the diagonal. As a side note, we may also remark that some projection (e.g., (f 1 , x 2), (f 2 , x 3), . . .) perform well the first time they are used, and then consistently badly afterwards. This does not bode well for identifying statically which are the best projections to retain.

f 1 f 2 f 3 f 4 f 5 f 6 x 1 x 2 x 3 x 4 x 5 x 6
On the other hand, consider the sparse problem Trigexp1 [START_REF] Luksan | Sparse and partially separable test problems for unconstrained and equality constrained optimization[END_REF] for n = 6: The history of effectiveness given in Figure 4 shows that there are more than n useful projections (for example, (f 5 , x 4) and (f 4 , x 3) should probably both be retained). Furthermore the effectiveness of each projection varies widely during the solving process, and some projections that are not very good in the beginning become good or average afterwards (e.g., (f 5 , x 4)), while some projections that are very good in the beginning become quite bad after some time (e.g., (f 2 , x 2)). These examples should convince us that we have to keep all projections for consideration in bc3, and that we must resort to some dynamic selection scheme to apply bc3revise only on those projections that offer the best narrowing potential at some point in the solving process.

f 1 f 2 f 3 f 4 f 5 f 6 x 1 x 2 x 3 x 4 x 5 x 6

Speeding-up solving through Reinforcement Learning

Reinforcement learning [START_REF] Sutton | Reinforcement learning: an introduction[END_REF] is a sub-area of machine learning considering unsupervised agents that iteratively refine their strategy for choosing actions in an uncertain environment so as to maximize a long-term reward. Agents refine their knowledge of the environment by observing the effect of the most recently chosen actions. Hence, they have to achieve the optimal trade-off between exploration-testing the different actions at hand-and exploitationperforming the actions that have the greatest potential reward. The problem is compounded in an ever-evolving environment, that is when the probability of a reward for an action may vary.

A standard problem considered in reinforcement learning is the multi-armed bandit problem [START_REF] Sutton | Reinforcement learning: an introduction[END_REF]: given k slot machines with payoff probabilities unknown to the player and some time horizon, find the sequence of levers to pull in order to maximize the gains. In this problem, the action chosen is represented by the number associated with the lever to pull, the reward is the gain obtained by pulling the lever chosen, and the long-term objective is to maximize the cumulated rewards at the time horizon. The non stationary variant of the problem involves slot machines with varying payoff probabilities [START_REF] Auer | The non-stochastic multi-armed bandit problem[END_REF][START_REF] Auer | Gambling in a rigged casino: the adversarial multi-armed bandit problem[END_REF].

A close look at our problem allows us to draw an analogy between the selection process of projections in bc3 and the non stationary multi-armed bandit problem: in our context, the k levers are the at most n 2 projections, and their payoff is the relative domain reduction3 their use in bc3revise leads to. We use the relative domain reduction instead of the absolute one as a measure of efficiency in order not to favor too much the projections used early when the domains of variables are large to the detriment of projections applied on smaller domains.

No time horizon is given in bc3. However, by maximizing the sum of relative domain reductions, we expect both to avoid applying bc3revise on projections that do not lead to any reduction, and to reduce the overall number of calls to bc3revise, thereby accelerating the computation of solutions4 .

Adaptation of reinforcement learning to bc3

A difficulty of the adaptation of the reinforcement learning approach to our problem of selecting the best projections is that, especially in big or dense prob-lems, the number of projections among which to choose is so large that a lot of time can be spent exploring alternatives. Consequently, we have retained the recency-weighted average (rwa) [26, Chap. 2, Sect. 6] as a reasonable reinforcement learning method for our purpose, it being more exploitation-oriented than most other methods.

Algorithm 3 Box Consistency with Reinforcement Learning (bcrl)

[bcrl] in: Algorithm rwa is a standard method to solve non stationary reinforcement learning problems. It associates to each possible action a weight that measures its interest. This weight is a weighted average of all past rewards, hence the name. At each iteration, the action with the highest weight is chosen, its reward observed, and its weight updated accordingly. This method adopts a pure exploitation strategy since alternative choices are never explored.

T = {(fi, xj, W (ij)) | i, j ∈ {1, . . . , n}} in/out: box of domains D = I 1 × • • • × I n begin 1 forall j ∈ {1, . . . , n} do 2 Q j ← {(f i , x j , W (ij)) ∈ T | i ∈ {1, . . . ,
W (ij) ← W (ij) + α r (ij) -W (ij) 12 if I j Ij then 13 if I j = ∅ then 14 forall k ∈ {1, . . . ,
Q k ← Q k ∪ {(f β , x k , W (βk)) ∈ T | x j occurs in f β , β ∈ {1, . . . , n}}
In our context, using rwa means associating a weight W (ij) with each projection (f i , x j); the set S in bc3 (see Algorithm 2) is replaced by a priority queue (heaviest weights available first). Line 3 is then replaced by the extraction of the projection with heaviest weight. Let r (ij) be the relative reduction obtained on Line 4. The weight W

W (ij) k+1 = W (ij) k + α r (ij) k+1 -W (ij) k (4)
where α is a constant parameter between 0 and 1 that monitors the importance granted to the past payoffs w.r.t. the current one.

Using one priority queue S for all the projections, as done in bc3, is a suboptimal strategy here in that it may create propagation cycles leading to overall slow convergence phenomena [START_REF] Lebbah | Accelerating filtering techniques for numeric csps[END_REF]. As an illustration, consider two projections p 1 and p 2 such that when p 1 is applied, p 2 is inserted in S and conversely. It could well be the case that p 1 and p 2 are applied cyclically with enough success so that the other projections are not considered. Such a phenomenon is in general counterproductive in the long term: even though p 1 and p 2 produce good relative reductions, they do not reduce the domains of all the variables and do not consider all the constraints.

To avoid this, we use one priority queue Q j per variable x j ; when it needs to be reconsidered, the projection (f i , x j) is always pushed in Q j . The resulting algorithm bcrl is presented in Algorithm 3. Algorithm bcrl contains an inner loop over at most n projections on n different variables (less than n projections if some queues are temporarily empty) in addition to the while loop to reach a fixed-point, which was already present in bc3.

Note:

In order to rigorously validate our results and to assess the impact of the various choices we made, we have tested using one propagation queue per variable with bc3 as well. For all the problems considered here, the computational time required is essentially similar to the one required by bc3 with one propagation queue only (see Figure 5).

Setting up bcrl

In order to obtain a fully defined algorithm for bcrl, we need to set two interdependent parameters: the value of α and the value of the initial weights.

According to Eq. (4), W (ij) is a weighted average of the past payoffs and of the initial weight

W (ij) 0 : W (ij) k = (1 -α) k W (ij) 0 + k l=1 α(1 -α) (k-l) r (ij) l (5)
Consequently, for a small α (e.g., α = 0.1), the weight α(1 -α) (k-l) of the payoffs will decrease only slightly with their age, with the exception of the initial "payoff", whose weight remains important. By contrast, with a large α (e.g., α = 0.9), the weights of the payoffs decrease fast with their age, with the most recent payoff being much favored.

With a large α, a projection may see its weight plunge the first time it performs badly, while the aftermath of such an event would be dampened with a small α by the cumulative effect of its past history. On the other hand, the use of a small α requires extra care when initializing the weights W 0 . In any case, a consequence of the weight update formula (5) is that the initial weight W 0 may be an important bias of the rwa method.

Without further information, we first decide to initialize all weights to 1, giving equal importance to all projections. Table 1 shows the impact of α on computation time for these initial weights (Algorithm bcrl-1). Both 0.1 and 0.9 seem good contenders for the choice as default values.

Figure 6 presents a comparison of the number of effective and useless calls for bc3 and bcrl-1 for standard test problems to be described in Section 4. For all problems, the lowest bar corresponds to bc3 while the topmosts correspond, from bottom to top, to bcrl-1 for α = 0.1 and α = 0.9.

Overall, bcrl-1 reduces the total number of calls to bc3revise (and therefore, the solving time-see Figure 8, page 18) for most problems. On closer look, it appears that bcrl-1 requires more calls than bc3 on problem mc200 , though the number of effective calls is also increased. For this dense problem, the number of projections is large (200 2), and bcrl-1 requires a long time to discover that it possesses a static transversal (see Page 8) because all projections have the same weight initially, and are then all considered in turn at least once at the beginning. This effect is worsened with α = 0.9 by a perverse side-effect of it selecting effective projections more often than with α = 0.1: out of 602199 calls to bc3revise, 122002 (20.25 %) lead to some insubstantial reduction (less than 10 %); by contrast, using α = 0.1 yields 571999 calls to bc3revise (only 5 % less than with α = 0.9), out of which only 24033 (4 %) lead to some reduction less than 10 %. Each successful call to bc3revise leads to testing whether to include in the propagation queues the projections that depend on the variable reduced (see Line 16 in Algorithm bcrl, Page 10). For a large dense problem such as mc200, this process takes a lot of time because there are 200 2 -1 projections to consider each time. A solution to this problem is to introduce a so-called improvement factor γ and to forbid propagation (that is, to bypass Line 17 in bcrl) whenever the reduction achieved by a call to bc3revise is smaller than γ %. When using an improvement factor of 10 %, bcrl-1 with α = 0.9 becomes twice as fast as with α = 0.1 on mc200. In addition, setting mc200 aside, the choice of α = 0.9 leads to better performances overall than α = 0.1. As a consequence, we decide to favor the reactivity offered by α = 0.9, and we choose it as the default value in the rest of this paper.

Enhancing bcrl with an initial guess

In order to achieve good performances even for large dense problems with static transversals, we have to use some information at the beginning of the solving process to preset the weights to favor some projections over others. If our initialization heuristic is good, we expect that the best projections will be used more often than the others from the very start.

The heuristic chosen works as follows: we compute the interval Jacobian J of the system for the initial box and set W (ij) to the sum of the mignitude 5 of J ij normalized to the range [0, 0.5] and of the magnitude 6 of J ij normalized to the range [0, 0.5]. The weight thus lies in the range [0, 1].

Intuitively, the interval Jacobian indicates the steepness of the projections, i.e. which projections are more likely to allow reducing the domain of their Very effective calls (>10%) Effective calls (<10%) Useless calls (0%)

Figure 7: Effectiveness of bc3 vs. bcrl-j (α = 0.1 and α = 0.9) associated variable. The mignitude of an entry in the Jacobian gives a worst-case information on the steepness while the magnitude gives a best-case information.

The heuristic chosen mixes both equally.

In the following, times reported always take into account the time spent in computing the initial weights.

The resulting instance of bcrl is called bcrl-j. Table 2 presents the incidence of α for bcrl-j. Note how bcrl-j seems less sensitive to the value of the parameter α than bcrl-1. Indeed, since rwa follows a pure exploitation strategy, enhancing it with a good initial guess yields a more focused exploitation. Since the heuristic is good on our test set, the influence of α is dampened. However, we think it is a better choice to keep α = 0.9 as the default value for bcrl-j in case the heuristic would fail on some problem, or when the problem does not have a clear transversal.

Figure 7 graphically compares the number of calls to bc3revise required to solve our set of test problems. The lowest bar corresponds to bc3, the middle bar to bcrl-1, and the topmost bars to bcrl-j. As expected, bcrl-j performs consistently better than bc3 and bcrl-1. For Problem mc200, it achieves such a speed-up that it is not even visible on the chart. The reason is that the heuristic clearly identifies the transversal in this problem and initializes the weights accordingly, allowing bcrl-j to purely exploit this transversal. For problems without a clear transversal (e.g. ef200), the heuristic does not hinder proper learning.

Evaluating bcrl

In order to assess the quality of our new algorithms, we have selected a set of twelve standard nonlinear problems [START_REF]Contraintes, OPtimisation[END_REF] of various sizes, various characteristics (quadratic constraints, polynomial constraints, non-polynomial constraints involving sines, cosines, logarithms and exponentials), and various sparsities (dense problems, in which all variables occur in all equations, and sparse problems, with only a small subset of the variables in each equation). The characteristics for all these problems are synthesized in Table 3. The Size column indicates the number n of variables and equations (all the problems are square); the Sparsity column gives the sparsity index defined as the number p of possible projections divided by n 2 (p is equal to n 2 for dense problems such as mc200 but may be much smaller for sparse problems). The initial domains for all test problems are those given on the COPRIN web page [START_REF]Contraintes, OPtimisation[END_REF].

Figure 8 presents the computation times for the three algorithms considered. All the experiments were conducted on an Intel Pentium IV at 3.8 GHz with 2GB of RAM and a Standard Unit Time equal to 50.4 s (this is defined as the time required for performing 10 8 evaluations of the function Shekel 5 [START_REF] Dixon | The global optimization problem: an introduction[END_REF]). The constraint solving environment used is a C++ library written from scratch by the authors. The times reported correspond to the enclosing of all the solutions in boxes of domains whose largest dimension is smaller than 10 -8 .

As noted previously, bc3 performs poorly on dense problems (e.g., mc200) bcrl-j (alpha=0.9) bcrl-1 (alpha=0. due to the sheer number of projections to consider. The results for bcrl-1 are consistent with the observation made on Figure 6: the method is often better than bc3 though it can perform poorly on dense problems with a clear static transversal (e.g., mc200), spending too much time in exploration. Though not always the fastest method, bcrl-j appears the most regular in its results since it always solves the problems in a time that is close to that of the best method.

Related works

As said previously, there are already well established results for optimizing the resolution of systems of linear real equations with first-order methods that require strict diagonal dominance of the coefficient matrix [START_REF] Ortega | Iterative solutions of nonlinear equations in several variables[END_REF][START_REF] Duff | On algorithms for obtaining a maximum transversal[END_REF]. The literature dealing with nonlinear systems often revolves around methods that linearize them in order to exploit the results on linear systems: many papers consider an interval Newton-Gauss-Seidel method (aka Hansen-Sengupta's method [START_REF] Hansen | Bounding solutions of systems of equations using interval analysis[END_REF]) that solves the linear system obtained from the local first-order expansion of nonlinear terms obtained with Newton's method by a preconditioned Gauss-Seidel method [START_REF] Baker Kearfott | A review of preconditioners for the interval Gauss-Seidel method[END_REF]. Accordingly, a lot of work is then devoted to finding the best preconditioners [START_REF] Baker | Optimal preconditioners for interval gauss-seidel methods[END_REF].

Sotiropoulos (sot) et al. [START_REF] Sotiropoulos | Improving the efficiency of a polynomial system solver via a reordering technique[END_REF] have an original approach in this respect: they select a transversal for a polynomial system at the beginning of the computation by looking at the syntactic structure of the equations (variables with the largest degree in the system, for example), and by using numerical considerations only to break ties. In their paper, the static transversal thus obtained is then used in an interval Newton-Gauss-Seidel algorithm.

Another approach uses a Gauss-Seidel-Newton method as presented in the introduction: Herbort and Ratz [START_REF] Herbort | Improving the efficiency of a nonlinearsystem-solver using a componentwise newton method[END_REF] (hr) compute the Jacobian J of the equation system w.r.t. the initial box D, and they select projections according to whether the corresponding entry in the Jacobian straddles zero or not. Their method is not completely static since they recompute the Jacobian after each outer step of Gauss-Seidel. In addition, it theoretically allows for the choice of more than n projections.

In settings more similar to ours, Granvilliers and Hains [START_REF] Granvilliers | A conservative scheme for parallel interval narrowing[END_REF] (gh) try to optimize bc3 by applying bc3revise on all projections at the beginning, and by selecting only the ones that tightened variables' domains the most. The choice of the projections retained is reconsidered whenever some splitting occurs in Algorithm BaP. For problems that lead to a lot of splitting, the method becomes computationally expensive. Table 4 compares these three methods with bcrl-j. Note that these results should be taken with great care since we used our own implementation of these methods in the same environment as for bcrl-j, and that our only sources of information are the papers in which they were originally presented. With that proviso in mind, we see that bcrl-j outperforms hr and gh most of the times. With the exception of problem bb10000 where it takes more than 150 times longer than bcrl-j, the method sot is quite good on the benchmarks it can handle, that is those with strictly polynomial expressions, which should lead us to investigate how to harness the power of its heuristics in our settings. Performance of hr is stunning on mc200. We suspect that it is because this problem has only one solution that can be obtained without any splitting.

Lastly, in a somewhat orthogonal approach, Lebbah and Lhomme [START_REF] Lebbah | Accelerating filtering techniques for numeric csps[END_REF] try to identify cycles in the propagation inside bc3 to avoid slow convergence phenomena. One direction for future research might indeed be to try taking advantage of their methods in bcrl.

Conclusion

Reinforcement learning shows all its potential for difficult problems where no static transversal exists since it realizes a good tradeoff between considering all projections equally (bc3) and gambling on n projections only (standard firstorder methods). The additional cost incurred by the weights update appears negligible, though the same might not hold for their smart initialization. Experimental evidences tend to show that the approach taken with bcrl-j, sophisticated as it is, still incurs a very reasonable overhead in view of its benefits.

Despite its simplicity, the rwa method as we embedded it in bc3 leads to a robust solving algorithm with reliable performances for all kinds of test problems.

There is still room for improvements nonetheless: as is shown on Fig. 7, despite the amelioration obtained with bcrl-j w.r.t. bc3, there still are problems for which many calls to bc3revise do not lead to any domain reduction (most notably, bt24 and ef200). These problems also require a lot of splitting; this may be because bc3revise is itself not a powerful enough algorithm to tighten the domains for these instances (it may be the case when the numerical expressions involved are ill-conditioned).

We have used reinforcement learning to dynamically select the best projections to consider with bc3revise. There is, however, more potential to our method. In particular, we could reuse the principle at the root of bcrl to select both the projection and the pruning method to use with. We would no longer assign weights to projections only, but to pairs of narrowing operators (projection/pruning method). This would lead to consider more than n 2 operators by creating pairs between the at most n 2 projections and several pruning methods, such as bc3revise, a unary Newton-Raphson contractor, or other methods, letting the learning procedure dynamically sift the best narrowing operators.

 popularized the use of intervals to control the errors made while computing with floats. Interval arithmetic replaces floating-point numbers by closed connected sets of the form I = [I, I] = {a ∈ R | I a I} from the set I of intervals, where I and I are floating-point numbers. In addition, each n-ary real function φ with domain D φ is extended to an interval function Φ with domain D Φ in such a way that the containment principle is verified:

Figure 1 :

 1 Figure 1: Comparison of UN and bc3revise

Figure 2 :

 2 Figure 2: Effectiveness of bc3

Figure 3 :

 3 Figure 3: History of narrowing effectiveness per projection for Moré-Cosnard-6 ; in ordinate, the efficiency in domain reduction percentage; in abscissa, calls to the corresponding projection.

Figure 4 :

 4 Figure 4: History of narrowing effectiveness per projection for Trigexp1 (n = 6)

 k+1 that takes into account the k past payoffs and the 10 most recent one r (ij) k+1 is obtained with the formula:

Figure 5 :

 5 Figure 5: Comparing bc3 with only one queue and with one queue per variable

Figure 6 :

 6 Figure 6: Effectiveness of bcrl-1 (α = 0.1 and α = 0.9) vs. bc3

5

 mig I = min{|a| | a ∈ I} 6 mag I = max{|a| | a ∈ I}

Figure 8 :

 8 Figure 8: Solving test problems with and without learning (times rounded to the nearest second)

 n}} 3 done 4 % Looping on the projections in all queues 5 while D = ∅ and ∃j ∈ {1, . . . , n} s.t. Q j = ∅ do

6

% Adding the n heaviest projections from different Qjs into queue

S 7 S ← n j=1 {pop(Q j)} 8 forall (f i , x j , W (ij)) ∈ S do

% Considering at most n heaviest projections 9 D ← bc3revise(fi, xj, D) 10 r (ij) ← (w(I j) -w(I j))/w(I j) % Computing the relative reduction 11

Table 1 :

 1 Incidence of α on computation times for bcrl-1

	Problem / α	0.1 0.3 0.5	0.7	0.9
	bb10000	93	68	63	56	49
	bt24	132 130 152	139 117
	cap	132 124 125	117 115
	dbvf100	44	44	44	44	44
	ecl12	291 285 284 281	283
	ef200	8	8	8	8	9
	mc200	674 749 920 1195 1331
	te1.12	25	26	26	28	26
	te3.8000	1	1	1	1	1
	trig1.20	82	82	83	85	82
	tro200	45	46	45	45	45
	yam10	46	47	47	47	47

Times in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.) Boldfaced time: best time for a benchmark

Table 2 :

 2 Incidence of α on computation times for bcrl-jTimes in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.) Boldfaced time: best time for a benchmark

	Problem / α	0.1 0.3 0.5 0.7	0.9
	bb10000	34	34	34	36	47
	bt24	155 147 158 144 121
	cap	131 126 119 116 115
	dbvf100	44	44	43	43	44
	ecl12	278 270 275 269 268
	ef200	8	8	8	8	9
	mc200	39	39	39	39	39
	te1.12	25	25	26	26	26
	te3.8000	6	5	5	5	5
	trig1.20	88	85	86	87	86
	tro200	45	45	45	45	45
	yam10	46	46	46	46	47

Table 3 :

 3 Test problems

	Name	Code	Size Sparsity	Constraints
	Broyden-banded	bb10000	10 000 0.07 %	quadratic
	Broyden tridiagonal	bt24	24 10.95 %	quadratic
	Caprasse	cap	4 100.00 %	polynomial
	Discrete Boundary Value Fun. dbvf100	100 2.93 %	polynomial
	Extended Crag-Levy	ecl12	12 14.58 % non-polynomial
	Extended Freudenstein	ef200	200 1.00 %	polynomial
	Moré-Cosnard	mc200	200 100.00 %	polynomial
	Trigexp 1	te1.12	12 23.61 % non-polynomial
	Trigexp 3	te3.8000	8 000 0.04 % non-polynomial
	Trigo1	trig1.20	20 100.00 % non-polynomial
	Troesch	tro200	200 1.49 % non-polynomial
	Yamamura	yam10	10 100.00 %	polynomial

Table 4 :

 4 Comparing related work with solving by learning

	Problem	hr	gh	sot	bcrl-j
					(α = 0.9)
	bb10000	1760	TO TO	47
	bt24	228	TO 198	121
	cap	TO	237 112	115
	dbvf100	41	TO	35	44
	ecl12	2266	677 NA	268
	ef200	TO	329 TO	9
	mc200	3	860 TO	39
	te1.12	TO	155 NA	26
	te3.8000	1	71 NA	5
	trig1.20	116	303 NA	86
	tro200	48	TO NA	45
	yam10	48 3133	38	47
	Times in seconds on an Intel Pentium IV at 3.8 GHz (rounded to the nearest sec.)
	TO: Time out (7200s) reached				
	NA: Not applicable (problem with non-polynomial expressions)		

In the following, we will refer to Syst. (1) even when considering systems in which all variables do not occur in all equations (sparse systems).

Note that, for Moré-Cosnard as well as for the next example Trigexp1, each projection is used almost as many times as the others in an implementation of bc3 in which S is managed as a queue.

The relative reduction is defined by (w(I b j) -w(I a j))/w(I b j) where w(I b j) (resp. w(I a j)) is the width of the domain of x j before (resp. after) applying bc3revise on (f i , x j).

Once again, in interval constraint programming, a solution is a Cartesian product of domains whose largest width is smaller than a predefined threshold, and for which it is not possible to prove that it does not contain any point satisfying the system.