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AUTOMORPHIC LEFSCHETZ PROPERTIES VIA [?
COHOMOLOGY

by

Mathieu Cossutta

Abstract. — In this paper one proves a special case of a conjecture by Nicolas Bergeron
[2, conjecture 3.14]. This conjecture is a kind of automorphic Lefschetz property. It relates
the primitive cohomology of a locally symmetric manifolds modeled on U(p,q + r) to the
primitive cohomology of some of its totally geodesic submanifolds that are locally symmetric
and modeled on U(p, q).

0. Introduction

Let G be a connected reductive Lie group of compact center and K be a maximal
compact subgroup of G. The quotient

Xo=G/K

is the symmetric space associated to G, let dg be its dimension. It is naturally a Rieman-
nian manifold on which G acts by isometries. For I' a discrete subgroup of G, one defines
the locally symmetric manifold

Sq(T) =T\ Xg.
Let G be an anisotropic algebraic group defined over Q such that the non-compact part of
G(R) is equal to G. Let p: G — GL(N) g be a closed immersion of algebraic groups. Let
n be a non-negative integer, one defines

I'(n) = {y € GQQ)] p(v) € GL(N, Z) and p(y) = Iy [n]}.
The group I'(n) is called a congruence subgroup and since G is anisotropic, I'(n) is discrete
and cocompact in G. One wants to study the link between the cohomology of the compact
manifold S¢(I'(n)) = I'(n)\X¢ and the cohomology of some of its submanifolds. Let H
be a closed reductive subgroup of G such that

H N K is a maximal compact subgroup of H.

This hypothesis implies that Xy is a totally geodesic submanifold of X5. Let H be an
algebraic subgroup of G defined over Q such that the non-compact part of H(R) is equal
to H. One assumes furthermore that the inclusion of algebraic group H C G induces the
inclusion of Lie groups H C G. One defines

A(n) ={y € HQ)| p(v) € GL(N, Z) and p(v) = In [n]}.
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Since A(n) =T'(n) N H(Q), there is a well defined natural natural map
ja,Hn : SH(A(n)) — Sa(L(n)).
This map is finite and according to [1, lemme principal et théoréme 1], there exists a finite
index subgroup I of T'(n) containing A(n) such that the application
7" Su(A(n)) — S(T)
is an embedding. Let ¢ be a non-negative integer, we write
H'(Sg,C) = lim H' (S (I'(n)), C).
n

The applications jg, m,, induce a direct image application
(Ge.m), : H'(Sg,C) — H'Ta= (S¢, C).

We are interested in the case where G = U(p,q + r) and H = U(p,q) embedded in a
standard way in G. In this case the associated symmetric spaces are Hermitian and the
manifolds S¢(I'(n)) and Sg(A(n)) are projective. Using Matsushima formula (see equation
3), one can define for two non-negative integers i, j verifying i +j < q (resp. i+j < q+7)
a subspace

Hip’jp(SE)Lj (resp. Hip,jp(sg)i7j)
of

H™PIP(Syr) (vesp. HPIP(Sg))

(see definition 2.5). The cohomology classes of these subspaces are primitive of be-degree
(ip,jp) (vesp. ((i +7)p,(j + r)p). They would be called highly primitive of type (i, j).
Except in the case where p = 1, being highly primitive is stronger than being primitive.
For a cohomology class, one can define its highly primitive part of type (4, 7) (see defintion
2.6). We prove the following theorem.

Theorem 0.1. — Let suppose that p,q > 2. Let i,j be two non-negative integers such
that i + j +r + 1 < q then the map

HPPI(Sy,C)y 5 — HPOTPIE (S, C) i (14)
obtained by projecting (ja,m), on the highly primitive cohomology of type (i +r,j + 1) is

injective.

Remark 0.2. — Let i, j be natural numbers such that i + j < ¢. By a theorem of Li (|8,
proposition 6.4]), if we choose for H the automorphism group of an hermitian form defined
over a totally real numberfield, then if p+ ¢ > 2(i + j):

Hip,jp(5£7 C)(z,]) 7é 0.
Nicolas Bergeron proved in |2, theorem 8.3] that it is enough to study a simpler problem.

Proposition 0.3. — [|2| | Let i, 5 be two non-negative integers such thati+j+r+1<gq
and assume that p,q > 2 then if for all congruence subgroups A(n) the application

ju: HPIP(S(A(n)), C)ij — HE T PIFD (S (A(R)), Cicerjor

obtained by projecting the direct image application in L?-cohomology on the highly primitive
part of type (i,7) is injective then theorem 0.1 is true.
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Remark 0.4. — We consider reduced L?-cohomology. This means that for a Riemman-
nian manifold X and a non-negative integer R, HJ(X) is the space of L? harmonic differ-
ential forms of degree R on X. If  # 0 the manifold Sg(A(n)) is non-compact then the
L?-cohomology can be different from the usual cohomology.

The hypothesis ¢ +j +r+ 1 < ¢ and p,q > 2 come from the proof of the proposition
0.3. The main theorem of this note is the following.

Theorem 0.5. — Let i,j be natural integers such that i+ j+r < q. Let A be a cocompact
subgroup of H. The map

(1) Gu: HPIP(Sg(A), C), 5y — HY T PI (M C)icr o,

obtained by projecting the direct image application on the highly primitive cohomology of
type (i +1r,j + 1) is injective.

The case where i = j = 0, H = U(1,1) and G = U(2,1) was treated by Kudla and
Millson in |6]. The general case where i = j = 0 was done by Nicolas Bergeron in |2,
théoréme 3.4|. It is based on the article |9] of Tong and Wang. The proof of theorem 0.5
goes as follows (in fact some of the basic ideas were developped by Kudla and Millson in
the paper |5] in the case where H = O(1,1) and G = O(2,1)). Let  be a highly primitive
cohomology class of type (,7) on Si(A). Since Sg(A) can be seen as the normal bundle
of Sg(A) in Sg(T") (if A =T N H), there exits a projection

p:Sa(A) — Sg(A).
One can represent j.n (in H*(Sg(A))) as the closed differential form

Jen =P A [SH(A)]

where [Sg(A)] is a choice of differential form representing the dual class of Sg(A) in Sg(A).
One wants to choose p*n and [Sg(A)] such that j.n is harmonic and square-integrable. The
representation theory of U(p, ¢) and U(p,q+7) is used to make a choice that works. In the
first part of the note some theorems of Nicolas Bergeron on cohomological representations
of U(a,b) are recalled and in the second part the theorem 0.5 is proven. Finally, we remark
that in order to generalize our main results to other type of highly primitive cohomology
or to other groups one should prove some theorems on restriction and tensor products of
cohomological representions generalizing theorem 1.8 and 1.12.

,J

1. Representation theory

1.1. Cohomological representations. — In this part G will be equal to U(a, b) viewed
as the group of matrices

{M € M(n,©)| M 1LpM = I, }

where I, = diag(l,,—1I). One can choose as a maximal compact subroup of G, K =
U(a) x U(b) diagonaly embedded.

Remark 1.1. — One uses the subscript 0 for real Lie algebra and no subscript for complex
one. A compact Cartan algebra of both €y and gg is

tO = {diag(xlv"'a:Ea;ylv"'ayb)| Tiy Y5 GZR}‘



4 MATHIEU COSSUTTA

Let pg be the orthogonal complement for the Killing form of £y in gg. One has

p={<g 61>|A, tBEMa,b((C)}‘

Since pg is the tangent space at the identity of X, the Killing form (which is positive and
invariant by K on pg) defines a Riemannian structure on Xg. The group G acts on it by
isometries. Let A(g,t) be the set of roots of t in g and g™ be the eigenspace associated to
a root 7.

Remark 1.2. — Since K is compact, for all H € 1ty and 7 € A(g, t) the number 7(H) is
real.

Let H € 1tg. One defines:
q(H) = @TEA(Q,O 97—7 [(H) = @TEA(g,t) gT and u(H) = @TEA(g,t) gT'
T(H)>0 T(H)=0 T(H)>0
Then q(H) is a parabolic algebra of g and q(H) = [(H) © u(H) is a Levi decomposition.
Since [(H) is defined over R, there exists a well defined reductive subgroup L(H) of G of
complexified Lie algebra [(H).

Definition 1.3. — A pair (q(H),L(H)) defined by an element H € uty is called a theta
stable parabolic algebra.

Let (q, L) be a parabolic theta stable algebra of g. Let u be the radical unipotent of g.
One defines R(q) = dimp Nu, called the cohomological degree of q. According to Vogan
and Zuckerman (|10, theorem 2.5]), A% (p Nu) is a highest weight vector in A™@ p. Let
V(q) be the irreducible K-submodule of /\R(q) p generated by this vector. These modules
play an important role in the study of the cohomology of locally symmetric spaces. One
can classify them up to isomorphism. This is done for example by Bergeron in [2]. Clearly,
if two theta stable parabolic algebras are K-conjugated they generate the same module.
So up to K-conjugation, we can assume that q is defined by an element

H=(z1,...,24) @ y1,...,u) € R* x R
with
Ty 2> 2T and yp > -0 > Yp.

Such an element will be called dominant. One can associate to a dominant element of
1ty two partitions. Recall that a partition is a decreasing sequence « of natural integers
aq, ..., > 0. The Young diagram of «, also written «, is obtained by adding from top
to bottom rows of «; squares all of the same shape. Let o and (8 be partitions such that
the diagram of « is included in the diagram of 3, one writes this relation o« C 8. We will
also write 5\« for the complementary of the diagram of « in the diagram of 3. It is a skew
diagram. One writes a x b or b* for the partition

(b,....b).

a times

Let H € 1ty be dominant. One associates to H two partitions @ C 8 C a x b defined by:
a(i) = {jlzi > yor1-5}] and B(i) = [{jlz: = ypr1-5}-
Proposition 1.4. — The following three points give the classification of modules V(q):
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e let q be a parabolic theta stable algebra and o C 3 be the associated partitions, then
(B\«) is an union of squares which intersect only on verteces.

e we have V(q) = V(q') in \* p if and only if (q, L) and (q', L") have the same associated
partitions.

o [f a C B Caxbisa pair of partitions verifying the condition of the first point there
exists a parabolic theta stable algebra q with the associated partition (o, 3). Such a
pair will be called compatible.

Definition 1.5. — Let (o, 3) be a pair of compatible partitions included in a x b and let g
be a parabolic theta stable algebra of associated partitions («a, 3). We will write VaUéa7b) =

V(q). This doesn’t depend on the choice of q by the second point of the proposition 1.4.

Parabolic theta stable algebras are related to representation theory of U(a,b) by coho-
mological induction (see 7] for definitions). The following theorem was proven by Vogan
and Zuckerman in [10, theorem 2.5].

Theorem 1.6. — Let q be a parabolic theta stable algebra. There exists a unique ir-
reducible and unitary representation of G, which will be denoted Ag, verifying the two
following properties :

e the infinitesimal character of Aq is the infinitesimal character of the trivial represen-
tation,
o the K-type V(q) appears in Aq.

Definition 1.7. — Let (a,3) be a pair of compatible partitions of a x b. By unicity
)

in 1.6, there exists a unique unitary representation that contains VQUEM and of trivial

infinitesimal character. One can write this representation Ag(gb)‘ Furthermore if ¢, j
are two non-negative integers such that ¢ + j < b, one defines VZZ(M)

U(a,b)
Aig = A o-pp)-

1,J

= Viir,(o—jyr) and

1.2. Some results of Nicolas Bergeron on A*p. — The results of this section are
mainly due to Nicolas Bergeron. One uses notations of the introduction. For example, we
have that G =U(p,q+r) and H = U(p,q).

Theorem 1.8 (|2] lemma 2.3 and theorem 5.2). — Leti,j be two non-negative inte-
gers such that i + j +r < q. One has the two following points:

o the image of the K N H- equivariant inclusion
ip,jp ip,Jp

Viic Aenbc Av

is contained in Vz(j and
e the KN H -equivariant inclusion Vz’lj{ C VZ’CJ can be lifted to an H -equivariant inclusion

H G
Apy— Ailj.

This restriction theorem can be proved using the archimedean theta correspondance and
the theory of seesaw pairs [4].
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Let v be the orthogonal complement of § in g for the Killing form. It is an h-module
and one has the decomposition
p=bhNpdgnNr.
Let wg € A* p N, be the vector obtained by taking the exterior product of a direct
orthonormal basis of pgp N tg. According to Tong and Wang, one has the following lemma.

Lemma 1.9 (|9] Proposition 4.6). — The image wgim of wy by the projection
2pr 2pr

Apne— Ap—V5

1S non zero.

The theorem 1.8 was a theorem on restriction to H of some G-modules. In |2] is also
studied the problem of the restriction to the diagonal of a tensor product of cohomological
representations.

Lemma 1.10 (|2] lemma 3.15). — The image of V1 AP p N, by the inclusion

ip,jp TP, (i+7)p,(j+r)p
Avrnbe Apnec A\

: 1 i G
is contained in Vi, ;..
A somewhat new lemma on the exterior algebra of p is the following.

Lemma 1.11. — Let i,j be two non-negative integers such that i+j+r < q. Considering
the application

ip,Jp TP,TD (i+7)p,(j+r)p

7: Ao AvS> A VG

2rp
TVSe \p)=TVS2VS).

then

Proof. — Considering the projections of VG ® A p and VE® A% pon V&, jir asin the
proof of theorem 29 (see in particular equation (39)) of Nicolas Bergeron’s article [3], one
can obtain the lemma. O

Finally, one has the following theorem (the first point can be deduced from the lemma
1.10 and 1.11).

Theorem 1.12 ([2] theorem 5.8). — Let i,j be two natural integers such that i+j+r <
q. One has the two following properties:

e the application

ip,jp TP, (i+r)p,(5+r)p
G G G
‘/i,j ® ‘/7”,7” C /\ p ® /\ p - /\ p—>‘/;'+7"yj+7"
18 mon zero and
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e there exists a non zero orthogonal and G-equivariant projection
G G G
Ar,r ® Ai,j - Ai—l—r,j—l—r?
that lifts the projection
G G G
‘/i,j ® ‘/7“,7“ - ‘/i—l-r,j—l-r

defined in the previous point.

2. Geometry

2.1. Matsushima formula. — One considers in this paragraph the case of G = U(a, b).
Let €2 be the Casimir element of g, it is an element of the center of the envelopping algebra
of g. Let I" be a discrete subgroup of G that acts freely and properly on Xg.

Definition 2.1. — Let M be a manifold. We will write A*(M) for the space of smooth
differential forms of degree < on M.

Using translation by G, one can see that

(2) AY(S(T) = Homg (/\ p, C*(T\G)).

Let us recall that Kuga’s lemma says that the action of the Laplacian on the left hand
side of the equation (2) is the same that minus the action of the Casimir element on the
right hand side of equation (2). Let H5(S(I')) be the space of square-integrable harmonic
forms of degree *. Since an harmonic form on S(I") is closed and smooth, one has a natural
application
Hy(S() — H*(S(I)).

Because of Hodge theory, this application is an isomorphism as soon as the manifold S(T")
is compact.

Definition 2.2. — Let m be a unitary irreducible representation of GG, by Schur lemma,
the Casimir element acts on 7 by a constant that one writes 7(2).

One writes L?(I'\G) for the unitary representation of G that consists of square-integrable
functions on the quotient I'\G. Let L3(I'\G) be the discrete spectrum of L?(I'\G) and

LE(F\G)QZO be the part of the discrete spectrum on which the Casimir element acts
trivialy. Because of a result of Tong and Wang |9, lemme 3.8, a L?-harmonic differential
form on S¢(I") takes values in the discrete spectrum. So

(3) H5(S(I')) = Homg (/\ P,Lfl(F\G)H) :

This lead to the following definition.

Definition 2.3. — A unitary representation 7 of G is called cohomological if:
e 7(2) =0 and
e Homg (A" p,m) # 0.

The representations Aq are clearly cohomological by theorem 1.6. Indeed Vogan and
Zuckermann proved the following theorem.
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Theorem 2.4 (|10] theorem 2.5). — Every cohomological representation of U(a,b) is
isomorphic to a representation Agy(ﬁa’b) for (o, B) a certain pair of compatible partitions of
a x b. Furthermore if (q, L) is a parabolic theta stable algebra then

i i i—R(q)
homp (/\ p, Aq) = homg (A p,V(9)) = homgrr( /\ pNL1).

Definition 2.5. — Let q be a parabolic theta stable algebra and («, 3) be the partitions

associated to q. A square-integrable harmonic differential form on S(I') of degree R(q) is
1

called highly primitive of type («, ) if it is zero on <Va%) . In the case where (o, ) =

(i, (b—j)*), one will simply say call these classs highly primitive of type (i,7). One writes
H'®*(S(T));,; for the space of highly primitive forms of type (i, j).

More generally, one can define projection to space of highly primitve cohomology.

Definition 2.6. — Let V C /\kp be a linear K-invariant subspace. Let V' be the
orthogonal complement of V' in /\k p. One has a the following decomposition
AF(M) = Homg (V,C®(I'\G)) @ Hom(V+, O (I\G)).

Let n be in A*(M). We will write iy for the projection of i on the first factor. If V = VZC];,
we will just write 7; ;.

Remark 2.7. — One can consider the exterior product
k ! k+1
* * A *
(4) Ar e Apt > A\,
and since </\k p*)* = /\k(p) by dualizing this map, one obtains an application

k41 k 1
A /\p—>/\p®/\p.

The cup-product of two differential forms 1 and 1’ of degree respectively k and [ viewed
as elements of

Homp (/\ p, C(A\G)) * =k ou I
by equation (2) is the element
k+l1
n A1 € Homg(/\ p, C(A\G))
defined by
n A1 (v)(g) = (n@n") (A v)(g).

2.2. Proof of theorem 0.5. — Let A be a discrete cocompact subgroup of H. One
writes F' for the manifold Sg(A), M for the manifold Sg(A) and R = (i + j)p. Let n be
a harmonic differential form of degree R on F' which is supposed highly primitive of type
(i,7) . The differential form j.n (defined by equation (1)) is the unique smooth form on
M of type (i +r,j + r) such that: j,n is harmonic, square-integrable and such that for all
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/Mj*n/\*zp:/pn/\*z/}.

As explained in the introduction, we start by lifting the form 7 to a form on M.

form v of type (i +7,7 + 1)

Lemma 2.8. — There exists a form p*n on M of degree R such that
e p*n is smooth harmonic and highly primitive of type (i,7)
o and (p*n)p = 1.

Proof. — Since the form 7 is highly primitive, it generates in L?(A\H) under the action
of H an inclusion ¢ : A%CL%A\H). Let P be the H-equivariant projection

(5) Afj - Afj’
given by the second point of theorem 1.8. Let A be the action of G on the representation
Aicfj. Let v € A p and g € G, the vector A(g)v is a smooth vector of Agj thus P(A(g)v)
is also a smooth vector of Affj As a consequence, for all g € G, ¢ (P(A(g)v)) is a smooth

function on A\H. We define an element

p*n € Hompg (VZG COO(A\G))

yE

by the formula

p'n(v)(g) = P(A(g)v)(1).
Using equation (2), one can see that p*n is a smooth differential form of degree R on F.
Let us show that p*n verifies the two properties of the lemma. Since the application

{ AT = C®(A\G)
v = P(A(g)v)(1)

is G-equivariant and that the functions p*n(v) (for v € A®p) are contained in its image,
the action of the Casimir element on these functions is zero. Then, using Kuga lemma,
p*n is harmonic and highly primitive of type (i,7). It remains to compute the restriction
of p*n to F. Let v € A (pNB) then

pn(v)(h) = ¢ (P(A(h)v)) (1) = t(P(v))(h) = n(v)(h).

That way, the lemma is proven. O

Let w be the L? and harmonic differential form on M of degree 2pr dual to F. Let ¢
be a L? and harmonic differential form on M of degree 2pr, we have

(6 [onvw= [,
M F
thus, w is left invariant by H.
Theorem 2.9. — One has j.n = (w AD*N)iyr j+r and jn is non zero.
Remark 2.10. — This theorem implies the theorem 0.5.

Proof. — Let us define
¥ = (w A p*n)i—i-r,j—l-r
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One has to prove that the form ¢ is: non zero, square-integrable, harmonic and equal to
J«n. By now the only thing we know about ¢ is that this form is closed.
By lemma 1.11, we have
¢ = (Wry A p*n)i—i-r,j—i-r
The form w,, is an element of

Homg (V.S, L2(T\G)*=%)

T
which is left H-invariant. Since it has been assumed that the space A\H is compact, the
form w,, is also an element of

L3(H\G)*™").
Thus it generates under the action of G an inclusion
AC. C L*(H\G).

Using remark 2.7, one can explain the building of ¢ from the point of view of representa-
tion theory. The form ¢ is obtained by the composition of the two following applications:

Hompg (V.

T

2rp+R 2pr R
G AN G G
/\ - ‘/;+r7j+r - /\p ® /\p - Ar,r ® Ai7j7
and

AC @ A, C I2(H\G) ® AZ; C ind§, (Ag‘j‘H) L indG A c 12(0\G).

It simply means that the functions in L*(A\G) defining ¢ are linear combinations of
functions of the form
wr (V) (9) P(A(g)v") (1),
with v € VTC'; and v € ij (the projection P is defined by equation (5)). Therefore ¢ is
square-integrable. Dualizing the projection of theorem 1.12, one finds an inclusion

G G G
Ai—l—r,j—l—r - Ar,r ® Ai,j?

lifting the natural and non zero K-equivariant application
R+4-2pr R 2pr
G AN G G
‘/i—l-r,j—l-r - /\ p— /\p ® /\p - Vvi,j ®‘/;“,r'
Since the second application defining ¢ is G-equivariant, one deduces from Kuga lemma
that ¢ is harmonic.
One can now prove that ¢ is non-zero. An element wy of the line A" tNp was defined
in subsection 1.2 and its projection on VT,Ci was written wglm. Because of [2, proposition
3.5|, the element

2pr

wrp(wr)(1) = wrp (Wi )(1)
is non zero. But by lemma 1.10, the exterior product induced an inclusion

2pq
H G
‘/z’,j ® /\p Nt C ‘/;+r7j+r'

Therefore if v € Vllj and he H
olwg ®@v)(h) = (wrr AD™n) (Wu @v)(h)
= wer(Wir ) (W)n(w)(R).
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Since one can choose v and h such that n(v)(h) # 0, ¢ is non zero.
Finally it remains to prove that ¢ is equal to j.n. Let ¢ be a form of type VZ+M+T
Since

/McpA*wz/MwA(p*nA*w),

one could be able to conclude immediatly if the form p*n A x) was square-integrable but
it is not the case. Using the fact that w is H-invariant one sees that:

/ww / 9) Ap(g) A x(g)(vol)dg

(7) - /H \Gw<g>A [ /A \Hp*n<hg>mw<hg>dh] dg
= Vol(A\H) A\H / “’A/A\H h) A xb(h)dh

Lemma 2.11. — The differential form on M
| vt A s
A\H

18 square integrable.

Proof. — Let v € VG and v’ € VG

i+rj+r
Jue

using Cauchy-Schwartz, we find that

® /| .

one has to prove that
2
dg < +o0

/ P(A(g)v) (hg)d (') (hg)dh
A\H

2
dg

/ P(A(g)v) (hg)p(hg) (' )dh
A\H

2 2
< [ PG R ( [, o dh) 4o

< [Jol #1117,
O

Finally using formulas (7), and the definition of w, one finds that

fen = o [, 7 n s
= /Fp*n/\w
= /Fn/\*zp.

So the theorem 2.9 is proven. O



12

[1]
2]
3]
[4]
[5]
[6]
7]

8]
[9]

[10]

MATHIEU COSSUTTA

References

Bergeron, Nicolas; Premier nombre de Betti et spectre du laplacien de certaines variétés
hyperboliques Enseign. Math. (2) 46 (2000), no. 1-2, 109-137.

Bergeron, Nicolas; Propriétés de Lefschetz automorphes pour les groupes unitaires et orthog-
onaux. Mém. Soc. Math. Fr. (N.S) N. 106 (2006).

Bergeron, Nicolas; Restriction de la cohomologie d’ une variété de Shimura & ses sous-variétés
a paraitre dans Transformation Groups.

Kudla, Stephen S.; Seesaw dual reductive pairs. Automorphic forms of several variables
(Katata, 1983), 244-268, Progr. Math., 46, Birkhduser Boston, Boston, MA, 1984.

Kudla, Stephen S.; Millson, John J.; Harmonic differentials and closed geodesics on a Riemann
surface. Invent. Math. 54 (1979), no. 3, 193-211.

Kudla, Stephen S.; Millson, John J. The Poincaré dual of a geodesic algebraic curve in a
quotient of the 2-ball. Canad. J. Math. 33 (1981), no. 2, 485-499.

Knapp, Anthony W.; Vogan, David A. Jr.; Cohomological induction and unitary represen-
tations. Princeton Mathematical Series, 45. Princeton University Press, Princeton, NJ, 1995.
xx+948

Li, Jian-Shu; Nonvanishing theorems for the cohomology of certain arithmetic quotients. J.
Reine Angew. Math. 428 (1992), 177-217.

Tong, Y. L.; Wang, S. P.; Geometric realization of discrete series for semisimple symmetric
spaces. Invent. Math. 96 (1989), no. 2, 425-458.

Vogan, David A.; Jr.; Zuckerman, Gregg J.; Unitary representations with nonzero cohomology.
Compositio Math. 53 (1984), no. 1, 51-90.

MatHiEU CossuTTA, EPFL SB IMB TAN MA C3 604 (Batiment MA) Station 8 CH-1015 Lausanne

E-mail : mathieu.cossutta@ens.fr



