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GLOBAL ATTRACTOR FOR WEAKLY DAMPED

NONLINEAR SCHRÖDINGER EQUATIONS IN L2(R)

O. GOUBET AND L. MOLINET

Abstract. We prove that the weakly damped nonlinear Schrödinger
flow in L

2(R) provides a dynamical system which possesses a global
attractor. The proof relies on the continuity of the Schrödinger flow for
the weak topology in L

2(R).

1. Introduction

Nonlinear Schrödinger (NLS) and Korteweg-de Vries equations are asymp-
totical models for the waterwave propagation. These models supplemented
with a damping and an external force provide examples of infinite-dimensional
dynamical systems, in the framework described in [13], [7], [12], [9]. We focus
here on the cubic NLS equation

(1) ut + γu + iuxx + i|u|2u = f,

where γ > 0 is the damping parameter and where the external forcing f(x),
that is independent of t, belongs to L2(R).

To define an infinite-dimensional dynamical system from this evolution
equation, we supplement (1) with an initial data u0 in some Sobolev space X

(or in some complete metric space) such that the corresponding initial value
problem is well posed (in the Hadamard sense: existence and uniqueness of
trajectories u(t) = S(t)u0 in X, continuity of S(t) : u0 7→ u(t) in X). This
short article is concerned with the existence of a global attractor of the NLS
flow with low regular initial data in L2(R). Recall that a global attractor is
a compact set, invariant by the flow, that attracts all trajectories uniformly
on bounded sets. Note that the existence of a such set for the NLS equations
in more regular function spaces, as for instance H1(R), is well known (see
[1] and the references therein).

Our main result states as follows

Theorem 1.1. The semi-group S(t) provides an infinite-dimensional dy-
namical system in L2(R) that has a global attractor A.

Let us describe the strategy of the proof. As in [4], we first prove that the
NLS flow features a weak global attractor in L2(R), that is a global attractor
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for the weak topology of L2(R). For that purpose, we need to establish the
following result that is interesting on its own :

Theorem 1.2. The semi-group S(t) is a continuous mapping for the weak
topology of L2(R).

The usual arguments to prove this kind of result in a function space X make
use of the fact that the initial value problem is well-posed in a function space
where X is locally compactly embedded (cf. [4]). Here such an argument
can not be invoked since there is no available result on the well-posedness
of the (1) in a space where L2(R) is locally compactly embedded (cf. [8]).
Note that the situation for KdV equations is easier according to this last
point (see [6], [14]).

Therefore this result is new and can be outlined as follows. Calling U(t)u0

the solution of

(2) ut + iuxx = 0; u(0) = u0,

it is well-known that the linear Schrödinger equation features the so-called
Kato’s smoothing effect that reads:

(3) ||D1/2
x U(t)u0||L∞x L2

t
≤ c||u0||L2

x
.

Above, Dx =
√
−∆ stand for the operator with Fourier symbol |ξ|. Using

the Christ-Kiselev theorem [3] (as in [11] in another context), we are able to
prove that this smoothing effect is also valid for the nonlinear Schrödinger
equation. Then the weak continuity is valid due to some compactness argu-
ment that allow us to pass to the limit in the nonlinear term.
These arguments are developed in Section 1 below. In Section 2 we complete
the proof of Theorem 1.1. First we prove the existence of a weak attractor.
Then, using the famous J. Ball’s argument (see [2], [15], [10]), we establish
that the weak attractor is actually a global attractor in the usual sense.

2. Continuity of the flow for the weak topology

To begin with, we observe that for finite time results the damping pa-
rameter and the external forcing do not play a role. Then in this section we
may assume for the sake of simplicity that γ = 0 and f = 0.

The usual way to solve the IVP problem associated to

(4) ut + iuxx + i|u|2u = 0,

supplemented with initial data u0 is to perform a fixed point argument for
the Duhamel’s form of (4) that reads

(5) u(t) = U(t)u0 − i

∫ t

0

U(t − s)|u(s)|2u(s)ds.
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Thanks to well-known Strichartz inequalities, we usually perform a fixed
point into the space C([0, T ], L2(R)) ∩ L6

T,x, where L6
T,x = L6([0, T ] × Rx).

We first state and prove

Proposition 2.1. There exists a numerical constant c such that for a solu-
tion to (5)

(6) ||D1/2
x u||L∞x L2

T
≤ c(||u0||L2

x
+ ||u0||3L2

x
).

Proof of the Proposition: the key point is to estimate the nonlinear term in
(5). For that purpose, we first recall the dual estimate to (3) that reads

(7) ||
∫

R

U(−s)D1/2
x Gds||L2

x
≤ c||G||L1

xL2
t
.

We now prove

(8) ||
∫

Rs

U(t − s)D1/2
x fds||L∞x L2

t
≤ c||f ||

L
6

5

t,x

.

Actually, following P. Tomas duality argument, it is equivalent to prove that
for any smooth function G that satisfies ||G||L1

xL2

t
≤ 1, it holds

(9)
∣

∣

∣

∫

R3

U(t − s)D1/2
x f(s, x)G(t, x)dtdxds

∣

∣

∣
≤ c||f ||

L
6

5

t,x

.

Note that the left-hand side member of the above estimate can be rewritten
as

(10)
∣

∣

∣

∫

R

(

∫

R

U(−s)D1/2
x f(s, x) ds

)(

∫

R

U(−t)G(t, x)dt
)

dx
∣

∣

∣
,

Hence, applying Cauchy-Schwarz in x and using (7), it finally suffices to
check that

(11) ||
∫

R

U(−s)fds||L2
x
≤ c||f ||

L
6

5

t,x

,

Since this is nothing else but the dual form of the classical Strichartz estimate
for the Schrödinger group on R:

(12) ‖U(t)u0‖L6

t,x
≤ c‖u0‖L2

x
,

we are done.
Recall now from [11]

Lemma 2.2. (Christ-Kiselev) Consider a linear operator defined on space-
time functions f(t, x) by

(13) Tf(t) =

∫

Rs

K(t, s)f(s)ds.
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Assume

(14) ||Tf ||L∞x L2

t
≤ c||f ||

L
6

5

t,x

,

then

(15) ||
∫ t

0

K(t, s)f(s)ds||L∞x L2

t
≤ c||f ||

L
6

5

t,x

.

According to [11], this is valid since min(+∞, 2) > max(6
5
, 6

5
).

We then apply this argument to the nonlinear term in (5), for t ∈ [0, T ].
This leads to

||
∫ t

0

D1/2
x U(t − s)ū2uds||L∞x L2

T
≤ c||u3||

L
6

5

T,x

≤ c||u||3
L

18

5

T,x

≤ c||u||L2

T,x
||u||2L6

T,x

.
(16)

We conclude the proof of the proposition using that u is bounded in C([0, T ], L2(R))∩
L6

T,x. �

At this stage we complete the proof of Theorem 1.2. Consider u0,ε ⇀ u0

in L2
x. Due to the previous proposition, we know that, for any K compact

subset of Rx, the sequence uε remains in a bounded set of C([0, T ], L2(R))∩
L6

T,x∩L2
T H

1

2

x (K). Going back to the equation, we observe that ∂tuε remains

in a bounded set of L2
T H−2

x . Hence, due to a standard compactness argu-
ment, the sequence uε, up to a subsequence extraction, converges towards
some function v strongly in L2

T L2(K). By interpolation, the strong conver-
gence is also valid in L4

T L4(K). This allows us to pass to the limit in the
equation and to conclude that the limit v is a solution of (4) belonging to the
class of uniqueness L6

T,x. Set (., .) for the L2
x scalar product. By (4) and the

bounds above, it is easy to check that, for any smooth space function φ with
compact support, the family {t 7→ (uε(t), φ)} is uniformly equi-continuous
on [0, T ]. Ascoli’s theorem then ensures that (uε(·), φ) converges to (v(·), φ)
uniformly on [0, T ] and thus v(0) = u0. By uniqueness, it follows that v ≡ u

and from the above convergence result, it results that uε(t) ⇀ u(t) in L2
x for

all t ∈ [0, T ].
�

3. Proof of the main Theorem

To begin with, we prove the existence of an absorbing ball for the semi-
group; multiplying (1) by ū and integrating in x the real part of the resulting
equation

(17)
1

2

d

dt
||u||2L2

x
+ γ||u||2L2

x
= Re

∫

fūdx ≤ 1

2
γ||u||2L2

x
+

1

2γ
||f ||2L2

x
.
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This implies

(18) ||u(t)||2L2
x
≤ e−γt||u0||2L2

x
+

1 − e−γt

γ2
||f ||2L2

x
.

Proposition 3.1. The ball X of radius M0 = 2
||f ||

L2
x

γ is an absorbing set

for the dynamical system under consideration.

We endow then this absorbing ball with the weak topology of L2
x. X is

then a compact metric space and S(t) acts continuously on X according
to Theorem 1.2. Therefore, using Theorem I.1.1 in [13] the ω-limit set

A = ∪s>0 ∩t>s S(t)X is a global attractor. In fact

(19) A = {a ∈ X;∃bn ∈ X, tn → +∞, S(tn)bn ⇀ a.}
We plan to transform this weak convergence into a strong convergence. We
use the famous J. Ball’s argument. We begin with the energy equation that
asserts that for any τ > 0, due to (17),

(20)

||S(tn)bn||2L2
x

= e−2γτ ||S(tn−τ)bn||2L2
x
−2Re

∫ τ

0

∫

Rx

e−2γsf(x)S(tn−s)bndsdx.

According to the weak convergence, we have

(21)

lim
n→+∞

2Re

∫ τ

0

∫

Rx

e−2γsf(x)S(tn−s)bndsdx = 2Re

∫ τ

0

∫

Rx

e−2γsf(x)S(−s)adsdx .

Using once again the energy equality (17) we also have that

(22) ||a||2L2
x

= e−2γτ ||S(−τ)a||2L2
x
− 2Re

∫ τ

0

∫

Rx

e−2γsf(x)S(−s)adsdx.

Therefore

(23) lim sup
n

||S(tn)bn||2L2
x
≤ ||a||2L2

x
+ 2e−2γτ M2

0 ,

since for n > τ S(tn − τ)bn is in X and S(−τ)a, that belongs to the weak
attractor, remains trapped in X. Letting τ → +∞ implies that A attracts
the bounded sets for the L2

x strong topology. To prove that A is compact is
very similar and then omitted. �
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