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GLOBAL ATTRACTOR FOR WEAKLY DAMPED NONLINEAR SCHR ÖDINGER EQUATIONS IN L 2 (R)

We prove that the weakly damped nonlinear Schrödinger flow in L 2 (R) provides a dynamical system which possesses a global attractor. The proof relies on the continuity of the Schrödinger flow for the weak topology in L 2 (R).

Introduction

Nonlinear Schrödinger (NLS) and Korteweg-de Vries equations are asymptotical models for the waterwave propagation. These models supplemented with a damping and an external force provide examples of infinite-dimensional dynamical systems, in the framework described in [START_REF] Temam | Infinite Dimensional Dynamical Systems in Mechanics and Physics[END_REF], [START_REF] Hale | Asymptotic behavior of Dissipative Systems[END_REF], [START_REF] Raugel | Global attractors in partial differential equations[END_REF], [START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF]. We focus here on the cubic NLS equation ( 1)

u t + γu + iu xx + i|u| 2 u = f,
where γ > 0 is the damping parameter and where the external forcing f (x), that is independent of t, belongs to L 2 (R).

To define an infinite-dimensional dynamical system from this evolution equation, we supplement [START_REF] Akroune | Regularity of the attractor for a weakly damped Schrödinger equation on IR[END_REF] with an initial data u 0 in some Sobolev space X (or in some complete metric space) such that the corresponding initial value problem is well posed (in the Hadamard sense: existence and uniqueness of trajectories u(t) = S(t)u 0 in X, continuity of S(t) : u 0 → u(t) in X). This short article is concerned with the existence of a global attractor of the NLS flow with low regular initial data in L 2 (R). Recall that a global attractor is a compact set, invariant by the flow, that attracts all trajectories uniformly on bounded sets. Note that the existence of a such set for the NLS equations in more regular function spaces, as for instance H 1 (R), is well known (see [START_REF] Akroune | Regularity of the attractor for a weakly damped Schrödinger equation on IR[END_REF] and the references therein).

Our main result states as follows Theorem 1.1. The semi-group S(t) provides an infinite-dimensional dynamical system in L 2 (R) that has a global attractor A.

Let us describe the strategy of the proof. As in [START_REF] Ghidaglia | Finite dimensional behavior for the weakly damped driven Schrödinger equations[END_REF], we first prove that the NLS flow features a weak global attractor in L 2 (R), that is a global attractor for the weak topology of L 2 (R). For that purpose, we need to establish the following result that is interesting on its own : Theorem 1.2. The semi-group S(t) is a continuous mapping for the weak topology of L 2 (R).

The usual arguments to prove this kind of result in a function space X make use of the fact that the initial value problem is well-posed in a function space where X is locally compactly embedded (cf. [START_REF] Ghidaglia | Finite dimensional behavior for the weakly damped driven Schrödinger equations[END_REF]). Here such an argument can not be invoked since there is no available result on the well-posedness of the (1) in a space where L 2 (R) is locally compactly embedded (cf. [START_REF] Kenig | On the ill-posedness of some canonical dispersive equations[END_REF]). Note that the situation for KdV equations is easier according to this last point (see [START_REF] Goubet | Asymptotic smoothing and the global attractor for a weakly damped kdv equation on the real line[END_REF], [START_REF] Tsugawa | Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index[END_REF]).

Therefore this result is new and can be outlined as follows. Calling U (t)u 0 the solution of ( 2)

u t + iu xx = 0; u(0) = u 0 ,
it is well-known that the linear Schrödinger equation features the so-called Kato's smoothing effect that reads:

(3)

||D 1/2 x U (t)u 0 || L ∞ x L 2 t ≤ c||u 0 || L 2 x . Above, D x =
√ -∆ stand for the operator with Fourier symbol |ξ|. Using the Christ-Kiselev theorem [START_REF] Christ | Maximal functions associated to filtrations[END_REF] (as in [START_REF] Molinet | Well-posedness results for the generalized Benjamin-Ono equation with small initial data[END_REF] in another context), we are able to prove that this smoothing effect is also valid for the nonlinear Schrödinger equation. Then the weak continuity is valid due to some compactness argument that allow us to pass to the limit in the nonlinear term. These arguments are developed in Section 1 below. In Section 2 we complete the proof of Theorem 1.1. First we prove the existence of a weak attractor. Then, using the famous J. Ball's argument (see [START_REF] Ball | Global attractors for damped semilinear wave equations. Partial differential equations and applications[END_REF], [START_REF] Wang | An energy equation for the weakly damped driven nonlinear Schrödinger equations and its applications to their attractors[END_REF], [START_REF] Moise | Attractors for non-compact semigroups via energy equations[END_REF]), we establish that the weak attractor is actually a global attractor in the usual sense.

Continuity of the flow for the weak topology

To begin with, we observe that for finite time results the damping parameter and the external forcing do not play a role. Then in this section we may assume for the sake of simplicity that γ = 0 and f = 0.

The usual way to solve the IVP problem associated to (4)

u t + iu xx + i|u| 2 u = 0,
supplemented with initial data u 0 is to perform a fixed point argument for the Duhamel's form of (4) that reads

(5)

u(t) = U (t)u 0 -i t 0 U (t -s)|u(s)| 2 u(s)ds.
Thanks to well-known Strichartz inequalities, we usually perform a fixed point into the space C([0, T ], L 2 (R)) ∩ L 6 T,x , where L 6 T,x = L 6 ([0, T ] × R x ). We first state and prove Proposition 2.1. There exists a numerical constant c such that for a solution to (5)

(6) ||D 1/2 x u|| L ∞ x L 2 T ≤ c(||u 0 || L 2 x + ||u 0 || 3 L 2 
x ). Proof of the Proposition: the key point is to estimate the nonlinear term in [START_REF] Goubet | Regularity of the attractor for the weakly damped nonlinear Schrödinger equations[END_REF]. For that purpose, we first recall the dual estimate to (3) that reads [START_REF] Hale | Asymptotic behavior of Dissipative Systems[END_REF] ||

R U (-s)D 1/2 x Gds|| L 2 x ≤ c||G|| L 1 x L 2
t . We now prove [START_REF] Kenig | On the ill-posedness of some canonical dispersive equations[END_REF] ||

Rs U (t -s)D 1/2 x f ds|| L ∞ x L 2 t ≤ c||f || L 6 5 t,x
.

Actually, following P. Tomas duality argument, it is equivalent to prove that for any smooth function G that satisfies

||G|| L 1 x L 2 t ≤ 1, it holds (9) 
R 3 U (t -s)D 1/2 x f (s, x)G(t, x)dtdxds ≤ c||f || L 6 5 t,x
.

Note that the left-hand side member of the above estimate can be rewritten as

(10) R R U (-s)D 1/2 x f (s, x) ds R U (-t)G(t, x)dt dx ,
Hence, applying Cauchy-Schwarz in x and using [START_REF] Hale | Asymptotic behavior of Dissipative Systems[END_REF], it finally suffices to check that

(11) || R U (-s)f ds|| L 2 x ≤ c||f || L 6 5 t,x
, Since this is nothing else but the dual form of the classical Strichartz estimate for the Schrödinger group on R:

(12) U (t)u 0 L 6 t,x ≤ c u 0 L 2
x , we are done. Recall now from [START_REF] Molinet | Well-posedness results for the generalized Benjamin-Ono equation with small initial data[END_REF] Lemma 2.2. (Christ-Kiselev) Consider a linear operator defined on spacetime functions f (t, x) by

(13) T f (t) = Rs K(t, s)f (s)ds. Assume (14) ||T f || L ∞ x L 2 t ≤ c||f || L 6 5 t,x , then (15) 
|| t 0 K(t, s)f (s)ds|| L ∞ x L 2 t ≤ c||f || L 6 5 t,x
.

According to [START_REF] Molinet | Well-posedness results for the generalized Benjamin-Ono equation with small initial data[END_REF], this is valid since min(+∞, 2) > max( 6 5 , 6 5 ). We then apply this argument to the nonlinear term in ( 5), for t ∈ [0, T ]. This leads to

|| t 0 D 1/2 x U (t -s)ū 2 uds|| L ∞ x L 2 T ≤ c||u 3 || L 6 5 T,x ≤ c||u|| 3 L 18 5 T,x ≤ c||u|| L 2 T,x ||u|| 2 L 6 T,x . (16) 
We conclude the proof of the proposition using that u is bounded in

C([0, T ], L 2 (R))∩ L 6 T,x .
At this stage we complete the proof of Theorem 1.2. Consider u 0,ε ⇀ u 0 in L 2

x . Due to the previous proposition, we know that, for any

K compact subset of R x , the sequence u ε remains in a bounded set of C([0, T ], L 2 (R)) ∩ L 6 T,x ∩ L 2 T H 1 2
x (K). Going back to the equation, we observe that ∂ t u ε remains in a bounded set of L 2 T H -2

x . Hence, due to a standard compactness argument, the sequence u ε , up to a subsequence extraction, converges towards some function v strongly in L 2 T L 2 (K). By interpolation, the strong convergence is also valid in L 4 T L 4 (K). This allows us to pass to the limit in the equation and to conclude that the limit v is a solution of (4) belonging to the class of uniqueness L 6 T,x . Set (., .) for the L 2 x scalar product. By (4) and the bounds above, it is easy to check that, for any smooth space function φ with compact support, the family {t → (u ε (t), φ)} is uniformly equi-continuous on [0, T ]. Ascoli's theorem then ensures that (u ε (•), φ) converges to (v(•), φ) uniformly on [0, T ] and thus v(0) = u 0 . By uniqueness, it follows that v ≡ u and from the above convergence result, it results that u ε (t) ⇀ u(t) in L 2

x for all t ∈ [0, T ].

Proof of the main Theorem

To begin with, we prove the existence of an absorbing ball for the semigroup; multiplying (1) by ū and integrating in x the real part of the resulting equation

(17) 1 2 d dt ||u|| 2 L 2 x + γ||u|| 2 L 2 x = Re f ūdx ≤ 1 2 γ||u|| 2 L 2 x + 1 2γ ||f || 2 L 2
x .

This implies

(18) ||u(t)|| 2 L 2 x ≤ e -γt ||u 0 || 2 L 2 x + 1 -e -γt γ 2 ||f || 2 L 2 x . Proposition 3.1. The ball X of radius M 0 = 2 ||f || L 2 x
γ is an absorbing set for the dynamical system under consideration.

We endow then this absorbing ball with the weak topology of L 2

x . X is then a compact metric space and S(t) acts continuously on X according to Theorem 1.2. Therefore, using Theorem I.1.1 in [START_REF] Temam | Infinite Dimensional Dynamical Systems in Mechanics and Physics[END_REF] the ω-limit set A = ∪ s>0 ∩ t>s S(t)X is a global attractor. In fact

(19) A = {a ∈ X; ∃b n ∈ X, t n → +∞, S(t n )b n ⇀ a.}
We plan to transform this weak convergence into a strong convergence. We use the famous J. Ball's argument. We begin with the energy equation that asserts that for any τ > 0, due to (17),

||S(t n )b n || 2 L 2 x = e -2γτ ||S(t n -τ )b n || 2 L 2 (20) 
x -2Re τ 0 Rx e -2γs f (x)S(t n -s)b n dsdx.

According to the weak convergence, we have x + 2e -2γτ M 2 0 , since for n > τ S(t nτ )b n is in X and S(-τ )a, that belongs to the weak attractor, remains trapped in X. Letting τ → +∞ implies that A attracts the bounded sets for the L 2 x strong topology. To prove that A is compact is very similar and then omitted.

0 2 L 2 x 2 L 2 x -2Re τ 0 ||S(t n )b n || 2 L 2 x ≤ ||a|| 2 L 2

 0222202222 Rx e -2γs f (x)S(t n -s)b n dsdx = 2Re τ Rx e -2γs f (x)S(-s)adsdx . Using once again the energy equality (17) we also have that (22) ||a|| = e -2γτ ||S(-τ )a|| Rx e -2γs f (x)S(-s)adsdx.