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, on the topology of non-reduced algebraic space curves, and apply it to the polar curve or apparent contour of the surface S. We exploit simple algebraic criterion to certify the pseudo-genericity and genericity position of the surface. This gives us rational parametrizations of the components of the polar curve, which are used to lift the topology of the projection of the polar curve. We deduce the connection of the two-dimensional components above the cell defined by the projection of the polar curve. A complexity analysis of the algorithm is provided leading to a bound in e OB(d 15 τ ) for the complexity of the computation of the topology of an implicit algebraic surface defined by integer coefficients polynomial of degree d and coefficients size τ . Examples illustrate the implementation in Mathemagix of this first complete code for certified topology of algebraic surfaces.

Introduction

The problem of computing a triangulation of a real (semi)-algebraic variety S is an old but fundamental problem in real algebraic geometry. It has been studied in the literature Email addresses: daouda-niang.diatta@xlim.fr (Daouda Niang Diatta), mourrain@sophia.inria.fr (Bernard Mourrain), olivier.ruatta@xlim.fr (Olivier Ruatta). [START_REF] Hardt | Triangulation of subanalytic sets and proper light subanalytic maps[END_REF], [START_REF] Hironaka | Triangulations of algebraic sets[END_REF], mainly from a theoretical point of view. From a more computational point of view, in works such as [START_REF] Bochnak | Géométrie Algébrique Réelle[END_REF], [START_REF] Coste | An introduction to semi-algebraic geometry[END_REF], [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF], the triangulation problem is tackled effectively via Cylindrical Algebraic Decomposition. It consists in decomposing a semi-algebraic set S into cells, defined by sign conditions on polynomial sequences. Such polynomial sequences are obtained by (sub)-resultant computations, corresponding to successive projections from | k+1 to | k . The degree of the polynomials in these sequences is bounded by O(d 2 n-1 ) and their number by O((m d) 3 n-1 ), where m is the number of polynomials defining the semi-algebraic set S, d is a bound on the degree of these polynomials and n the number of different variables appearing in these polynomials [START_REF] Basu | Algorithms in Real Algebraic Geometry[END_REF]. This Cylindrical Algebraic Decomposition does not directly yield a triangulation, nor any global topological information on the set S, because the representation lacks information about the adjacency of the cells. Additional work is required to obtain a triangulation of S, using for instance, Thom encoding of algebraic numbers or numerical approximations (see e.g., [START_REF] Coste | An introduction to semi-algebraic geometry[END_REF], [START_REF] Bochnak | Géométrie Algébrique Réelle[END_REF], [START_REF] Mccallum | Local box adjacency algorithms for cylindrical algebraic decompositions[END_REF]). But this requires the evaluation of signs of many polynomials at many real algebraic numbers. It also explains why practical efficient implementations of these algorithms are not available.

For semi-algebraic sets in small dimension (n 3), the problem has been investigated in more details. A wide literature exists on the computation of the topology of curves in | 2 . See e.g. [20], [16], [25], [6], [7], [14], [32], [4] and applications in Computer Aided Geometric Design [START_REF] Schreiner | Plotting algebraic space curves by cluster computing[END_REF], [START_REF] Chandrajit | Tracing surface intersections[END_REF], [START_REF] Keyser | Efficient and accurate B-rep generation of low degree sculptured solids using exact arithmetic[END_REF].

In | 3 , the problem of computing the topology of space curves has been less investi- gated. In [START_REF] Grandine | A new approach to the surface intersection problem[END_REF], the case of intersections curves of parametric surfaces is considered, based on the analysis of planar curves in the parameter domains. In [START_REF] Gerardo | Computation of the topology of real algebraic space curves[END_REF], Alcázar and Sendra give a symbolic-numeric algorithm for reduced space curves using subresultant and gcd computations of approximated polynomials. In [START_REF] Owen | Intersection of general implicit surfaces[END_REF], Owen, Rockwood and Alyn give a numerical algorithm for reduced space curve using subdivision method. In [START_REF] Kahoui | Topology of real algebraic space curves[END_REF], Elkaoui gives a certified symbolic-numeric algorithm for space curve defined as the intersection of the vanishing sets of n trivariate polynomials, which requires the computation of generators of the radical of the ideal, that involves Gröbner basis computation.

The special case of surfaces in | 3 has also received a lot of attention (see e.g. [19], [18], [START_REF] Alberti | Meshing implicit algebraic surfaces: the smooth case[END_REF], and references in [START_REF] Günter | Meshing of Surfaces[END_REF]), but these works deal only with smooth surfaces. See also [START_REF] Sendra | A delineability-based method for computing critical sets of algebraic surfaces[END_REF], where Cylindrical Algebraic Decomposition approach has been further investigated to analyze the topology of critical sections of an implicit surface, by exploiting the properties of delineability.

The contribution of this paper is a new and complete algorithm for computing the topology of an algebraic surface S given by a squarefree polynomial in ◗[X,Y,Z]. Our algorithm involves only subresultant computations and entirely relies on simple rational operations, which makes it direct to implement. In particular, compared to [START_REF] Alberti | Isotopic triangulation of a real algebraic surface[END_REF], we avoid to compute the topolgy of plane sections of the surface at critical values. The approach extend the work in [START_REF] Daouda | On the computation of the topology of a non-reduced space curve[END_REF], which provides a certified algorithm for the topology of non-reduced algebraic space curves. It is essential to be able to treat non reduced spaces, since we apply it to the polar curve or apparent contour of the surface S. We exploit simple algebraic criterion to certify the pseudo-genericity and genericity position of the surface. This gives us rational parametrizations of the components of the polar curve, used to lift the topology computed after projection, without any supplementary effort. The topology of the polar curve is then used to deduce the connection of the two-dimensional components above the cell defined, in the plane, by the projection of the polar curve.

Furthermore, this algorithm allows a complete complexity analysis. An upper bound on the bit complexity of the computation of the topology of implicit space curves and surfaces is given. Our algorithm realizes this task with complexity in O B (d 15 τ ).

At last, we describe the results of the implementation of this algorithm in Mathemagix. To our knowledge, it is the first complete code for certified topology of algebraic surfaces. Examples of experimentations for surfaces with isolated or one-dimensional singularities are given.

Topology of a plane algebraic curve

To be able to describe the topology of space curves, we need to do so with planar curves. In this section, we recall definitions and describe an algorithm allowing to compute with certainty the topology of plane algebraic curves.

Description of the problem

Let f ∈ ◗[X, Y ] be a square free polynomial and C(f

) := {(α, β) ∈ | 2 , f (α, β) = 0}
be the real algebraic curve associated to f . We want to compute the topology of C(f ). For curves in generic position, computing its critical fibers and one regular fiber between two critical ones is sufficient to obtain the topology using a sweeping algorithm (see [START_REF] Gonzalez | Efficient topology determination of implicitly defined algebraic plane curves[END_REF]). But for a good computational behaviour, it is essential to certify the genericity of the position of the curve. We propose an effective test allowing to certify the computation and connection, in a deterministic way. This is an important tool in order to address the case of space curves and surfaces. Now, let us introduce the definitions of generic position, critical, singular and regular points.

Genericity conditions for plane algebraic curves

Definition 2.1. Let f ∈ ◗[X, Y ] be a square free polynomial and C(f

) = {(α, β) ∈ | 2 : f (α, β) = 0} be the curve defined by f. A point (α, β) ∈ C(f ) is called: • a x-critical point if ∂ Y f (α, β) = 0, • a singular point if ∂ X f (α, β) = ∂ Y f (α, β) = 0, • a regular point if ∂ X f (α, β) = 0 or ∂ Y f (α, β) = 0. Definition 2.2. Let f ∈ ◗[X, Y ] be a square free polynomial and C(f ) = {(α, β) ∈ | 2 : f (α, β) = 0} be the curve defined by f. Let N x (α) := #{β ∈ |, such that (α, β) is a x-critical point of C(f ) } . C(f ) is in generic position for the x-direction, if: (1) ∀α ∈ ❈, N x (α) 1,
(2) There is no asymptotic direction of C(f ) parallel to the y-axis. This notion of genericity also appears in [START_REF] Gonzalez | Efficient topology determination of implicitly defined algebraic plane curves[END_REF] or [START_REF] Eigenwillig | Fast and exact geometric analysis of real algebraic plane curves[END_REF]. In [START_REF] Gonzalez | Efficient topology determination of implicitly defined algebraic plane curves[END_REF], the algorithm succeed if genericity conditions are satisfied. The authors give a numerical test that do not guarantee to reject the curve if it is not in generic position. So for some input curves the computed topology might not be exact.

A change of coordinates such that lcoef Y (f ) ∈ ◗ * is sufficient to place C(f ) in a position such that any asymptotic direction is not parallel to the y-axis. It remains to find an efficient way to verify the first condition. Using the next propositions, we give an algorithm to do so. We refer to [START_REF] Gonzalez | Efficient topology determination of implicitly defined algebraic plane curves[END_REF], for proofs.

Proposition 2.3. Let f ∈ ◗ [X, Y ] be a square free polynomial with lcoef Y (f ) ∈ ◗ * , Res Y (f, ∂ Y f ) be the resultant with respect to Y of the polynomials f , ∂ Y f and { α 1 , . . . , α l } be the set of the roots of Res Y (f, ∂ Y f ) in ❈. Then C(f ) is in generic position if and only if ∀i ∈ {1, . . . , l}, gcd (f (α i , Y ), ∂ Y f (α i , Y )) has at most one root. Let f ∈ ◗ [X, Y ] be a square free polynomial with lcoef Y (f ) ∈ ◗ * and d := deg Y (f ).
We denote by Sr i (X, Y ) the i th subresultant polynomial of f and ∂ Y f and sr i,j (X) the coefficient of Y j in Sr i (X, Y ) (see appendix for definitions). We define inductively the following polynomials: Φ 0 (X) = sr 0,0 (X) gcd(sr 0,0 (X), sr ′ 0,0 (X))

; ∀i ∈ {1, . . . , d -1}, Φ i (X) = gcd(Φ i-1 (X), sr i,i (X)) and Γ i (X) = Φ i-1 (X) Φ i (X) .
Proposition 2.4.

(

) Φ 0 (X) = d-1 i=1 Γ i (X) and ∀i, j ∈ {1, . . . , d -1}, i = j =⇒ gcd(Γ i (X), Γ j (X)) = 1; (2) Let k ∈ {1, . . . , d-1}, α ∈ ❈. Γ k (α) = 0 ⇐⇒ gcd(f (α, Y ), ∂ Y f (α, Y )) = Sr k (α, Y ); (3) {(α, β) ∈ | 2 : f (α, β) = ∂ Y f (α, β) = 0} = d-1 k=1 {(α, β) ∈ | 2 : Γ k (α) = Sr k (α, β) = 0}. 1 
In the following theorem, we give an effective and efficient algebraic test to certify the genericity of the position of a curve with respect to a given direction. 

. , k -1}, k(k -i) sr k,i (X) sr k,k (X) -(i + 1) sr k,k-1 (X) sr k,i+1 (X) = 0 mod Γ k (X).
Proof. Assume that C(f ) is in generic position and let α ∈ ❈ be a root of Γ k (X). Accord-

ing to Proposition 7.3 (2) gcd(f (α, Y ), ∂ Y f (α, Y )) = Sr k (α, Y ) = k j=0 sr k,j (α)Y j . Ac- cording to Proposition 2.3, Sr k (α, Y ) has only one root β(α) = - sr k,k-1 (α) k sr k,k (α) , so Sr k (α, Y ) = sr k,k (α)(Y -β) k . Binomial Newton formula gives Sr k (α, Y ) = sr k,k (α)(Y -β) k = sr k,k (α) k i=0 k i (-β) k-i Y i . So by identification ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . . . , k -1} and ∀α ∈ ❈ such that Γ k (α) = 0, k(k -i) sr k,i (α) sr k,k (α) -(i + 1) sr k,k-1 (α) sr k,i+1 (α) = 0. It is to say that ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . . . , k -1}, k(k -i) sr k,i (X) sr k,k (X) -(i + 1) sr k,k-1 (X) sr k,i+1 (X) = 0 mod Γ k (X).
Conversely, let α be a root of Γ k (X) such that

k(k -i) sr k,i (α) sr k,k (α) -(i + 1) sr k,k-1 (α) sr k,i+1 (α) = 0.
With the same argument used in the first part of this proof we obtain

gcd (f (α, Y ), ∂ Y f (α, Y )) = Sr k (α, Y ) = k j=0 sr k,j (α)Y j = sr k,k (α)(Y -β) k , with β := - sr k,k-1 (α)
k sr k,k (α) . Then we conclude that gcd(f (α, Y ), ∂ Y f (α, Y )) has only one distinct root and, according to Proposition 2.3, C(f ) is in generic position. ✷ Remark 2.6. Theorem 2.5 shows that it is possible to check with certainty if a plane algebraic curve is in generic position or not. If not, we can put it in generic position by a basis change. In fact, it is well known that there is only a finit number of bad changes of coordinates of the form X := X + λY , Y := Y , such that if C(f ) is not in generic position then the transformed curve remains in a non-generic position.

Let us remind the connection algorithm, before talking about space curve. Let r be the smalest regular value such that r > α and Reg := {(r, y) ∈ | 2 : f (r, y) = 0} the regular fiber define on r. Up, Down and Reg are ordered sets. Here below we remind Grandine's sweeping algorithm which connect a x-critical fiber to a regular one. Remark 2.7. Let p be a point of Reg and q be the point of the x-critical fiber Crit connected to p. The map ϕ c : Reg -→ {-1, 0, 1} defined by:

Connection algorithm

• ϕ c (p) = -1 if q ∈ Up • ϕ c (p) = 0 if q = c
• ϕ c (p) = 1 if q ∈ Down will be very helpfull for the description of the connection algorithm in section 4.

Topology of an implicit space algebraic curve

This section is devoted to the description of an algorithm allowing to compute the topology of algebraic space curves with certainty.

Description of the problem

Let P 1 , P 2 ∈ ◗[X, Y, Z] and C | := {(x, y, z) ∈ | 3 : P 1 (x, y, z) = P 2 (x, y, z) = 0} be the intersection of the surfaces defined by P 1 = 0 and P 2 = 0. We assume that gcd(P 1 , P 2 ) = 1 so that C | is a space curve. The ideal (P 1 , P 2 ) is not necessary radical. Definition 3.1 (Reduced space curve). The space curve C | is reduced if the ideal genereated by P 1 and P 2 is radical, else it is non-reduced.

Our goal is to analyze the geometry of C | in the following sense: We want to compute a piecewise linear structure of | 3 isotopic to our original space curve. The algorithm computes the topology of the space curve by lifting the topology of one of its projection on a plane. To make the lifting possible using only one projection, a new definition of generic position for space curves and an algebraic characterization of it are given. We will also need to distinguish between to kind of singularities of the projected curve, namely the "apparent singularities" and the "real singularities". A certified algorithm is given to distinguish these two kinds of singularities. For the lifting phase, using the new notion of curve in pseudo-generic position, we give an algorithm that computes rational parametrizations of the space curve. The use of these rationals parametrizations allows us to lift the topology of the projected curve without any supplementary computation.

Genericity conditions for space curves

Let Π z : (x, y, z) ∈ | 3 → (x, y) ∈ | 2 . Let D = Π z (C | ) ⊂ | 2 be
the curve obtained by projection of C | . We assume that deg Z (P 1 ) = deg(P 1 ) and deg Z (P 2 ) = deg(P 2 ) (by a basis change, these conditions are always satisfied). Let h(X, Y ) be the squarefree

part of Res Z (P 1 , P 2 ) ∈ ◗[X, Y ] and C ❈ := (x, y, z) ∈ ❈ 3 |P 1 (x, y, z) = P 2 (x, y, z) = 0}.
Definition 3.2 (Pseudo-generic position). The curve C | is in pseudo-generic position with respect to the (x, y)-plane if and only if almost every point of Π z (C ❈ ) has only one geometric inverse-image, i.e. generically, if (α, β) ∈ Π z (C ❈ ), then Π -1 z (α, β) consists in one point possibly multiple.

Let m be the minimum of deg Z (P 1 ) and deg Z (P 2 ). The following theorems give us an effective way to test if a curve is in pseudo-generic position or not. Theorem 3.3. Let (Sr j (X, Y, Z)) j∈{0,...,m} be the subresultant sequence and (sr j (X, Y )) j∈{0,...,m} be the principal subresultant coefficient sequence. Let (∆ i (X, Y )) i∈{1,...,m} be the sequence of ◗[X, Y ] defined by the following relations:

• ∆ 0 (X, Y ) = 1; Θ 0 (X, Y ) = h(X, Y ); • For i ∈ {1, ..., m}, Θ i (X, Y ) = gcd(Θ i-1 (X, Y ), sr i (X, Y )), ∆ i (X, Y ) = Θi-1(X,Y ) Θi(X,Y ) . For i ∈ {1, . . . , m}, let C(∆ i ) := (x, y) ∈ | 2 |∆ i (x, y) = 0 } and C(h) := {(x, y) ∈ | 2 |h(x, y) = 0} then (1) h(X, Y ) = m i=1 ∆ i (X, Y ), (2) C(h) = m i=1 C(∆ i ), (3) 
C | is in pseudo-generic position with respect to the (x, y)-plane if and only if ∀i ∈ {1, . . . , m}, ∀(x, y) ∈ ❈ 2 such that sr i,i (x, y) = 0 and ∆ i (x, y) = 0 we have

Sr i (x, y, Z) = sr i,i (x, y) Z + sri,i-1(x,y) isri,i(x,y) i . Proof. (1) By definition, ∀i ∈ {1, . . . , m}, ∆ i (X, Y ) = Θi-1(X,Y ) Θi(X,Y ) . So by a trivial in- duction m i=1 ∆ i (X, Y ) = Θ 0 (X, Y ) Θ m (X, Y ) . deg Z (P 1 ) = deg(P 1 ) and deg Z (P 2 ) = deg(P 2 ) imply sr m (X, Y ) ∈ ◗ * (Remark 7.2). So Θ m (X, Y ) = gcd(Θ m-1 (X, Y ), sr m (X, Y ) )= 1, then m i=1 ∆ i (X, Y ) = Θ 0 (X, Y ) = h(X, Y ). (2) Knowing that h(X, Y ) = m i=1 ∆ i (X, Y ), it is clear that C(h) = m i=1 C(∆ i ).
(3) Assume that C | is in pseudo-generic position with respect to the (x, y)-plane.

Let i ∈ {1, . . . , m} and (α, β) ∈ ❈ 2 such that sr i (α, β) = 0 and ∆ i (α, β) = 0.

Then ∆ i (X, Y )= Θi-1(X,Y ) Θi(X,Y ) =⇒ Θ i-1 (α, β) = 0. Knowing that Θ i-1 (X, Y ) = gcd(Θ i-2 (X, Y ), sr i-1 (X, Y )), so it exists d 1 , d 2 ∈ ◗[X, Y ] such that Θ i-2 (X, Y ) = d 1 (X, Y )Θ i-1 (X, Y ) andsr i-1 (X, Y ) = d 2 (X, Y )Θ i-1 (X, Y ). In this way,Θ i-1 (α, β) implies Θ i-2 (α, β) = 0 and sr i-1 (α, β) = 0. By the same arguments, Θ i-2 (α, β) = 0 implies Θ i-3 (α, β) = 0 and sr i-2 (α, β) = 0. By repeating the same argument, we show sr i-1 (α, β) = . . . = sr 0 (α, β) = 0. Because sr i (α, β) = 0, the fundamental theorem of subresultant gives: gcd((P 1 (α, β, Z), P 2 (α, β, Z)) = Sr i (α, β, Z) = i j=0 sr i,i-j (α, β)Z i-j .
Knowing that C | is in pseudo-generic position with respect to the (x, y)-plane and ∆ i (α, β) = 0 then the polynomial Sr i (α, β, Z) has only one distinct root which can be written -

sri,i-1(α,β)
i sri,i-1(α,β) depending on the relation between coefficients and roots of a polynomial. So Sr i (α,

β, Z) = m j=0 sr ,i,i-j (α, β)Z i-j = sr i,i (α, β) Z + sri,i-1(α,β) i sri,i-1(α,β) i .
Conversely, assume that ∀i ∈ {1, . . . , m}, ∀(x, y) ∈ ❈ 2 such that sr i (x, y) = 0 and

∆ i (x, y) = 0, we have Sr i (x, y, Z) = m j=0 sr ,i,i-j (x, y)Z i-j = sr i,i (x, y) Z + sri,i-1(x,y) i sri,i(x,y) i . Let (α, β) be a point such that ∆ i (α, β) = 0 and sr i (α, β) = 0. Now if we define γ := - sri,i-1(α,β)
i sri,i(α,β) , then we obtain that Sr i (α, β, γ) = 0, and (α, β, γ) is the only point of C ❈ with (α, β) as projection. Furthermore there are only finitely many points such that ∆ i (x, y) = 0 and sr i (x, y) = 0. So C | is in pseudo-generic position with respect to the (x, y)-plane. ✷

The following proposition is a corollary of the third point of the previous theorem.

If C | is in pseudo-generic position with respect to the (x, y)-plane, it gives a rational parametrization for each regular points of a connected component of a given multiplicity of C | . Proposition 3.4. Assume that C | is in pseudo-generic with respect to the (x, y)-plane and let (α, β, γ) ∈ C | such that sr i (α, β) = 0 and ∆ i (α, β) = 0. Then,

γ := - sr i,i-1 (α, β) i sr i,i (α, β). (1) 
Remark 3.5. By construction, the parametrization given in Proposition 3.4 is valid

when sr i,i (α, β) = 0. In pseudo-generic postion, if sr i,i (α, β) = 0 then either ∆ j (α, β) = 0 for some j > i or (α, β) is a x-critical point of C(∆ i ) (see section 3.3).
The following theorem gives an algebraic certificate for the pseudo-genericity of the position of a space curve with respect to a given plane.

Theorem 3.6. Let (Sr j (X, Y, Z)) j∈{0,...,m} be the subresultant sequence associated to P 1 (X, Y, Z) and P 2 (X, Y, Z) and (∆ i (X, Y )) i∈{0,...,m} be the sequence of ◗[X,Y ] as defined in Theorem 3.3. The curve C | is in pseudo-generic position with respect to the (x, y)-plane if and only if ∀i ∈ {1, . . . , m -1}, ∀j ∈ {1, . . . , i -1},

i(i -j) sr i,j (X, Y ) sr i,i (X, Y ) -(j + 1) sr i,i-1 (X, Y ) sr i,j+1 (X, Y ) = 0 mod ∆ i (X, Y ). Proof. Assume C | be in pseudo-generic position. Let i ∈ {1, . . . , m-1}, j ∈ {0, . . . , i-1}, (α, β) ∈ | 2 such that ∆ i (α, β) = 0. If sr i,i (α, β) = 0, then, by Proposition 7.3, sr i,i-1 (α, β) = 0, so i(j + 1) sr i,j+1 (α, β) sr i,i (α, β) -(i -j) sr i,i-1 (α, β) sr i,j (α, β) = 0.
If sr i,i (α, β) = 0, then according to the third point of the Theorem 3.3,

Sr i (α, β, Z) = sr i,i (α, β) (Z -γ) i where γ := - sri,i-1(α,β) i sri,i-1(α,β) , then Sr i (α, β, Z) = i j=0 sr ,i,i-j (α, β)Z i-j = sr i,i (α, β) (Z -γ) i .
Using the binomial Newton formula we obtain:

Sr i (α, β, Z) = sr i,i (α, β) i j=0 i j (-γ) i-j Z j . So by identification, it comes that ∀i ∈ {1, . . . , m -1}, ∀j ∈ {0, . . . , i -1}, ∀(α, β), st .∆ i (α, β) = 0, i(i -j) sr i,j (α, β) sr i,i (α, β) -(i + j) sr i,i-1 (α, β) sr i,j+1 (α, β) = 0.
The reciprocal uses the same arguments. ✷

The following algorithm tests the pseudo-genericity of position of the curve :

Algorithm 3.1: PseudoGenerTest Input: P 1 , P 2 ∈ ◗[X,Y,Z] two squarefree polynomials such that gcd(P 1 , P 2 ) = 1
Output: true if the curve defined by P 1 = 0, P 2 = 0 is in generic position and false otherwise.

Step 1: Making P 1 and P 2 monic with respect to z by a change of coordinates.

If deg

Z (P 2 ) = deg(P 2 ) or deg Z (P 1 ) = deg(P 1 ) do (X, Y, Z) ← (X + λZ, Y + µZ, Z) in P 1 and P 2 , with λ, µ ∈ ◗ * .
Step 2: Computing the ∆ k polynomials. Using a subresultant algorithm, compute Sr m (X, Y, Z), . . . , Sr 0 (X, Y, Z) the subresultants sequence associated to P 1 and P 2 and denote Sr

i (X, Y, Z) = i j=0 sr i,j (X, Y )Z j . h(X, Y ) := squarefree(sr 0,0 (X, Y )), Θ 1 (X, Y ) = gcd h(X, Y ), sr 1 (X, Y )), ∆ 1 (X, Y ) = h(X,Y ) Θ1(X,Y ) , for i from 1 to m do Θ i (X, Y ) = gcd(Θ i-1 (X, Y ), sr i (X, Y )) ∆ i (X, Y ) = Θi-1(X,Y ) Θi(X,Y )
end do Step 3: The Test.

for i from 1 to m do if ∆ i (X, Y ) = 0 then for j from 0 to i do (i * (i -j) * sr i,j (X, Y ) * sr i,i (X, Y ) -(j + 1) * sr i,i-1 (X, Y ) * sr i,j+1 (X, Y )) mod ∆ i (X, Y ).
If the result is zero then continue else break and return false; end do end if end do; return true; Remark 3.7. Theorem 3.6 shows that it is possible to check with certainty if a space algebraic curve is in pseudo-generic position or not. If it is not, we can put it in pseudogeneric position by a change of coordinates.

Let us introduce the definitions of generic position, critical, singular, regular points, apparent singularity and real singularity for a space algebraic curve. Definition 3.8. Let (g 1 , . . . , g s ) be the radical ideal of the ideal (P 1 , P 2 ). Let M (X, Y, Z) be the s×3 Jacobian matrix with (∂ X g i , ∂ Y g i , ∂ Z g i ) as its i th row.

(1) A point p∈ C | is regular (or smooth) if the rank of M (p) is 2.

(2) A point p∈ C | which is not regular is called singular.

(3) A point p = (α, β, γ) ∈ C | is x-critical (or critical for the projection on the x-axis) if the curve C | is tangent at this point to a plane parallel to the (y,z)-plane. The corresponding α is called a x-critical value. A geometric illustration of those definitions can be found in figure 1. Definition 3.10 (Node). We call a node an ordinary double point (both arcs have different tangential directions). Definition 3.11 (Generic position). The curve C | is in generic position with respect to the (x, y)-plane if (1) C | is in pseudo-generic position with respect to the (x, y)-plane, (2) D = Π z (C | ) is in generic position (as a plane algebraic curve) with respect to the x-direction,

(3) any apparent singularity of D = Π z (C | ) is a node.
This notion of genericity also appears in a slightly more restrictive form in [START_REF] Gerardo | Computation of the topology of real algebraic space curves[END_REF] and [START_REF] Kahoui | Topology of real algebraic space curves[END_REF].

The aim of the next section is to give an algorithm to certify the third point of the previous definition of generic position. We also give an effective way to distinguish the real singularities from the apparent ones.

Distinguish real singularities and apparent singularities

In this section, we suppose that C | is in pseudo-generic position and D = Π z (C | ) is in generic position as a plane algebraic curve. Let (Γ j (X)) j∈{1,...,n} be the sequence of Γ polynomials associated to the plane curve D and (β j (X)) j∈{1,...,n} be the sequence of associated rational parametrization (β j (X) := -srj,j-1(X) j srj,j (X) ).

Let (Sr j (X, Y, Z)) j∈{0,...,m} be the subresultant sequence associated to

P 1 , P 2 ∈ ◗[X,Y,Z]. For any (k, i) ∈ {1, . . . , m} × {0, . . . , k -1 } let R k,i (X, Y ) be defined by R k,i (X, Y ) = k(k -i) sr k,i (X, Y ) sr k,k (X, Y ) -(i + 1) sr k,k-1 (X, Y ) sr k,i+1 (X, Y ).
The following lemma allows us to characterize fibers containing only one point.

Lemma 3.12. Let (a, b) ∈ | 2 such that sr k,k (a, b) = 0, so Sr k (a, b, Z) = k i=0 sr k,i (a, b)Z i ∈ |[Z]
has one and only one root if and only if ∀i ∈ {0, . . . , k -

1 } R k,i (a, b) = 0.
By construction, for any j ∈ {1, . . . , n } , gcd(Γ j (X), sr j,j (X)) = 1. So modulo Γ j (X), β j (X) can be written as a polynomial βj . We will use the polynomial expression βj of β j (X) in the following constructions.

For any j ∈ {1, . . . , n } let us define the sequence (u k,j (X)) k∈{1,...,j} and (v k,j (X)) k∈{2,...,j} by

• u 1,j (X) := gcd(Γ j (X), sr 1,1 (X, βj (X))), • u k,j (X) := gcd(sr k,k (X, βj (X)), u k-1,j (X)) • v k,j (X) := quo(u k-1,j (X), u k,j (X)). For k ∈ {2, . . . , j}, i ∈ {0, k -1}, we define (w k,i,j (X)) by • w k,0,j (X) := v k,j (X),
• w k,i+1,j (X) := gcd(R k,i (X, βj (X)), w k,i,j (X)). More intuitively, for some j, the polynomials v k,j are exactly those with roots α such that the gcd of the projected plane curve and its derivative, localized at α, has degree j, and the gcd of the two surfaces, localized at (α, β j (α)), has degree k. Remark 3.13. By construction, for any j ∈ {1, . . . , n } , gcd(Γ j (X), sr j,j (X)) = 1 Theorem 3.14. For any j ∈ {1, . . . , n } , let (Γ j,k (X) ) k∈{1,...,j} and (χ j,k (X)) be the sequence defined by the relations: Γ j,1 (X) = quo(Γ j (X), u 1,j (X)) and Γ j,k (X) := w k,k,j (X). χ j,k (X) := quo(w k,0,j (X), Γ j,k (X)).

(1) For any root α of Γ j,k (X), the x-critical fiber (α, β j (α)) contains only the point (α, β j (α), γ j (α)) with γ j (α) := -

sr k,k-1 (α,βj (α))
k sr k,k (α,βj (α)) so (α, β j (α)) is a real singularity. (2) For any root α of χ j,k (X), (α, β j (α)) is an apparent singularity.

Proof. (1) Let α be a root of Γ j,k (X) := w k,k,j (X) = gcd(R k,k-1 (X, βj (X)), w k,k-1,j (X)).
Then

w k,k-1,j (α) = R k,k-1 (α, β j (α)) = 0. w k,k-1,j (X) := gcd(R k,k-2 (X, βj (X)), w k,k-2,j (X)), so w k,k-2,j (α) = R k,k-2 (α, β j (α)) = 0
. By induction, using the same argument, it comes that for i from 0 to (k -1), w k,i,j (α) = R k,i (α, β j (α)) = 0. w k,0,j (X) := v k,j (X), so v k,j (α) = 0. Knowing that v k,j (X) := quo(u k-1,j (X), u k,j (X)); u k,j and u k-1,j are square free, then u k-1,j (α) = 0 and u k,j (α) = 0. Knowing that u k,j (X) = gcd(sr k,k (X, βj (X)), u k-1,j (X)), then sr k,k (α, β j (α)) = 0. u k-1,j (X) = gcd(sr k-1,k-1 (X, βj (X)), u k-2,j (X)) and u k-1,j (α) = 0, so sr k-1,k-1 (α, β j (α)) = u k-2,j (α) = 0. By induction, using the same argument, it comes that for i from 0 to k -1, sr i,i (α, β j (α)) = 0. For i from 0 to k -1 sr i,i (α, β j (α)) = 0 and sr k,k (α, β j (α)) = 0, so by the fundamental theorem of subresultants, gcd(P 1 (α, β j (α), Z), P 2 (α, β j (α), Z)) = k i=0 sr k,i (α, β j (α))Z i . Knowing that gcd(P 1 (α, β j (α), Z), P 2 (α, β j (α), Z)) = Sr k (α, β j (α), Z) = k i=0 sr k,i (α, β j (α))Z i and for i from 0 to (k -1), R k,i (α, β j (α)) = 0 then by the previous lemma the polynomial gcd(P 1 (α, β j (α), Z), P 2 (α, β j (α), Z) have only one root γ j (α) := -

sr k,k-1 (α,βj (α)) k sr k,k (α,βj (α)) .
(2) Let α be a root of the polynomial χ j,k (X) := quo(w k,0,j (X), Γ j,k (X)). Then w k,0,j (α) = 0 and Γ j,k (α) = w k,k,j (α) = 0 because w k,0,j (X) and Γ j,k (X) are square free. For i from 0 to k -1, knowing that w k,i+1,j (X) := gcd(R k,i (X, βj (X)), w k,i,j (X)), w k,0,j (α) = 0 and w k,k,j (α) = 0, then there exists i ∈ {0, . . . , k -1 } such that R k,i (α, β j (α)) = 0. So by Lemma 1, the polynomial Sr k (α,

β j (α), Z)= k i=0 sr k,i (α, β j (α))Z i has at least two distinct roots. It is clear that gcd(P 1 (α, β j (α), Z), P 2 (α, β j (α), Z)) = Sr k (α, β j (α), Z) = k i=0 sr k,i (α, β j (α))Z i . gcd(P 1 (α, β j (α), Z), P 2 (α, β j (α), Z)) = Sr k (α, β j (α), Z)
and Sr k (α, β j (α), Z) has at least two distinct roots imply that (α, β j (α)) is an apparent singularity. ✷ Proposition 3.15. For (j, k) ∈ {1, . . . , n} × {2, . . . j}, let α be a root of χ j,k (X). The apparent singularity (α, β j (α)) is a node if and only if

(∂ 2 XY h(α, β j (α))) 2 -∂ 2 X 2 h(α, β j (α))∂ 2 Y 2 h(α, β j (α)) = 0. Proof. Let us write h(X + α, Y + β j (α)) = F 1 + F 2 + . . . + F n , where F i is a form in ◗[α][X,Y ] of degree i.
The apparent singularity (α, β j (α)) is a double point if and only

if F 2 = 0. It is well known that F 2 = 1/2(∂ 2 Y 2 h(α, β j (α))Y 2 + 2∂ 2 XY h(α, β j (α))XY + ∂ 2 X 2 h(α, β j (α))X 2
) and its factorization gives the tangent lines of C(h(X, Y ) = 0) at (α, β j (α)). So the apparent singularity (α, β j (α)) is a node if and only the discriminant in Y of the polynomial F 2 (1, Y ) is different to 0. ✷ Theorem 3.16. C | is in generic position if and only if for any (j, k) ∈ {1, . . . , n} × {2, . . . , j} the polynomials ∂

2 XY h(X, β j (X))) 2 -∂ 2 X 2 h(X, β j (X))∂ 2 Y 2 h(X, β j (X)
) and χ j,k (X) are coprime.

Proof. C | is in generic position if and only if any apparent singularity is a node. So the result comes clearly from the previous proposition. ✷

Lifting and connection phase

In this section, we suppose that C | is in generic position that means that C | is in pseudo-generic position, D = Π z (C | ) is in generic position as a plane algebraic curve and any apparent singularity of D = Π z (C | ) is a node. To compute the topology of C | , we first compute the topology of its projection on the (x, y)-plane and in second we lift the computed topology.

x y z (a 0 ,b 0 ) (a 0 ,b 1 ) (a 0 ,b 1 ,c 1 ) (a 0 ,b 0 ,c 0 ) (a 1 ,b 2 ) (a 1 ,b 3 ) (a 1 ,b 3 ,c 3 ) (α 0 , β 0 ) (α 0 , β 0 , γ 0 ) (α 1 , β 1 , γ 1 ) (α 2 , β 2 , γ 2 ) (α 2 , β 2 ) (α 1 , β 1 ) (a 1 ,b 2 ,c 2 )
As mentioned in section 2, to compute the topology of a plane algebraic curve in generic position, we need to compute its critical fibers and one regular fiber between two critical ones. So to obtain the topology of C | , we just need to lift the critical and regular fibers of

D = Π z (C | ).
Here after we explain how this lifting can be done without any supplementary computation for the regular fibers and the real critical fibers. And for the special case of the apparent singular fibers, we present a new approach for the lifting and the connections.

Lifting of the regular points of

D = Π z (C | )
The lifting of the regular fibers of D = Π z (C | ) is done by using the rational parametriza- tions given in Proposition 3.4.

Lifting of the real singularities of

D = Π z (C | )
The lifting of the real singularities of D = Π z (C | ) is done by using the rational parametrizations given by 1. of Theorem 3.14.

Connection between real singularities and regular points

For a space curve in pseudo-generic position, the connections between real singularities and regular points are exactly those obtained on the projected curve using Grandine's sweeping algorithm [START_REF] Gonzalez | Efficient topology determination of implicitly defined algebraic plane curves[END_REF] (see figure 3.4.3).

Lifting of the apparent singularities

Lifting of the topology around an apparent singularity is a little more complex. Above an apparent singularity of D = Π z (C | ), we first have to compute the z-coordinates and secondly to decide which of the two branches passes over the other (see figure 3). We solve these problems by analyzing the situation at an apparent singularity.

According to Theorem 3.

3 (2), D = Π z (C | ) = m i=1
C(∆ i ), so in generic position, an apparent singularity is a cross point of a branch of C(∆ i ) and a branch of C(∆ j ) with i, j ∈ {1, . . . , m}. So we have the following proposition.

Proposition 3.17. In generic position, if (α, β) is an apparent singularity of D such that ∆ i (α, β) = ∆ j (α, β) = 0, then the degree of the polynomial gcd(P 1 (α, β, Z), P 2 (α, β, Z) ∈ |[Z] will be (i + j).

Proof. Let (α, β) be an apparent singularity of D such that ∆ i (α, β) = ∆ j (α, β) = 0. It comes that deg Z (gcd(P 1 (α, β, Z), P 2 (α, β, Z)) (i + j). Assume that deg Z (gcd(P 1 (α, β, Z), P 2 (α, β, Z)) > (i + j). So it exist k ∈ {1, . . . , m}\{i, j} such that ∆ k (α, β) = 0 then (α, β) is a cross point of a branch of C(∆ i ), a branch of C(∆ j ) and a branch of C(∆ k ) and is not a node. This is not possible because C | is in generic position and any apparent singularty is a node, so deg Z (gcd(P 1 (α, β, Z), P 2 (α, β, Z)) = (i+j). ✷ Let (α, β) be an apparent singularity of D such that ∆ i (α, β) = ∆ j (α, β) = 0 and let γ 1 , γ 2 be the corresponding z-coordinates. So by Proposition 3.17 and Proposition 7.3 sr 0,0 (α, β) = . . . = sr i,i (α, β) = . . . = sr j,j (α, β) = . . . . = sr i+j-1,i+j-1 (α, β) = 0. By Proposition 3.4, for any (a, b, c) ∈ C | such that ∆ i (a, b) = 0 and sr i,i (a, b) = 0, we have c = -

sri,i-1(a,b) i sri,i(a,b) . So the function (x, y) -→ Z i (x, y) := - sri,i-1(x,y)
i sri,i(x,y) gives the z-coordinate of any (a, b, c) ∈ C | such that ∆ i (a, b) = 0 and sr i,i (a, b) = 0. ∆ i (α, β) = 0 but sr i,i (α, β) = 0, so the function Z i is not defined on (α, β). However, the function Z i is continuously extensible on (α, β). Let u 1 be the slope of the tangent line of C(∆ i ) at (α, β) and t ∈ | * . Let γ i (t) := Z i (α, β + tu 1 ) = -sri,i-1(α,β+tu1) i sri,i(α,β+tu1) . Knowing that the algebraic curve C | hasn't any discontinuity, it comes lim t→0 + γ i (t) = lim t→0 -γ i (t) = γ 1 .

By the same arguments, if we denote u 2 the slope of the tangent line of C(∆ j ) at (α, β) and γ j (t) := Z j (α, β + tu 2 ) = -srj,j-1(α,β+tu2) j srj,j (α,β+tu2) , then lim t→0 + γ j (t) = lim t→0 -γ j (t) = γ 2 . The values u 1 , u 2 , γ 1 and γ 2 are computed using Taylor formulas and certified numerical approximations. Now it remains to decide which of the two branches pass over the other. This problem is equivalent to the problem of deciding the connection around an apparent singularity. Let (a, b 1 , c 1 ) and (a, b 2 , c 2 ) the regular points that we have to connect to (α, β, γ 1 ) and (α, β, γ 2 ). The question is which of the points (a, b 1 , c 1 ) and (a, b 2 , c 2 ) will be connected to (α, β, γ 1 ) and the other to (α, β, γ 2 ) (see figure 3)? In [START_REF] Gerardo | Computation of the topology of real algebraic space curves[END_REF] Alcázar and Sendra give a solution using a second projection of the space curve but it costs a computation of a Sturm Habicht sequence of P 1 and P 2 . Our solution does not use any supplementary computation. It comes from the fact that γ 1 is associated to u 1 and γ 2 to u 2 . Knowing that u 1 is the slope of the tangent line of C(∆ i ) at (α, β) and u 2 the slope of the tangent line of C(∆ j ) at (α, β), so (α, β, γ 1 ) will be connected to (a, b 1 , c 1 ) if (a, b 1 ) is on the branch associated to u 1 . If (a, b 1 ) is not on the branch associated to u 1 , then (a, b 1 ) is on the branch associated to u 2 , so (α, β, γ 2 ) will be connected to (a, b 1 , c 1 ) (see figure 4). Remark 3.18. For a curve in generic position any apparent singularity is a node, so the slopes at an apparent singularity are always distinct that is to say
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x y z Fig. 3. Lifting of an apparent singularity.
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Isotopic meshing of an algebraic implicit surface

In this section, we describe an algorithm producing a piecewize linear structure isotopic to an algebraic surface. This algorithm strongly relies on the computation of the topology of a polar curve of the surface which is an implicit non-reduced space curve.

Description of the problem

Let P ∈ ◗[X,Y,Z] be a square free polynomial and S := {(α, β, γ) ∈ | 3 : P (α, β, γ) = 0} be the real algebraic surface defined by P . Our goal is to compute a "correct" meshing of the surface S. Meshing is the process of computing, for a given surface, a representation consisting of pieces of simple surfaces patches. "Correct" means that the result should be topologically correct and geometrically close. It is not sufficient to require that a surface S and its mesh S ′ are homeomorphic. A torus and a knotted torus are homeomorphic when viewed as surfaces in isolation, but one would certainly not accept one as a topologically correct representation of the other. The following definition combines the strongest notion of having the correct topology with the requirement of geometric closeness. We give a meshing algorithm for algebraic implicit surfaces that is based on sweeping a vertical plane over the surface. To guide the sweep, we use the topology of the polar variety of the surface. In contrast to previous methods our algorithm makes no smoothness or regularity assumptions about the input surface. The algorithm works for surfaces with self-intersections, fold lines, or other singularities. In [2] the authors give an algorithm that needs the cuts of the surface on the singularies of its polar variety to be able to reconstruct the topology. This operation is quite difficult to certify because it requires the computation of the topology of plane algebraic curve of equation P (α, Y, Z) = 0 where α is an algebraic real number. With our new connection algorithm, we do not need to cut the surface on the x-critical points of its polar variety to be able to construct its topology. The connection is completly guided by the topology of the polar variety and the structure of its x-critical fibers, avoiding at the same time the difficulty of the computation of the cuts of the surface on the singularities of its polar variety and its cost. Let us give a rough overview, concentrating geometric ideas before discussing the primitive geometric operations that are necessary for the algorithm.

Geometric ideas

Our goal is to find uniform regions in the (x, y)-plane where the surface can be regarded as a family of a constant number of function graphs of the form z = h(x, y). We therefore analyze the surface outside the singular points and outside the points that have vertical tangents (the apparent contour). These points form the polar variety P of the surface S. Definition 4.2 (Polar Variety). Let P ∈ ◗[X,Y,Z] be a square free polynomial and S := {(α, β, γ) ∈ | 3 : P (α, β, γ) = 0} be the real algebraic surface defined by P . We call polar variety of S the following set:

P := (α, β, γ) ∈ | 3 : P (α, β, γ) = ∂ z P (α, β, γ) = 0}
When we cut away our surface at its polar variety, we obtain (x, y)-monotone surface patches that can be parameterized in x and y. After the computation of the polar variety of the surface, we subdivide the surface into vertical slabs by planes perpendicular to the x-axis. In contrast to previous approaches, these points do not include any x-critical point and any apparent singularity of the polar variety. Finally we mesh the resulting patches of the surfaces by computing a set of points, open segments and open triangles, wich are not self-intersecting, defining a simplicial complex isotopic to the original surface.

We summarize the geometric primitives that we need to provide in oder to make the algorithm work:

(1) We must be able to compute the topology of the polar variety of our surface.

(2) We must be able to compute the topology of the sections of our surface in slab points [START_REF] Alberti | Isotopic triangulation of a real algebraic surface[END_REF] We must be able to connect two consecutives sections by exploiting the topology of the polar variety of the surface. (4) We must be able to triangulate surface patches, avoiding self-intersection of segments and triangles. Because the polynomial P (X, Y, Z) is supposed to be square free, the dimension of its polar variety P := (α, β, γ) ∈ | 3 : P (α, β, γ) = ∂ z P (α, β, γ) = 0} is at most equal to one. So the computation of the topology of P will be done using the algorithm described in section 3. The computation of the topology of the plane sections of the surface will be done using the algorithm described in section 2. In the following section we describe the genericity conditions required and the connection algorithm of two consecutives section of the surface.

Genericity conditions, arcs ordering and connection algorithm 4.3.1. Genericity conditions

Definition 4.3. Let P ∈ ◗[X,Y,Z] be a square free polynomial and S := {(α, β, γ) ∈ | 3 : P (α, β, γ) = 0} be the real algebraic surface defined by P . We say that S is in generic position if and only if its polar variety is in generic position (as an implicit space curve). This condition excludes, for instance, a surface which consists of two equal spheres vertically above each other. The two silhouettes (equators) would coincide in the projection. It also excludes for example vertical cylinder (for wich the polar variety would be two dimentional).

The genericity of the position of a given surface will be certified during the step of the computation of the topology of its polar variety. If the genericity conditions are not fulfilled by the surface, we perform a change of coordinates and a restart of the algorithm.

We assume hereafter that our surface S is in generic position. Let us outline briefly the algorithm for algebraic surfaces before going into the details.

The first step consists in computing the topology of the polar variety. We apply the algorithm section 3 with P 1 := P, P 2 := ∂ z P , which computes a polygonal approximation of the polar variety which is isotopic to it. In this way, the algorithm computes x-critical values corresponding to x-critical points of the polar variety and singular points of its projection on the (x, y)-plane, adds intermediate "regular" x-values between them and computes the points of the polar variety corresponding to the regular x-values. Next, we cut the surface by planes perpendicular to the x-axis on the "regular" x-values of the polar variety, using the algorithm described in section 2. Note that the intersection of the polar variety with the vertical planes become critical points for the plane curves problem (see next proposition). Then, we compute all the fibers of the surface containing the x-critical points of the polar variety. Finally, we connect all the plane cuts of the surface using the topology of the polar variety and the structure of the computed fibers.

Before talking about connection algorithm let us give two simples but important properties of surfaces in generic position.

Let (c i := (α i , β i , γ i )) i∈ 1,n be the ordered sequence, according to the first coordinate, of the x-critical points of the projection of P on the (x, y)-plane. Let (r i ) i∈ 1,n+1 be a sequence of rational values such that:

r 1 < α 1 < r 2 < α 2 < . . . < α n < r n+1 .
For i ∈ 1, n + 1 , let R ri := (r i , y, z) ∈ | 3 : P (r i , y, z) = ∂ z P (r i , y, z) = 0 } be the section of the polar variety by the plane of equation x = r i and n i := #R ri . Let us denote (p ri 1 , . . . , p ri ni ) the grading sequence, with respect to their y-coordinate, of the elements of R ri .

For any i ∈ 1, n + 1 , let C ri := (r i , y, z) ∈ | 2 : P (r i , y, z) = 0} be the section of the surface S by the plane of equation x = r i . Proposition 4.4. For i ∈ 1, n + 1 , the y-critical points of the (y, z)-plane curve C ri are exactely the intersection points, (p ri 1 , . . . , p ri ni ), of the polar variety with the vertical plane of equation x = r i .

Proof. let i ∈ 1, n + 1 , by definition, the y-critical points of the (y, z)-plane curve C ri := (r i , y, z) ∈ | 2 : P (r i , y, z) = 0} are the solutions of P (r i , y, z) = ∂ z P (r i , y, z) = 0. The solutions of this system are exactely the intersection points, (p ri 1 , . . . , p ri ni ), of the polar variety with the vertical plane of equation x = r i . ✷

From the previous proposition it comes: Proposition 4.5. For any i ∈ 1, n + 1 , the plane curve C ri is in generic position.

For any i ∈ 1, n + 1 , the topology of the plane curve C ri will be described by giving the arcs linking its y-critical points (p ri 1 , . . . , p ri ni ). For the connection algorithm, it will be necessary to be able to order the computed arcs. That's the aim of the next sub-section.

Arcs ordering

Definition 4.6. Let i ∈ [1, n + 1] and C ri := (r i , y, z) ∈ | 2 : P (r i , y, z) = 0} . We mean by arc of the plane curve C ri , a connected smooth open subset of the curve which closure contains two distinct points of the sequence (p ri 1 , . . . , p ri ni ) of its y-critical points. It is represented hereafter by a segment. Definition 4.7. Let q and g be two distinct points of the sequence (p ri 1 , . . . , p ri ni ) and A be the class of the arcs of C ri linking q and g. We will call support of A the bipoint (q,g).

The arcs of C ri linking two given points q and g of the sequence (p ri 1 , . . . , p ri ni ) are naturally ordered. The order relation is the following one: Hereafter we extend the previous order relation to the case of arcs with support verifying a particular relation. Definition 4.10. Let q 1 Q 1 g 1 and q 2 Q 2 g 2 be two arcs of C ri such that [y q1 , y g1 ] ⊆ [y q2 , y g2 ] and x Q1 = x Q2 , y Q1 = y Q2 ∈ [y q1 , y g1 ] and z Q1 = z Q2 . So we define the following order relation: q 1 Q 1 g 1 ≻ q 2 Q 2 g 2 if and only if z Q1 > z Q2 (see figure 6)

The next step of the computation of an isotopic meshing of the surface S consists in connecting consecutively the computed regular sections (C ri ) i∈ 1,n+1 of the surface. Hereafter, we will describe the algorithm to connect C r1 to C r2 . For the other connections, we will apply recursively the same algorithm.

Connection algorithm of two consecutive sections, C r1 and C r2

We remind that R r1 := (r 1 , y, z) ∈ | 3 : P (r 1 , y, z) = ∂ z P (r 1 , y, z) = 0 } (resp. R r2 := (r 2 , y, z) ∈ | 3 : P (r 2 , y, z) = ∂ z P (r 2 , y, z) = 0 } ) is the section of the polar variety by the plane of equation x = r 1 (resp. x = r 2 ) and n 1 := #R r1 (resp. n 2 := #R r2 ), (p r1 1 , . . . , p r1 n1 ) (resp. (p r2 1 , . . . , p r2 n2 )) is the grading sequence, with respect to their ycoordinate, of the elements of R r1 (resp.R r2 ). We denote c := (α, β, γ) the only x-critical point of the projection of the polar variety P (1) an arc to an arc, (2) an arc to a point, (3) an arc to an arc by passing at a given point. Hereafter we describe three small algorithms to do that.

Algorithm 1: ConnectArcToArc The aim of this algorithm is to connect two given arcs. Let p r1 i Q 1 p r1 j and p r2 k Q 2 p r2 l be two given arcs. We describe in figure 7 how the connections are done on an example.

Algorithm 2: ConnectArcToPoint The aim of this algorithm is to connect a given arc to a given point. Let p r1 i Q 1 p r1 j be a given arc and R be a given point. We describe in figure 8 how the connections are done on an example. 

Algorithm 3: ConnectArcToPointToArc

The aim of this algorithm is to connect two given arcs to given a point. We show in figure 9 how the connections are done. Now we are going to describe the complete connection algorithm of two consecutive The proof of the correctness of the algorithm is a direct adaptation of the proof given in [2]. For the sake of completness we give the main ideas and results of the proof and we refer to [2] for more details.

Why we get the topology

The general idea of the algorithm is to detect where some topological changes in the surface S happen. We recall why in-between the events that we have computed in the previous sub-sections, the topology is locally trivial. This result is used to describe explicitly the isotopy between the mesh and the surface.

The fundamental notion is the Whitney stratification. It is a decomposition of the variety into smooth parts that fit together "regularly". Here are some definitions: Definition 4.11. A stratification of a (semi-algebraic) variety A ⊂ | n is a locally finite partition of A into smooth submanifolds called strata. Definition 4.12. Let (X, Y ) be two strata and p ∈ X ∩ Y ⊂ | n . X is Whitney-regular at p along Y if for any sequences x n ∈ X, y n ∈ Y converging to p, l = lim n→+∞ x n y n ⊂ T = lim n→+∞ T xn X, where T x X is the tangent space of X at the point x. A Whitney stratification of a variety S is a stratification of S so that all pairs of strata are Whitney-regular.

We recall that any semi-algebraic variety A ⊂ | n admits a Whitney stratification [START_REF] Goresky | Stratified Morse Theory[END_REF]. The main used theorem is Thom's lemma [START_REF] Goresky | Stratified Morse Theory[END_REF]. Theorem 4.15 (Thom's first isotopy lemma). Let Z be a Whitney stratified subset of R m and π : Z → R n be a proper stratified submersion. Then there is a stratum preserving homeomorphism

h : Z → (π -1 (0) ∩ Z) × R n
which is smooth on each stratum and such that π factorizes via the projection to the

second component | n . Z R n (π -1 (0) ∩ Z) × R n ❄ h ✲ π ✑ ✑ ✑ ✑ ✑ ✸ ν
This means that Z is homeomorphic to the cylinder with base π -1 (0) ∩ Z. In our case, we will apply the theorem with Z = S B , m = 3, n = 1 and π the projection on the x-axis which is automatically proper as we work in a ball B which is compact.

Remind that P ∈ ◗[X,Y,Z] is a square free polynomial, S := {(α, β, γ) ∈ | 3 : P (α, β, γ) = 0} is the real algebraic surface defined by P and

P := (α, β, γ) ∈ | 3 : P (α, β, γ) = ∂ z P (α, β, γ) = 0} is the polar variety of S.
We suppose that S is in generic position with respect to the (x, y)-plane. So we have the following theorem:

Theorem 4.16. Let • S 0 be the inverse image of the set of the singular points of Π z (P), each point is considered as a stratum, • S 1 the set of the connected components of P -S 0 , (each connected component is a stratum), • S 2 the set of the connected components of S -P (each connected component is a stratum).

• S 3 the set of connected components of | 3 -S (each connected component is a stratum). Then (S 0 , S 1 , S 2 , S 3 ) is a Whitney stratification of | 3 compatible with S.

By Theorem 4.16 and using Thom's lemma (Theorem 4.15), we deduce that in between two consecutive critical sections, the topology of the sections is constant. We have computed the topology of regular sections, in between two successive critical ones. So now, in order to prove the isotopy of the surface and the mesh, we have two things to verify: a) From a topological point of view, we define the good connections between the sections.

b) The mesh is isotopic to the surface. It is clear that the triangulation we compute does not create holes, because it refines the topological complex of P and we do not create intersection of open triangles because the arcs are connected by respecting their ordering. For the construction of the isotopy between the surface and its mesh we, refer to [2].

Complexity analysis

This section is devoted to the complexity analysis of our approach. Two main points are considered:

(1) the intrinsec complexity of the approach, i.e. the number of points computed in the algorithm and their bit size in the worst case which is a measure of the size of the output independently of the algorithm to compute those points; (2) the binary complexity of our algorithm.

Bound on the size of the output

The following theorem gives an asymptotic bound on the number of points to be computed in our approach. Even if our approach improve several pratical aspects of the algorithm proposed in [2], the worst case gives the same asymptotic bound. Proof. We recall that our approach consists in a sweeping along a line, so we compute slices and make conection between slices. Denote P (X, Y, Z) the implicit equation of S. The first resultant Res Z (P (X, Y, Z), ∂ Z P (X, Y, Z)) = ∆(X, Y ) as at most degree d 2 and we denote h(X, Y ) its squarefree part which has the same degree in the worst case. Now, we have to compute the topology of the planar curve defined by h(X, Y ) and to do so, we have to compute its x-critical values. Those values are given by the roots of Θ(X) = Res y (∆(X, Y ), ∂ Y ∆(X, Y )) and it degree is bounded by d 4 . We compute the topology of the curve defined by ∆(X, Y ) by computing the critical fibers and one regular fiber in each intervals defined by those critical values. The fibers contain at most d 2 points, so we have computed O(d 6 ) points. Now, we have to compute the topology of the regular slice corresponding to regular fibers of the planar curve. The number of points needed to do that is proportional the number of points on the fibers of the points already computed on the planar curve and there is at most d such point on the fibers. This leads us to the given bound. ✷

Complexity of our algorithm

The two more complex types of computations done in our algorithm are the elemination steps (computation of Sturm-Habicht sequences) and roots isolation. We will see that the complexity is dominated by the root isolation of the last computed resultant. Remark that, from the computational point of view, the worst case is reach when the computed resultants during the algorithm (∆(X, Y ) and Θ(X)) are squarefree. We will need to bound the complexity of the computation together with the size of the computed objects. Let P ∈ )[X, Y, Z] denotes the implicit equation of the surface supposed to be of degree d and with L(P ) = τ .

Theorem 5.8. The computation of the topology of a polar curve of the surface defined by P can be given in ÕB (d 15 τ ).

Proof. The first step is the computation of the Sturm-Habicht sequence associated to P (X, Y, Z) and ∂ Z P (X, Y, Z) with respect to the variable Z. This is done with complexity in ÕB (d 6 τ ) and the resultant ∆(X, Y ) has degree O(d2 ) and L(∆(X, Y )) ∈ O(dτ ) (using Corollary 5.6). We take the squarefree part of ∆(X, Y ) but since we still have O(dτ ) ∈ O(d 2 ) because τ ∈ O(d), it does not change the complexity of the algorithm (we have already compute the Sturm-Habicht sequence and we can use it to compute the squarefree part of ∆). The next step is the computation of the Sturm-Habicht sequence associated to ∆(X, Y ) and ∂ Y ∆(X, Y ) with respect to the variable Y . This step is done in Õ(d 11 τ ) and the resultant computed has coefficients of size at most O(d 3 τ ) and degree O(d 4 ) (using Corollary 5.5). Finally, we have to isolate the roots of the last resultant and this is done using at most ÕB (d 15 τ ) and the bit-size of the end-points of the isolating interval is ÕB (d 7 τ ) (using Proposition 5.2). ✷ Remark 5.9. In general, the knowledge of a factorization of the last resultant Θ(X) := Res Y (∆(X, Y ), ∂ Y ∆(X, Y )) is a great improvement for practical computation together with the knowledge of the Sturm-Habicht sequence.

For the lifting phases, it is not difficult to see that we use parametrization using subresultant sequences, so that computed values are bounded by evaluation of coefficients of subresultants at rational points of size bounded by O(d 7 τ ) and that finally, all other algebraic computation costs are dominated by the one of root isolation of Θ(X). The connection algorithm use only basic comparisons and very few algebraic computation using objects already computed. This shows that the cost of the computation of the surface topology is dominated by the computation of the topology of one of it polar variety. We finally have the following theorem: Theorem 5.10. Let S an implicit surface defined by a degree d polynomial with integer coefficients of size at most τ . The topology of S can be computed with complexity in ÕB (d 15 τ ).

Implementation and experiments

A complete implementation of our algorithm has been written using the Computer Algebra System Mathemagix1 . Results are visualized using the algebraic geometric modeler Axel 2 , which allows the manipulation of geometric objects with algebraic representation such as implicit or parametric curves or surfaces. Since existing methods have no publicly available implementations, the following table only reports our experiments, performed on an Intel(R) Core machine clocked at 2GHz with 1GB RAM.
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 5 Let f ∈ ◗ [X, Y ] be a square free polynomial with lcoef Y (f ) ∈ ◗ * and d := deg Y (f ). Then C(f ) is in generic position for the projection on the x axis if and only if ∀k ∈ {1, . . . , d -1}, ∀i ∈ {0, . .

  Let c := (α, β) be a x-critical point of the curve and Crit the x-critical fiber containing c. Let Up := {(α, b) ∈ Crit : b > β} and Down := {(α, b) ∈ Crit : b < β}. So Crit := {Up, c, Down}.
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 391 Fig. 1. Apparent and real singularities.
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 1111 The point P is called an apparent singularity if the fiber -(P ) ∩ C | above P contains strictly more than one point. (2) The point P is called a real singularity if the fiber -(P )∩C | above P contains exactly one point. In this case, the point of -(P ) ∩ C | is a singularity of C | .
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 2 Fig. 2. Connection between real singularities and regular points.
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 4 Fig. 4. Connection above an apparent singularity.
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 41 An isotopy between two surfaces S, S ′ ⊂ | 3 is a continuous mapping γ : S × [0, 1] → | 3 which, for any fixed t ∈ [0, 1], γ(., t) is a homeomorphism from S onto its image, and wich continuously deforms S into S ′ : γ(S, 1) = S ′ .
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 5 Fig. 5. An example of a class of arcs Definition 4.8. We define the arc ordering as follows: Let qQ 1 g and qQ 2 g two different arcs linking two distinct points, q and g of the sequence (p ri 1 , . . . , p ri ni ). The coordinates of the two points Q 1 and Q 2 verify: x Q1 = x Q2 , y Q1 = y Q2 and z Q1 = z Q2 . So we define the following order relation: qQ 1 g ≻ qQ 2 g if and only if z Q1 > z Q2 (see figure5)
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 49 We will use the previous order relation to arrange a given class of arcs with the same support.
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 6 Fig. 6.on the (x, y)-plane such that r 1 < α < r 2 .Let UpPoints := {(α, β, z) ∈ | 3 : P (α, β, z) = 0 and z > γ} be the grading sequence, with respect to their z-coordinate, of the points of the x-critical fiber of S located on top of the critical point c := (α, β, γ) and DownPoints := {(α, β, z) ∈ | 3 : P (α, β, z) = 0 and z < γ} be the one of the points located under the x-critical point c := (α, β, γ). The x-critical fiber containing c is completely described by the give of the set {UpPoints, c, DownPoints}.We also remind that the topology of the section C r1 (resp. C r2 ) is completly described by the arcs linking together the points of the sequence (p r1 1 , . . . , p r1 n1 ) (resp. (p r2 1 , . . . , p r2 n2 )). Let us denote (A 1 , . . . , A m1 ) (resp. (B 1 , . . . , B m2 ) the list of the classes of arcs of C r1 (resp. C r2 ). The aim of the connection algorithm is to link the sequences (A 1 , . . . , A m1 ) to the sequences (B 1 , . . . , B m2 ) using the structure of the fiber {UpPoints, c, DownPoints} and the connections between (p r1 1 , . . . , p r1 n1 ) and (p r2 1 , . . . , p r2 n2 ) given . During the connection algorithm, we will only need the following subroutines to connect:(1) an arc to an arc, (2) an arc to a point, (3) an arc to an arc by passing at a given point. Hereafter we describe three small algorithms to do that.Algorithm 1: ConnectArcToArc The aim of this algorithm is to connect two given arcs. Let p r1 i Q 1 p r1 j and p r2 k Q 2 p r2 l be two given arcs. We describe in figure7how the connections are done on an example.Algorithm 2: ConnectArcToPoint The aim of this algorithm is to connect a given arc to a given point. Let p r1 i Q 1 p r1

Fig. 7 .

 7 Fig. 7. Connecting an arc to an arc.

Fig. 8 .

 8 Fig. 8. Connecting an arc to a point.
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 10111 Fig. 10. ϕc(Πz(µ1)) * ϕc(Πz(µ2)) = -1

Fig. 12 .

 12 Fig. 12. ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 0 So ϕ c (Π z (µ 1 )) = -1 and ϕc (Π z (µ 2 )) = 0 or ϕ c (Π z (µ 1 )) = 1 and ϕ c (Π z (µ 2 )) = 0 or ϕ c (Π z (µ 1 )) = 0 and ϕ c (Π z (µ 2 )) = 1 or ϕ c (Π z (µ 1 )) = 0 and ϕ c (Π z (µ 2 )) = -1 or ϕ c (Π z (µ 1 )) = 0 and ϕ c (Π z (µ 2 )) = 0.Whithout any lost of generality we can consider the cases ϕ c (Π z (µ 1 )) = 1, ϕ c (Π z (µ 2 )) = 0 and ϕ c (Π z (µ 1 )) = 0 and ϕ c (Π z (µ 2 )) = 0. By Remark 2.7, these cases correspond to the geometric configurations described in figure12and 13: When ϕ c (Π z (µ 1 )) * ϕ c (Π z (µ 2 )) = 0, we will just have to connect all the arcs of support (µ 1 , µ 2 ) to the x-critical point c.The proof of the correctness of the algorithm is a direct adaptation of the proof given in[2]. For the sake of completness we give the main ideas and results of the proof and we refer to [2] for more details.
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 13 Fig. 13. ϕc(Πz(µ1)) = 0 and ϕc(Πz(µ2)) = 1

Definition 4 . 13 .

 413 For Z and W two stratified sets, a differential map f : Z → W is a stratified submersion at a point p of Z if the differential map at p of f , Df : T p (Z σ ) → T f (p) (W τ ) is surjective. Where Z σ and W τ are the strata of Z and W containing p and f (p).
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 414 If Z and W are two stratified sets, a continuous map f : Z → W is proper if the inverse image of any compact set of W is a compact of Z.

Theorem 5 . 7 .

 57 If the degree of the implicit equation defining the surface is d the number of points needed is at most O(d 7 ).
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sections, C r1 and C r2 , of our implicit surface. Let us remind that for any j ∈ 1, m 1 , A j is the ordered collection of arcs linking two given points of the sequence (p r1 1 , . . . , p r1 n1 ). For j ∈ 1, m 1 , let (µ 1 , µ 2 ) be the support of the arcs in A j and let (θ 1 , θ 2 ) be the points of (p r2 1 , . . . , p r2 n2 ) connected to (µ 1 , µ 2 ) via the polar variety of S. The connection algorithm will be guided by the value of the integer ϕ c (Π z (µ 1 )) * ϕ c (Π z (µ 2 )) where ϕ c is the function defined in Remark 2.7. The integer ϕ c (Π z (µ 1 )) * ϕ c (Π z (µ 2 )) may only takes three value, {-1, 0, 1}, corresponding to three distinct geometrics configurations.

( • (A1, . . . , Am 1 ) and (B1, . . . , Bm 2 ) the classes of arcs describing the topology of Cr 1 and Cr 2

• the x-critical fiber {UpPoints, c, DownPoints},

• the function ϕc, defined in the Remark 2.7, associated to the projection of P .

Output: E := (B1, . . . , Bm 2 ); j := 1; K := {}; L := {}; While j < m1 do

• Ω := Aj; (µ1, µ2) :=the support of the arcs in Aj,

• In this step we collect the arcs that will be connected by passing probably over the critical point c.

• In this step, we collect and connect the arcs living in the same cylinder For

We consider that the input polynomial P (X, Y, Z) defining the surface S lies in )[X, Y, Z].

We show that the complexity of our algorithm is ÕB (d 15 τ ). To our knowledge, this is the first time that a bound on the binary complexity of the computation of the topology of implicit surfaces is given. There is an algorithm computing the Sturm-Habicht sequence of A(X) and B(X) with complexity lying in O B (d 2 M (dτ )).

Notations and basic results

Let

The roots isolation can be given using an algorithm computing root approximations with a choosen precision that do not depend on root isolation. Using an algorithm describe by Pan in [START_REF] Victor | Optimal and nearly optimal algorithms for approximating polynomial zeros[END_REF], computing approximation of roots with relative precision ε in ÕB (d 3 τ + dε), with ε ∈ Õ(dτ ) which is the separation bound for a polynomial of degree with integer coefficients of size τ , isolation is achieved according to the following proposition: Proposition 5.3. There is an algorithm computing Sr i,X (F, G) with cost in ÕB (q(p + q) k+2 dτ ).

Proposition 5.4. We have L(Sr X,i (F, G)) = O(max{p, q}τ ). 

Appendix : Subresultants

In this section, we describe the main algebraic ingredient of our algorithm based on subresultant.

Let P 1 , P 2 ∈ ◗[X,Y,Z] and C | := {(x, y, z) ∈ | 3 |P 1 (x, y, z) = P 2 (x, y, z) = 0} be the intersection of the vanishing sets of P 1 and P 2 . Our curve analysis needs to compute a plane projection of C | . Subresultant sequences are a suitable tool to do it. For the reader's convenience, we recall their definition and relevant properties. For all the results of this section, we refer to [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF], for proofs.

Let ❆ be a integral domain. Let P = p i=0 a i X i and Q = q i=0 b i X i be two polynomials with coefficients in ❆. We shall always assume a p = 0, b q = 0 and p q. Let ❆[X] r be the set of polynomials in ❆[X] of degree not exceeding r, with the basis (as an ❆-module) 1, X, . . . , X r . If r < 0, we set ❆ r = {0} by convention. We will identify an element S = s 0 + . . . + s r X r of ❆[X] r with the row vector (s 0 , . . . , s r ).

Let k be an integer such that 0 k q, and let Ψ k : ❆[X] q-k-q × ❆[X] p-k-1 → ❆[X] q+p-k-1 be the ❆-linear map defined by Ψ k (U, V ) = P U + Q V , with M k (P, Q) the (p + qk) × (p + qk) matrix of Ψ k . As we write vectors as row vectors, we have:

That is M 0 (P, Q) is the classical Sylvester matrix associated to P, Q. To be coherent with the degree of polynomials, we will attach index i -1 to the i th column of M k (P, Q), so the indices of the columns go from 0 to p + qk -1.

Definition 7.1. For j p + qk -1 and 0 k q, let sr k,j be the determinant of the submatrix of M k (P, Q) formed by the last p + q -2k -1 columns, the column of index j and all the (p + q -2k) rows. The polynomial Sr k (P, Q) = sr k,0 + . . . + sr k,k X k is the k th sub-gcd of P and Q, and its leading term sr k,k (also denoted sr k ) is the k th subresultant of P and Q. So, it follows that Sr 0 (P, Q) = sr 0 is the usual resultant of P and Q.

Remark 7.2. (1) For k < j p + qk -1, we have sr k,j = 0, because it is the determinant of a matrix with two equal columns.

(2) If q < p, we have Sr q = (b q ) p-q-1 Q and sr q = (b q ) p-q .

The following proposition justify the name of sub-gcd given to the polynomial Sr k . Proposition 7.3. Let d be the degree of the gcd of P an Q (d is defined because ❆ is an integral domain, so we may compute the gcd over the quotient field of ❆). Let k be an integer such that k d.

( The first polynomial Sr k associated to P and Q with sr k = 0 is the greatest common divisor of P and Q. Theorem 7.5. Specialization property of subresultants Let P 1 , P 2 ∈ ❆[Y,Z] and (Sr i (Y, Z)) i be their subresultant sequence with respect to Z. Then for any α ∈ ❆ with: deg Z (P (Y, Z)) = deg Z (P (α, Z)); deg Z (Q(Y, Z)) = deg Z (Q(α, Z)), (Sr i (α, Z)) i is the subresultant sequence of the polynomials P (α, Z) and Q(α, Z).