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Koç University

34450, Sariyer, Istanbul, TURKEY

fkaraesmen@ku.edu.tr



Stock Rationing in an M/Er/1 Multi-class Make-to-Stock

Queue with Backorders

July 10, 2007

Abstract

We consider a single-item make-to-stock production system. The item is demanded

by several classes of customers arriving according to Poisson processes with different

backorder costs. Item processing times have an Erlang distribution. This allows us to

model the information on the production status in a tractable way. We show different

properties of the optimal stock allocation policy for the general case and we fully char-

acterize the optimal policy when the manager can divert the production to a salvage (or

speculative) market. In particular we show that the optimal policy is a Work-Storage

Rationing policy such that a demand is backordered when the current total amount of

work in the system (including the on-hand inventory and the work in process) is at or

below a fixed threshold corresponding to the class of the demand. We also provide an

effective heuristic procedure to evaluate these optimal thresholds. This heuristic turns

out to be very efficient for the problem without a salvage market as well.

1 Introduction

A stock and capacity allocation problem occurs when a common stock and the production

capacity of a supplier must be shared among different markets/customers. Such problems

remain at the heart of many supply chain management issues. For instance, delayed product

differentiation often results in maintaining a stock of generic components for multiple end-

products (de Véricourt, 2002). The design of supply contracts in presence of different

retailers can also entail a stock allocation problem at the supplier (Cachon and Lariviere

1999). More recently, Desphande et al. (2003) provide an example of inventory rationing

for the U.S. military.
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Stock and capacity allocation problems are however very challenging and generally con-

sidered intractable as explained by Tsay et al. (1999), especially when customer demands

can be backordered. Even when optimal allocation strategies can be characterized, they

are usually hard to implement. Indeed, the supplier needs to take many dimensions into

account (the inventory level, the number of waiting demands in the system, but also the

current status of the production process, etc.) when deciding to allocate stock to some cus-

tomers while backordering demands from others. The complexity of such problems greatly

depends on the number of customers sharing the common stock (Ha 1997b), and on the

nature of the production cycle time (Ha 2000).

In this paper, we consider a supplier that produces a standard item in a make-to-stock

environment for several classes of customers. Demands for each class are Poisson processes

and item processing times have an Erlang distribution. The supplier has a finite production

capacity and has some information on the status of the current production. The customer

classes have different values and generate different backorder penalties for the supplier.

The objective is to minimize the expected discounted holding and backorder costs over an

infinite horizon. At each time instant the optimal decision depends on the inventory level,

the number of waiting demands of each class and the current production stage.

When the manager cannot sell the production surplus on a salvage market, we provide

a partial characterization of the optimal stock and production strategy. We also derive a

heuristic that is very efficient. This heuristic is easy to compute and to implement. It is

based on a related problem where the manager can serve at any time an ample market with

zero backorder cost. When such a salvage market exists, we fully characterize the optimal

stock and capacity allocation strategy. Despite the complexity of the general setting, the

structure of the optimal policy turns out to be simple to understand. To our knowledge, this

is the first full characterization of the optimal control of an n-dimensional make-to-stock

queue problem, with non-exponential production time. We also analyze the impact of the

production time variability on the system performance which is numerically shown, maybe

surprisingly, to be quasi-linear for both problems.

Our model with a salvage market corresponds to the situation where the supplier can

divert inventory to a speculative (spot) market. In recent years, speculative markets for

non-commodity items have developed rapidly. For instance Milner and Kouvelis (2002)

mention that 80% of electronic component parts (e.g., memory chips) are sold through con-

tract purchasing while the rest is diverted on a spot market. This development poses new

challenges for both suppliers and buyers. For suppliers, the availability of a speculative mar-

ket alleviates the risk of inventory costs due to excess production. In particular, suppliers

may still conduct their main business through long term contracts with established cus-

tomers but can also easily get rid off excess inventories in the speculative market (for which
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no backorder cost exist). The speculative market diminishes the importance of production

control in the sense of shutting down / starting up or changing the rate of production. At

the same time it accentuates the importance of how to allocate production between long

term customers and the speculative market.

The model with a salvage market we present in this paper fits this framework where

the long term customers have priority over the speculative market due to their contract.

More precisely, we assume that long-term contracts with established customers specify late

delivery penalty fees (backorder costs) while the spot market is represented as a salvage mar-

ket with no backorder cost. Furthermore with the development of e-business marketplaces

(such as Keith Melbourne of Convergence for instance, see also Kleindorfer and Wu, 2003),

transactions on a spot market have become tremendously easier over the past years and we

assume that excess inventory can be diverted to a spot market any time. We assume that

the firm is always better off selling parts on the speculative market rather than stopping

the production. The assumption that the system never stops working is also relevant when

the production set up cost is very high. This is for instance the case for chemical process

industries. The Saint-Gobain Company aims to continuously run its production lines for

several years without a shutdown.

Stock and capacity allocation problems were first introduced in the context of inventory

control. Topkis (1968) provides one of the earliest formulations of an optimal stock rationing

problem for an uncapacitated system in discrete time. He analyzes a system with two classes

of customers and shortage costs. Nahmias and Demmy (1981) also consider a rationing

problem in an uncapacitated setting. They analyze the cost improvement under (r,Q)

policies with rationing. Frank et al. (2004) propose effective heuristics for a system with

two customer classes where the demands of the first class must be fully satisfied while

demands of the second class can be partially satisfied. Melchiors et al. (2000) propose a

performance evaluation method for critical level policies for continuous review systems under

(r, Q)-type policies. Melchiors (2003) proposes an alternative rationing policy and assesses

the performance of this policy for a similar system. Deshpande et. al (2003) optimize the

parameters of (r,Q) policies with rationing, and analyze the benefit of applying this policy

for a military logistics system.

These previous works assume uncapacitated replenishment systems (with exogenous

replenishment lead times). For limited production capacity, on the other hand, queuing-

based models provide a powerful framework which allows modeling explicitly the production

capacity and the randomness of the supply process (see Buzacott and Shanthikumar, 1993).

We follow this approach and model our system as a single server, single-product, make-to-

stock queue with multiple demands as introduced by Ha (1997a, 1997b, 2000) in the stock

rationing context.
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Rationing strategies also appear in inventory transshipment problems, which has attract

a lot of attention from researchers and practitioners recently. Zhao et al. (2004) characterize

the structure of the optimal stock allocation and production strategies for a problem with

two make-to-stock queues each serving a class of customers, and where inventory transship-

ment is allowed. Hu et al. (2004) study a similar problem where production capacity is

uncertain. They also identify and explain counter intuitive behaviors that can appear in

this context.

Ha (1997a) characterizes the optimal rationing and production policy of a multi-class

M/M/1 make-to-stock queue with lost sales. He shows that there are thresholds for each

customer class such that it is optimal to reject an arriving demand from a customer if the

on-hand inventory is below the threshold for that customer (and to satisfy the demand

with the stock otherwise). Carr and Duenyas (2000) analyze the structure of the optimal

admission/sequencing policy for a related problem where demands from one class can be

rejected. Lee and Hong (2003) numerically study the performance of a lost-sales system

with Coxian processing times operating under critical level rationing policies.

When backorders are allowed, the problem of characterizing the optimal policy becomes

significantly more difficult because the number of waiting demands has to be tracked for

each customer class. For the backorder case, Ha (1997b) shows that the optimal stock and

capacity allocation for two customer classes has a monotone structure. de Véricourt et al.

(2002) generalize this result and provide a full characterization of the optimal stock and

capacity allocation for n customer classes. The optimal policy specifies threshold levels such

that it is optimal to satisfy an arriving demand from a customer if the on-hand inventory

is above the threshold for that customer and to backorder the demand otherwise. These

threshold levels also determine production priority for waiting demands in a simple way.

The models in Ha (1997a,b) and de Véricourt et al. (2002) assume exponential process-

ing times. Because of the memoryless property of the exponential distribution, the supplier

does not need to make decisions based on the current status of the production process.

Information Technologies in real production systems can provide however constant access

to information on the status of the production process. The manager can then exploit

this knowledge and make more accurate inventory allocation decisions. We consider in

this paper a multi-class M/Er/1 make-to-stock queue (with an Erlang-r processing time).

We assume the supplier exactly knows the current stage (phase) of the Erlang distribution

(which can also correspond to an actual stage of the production process) and therefore, the

remaining number of stages to go before completion. This approach allows us to model the

information on the production status in a tractable way.

In addition, Erlang distributions provide some flexibility in modeling the production

process variability. de Véricourt et al. (2001) provide insights onto the benefit of stock
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allocation policies when the utilization rate and the relative importance of the customer

classes vary. Because of the exponential assumption therein, the impact of production time

variability in this comparison is not addressed. In this paper, we evaluate the performance

of optimal stock rationing policies when the production time variability increases and the

mean stays constant. These two features of the Erlang distribution (information on the

production status and production time variability) yield insights that cannot be obtained

with the exponential distribution assumption.

To our knowledge Ha (2000) is the only paper that has addressed dynamic optimality

issues in stock allocation problem for the make-to-stock queue where the processing time

has an Erlang distribution. He assumes lost sales and shows that a single state variable,

the work storage level, can fully capture the inventory level and the status of the current

production of the system. The problem reduces then to a single dimensional MDP. He then

fully characterizes the optimal stock allocation policy: for each customer class there exists

a work-storage threshold level at which it is optimal to reject a demand of this class.

Our model differs from Ha’s (2000) in the assumption that demands are backordered.

The backordering assumption is fundamental from an inventory management perspective

and merits attention but it makes the analysis much more challenging for two reasons.

First, as mentioned earlier, we deal with an n + 1 dimensional state space since we need to

keep track of the waiting demands of each class. Second, backorders require addressing a

new type of decision which corresponds to the production allocation in presence of waiting

demands from different classes. This problem does not exist when demands are lost.

When the manager cannot sell the production surplus on a salvage market, we propose

some partial results for the optimal stock allocation policy. A full characterization seems

however intractable. The approaches that have been successful so far in analyzing optimal

policy for make-to-stock queues are all based on the propagation of convexity properties

by iterating on the value function. When the state space has more than one dimension

(typically two), this approach always requires the introduction of modularity properties

(see for instance Ha 1996, 1997b, de Véricourt et al. 2000, 2002 or Zhao et al. 2004). It

turns out that the optimal value function of the problem without a salvage market does not

satisfy these modularity properties.

On the other hand, when the manager can sell the production surplus on a speculative

market, we show that these modularity properties hold for the optimal control policy. In this

case, the production decision is replaced by the simpler decision of diverting inventory to the

spot market. Our analysis of this problem follows a decomposition technique introduced by

de Véricourt et al (2002), which consists in relating an n-dimensional control problem to an

n− 1 dimensional subproblem and then iterating on the number of demand classes n. The

application of this double induction (on time and on the dimension of the problem) to our
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case necessitates however many subtleties and adjustments, and the introduction of more

complex modularity conditions. As the result, the analysis of an n-dimensional problem

makes heavily use of the optimal structures of the k-dimensional subproblems, k < n. In de

Véricourt et al. (2002) on the other hand, the iteration is mainly based on a single n − 1

dimension subproblem.

More precisely, we show that the optimal allocation policy of the multi-class problem

with a salvage market is characterized by n work-storage rationing thresholds associated to

the n demand classes. The work-storage level is the total number of completed production

stages that are required to produce the current on-hand inventory plus the work in progress.

The optimal policy states then to backorder an arriving demand when the current work-

storage level is below or at the corresponding threshold. This characterization leads to the

construction of a heuristic using a geometric tail approximation. This heuristic turns out

to be very efficient for the problem without a salvage market.

In the next section, we introduce the models and formulate the stock rationing problems

with or without a salvage market. Some properties of the optimal policy for the problem

without a salvage market are presented in Section 3. The structure of the optimal policy for

the system with a salvage market is then characterized in Section 4. Based on this result,

we suggest an efficient heuristic for the problem without a salvage market in Section 5 and

we evaluate its performance in Section 6. We conclude the paper in Section 7.

2 Model Formulation

2.1 Problem without a Salvage Market

Consider a supplier who produces a single item at a single facility for n different classes of

customers. The finished items are placed in a common stock. When the inventory is empty,

demands are backordered. When it is not, an arriving demand can be either satisfied by

the on-hand inventory or can be backordered. Items held in stock induce holding costs at

rate h (per item per unit of time). Demands of Class i, 1 ≤ i ≤ n, arrive according to

a Poisson process with rate λi and have a unit backorder cost of bi (per item per unit of

time). Suppose without loss of generality that the backorder costs are ordered such that

b1 > . . . > bn, that is customer classes are ordered from the most valuable to the least

valuable one. We denote by b = (b1, · · · , bn) the n-dimensional vector of backorder costs.

The production process consists of r identical stages in series, each exponentially dis-

tributed with mean 1/rµ, and the manager of the system can observe the current stage of

the production process. The supplier’s facility is thus modelled by a single server whose
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processing time is r-Erlang distributed with mean 1/µ. In order to ensure stability of the

system, we assume that ρ =
∑n

i=1 λi/µ < 1 where ρ is the utilization rate of the system.

At any time instant, the manager of the system must decide whether to produce or not.

When a part is completed, he also must decide between satisfying the waiting demand of a

customer or increasing the on-hand inventory level. On the other hand, when the demand

of a customer arrives to the system, the manager can either satisfy it with the on-hand

inventory or backorder it in order to reserve the stock for future (more valuable) customers.

Let i(t) be the number of stages completed by the part under current production at time

t and s(t) be the on-hand inventory at time t. We can aggregate s(t) and i(t) in a single

variable x0(t) = s(t) + i(t)/r. In the following, x0(t) will be referred to as the work-storage

level. Furthermore, i(t) and s(t) can be inferred from x0(t) in the following way:

s(t) = bx0(t)c and i(t) = r (x0(t)− bx0(t)c)

where byc denotes the largest integer that is less than or equal to y. For example, if

r = 5 and x0 = 2.6, the inventory consists of two parts (s(t) = 2) and the third stage of

production is accomplished (i(t) = 3). The work-storage level x0(t) takes its values in the

set INr = [x0|rx0 ∈ IN], where IN represents the set of non-negative integers. Let −xi(t),

1 ≤ i ≤ n, be the number of backorders of Class i, 1 ≤ i ≤ n, at time t. Hence we can

describe exhaustively the system state with x(t) = (x0(t), x1(t), · · · , xn(t)) and the state

space is Sn = INr × (Z−)n, where Z− represents the set of non-positive integers. Let X

represent the random variable corresponding to x.

A control policy states the action to take at any time given the current state x(t). We

restrict the analysis to Markovian policies since the optimal policy belongs to this class

(Puterman 1994). Let aπ(x) = (aπ
0 (x), · · · , aπ

n(x)) be the control associated with a policy

π where aπ
0 (x) is the action to be followed each time a stage of production is completed

aπ
0 (x) =





0 to allocate the produced item to the on-hand inventory

(possible only when (x0 + 1/r) ∈ IN)

k 1 ≤ k ≤ n, to satisfy a backordered demand of Class k

(possible only when xk < 0 and x0 ≥ 1− 1/r)

n + 1 not to produce

(possible only when x0 ∈ IN)

(1)

Notice that, when x0 = 1−1/r, there is no inventory (s(t) = 0) and r−1 stages of production

are accomplished (i(t) = r−1). Thus there is only one more stage of production to be done

before one item is available either to satisfy one demand or to increase the inventory by one

unit.
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aπ
k(x), 1 ≤ k ≤ n, is a rationing action to be taken each time a demand of Class k arrives

aπ
k(x) =





0 to satisfy an arriving demand of Class k

(possible only when x0 ≥ 1)

k to backorder an arriving demand of Class k

(2)

In state x, the system incurs a cost rate

c(x) = hbx0c −
n∑

i=1

bixi (3)

The objective is to find a control policy, π, which minimizes the expected discounted costs

over an infinite horizon. We define the n-class problem Pn(µ,λ, h,b, r, α) given by

min
π

lim
T→∞

Eπ
x(0)

[∫ T

0
e−αtc(X(t))dt

]
(4)

where α is the interest rate. We will also be interested in the closely related average cost

case given by

min
π

lim
T→∞

Eπ
x(0)

[∫ T
0 c(x(t))dt

]

T

Without loss of generality, we can rescale time by taking rµ +
∑n

i=1 λi + α = 1 and

using uniformization (see Lippman 1975), the optimal value function v∗ can be shown to

satisfy the following optimality equations:

v∗(x) = c(x) + rµT0v
∗(x) +

n∑

k=1

λkTkv
∗(x) (5)

where the operators T0 and Tk, 1 ≤ k ≤ n, are

T0v(x) =





min
1≤i≤n:xi<0

[v(x + e0/r), v(x + e0/r − e0 + ei)] if x0 /∈ IN x0 ≥ 1− 1/r

min
1≤i≤n:xi<0

[v(x), v(x + e0/r), v(x + e0/r − e0 + ei)] if x0 ∈ IN and x0 > 0

min [v(x), v(x + e0/r)] if x0 = 0

v(x + e0/r) if 0 < x0 < 1− 1/r

(6)

Tkv(x) =





min [v(x− e0), v(x− ek)] if x0 ≥ 1

v(x− ek) if x0 < 1
(7)

where ei, 0 ≤ i ≤ n, is the i-th unit vector. For example, e1 denotes the (n+1)-dimensional

vector (0, 1, 0, · · · , 0). Operator T0 is associated with production action aπ
0 and Tk, 1 ≤
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k ≤ n, is associated with the rationing action aπ
k . We also define the operator T such that

Tv = c + rµT0v +
∑n

k=1 λkTkv. Notice that x + e0 corresponds to x increased by one unit

of stock whereas x + e0/r corresponds to x increased by one stage of production.

In addition, by introducing the change of variable w = x + e0/r − e0, operator T0 can

be simplified as follows:

T0v(x) =





min
1≤i≤n:xi<0

[v(w + e0), v(w + ei)] if x0 /∈ IN and x0 ≥ 1− 1/r

min
1≤i≤n:xi<0

[v(x), v(w + e0), v(w + ei)] if x0 ∈ IN and x0 > 0

min [v(x), v(x + e0/r)] if x0 = 0

v(x + e0/r) if 0 < x0 < 1− 1/r

(8)

It is also convenient to define the operators ∆i, 0 ≤ i ≤ n+1, for the real-valued function

v such that ∆iv(x) = v(x + ei)− v(x). We also define the operators ∆ij , 1 ≤ i, j ≤ n + 1,

such that ∆ijv(x) = ∆iv(x) − ∆jv(x) = v(x + ei) − v(x + ej). When j > n, we take

∆ijv(x) = ∆iv(x) (for instance ∆i(n+1)v = ∆iv). To simplify the notation, we will implicitly

assume that xi < 0 for 1 ≤ i ≤ n and xj < 0 for 1 ≤ j ≤ n when we consider ∆ijv(x) or

∆iv(x) (otherwise these quantities are not defined). The number of customer classes of the

underlying problem will also be implicit, when no confusion is possible.

Finally, in the rest of the paper, we will frequently refer to the class with the highest

backorder cost which has backordered demands. This class is given by the following function

m:

∀x ∈ Sn,m(x) =

{
min

i∈{1,··· ,n}:xi<0
(i) if ∃i ∈ {1, · · · , n}, xi < 0

n + 1 otherwise
(9)

2.2 Problem with a Salvage Market

There are a number of situations where shutting down production may be costly and the

excess inventory can be sold relatively easily. A typical example occurs when the supplier

can sell the item through a spot market in addition to its main business with long-term

customers who have specific contracts. This induces a slightly different stock rationing

problem where production never stops but has to be allocated between inventory for regular

customers and a lower priority salvage market with ample demand. Motivated by the above

points, in terms of the precise model assumptions, we assume that there exists a customer

class with zero backorder cost and ample demand. We also assume that the system produces

all the time.

Given a problem without a salvage market Pn(µ,λ, h,b, r, α), we introduce the corre-

sponding problem with a salvage market P̃n(µ,λ, h,b, r, α). The control associated with

a policy π is denoted for Problem P̃n by ãπ(x) and is defined as in (1-2), except when
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ãπ
0 = n + 1 which states to satisfy a demand from the salvage market (whereas aπ

0 = n + 1

states not to produce in the problem without a salvage market). The salvage market will

be referred to as the (n + 1)-th class of customers with zero backorder cost bn+1 = 0. The

objective is still to characterize the optimal policy which minimizes the expected discounted

cost as defined in (4) and the optimal value functions of Problem P̃n can similarly be shown

to satisfy the following optimality equations

ṽ∗(x) = c(x) + rµT̃0ṽ
∗(x) +

n∑

k=1

λkT̃kṽ
∗(x) (10)

where T̃k = Tk, 1 ≤ k ≤ n, and operator T̃0 is

T̃0v(x) =





min
1≤i≤n+1:xi<0

[v(x + e0/r), v(x + e0/r − e0 + ei)] if x0 ≥ 1− 1/r

v(x + e0/r) if x0 < 1− 1/r.

(11)

where en+1 = 0. It is assumed that the system always produces. This is plausible since

it is always possible to satisfy a demand from the salvage market. As a result, there is

a term v(x) in T0v(x) which corresponds to the option of not producing in the problem

without a salvage market. This term is not present in T̃0v(x). On the other hand, the term

v(x+e0/r−e0 +en+1) in T̃0v(x) does not appear in T0v(x) and corresponds to the decision

of selling the produced part on the salvage market, .

In addition, by introducing again the change of variable w = x+ e0/r− e0, operator T̃0

can be simplified as follows:

T̃0v(x) =





min
1≤i≤n+1:xi<0

[v(w + e0), v(w + ei)] if x0 ≥ 1− 1/r

v(w + e0) if x0 < 1− 1/r

(12)

A transition from state x to state w corresponds to the allocation of a part to the salvage

market. This formulation greatly facilitates the analysis.

Finally, the operators ∆i and ∆ij are still well defined as well as the function m(x).

Note that for Problem P̃n, m(x) = n + 1 actually designates the salvage market, since the

associated backorder cost is zero.
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3 A Partial Characterization of the Optimal Policy for the

Problem without a Salvage Market

3.1 The Single-class Problem

We start by studying the problem with one class of demands. The single-class problem also

sheds some light into the difficulties to analyze the multi-class case.

When there is only one class of customers, the problem is to decide when to satisfy

demands of Class 1 and when to produce. A simple sample path argument (not detailed)

shows that it is always optimal to satisfy a Class 1 demand. Therefore, we can not have

both inventory and backorders of Class 1 and the state variable of the system can be

described by a single variable x0 with bx0c+ = max(0, bx0c) the inventory level and bx0c− =

−min(0, bx0c) the number of backorders of Class 1. Whatever the sign of bx0c, the number

of stages completed by the part under current production is r(x0 − bx0c).
To identify the optimal policy, we introduce the set of functions, V0, defined with the

following property:

v(x + e0 + e0/r)− v(x + e0/r) ≥ v(x + e0)− v(x) (13)

The following proposition states that operator T preserves V0 for the single-class problem.

Proposition 1 If v ∈ V0, then Tv ∈ V0

Proof: See Appendix A

Using value iteration and Proposition 1, we obtain that the optimal value function

belongs to V0. As a result, the optimal policy is of base-stock type: there exists a base-

stock level S∗ such that it is optimal to produce if the work-storage level x is smaller than

S∗ and to idle production otherwise.

3.2 The Multi-Class Problem

As expected, the multi-class problem turns out to be much more challenging than the

single class problem. Nevertheless, we are able to establish a number of basic results on the

structure of the optimal policy for this case. Proposition 2 establishes three basic properties

described in Definition 1 for the optimal policy (where the last two are consequences of the

first one).

Definition 1 Let Un be a set of functions such that v ∈ Un if and only if
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1. ∆ijv(x) < 0 when 1 ≤ i < j ≤ n

2. ∆0jv(x) < ∆0iv(x) when 1 ≤ i < j ≤ n

3. ∆0jv(x− ej) < ∆0iv(x− ei) when 1 ≤ i < j ≤ n

The following proposition states that operator T preserves Un.

Proposition 2 If v ∈ Un, then Tv ∈ Un

Proof: See Appendix B.

The structural properties suggested by Proposition 2 are fairly intuitive. Assume that

there are backorders of classes i and j with 1 ≤ i < j ≤ n (bi > bj), the first property states

that it is better to satisfy Class i, the more expensive one. The second property states

that if increasing the inventory when there are Class i backorders in the system decreases

costs, then increasing the inventory when there are Class j backorders in the system also

decreases costs. The third property is symmetrical to the second one: if the policy states

to satisfy an arriving demand of Class j with the on-hand inventory, it also states to satisfy

the arriving demands of more expensive classes.

Even though Proposition 2 establish basic properties on how to prioritize items in a

multi-class systems, a complete characterization of the optimal policy requires several addi-

tional properties which turn out to be difficult to establish by our approach. In particular,

for the single-class problem Equation (13) implies that v is supermodular in the production

status, i, and the inventory level, s. In order to generalize Proposition 1 to the multi-

dimensional problem, more modularity properties are required to ensure that Equation

(13) can be propagated. For instance, with 2 demand classes, a first step to this generaliza-

tion would be to show that v is supermodular in the production status, i, and the number of

waiting demands of Class 2, x2. Unfortunately, the optimal value function does not neces-

sarily satisfy these additional modularity properties (For example, a numerical study shows

that the optimal value function for x0 = 9.5, x2 = −1, r = 2, µ = 1, λ1 = 0.3, λ2 = 0.3,

h = 0.01, b1 = 10, b2 = 1, α = 0.01, is not supermodular in s and x2). This means that

the marginal cost of continuing production can increase in the number of waiting demands,

especially when the inventory level is already high. As a result, a full characterization of

the optimal policy seems difficult in the multi-class case. To mitigate this last assertion,

the suggested modular properties are not necessary conditions and one could imagine other

value function properties to characterize the optimal control policy.
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4 Characterization of the Optimal Policy for the Problem

with Salvage Market

4.1 Preliminary results

We extend now results of Proposition 2 to the case with a salvage market.

Definition 2 Let Ũn be a set of functions such that v ∈ Ũn if and only if

1. ∆ijv(x) < 0 when 1 ≤ i < j ≤ n + 1

2. ∆0jv(x) < ∆0iv(x) when 1 ≤ i < j ≤ n + 1

3. ∆0jv(x− ej) < ∆0iv(x− ei) when 1 ≤ i < j ≤ n + 1

Property 1 of Ũn applied in j = n + 1 states that it is better to satisfy backorders of Class

i, 1 ≤ i ≤ n, than demands from the salvage market. Remember that we take implicitly

∆i(n+1)v(x) = ∆iv(x) for 0 ≤ i ≤ n.

Proposition 3 If v ∈ Ũn, then T̃ v ∈ Ũn

The proof of Proposition 3 is similar to the proof of Proposition 2 (The only difference lies

in showing that ∆ijT̃0v(x) < 0 but the arguments are the same.)

A direct application of value iteration implies that the optimal value function also be-

longs to Ũn. A useful property is that for v ∈ Ũn, the operators satisfy

T̃0v(x) = v(w + ei) + min [0, ∆0iv(w)] with i = m(x) (14)

T̃kv(x) = v(x− e0) + min [0, ∆0kv(x− ek − e0)] for 1 ≤ k ≤ n (15)

which implies that the corresponding controls ãπ are entirely determined by the sign of

∆0iv, for 1 ≤ i ≤ n + 1.

4.2 Work-Storage Rationing Policies

Consider a particular class of policies entirely described by n + 1 parameters, one corre-

sponding to each type of demand. Let zk ∈ INr be the work-storage rationing level of

Class k, 1 ≤ k ≤ n + 1, that is, all arriving demands of this type are backordered when

the work-storage level is below zk. Moreover, when a part is produced it is allocated to a
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backordered demand of Class k, only if the work storage level x0 is larger than or equal

to zk. It is allocated to the stock otherwise. If some of these parameters are equal, the

resource is allocated to the most expensive customer class (that is to the class m(x) in state

x). This class of policies will be referred to as Work Storage Rationing (WR) policies. In

a WR policy, the decisions depend on the production status. Definition 3 gives a formal

description of WR policies.

Definition 3 A WR policy π is characterized by a (n+1)-dimensional rationing level vector

z = (z1, · · · , zn+1) where z1 = 1− 1/r ≤ z2 ≤ · · · ≤ zn+1 such that

ãπ
0 (x) =





0 if x0 < zi and i = m(x)

i if x0 ≥ zi and i = m(x)

ãπ
k(x) =





k if x0 ≤ zk

0 if x0 > zk and m(x) ≥ k

In a WR policy, demands of Class 1 are always satisfied, when inventory is available, since

z1 = 1 − 1/r. According to such a policy and assuming that x(t = 0) = 0, the recurrent

region of the space is Er =
[
x ∈ Sn|x0 ≤ zm(x)

]
. The definition leaves the policy unspecified

for x0 > z∗k and m(x) < k. In fact a precise definition for these states is not necessary since

these states do not belong to Er.

We claim that the optimal policy is a WR policy. We will argue inductively on the

number of customer classes. The construction of the proof is based on the following key

property: the optimal value function of an n-class problem is closely related to the optimal

value function of a k-class problem, in the region of the state space where x0 ≤ z∗k. In

particular, it will be shown that for this region, the corresponding controls do not depend

on the demands of classes strictly greater than k. The 0-class subproblem corresponds to

a problem with the salvage market only and no other customer class. The transformation

which relates a n-class problem P̃n(µ,λ, h,b, r, α) to a (n − 1)-class subproblem is based

on the decomposition of the cost function c(x)

c(x) = cn−1(xn−1)− bn

(
bx0c+

n∑

i=1

xi

)
(16)

where cn−1 is the cost function of the (n−1)-class subproblem P̃n−1(µ,λn−1, h+bn,bn−1−
bn1n−1, r) where λn−1 = (λ1, · · · , λn−1), bn−1 = (b1, · · · , bn−1) and 1n−1 =

∑n−1
i=1 ei. We
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can iterate this decomposition for k < n

ck(xk) = ck−1(xk−1)− (bk − bk+1)

(
bx0c+

k∑

i=1

xi

)
(17)

It follows that




c0(x0) = (h + b1)bx0c
ck(xk) = (h + bk+1)bx0c −

∑k
i=1(bi − bk+1)xk for 1 ≤ k ≤ n− 1

(18)

Therefore ck is the cost of a k-class problem P̃k(µ,λk, h + bk+1,bk − bk+11k, r).

Hence, for any n-class problem we have defined n subproblems with the number of

customer classes equal to 0, 1, · · · , n− 1 respectively. We will show that the optimal policy

is a WR policy by iterating on the number of classes. To start the induction, assume that the

optimal policy of any (n−1)-class problem is a WR policy. In particular the optimal policy

π∗n−1 of the (n − 1)-class subproblem defined above is a WR policy, with z∗ = (z∗1 , . . . , z
∗
n)

its rationing level vector.

Based on Policy π∗n−1 and its associated value function v∗n−1 of the (n − 1)-class sub-

problem, we introduce Ṽn, a structured set of value functions. We will use again value

iteration to show that the optimal value function of the n-class problem belongs to Ṽn. In

the following definition, [x]0 designates the first component of vector x.

Definition 4 Let Ṽn ⊂ Ũn such that v ∈ Ṽn if and only if:

1. ∆ijv(x) = ∆ijv
∗
n−1(x) for 0 ≤ i < j ≤ n and [x + ei]0 ≤ z∗n

2. ∆0iv(x) ≥ 0 for i = m(x) < n + 1 and x0 > zn
∗ − 1

3. For x0 > z∗n − 1 and m(x) ≥ n

a) v(x + e0 + e0/r)− v(x + en + e0/r) ≥ v(x + e0)− v(x + en)

b) v(x + e0 + en)− v(x + en + en) ≤ v(x + e0)− v(x + en)

c) v(x + en + e0/r)− v(x + e0/r) ≥ v(x + en)− v(x)

d) v(x + e0 + e0/r)− v(x + e0/r) ≥ v(x + e0)− v(x)

e) v(x + 2en)− v(x + en) ≥ v(x + en)− v(x)
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4. ∆0v(w) ≤ 0 when x0 < zn+1 = min[x0|∆0v(w) > 0 and m(x) = n + 1], where zn+1 is

well defined from Condition 3.d.

Condition 1 of the previous definition links any function v ∈ Ṽn to the optimal value

function of the (n − 1)-class subproblem, when the work storage level is below the last

optimal rationing level. When the work storage level is above the optimal rationing level,

Condition 2 states that it is always better to satisfy a waiting demand of the class with the

highest backorder cost rather than to increase the inventory level.

Condition 3 describes monotonicity properties that the value functions must satisfy in

the directions of e0 and en, when xk = 0 for 0 < k < n. These conditions guarantee in

turn that the optimal rationing decisions for the demand class with the lowest backorder

cost can be described with a monotone switching curve, when no demands of other classes

are waiting. As we show in Lemma 1, this switching curve is actually the straight line

x0 = z∗n. More formally, Condition 3 states that ∆0nv is increasing in x0/r and decreasing

in xn, ∆0v is increasing in x0/r and ∆nv is increasing in both x0/r and xn. Condition 3

may be also interpreted in terms of submodularity and supermodularity. More precisely v

is supermodular in (u,v), with u 6= v, if for all x ∈ Sn such that x+v, x+u and x+u+v

are in Sn, we have

v(x + u + v) + v(x) ≥ v(x + u) + v(x + v)

The definition of the submodularity is the same but with the opposite inequality, for more

on these notions see Veatch and Wein (1992) for example. Conditions 3.a, 3.c, 3.d state then

that v is supermodular in (e0 − en, e0/r), (e0/r, en), (e0/r, e0) respectively. Condition 3.b

states that v is submodular in (e0− en, en) and Condition 3.e states that v is convex in xn.

It can be shown that Conditions 3.a and 3.c imply Condition 3.d and that Conditions 3.b

and 3.c imply Condition 3.e. Finally Condition 4 states to satisfy demands of the salvage

market if and only if there are no other backordered demands and if x0 ≥ zn+1.

Note that for the lost sales case studied by Ha (2000), Condition 3.d is the only mod-

ularity property that v needs to verify, since that model has only one dimension. In our

case, the multi-dimensional aspect of the problem requires the value function to satisfy more

conditions that are also less typical.

We will show that, for any number of customer classes, the optimal policy belongs to

Ṽk and is a WR policy. We denote by P (n) this property.

Definition 5 We say that P (n) is true, if for all k-class problems, k ≤ n,

1. The optimal policy is a WR policy
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2. The optimal value function belongs to Ṽk

We prove in Appendix C that P (0) is true, noting that Ṽ0 is characterized only by Condition

3.d for the 0-class case. If we assume that P (n− 1) is true, then Ṽn is well-defined and not

empty since v∗n−1, the optimal policy of the (n− 1)-class problem, belongs to Ṽn.

Lemma 1 If P (n − 1) is true, then Policy π, the associated policy to v ∈ Ṽn, is a WR

policy of rationing vector z = [z∗, zn+1] where zn+1 is defined by Condition 4 of Ṽn.

Proof: See Appendix D.

In order to establish the second part of P (n), the following lemma states that the

operator T̃ preserves Ṽn.

Lemma 2 If P (n− 1) is true and if v ∈ Ṽn then T̃ v ∈ Ṽn.

Proof: See Appendix E.

Lemma 2 shows that the WR policies associated with Ṽn are preserved under the as-

sumption that P (n − 1) is true. In particular, v ∈ Ṽn is constructed on the optimal value

functions of the k-class subproblems, k < n, and the optimal rationing levels of the WR

policy are constituted by the optimal rationing levels of the sub-problems. Based on Lemma

2, we can then state our main result:

Theorem 1 For all n-class problems, the optimal policy is a WR policy with the rationing

level vector zn. In addition, zn is such that for k < n its projection zk is the optimal

rationing level vector of the k-class sub-problem:

P̃k(µ,λk, h + bk+1,bk − bk+11k, r).

Proof: See Appendix F.

This result can also be interpreted in terms of switching surfaces dividing the state space

in different regions for which the control is constant. Under this interpretation, Theorem 1

indicates that all switching surfaces are vertical planes defined by the equations x0 = z∗k. In

particular, our result is consistent with the one of Ha (1997b) who analyzed the particular

case where n = 2 and r = 1. He showed the optimal rationing decision is characterized

with a monotone switching curve. Our result (when n = 2) stipulates that this switching

curve is actually a vertical line (see also de Véricourt et al. 2002). This simplifies the policy

structure in a significant manner because the precise description of a generic switching curve
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may require infinitely many parameters whereas the vertical line is described by a single

parameter.

5 Heuristics

The results of Section 3 partially uncover the priority properties of production and stock

allocation policies but do not suggest a precise policy. In Section 4, we show that a WR

policy is optimal for the problem with salvage market. We propose, for the problem without

a salvage market, a modified WR-policy as a heuristic policy. A Modified Work-Storage

Rationing (MWR) policy is a WR-policy except that the salvage market rationing level

is replaced by an (integer) base-stock level. When there are no backordered demands

(m(x) = n + 1), this modified policy states to produce if the inventory level is strictly

smaller than the base-stock level, and not to produce otherwise. All the other controls are

the same as those in the original WR-policy.

We have not been able to prove that an MWR-policy is optimal for the problem without

a salvage market. However all our numerical experiments support this hypothesis. In addi-

tion, if z∗ = (z∗1 , · · · , z∗n+1) is the optimal rationing vector of the problem with salvage mar-

ket P̃n(µ,λ, h,b, r, α), we systematically obtained numerically that z = (z∗1 , · · · , z∗n, bz∗n+1c)
is the optimal rationing vector of the problem without salvage market Pn(µ,λ, h,b, r, α).

These results can be explained by the fact that both systems are governed by very similar

equations.

However, due to the curse of dimensionality, it rapidly becomes impossible to obtain

the optimal values of the policy parameters when the number of classes increases. In the

following, we first develop a heuristic to compute the optimal policy parameters of the WR-

policy for the problem with a salvage market and then suggest another heuristic to compute

the optimal policy parameters of the MWR-policy for the problem without a salvage market.

To compute the policy parameters of the heuristic MWR-policy, we have been inspired

by the exact algorithm found by Véricourt et al. (2002) for a M/M/1 make-to-stock queue.

The procedure is similar but we have replaced the known geometric approximation for

the queue length distribution of the M/M/1 queue by a geometric approximation for the

M/Er/1 queue. In the previous sections, we concentrated on the discounted cost problem.

However, the structural properties are retained for the average cost case (Weber and Stid-

ham, 1987). From now, we consider the average cost minimization criterion which has a

simpler interpretation: the optimal average cost does not depend on the initial conditions

and the optimal policy parameters do not depend on the discount factor selected which

facilitates various comparisons (see Ha 1997b or Ha 2000 for a similar approach).
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To get around the curse of dimensionality, we use the strong relationship between a

k-class problem and a (k − 1)-class subproblem. The essence of the approximation leading

to the heuristic policy is then a successive computation of the rationing levels z1, · · · , zk+1.

When the rationing level vector z1, · · · , zk of the (k − 1)-class subproblem and the corre-

sponding average cost gk−1 have been evaluated, the next rationing level zk+1 and optimal

average cost gk for the k-class problem can be computed by solving a single dimensional

problem. Indeed, when the work-storage level is larger than zk, all demands are satisfied

with the stock and there are no backorders in recurrent states. When the work-storage level

is lower than zk, the average cost is given by gk−1. By iterating this step for each subprob-

lem, we obtain the following algorithm to compute the parameters of the WR-policy. The

full justification for this algorithm is given in Appendix G.

Heuristic 1 Consider an n-class problem. Construct the sequences ρk, ηk and z̃k as follows:

Initialize z̃1 = 1− 1/r, ρ1 = 1, η0 = 0.

For k = 1, . . . , n do,

ρk =
1
µ

k∑

i=1

λi

ηk is the solution in the interval (0,1) of the equation
(

r

r + ρk(1− 1/ηk)

)r

= 1/ηk

z̃k+1 = z̃k + logηk

ηk(h + bk+1)

ρk(h + bk)
[
ηk + (1− ηk)

1−ρk−1

1−ηk−1

]

The heuristic rationing levels zk, k ≥ 1, are then given by

z1 = z̃1

zk = max{1− 1/r, brz̃k + 1c/r} for k = 2, 3..., n

zn+1 = brz̃n+1 + 1c/r

The MWR heuristic for our problem, without a salvage market, is obtained by rounding-

off zn+1 in order to obtain the base-stock level.

Let us note that the above algorithm can easily be adapted to any M/G/1 make-to-stock

queue. We do not pursue this adaptation here since testing the performance of the algorithm

in other settings than M/Er/1 would require the understanding and the computation of the

optimal policy.
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6 Performance of the Heuristic Policy for the problem with-

out salvage market

In this section, we present a summary of the results on the performance of the MWR

heuristic policy for the problem without a salvage market. Although we do not report these

results here, the heuristic also performs extremely well for the salvage market case.

In order to evaluate the performance of this heuristic, we compared the average cost g∗ of

the optimal policy of the problem with the average cost g of the heuristic policy. The average

costs are computed numerically by value iteration. We denote then by ∆g = (g−g∗)/g∗, the

relative cost increase when using the heuristic policy instead of the optimal policy. For all

instances, we observe that the optimal policy is a MWR policy characterized by rationing

levels z∗i . Another measure of the heuristic performance is then to study the rationing level

differences ∆zi = zi − z∗i .

We have evaluated the performance of the heuristic with 1, 2 and 3 classes of customers

by varying the different parameters of the problems. We have not investigated with a higher

number of classes because of the curse of dimensionality. In all our numerical studies we

set µ = 1 and bn = 1 without loss of generality.

For the single-class problem, we have tested the heuristic for 567 instances corresponding

to the combinations of : r ∈ {2, 3, 4, 5, 10, 15, 20}, ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
h ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5}. We have obtained the following

results :

• For all the 567 instances, −1 ≤ ∆z2 ≤ 0

• For 487 instances, the heuristic finds the optimal policy (i.e. ∆g = 0 and ∆z2 = 0)

• If the optimal base-stock level z∗2 ≥ 6, then ∆g ≤ 3% (544 instances)

• If the optimal base-stock level z∗2 ≥ 12, then ∆g ≤ 0.35% (352 instances)

• The largest error is of 47% (z∗2 = 3 and z2 = 2).

For two classes of customers, we have tested all the 728 instances combining: r ∈
{2, 3, 5, 10}, ρ ∈ {0.2, 0.4, 0.6, 0.8}, h ∈ {0.001, 0.01, 0.1, 1}, b1/b2 ∈ {1, 5, 25, 100}, λ1/λ2 ∈
{0.2, 1, 5}. We have obtained the following results :

• |∆zi| ≤ 1, i = 2, 3 (for all 728 instances)

• The heuristic finds the optimal policy for 402 instances (∆g = 0 and ∆zi = 0 for

i = 2, 3)
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• If z∗3 ≥ 3, ∆g ≤ 9% (544 instances)

• If z∗3 ≥ 5, ∆g ≤ 5% (352 instances)

• If z∗3 ≥ 10, ∆g ≤ 2% (150 instances)

• If z∗3 ≥ 12, ∆g ≤ 1% (116 instances)

• The largest error is of 139% (z∗3 = 0 and z3 = 1).

For three classes of customers, we have tested the 243 combinations of: r ∈ {2, 3, 5},
ρ ∈ {0.4, 0.6, 0.8}, h ∈ {0.01, 0.1, 1}, b1/b2 ∈ {2, 5, 10}, b2/b3 ∈ {2, 5, 10}, λ1 = λ2 = λ3. We

have obtained the following results:

• |∆zi| ≤ 1, i = 2, 3, 4 (for all 243 instances)

• The heuristic finds the optimal policy for 82 instances (∆g = 0 and ∆zi = 0 for

i = 2, 3, 4).

• If z∗4 ≥ 5, ∆g ≤ 3.75% (92 instances)

• If z∗4 ≥ 8, ∆g ≤ 1% (55 instances)

• If z∗4 ≥ 10, ∆g < 2% (42 instances)

• The largest error is of 47% (z∗4 = 0 and z4 = 1).

In conclusion, for 1, 2 and 3 classes of customers, the heuristic finds rationing levels and

base-stock level with a maximum error of 1 for all the 1538 instances tested. The relative

cost increase for using the heuristic policy is always less than 2% when the base-stock level

is higher than 10. However, when the base-stock level is low, a small approximation error in

the base-stock level may lead to a magnified percentage error in terms of the average cost.

This situation occurs whenever the holding cost h is very high or the utilization rate ρ is

very low. While this is a limitation of the heuristic, it may be argued that these situations

are not the most appropriate for stock rationing, and that the absolute error in terms of

cost will be relatively small since the average inventory level will be very low in such cases.

7 Conclusion and future research

In this paper, we have analyzed a stock rationing problem with several customer classes

where the processing times have an Erlang distribution. The Erlang distribution assumption

allows us to model the information on the production status in a tractable manner and
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enables modeling production time variability. We have considered two cases: (1) When the

manager can sell the production surplus on a salvage market and (2) when he can not.

There are two major motivations for the problem with a salvage market. First, it cor-

responds to the situation where the supplier can divert inventory to a speculative market

and has to allocate production between long term (contract) customers and the speculative

market. Second, it is a tractable approximation of the problem without a salvage market

which allowed us to develop an efficient heuristic for the problem without a salvage market.

For the problem with a salvage market, we have provided a full characterization of the

optimal policy by exploiting the nested structure that links a n + 1 customer class problem

to a subproblem with n classes. This is the only full characterization in a dynamic alloca-

tion problem for a multi-class make-to-stock queue with non-exponential processing times

and backorders, to our knowledge. In addition, the structure of the optimal policy is fairly

intuitive and easy to implement. Moreover, we have proposed an efficient heuristic evalua-

tion of the corresponding optimal parameters. This heuristic procedure allows addressing

problems with a large number of customer classes that would not be tractable otherwise.

For the problem without a salvage market, we have fully characterized the optimal

policy for a single-class problem and we provided a partial characterization of the optimal

policy for the multi-class problems. A full characterization, in a general setting, seems to

be difficult since the approach, used to propagate modularity properties for the problem

with a salvage market, does not work. Based on the findings of the problem with a salvage

market, we have presented a modified heuristic which performs very well for the problems

without a salvage market. Moreover, based on numerical results, we conjecture that the

optimal policy is an MWR policy and that the rationing levels are equal to the optimal

rationing levels of the problem with salvage market.

Finally, our results constitute a useful benchmark for systems with more general pro-

cessing times than Erlang distributions. These problems can be non-Markovian and are

extremely difficult to analyze since the optimal decisions should take the actual processing

time into account. Even if they could be characterized, these policies would most likely be

hard to implement. For the deterministic case, our heuristic procedure should already per-

form well as Erlang distributions approach deterministic times for large numbers of stages.

For the more general case, multi-stage distributions with different exponential processing

times provide a promising alternative to approximate the processing time. Our heuristics

can in fact be directly extended to this case. In general, the nested approach using an

M/G/1 approximation presented in this paper offers a tractable framework to evaluate

the optimal rationing levels in multi-class make-to-stock queues with generally distributed

processing times.
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A Proof of Proposition 1

For the single-class problem, the optimality equations simplifies to: v∗(x) = c(x)+µT0v
∗(x)+

λ1v
∗(x−e0). Assume that v ∈ V0. Let δ0v be the operator such that δ0v(x) = v(x+e0/r)−

v(x). The quantity S = min[x0 ∈ IN : δ0v(x) ≥ 0] is well defined and policy π, associated

to v, states to produce if the work-storage level x0 is smaller than S and to idle production

otherwise. Following the definition of S, we can rewrite the operator T0:

T0v(x) =





v(x + e0/r) if x0 /∈ IN or x0 < S

v(x) if x0 ∈ IN and x0 > S
(19)

Then we have

∆0T0v(x) =





∆0v(x + e0/r) if x /∈ IN or x0 + 1 < S

v(x + e0)− v(x + e0/r) if x0 + 1 = S

∆0v(x) if x ∈ IN and x0 + 1 > S

(20)

and

∆0T0v(x + e0/r)−∆0T0v(x)

=





∆0v(x + 2e0/r)−∆0v(x + e0/r) ≥ 0 if x + 1 + 1/r < S

or if (x /∈ IN and x0 + 1/r /∈ IN)

−δ0v(x + e0/r) ≥ 0 if x0 + 1 + 1/r = S

∆0v(x + 2e0/r)−∆0v(x + e0/r)

+δ0v(x + e0) ≥ 0 if x0 + 1 = S

0 if x0 + 1 > S and x0 + 1/r ∈ IN

∆0v(x + 2e0/r)−∆0v(x) ≥ 0 if x0 + 1 > S and x0 ∈ IN

(21)

The inequalities in (21) come from the definition of S and the assumption v ∈ V0, so that

T0v ∈ V0. Since the cost function c(.) also belongs to V0, we obtain the result.

B Proof of Proposition 2

Assume that v ∈ Un and 1 ≤ i < j ≤ n. Let us show that Tv verifies the first condition of

Un.

First of all, we have ∆ijc(x) = bj − bi < 0. Let us show now that ∆ijT0v(x) < 0. To

that end, we have to distinguish four cases.
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1. x0 = 0

∆ijT0v(x) = min [v(x + ei), v(x + ei + e0/r)]−min [v(x + ej), v(x + ej + e0/r)]

If min [v(x + ej), v(x + ej + e0/r)] = v(x + ej), then

∆ijT0v(x) ≤ ∆ijv(x) ≤ 0

If min [v(x + ej), v(x + ej + e0/r)] = v(x + ej + e0/r), then

∆ijT0v(x) ≤ ∆ijv(x + e0/r) ≤ 0

Therefore ∆ijT0v(x) ≤ 0.

2. 0 < x0 < 1− 1/r

∆ijT0v(x) = ∆ijv(x + e0/r) ≤ 0

3. x0 ∈ IN, x0 > 0

Let m(x + ei) = p and m(x + ej) = q. Notice that q ≤ p ≤ j. We have

∆ijT0v(x) = min [v(x + ei), v(w + ei + e0), v(w + ei + ep)]

−min [v(x + ej), v(w + ej + e0), v(w + ej + eq)]

If min [v(x + ej), v(w + ej + e0), v(w + ej + eq)] = v(x + ej), then

∆ijT0v(x) ≤ ∆ijv(x) ≤ 0

If min [v(x + ej), v(w + ej + e0), v(w + ej + eq)] = v(w + ej + e0), then

∆ijT0v(x) ≤ ∆ijv(w + e0) ≤ 0

If min [v(x + ej), v(w + ej + e0), v(w + ej + eq)] = v(w + ej + eq), then

∆ijT0v(x) ≤ v(w + ei + ep)− v(w + ej + eq)

If p = q, then v(w + ei + ep) − v(w + ej + eq) = ∆ijv(w + ep) ≤ 0. If p > q, then

q = i and v(w+ei +ep)−v(w+ej +eq) = ∆pjv(w+ei) ≤ 0 (since p ≤ j). Therefore

∆ijT0v(x) ≤ 0.

4. x0 /∈ IN, x0 ≥ 1− 1/r

With the same notations, we have

∆ijT0v(x) = min [v(w + ei + e0), v(w + ei + ep)]

−min [v(w + ej + e0), v(w + ej + eq)]
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If min [v(w + ej + e0), v(w + ej + eq)] = v(w + ej + e0), then

∆ijT0v(x) ≤ ∆ijv(w + e0) ≤ 0

Otherwise

∆ijT0v(x) ≤ v(w + ei + ep)− v(w + ej + eq) ≤ 0

We obtain the previous inequality using the same argument as in case 3.

Let us show now that ∆ijTkv(x) < 0 for 1 ≤ k ≤ n.

∆ijTkv(x) = min [v(w + ei − e0), v(w + ei − ek)]

−min [v(w + ej − e0), v(w + ej − ek)]

If min [v(w + ej − e0), v(w + ej − ek)] = v(w + ej − e0), then

∆ijTkv(x) ≤ ∆ijv(w − e0) ≤ 0

Otherwise

∆ijTkv(x) ≤ ∆ijv(w − ek) ≤ 0

We conclude that ∆ijTv(x) = ∆ijc(x) + rµ∆ijT0v(x) +
∑n

i=1 λiTiv(x) ≤ 0 and Tv verifies

the first condition of Un. Conditions 2 and 3 are direct consequences of Condition 1, applied

respectively in x and in x + e0 − ei − ej . Finally Tv ∈ Un.

C Characterization of the 0-class problem optimal policy

In the 0-class problem, the optimal equations are reduced to v∗(x)+ g∗ = c(x)+ rµT̃0v
∗(x)

with T̃0v(x) = min [v(w), v(w + e0)] and c(x) = hbx0c and Ṽ0 is characterized only by

Condition 3.d. Assume that v ∈ Ṽ0 and zv
1 = min[x0|∆0v(w) > 0] = 1− 1/r. Then

∆0T̃0v(x) =





0 if x0 < zv
1 = 1− 1/r

∆0v(w) > 0 if x0 ≥ zv
1 = 1− 1/r

Hence T̃0v ∈ Ṽ0 and, as c ∈ V0, T̃ v ∈ Ṽ0. In addition zT̃ v
1 = 1 − 1/r. By value iteration,

v∗ ∈ Ṽ0 and z∗1 = min[x0|∆0v
∗(x) ≥ 0] = 1 − 1/r. Therefore π∗, the optimal policy

associated with v∗, is WR. We conclude that P (0) is true.
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D Proof of Lemma 1

Assume that P (n − 1) is true. Let v∗n−1 be the optimal value function of the (n − 1)-class

subproblem. The production control corresponding to v∗n−1 is equivalent to




∆0iv
∗
n−1(w) ≤ 0 if x0 < z∗i and i = m(x)

∆0iv
∗
n−1(w) ≥ 0 if x0 ≥ z∗i and i = m(x)

(22)

Let v ∈ ˜̃Vn and π its associated policy. From (22) and Condition 1 of Ṽn, we have for

x0 < z∗n and m(x) < n + 1




∆0iv(w) ≤ 0 if x0 < z∗i and i = m(x)

∆0iv(w) ≥ 0 if x0 ≥ z∗i and i = m(x)

For i = m(x) < n + 1 and x0 ≥ z∗n, we have ∆0iv(w) ≥ 0 from Condition 2 of Ṽn. Assume

now that m(x) = n + 1 and x0 < z∗n. Then we have

∆0(n+1)v(w) = ∆0v(w) = ∆nv(w + e0 − en) + ∆0nv(w − en)

= ∆nv(w + e0 − en) + ∆0v
∗
n−1(w)

The first term of this expression is strictly negative from the first Condition of Ũn while

the second one is negative from Condition 4 of Ṽn−1. Then ∆0v(w) ≤ 0 for m(x) = n + 1

and x0 < z∗n which implies that zn+1 = min[x0|∆0v(w) > 0 and m(x) = n + 1] ≥ z∗n. In

addition, as ∆0v is increasing in x0/r from Condition 3.d of Ṽn, we have ∆0v(w) > 0 for

x0 ≥ zn+1 and m(x) = n + 1. Finally we have




∆0iv(w) ≤ 0 if x0 < z∗i and i = m(x) < n + 1

∆0iv(w) ≥ 0 if x0 ≥ z∗i and i = m(x) < n + 1

∆0n+1v(w) ≤ 0 if x0 < zn+1

∆0n+1v(w) ≥ 0 if x0 ≥ zn+1

which corresponds to the production control of a WR policy of rationing vector z =

[z∗, zn+1].

The rationing control for Class k corresponding to v∗n−1 is equivalent to




∆0kv
∗
n−1(x− ek − e0) < 0 if x0 ≤ z∗k

∆0kv
∗
n−1(x− ek − e0) ≥ 0 if x0 > z∗k and m(x) ≥ k

(23)

which implies with Condition 1 of Ṽn, that for x0 ≤ z∗n and for 1 ≤ k ≤ n




∆0kv(x− ek − e0) < 0 if x0 ≤ z∗k

∆0kv(x− ek − e0) ≥ 0 if x0 > z∗k and m(x) ≥ k
(24)
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Assume now that x0 > z∗n. If m(x) ≥ k then m(x− ek − e0) = k < n + 1 and Condition 2

of Ṽn implies that ∆0kv(x − ek − e0) ≥ 0. Therefore (23) holds also for x0 > z∗n and (24)

implies that the rationing control corresponding to v is the one of a WR policy of rationing

vector z = [z∗, zn+1] and Lemma 1 is proven.

E Proof of Lemma 2

Consider v ∈ Ṽn and its associated policy π. Form Lemma 1, π is a WR policy with

z = [z∗, zn+1] its rationing vector, and whose associated controls are described in Definition

3. We will prove successively that T̃ v verifies Condition 1, Condition 2 and Condition 3 of

Ṽn.

T̃ v verifies Condition 1 of Ṽn

Let 0 ≤ i < j ≤ n, p = m(x + ei) and q = m(x + ej). Notice that 1 ≤ q ≤ p < n + 1. First

of all (18) implies that ∆ijc(x) = ∆ijcn−1(x). As v ∈ Ũn, we have

∆ijT̃0v(x) = v(w + ei + ep) + min [0, ∆0pv(w + ei)]− v(w + ej + eq)

−min [0, ∆0qv(w + ej)]

= ∆ijv(w + ep) + ∆pqv(w + ej) + min [0, ∆0pv(w + ei)]

−min [0, ∆0qv(w + ej)] (25)

From Proposition 2 we have also v∗n−1 ∈ Ũn−1 which implies

∆ijT̃0v
∗
n−1(x) = ∆ijv

∗
n−1(w + ep) + ∆pqv

∗
n−1(w + ej)

+min
[
0, ∆0pv

∗
n−1(w + ei)

]−min
[
0, ∆0qv

∗
n−1(w + ej)

]
(26)

Assume that [x + ei]0 < zn
∗. Then [w + ep + ei]0, [w + ej + ep]0, [w + ei + e0]0 and

[w + ej + e0]0 are smaller than or equal to z∗n. It implies from Condition 1 of Ṽn that





∆ijv(w + ep) = ∆ijv
∗
n−1(w + ep)

∆qpv(w + ej) = ∆qpv
∗
n−1(w + ej)

∆0pv(w + ei) = ∆0pv
∗
n−1(w + ei)

∆0qv(w + ej) = ∆0qv
∗
n−1(w + ej)

(27)

(25), (26) and (27) imply that ∆ij T̃0v(x) = ∆ijT̃0v
∗
n−1(x).

Assume now that [x + ei]0 = [x + ej ]0 = zn
∗. Then [w + ei]0 = [w + ej ]0 > z∗n. In

addition m(x+ei) = p and m(x+ej) = q. Condition 2 of Ṽn implies that ∆0pv(w+ei) ≥ 0
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and ∆0qv(w + ej) ≥ 0. Therefore (25) implies that

∆ij T̃0v(x) = ∆ijv(w + ep) + ∆pqv(w + ej) (28)

On the other hand, π∗n−1 states to produce for the most expensive demand class when

x0 = z∗n which implies that

∆ijT̃0v
∗
n−1(x) = ∆ijv

∗
n−1(w + ep) + ∆pqv

∗
n−1(w + ej) (29)

[w + ep + ei]0 and [w + ej + ep]0 are smaller than or equal to z∗n. (27), (28) and (29) imply

that ∆ijT̃0v(x) = ∆ijT̃0v
∗
n−1(x).

Assume now that [x + ei]0 = zn
∗ and [x + ej ]0 < zn

∗. Repeating the same arguments

we obtain

∆ijT̃0v(x) = ∆ijv(w + ep) + ∆pqv(w + ej)−min [0, ∆0qv(w + ej)]

= ∆ijv
∗
n−1(w + ep) + ∆pqv

∗
n−1(w + ej)−min

[
0, ∆0qv

∗
n−1(w + ej)

]
(30)

= ∆ijT̃0v
∗
n−1(x

n−1)

(30) comes from Condition 1 of Ṽn where we have [w + ep + ei]0 , [w + ej + ep]0 and

[w + ej + e0]0 smaller than or equal to z∗n. We can conclude that T̃0v satisfies Condition 1

of Ṽn.

Let us show now that T̃kv verifies Condition 1 of Ṽn for 1 ≤ k ≤ n. Let [x + ei]0 ≤ zn
∗.

We have

∆ijT̃kv(x) = ∆ijv(x− e0) + min[0,∆0kv(x + ei − ek − e0)]

−min[0,∆0kv(x + ej − ek − e0)]

= ∆ijv
∗
n−1(x− e0) + min[0, ∆0kv

∗
n−1(x + ei − ek − e0]

−min[0,∆0kv
∗
n−1(x + ej − ek − e0)] (31)

= ∆ijT̃kv
∗
n−1(x)

(31) comes from Condition 1 of Ṽn. In particular, we have ∆ijTnv(x) = ∆ijTnv∗n−1(x
n−1) =

∆ijv
∗
n−1(x

n−1).

Note then that v∗n−1 verifies the optimality equation of the (n− 1)-class problem

(1− λn)v∗n−1(x
n−1) = cn−1(xn−1) + rµT̃0v

∗
n−1(x

n−1) +
n∑

k=1

λkT̃kv
∗
n−1(x

n−1) (32)

where the time scale factor (1− λn) is a consequence of the uniformization procedure with

the condition α+rµ+Σk=1nλk = 1 kept for the subproblem. Since ∆ijc(x) = ∆ijcn−1(xn−1)

it follows that

∆ijT̃ v(x) = ∆ijcn−1(xn−1) + rµ∆ij T̃0v
∗
n−1(x

n−1) +
n−1∑

k=1

λk∆ij T̃kv
∗
n−1(x

n−1) + λn∆ijv
∗
n−1(x

n−1)

= ∆ijv
∗
n−1(x

n−1) (33)
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where (33) comes from (32) and T̃ v satisfies Condition 1 of Ṽn.

T̃ v verifies Condition 2 of Ṽn

We assume in all this subsection that x0 > z∗n− 1 and i = m(x) < n+1. Let j = m(x+ ei)

and notice that j ≥ i. First of all ∆0ic(x) = h + bi ≥ 0. From Condition 2 of Ṽn,

aπ
0 (x + e0) = i and therefore

∆0iT̃0v(x) = v(w + e0 + ei)−min[v(w + ei + e0), v(w + ei + ej)]

=
{

0 if ∆0jv(w + ei) ≤ 0
∆0jv(w + ei) ≥ 0 otherwise

Thus T̃0v verifies Condition 2 of Ṽn.

Let 1 ≤ k ≤ n, p = ãπ
k(x + e0) and q = ãπ

k(x + ei).

∆0iT̃kv(x) = v(x + e0 − ep)− v(x + ei − eq)

We can distinguish 4 possible cases

1. p = q = 0

∆0iT̃kv(x) = ∆0iv(x− e0) ≥ ∆0kv(x + ei − e0 − ek) ≥ 0

The first inequality comes from Condition 3 of Ũn and the second one is the conse-

quence of q = 0

2. p = q = k

∆0iT̃kv(x) = ∆0iv(x− ek) ≥ 0

from Condition 2 of Vn

3. p = k and q = 0

∆0iT̃kv(x) = ∆0iv(x− ek) + ∆0kv(x + ei − e0 − ek) ≥ 0

The first term is positive from Condition 2 of Ṽn and the second term is positive since

q = 0.

4. p = 0 and q = k

∆0iT̃kv(x) = ∆kiv(x− ek)
{ ≥ 0 if k ≥ i

< 0 if k < i

Therefore ∆0iT̃kv(x) ≥ 0 and ∆0iT̃ v(x) ≥ 0 except if the 3 next conditions are verified:

k < i, p = 0 and q = k.
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Assume now that k < i, p = 0 and q = k and let us prove that ∆0iT̃ v(x) ≥ 0. When

q = k, x0 ≤ z∗k and, as z∗k ≤ z∗i (k < i), we have also x0 ≤ z∗i . In addition x0 > z∗n − 1 (by

assumption) and z∗n ≥ z∗i (n ≥ i) imply that x0 > z∗i − 1. Finally z∗i − 1 < x0 ≤ z∗i . As

∆0ic = ∆0ci−1 and ∆0iT̃kv(x) ≥ 0 when i ≥ k, we can give a lower bound to ∆0iT̃ v

∆0iT̃ v(x) ≥ ∆0ic(x) +
i−1∑

k=1

λk∆0iT̃kv(x) = ∆0ci−1(x) +
i−1∑

k=1

λk∆0iT̃kv(x) (34)

Let us denote by v∗j the optimal value function of the j-class sub-problem P̃j(µ,λj , h +

bi+1,bj − bj1i, r) and by π∗j the associated optimal policy. Since x0 ≤ z∗i , we can apply

Condition 1 of Ṽj to ∆kiv
∗
j for i ≤ j ≤ n

∆0iT̃kv(x) = ∆kiv(x− ek) = ∆kiv
∗
n−1(x− ek)

= · · ·
= ∆kiv

∗
i (x− ek)

= ∆kv
∗
i−1(x− ek)

= ∆0T̃kv
∗
i−1(x) (35)

Let us detail the last equality. As z∗i −1 < x0 ≤ z∗i , we have ã
π∗i
k (x+e0) = 0 and ã

π∗i
k (x) = k

which imply that ∆0T̃kv
∗
i−1(x) = ∆kv

∗
i−1(x− ek). From (35) we can rewrite (34)

∆0iT̃ v(x) ≥ ∆0ci−1(x) +
i−1∑

k=1

λk∆0T̃kv
∗
i−1(x) (36)

As v∗i−1 verifies the optimality equations of the (i− 1)-class problem, we have
(

1−
n∑

k=i

λk

)
∆0v

∗
i−1(x) = ∆0c(x) + rµ∆0T̃ v∗i−1(x) +

n∑

k=1

λk∆0T̃kv
∗
i−1(x) (37)

where the factor (1−∑n
k=i λk) is a consequence of the uniformization procedure, assuming

that the rescaling condition rµ +
∑n

k=0 λk = 1 is kept for the sub-problems. Using (37), we

rewrite (36)

∆0iT̃ v(x) ≥
(

1−
n∑

k=i

λk

)
∆0v

∗
i−1(x)− rµ∆0T̃0v

∗
i−1(x) (38)

As m(x) = i, we have also

∆0T̃0v
∗
i−1(x) =





0 if z∗i − 1 < x0 < z∗i

∆0v
∗
i−1(w) if x0 = z∗i

(39)
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Moreover, when x0 = z∗i , ∆0v
∗
i−1(w) ≤ ∆0v

∗
i−1(x) from Condition 3.d of Ṽi−1. We deduce

from (38), (39) and last remark that

∆0iT̃ v(x)




≥ (1−∑n

k=i λk)∆0v
∗
i−1(x) if z∗i − 1 < x0 < z∗i

≥ (1− rµ−∑n
k=i λk)∆0v

∗
i−1(x) if x0 = z∗i

When x0 > z∗i − 1, we have ∆0v
∗
i−1(x) ≥ 0 from Condition 3.d and 4 of Ṽi−1. Hence

∆0iT̃ v(x) ≥ 0 when k < i, p = 0 and q = k. We conclude that ∆0iT̃ v verifies Condition 2

of Ṽn.

T̃ v verifies Condition 3 of Ṽn

We assume in all this subsection that x0 > z∗n − 1 and m(x) ≥ n. First of all, 3.a and 3.c

imply 3.d while 3.b and 3.c imply 3.e. So we have only to prove that T̃ v verifies 3.a, 3.b

and 3.c. Let us show that ∆0nT̃0v in increasing in x0/r and is decreasing in xn.

∆0nT̃0v(x) =





0 if x0 < z∗n and m(x + en) = n

∆0nv(w + en) ≥ 0 if x0 ≥ z∗n and m(x + en) = n

0 if x0 < zn+1 and m(x + en) = n + 1

∆0v(w + en) ≥ 0 if x0 ≥ zn+1 and m(x + en) = n + 1

3.a and 3.d imply that ∆0nT̃0v is increasing in x0/r. 3.b implies that ∆0nT̃0v is decreasing

in xn when x0 < zn+1. When x0 ≥ zn+1 and m(x + en) = n, ∆0nT̃0v is decreasing in xn

from 3.b. When x0 ≥ zn+1 and m(x + en) = n + 1, we have

∆0nT̃0v(x)−∆0nT̃0v(x− en) = ∆0v(w + en)−∆0nv(w)

= ∆nv(w + e0) ≤ 0

Therefore ∆0nT̃0v is decreasing in xn for x0 > z∗n − 1 and m(x) ≥ n.

Let us show that ∆0nT̃kv, 1 ≤ k ≤ n, is increasing in x0/r and is decreasing in xn.

∆0nT̃kv(x) =





∆knv(x− ek) = ∆kv
∗
n−1(x− ek) ≤ 0 if x0 ≤ z∗k

∆0nv(x− e0) = ∆0v
∗
n−1(x− e0) ≤ 0 if z∗k < x0 ≤ z∗n

∆0nv(x− e0) ≥ 0 if x0 > z∗n
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Assume that x0 ≤ z∗k. Using Condition 1 of Ṽn−1, Ṽn−2, · · · , Ṽk+1, we obtain

∆kv
∗
n−1(x− ek) = ∆kk+1v

∗
n−1(x− ek − ek+1) + ∆k+1v

∗
n−1(x− ek+1)

= ∆kv
∗
k(x− ek) + ∆k+1v

∗
n−1(x− ek+1)

= · · ·

=
n−1∑

i=k

∆iv
∗
i (x− ei) (40)

In addition ∆iv
∗
i (x − ei) is increasing in x0/r from Condition 3.c of Ṽi, for k ≤ i ≤ n − 1

(we can apply Condition 3.c of Ṽi since x0 > z∗n − 1 implies that x0 > zi − 1). Therefore

∆0nT̃kv is increasing in x0/r for x0 ≤ z∗k.

Assume now that z∗i−1 < x0 ≤ z∗i with k < i ≤ n. We consider this case if and only if

z∗i−1 < z∗i . From Condition 1 of Ṽn−1, · · · , Ṽi, we have

∆0v
∗
n−1(x− e0) = ∆n−1v

∗
n−1(x− en−1) + ∆0n−1v

∗
n−1(x− e0 − en−1)

= ∆n−1v
∗
n−1(x− en−1) + ∆0v

∗
n−2(x− e0)

= · · ·

=
n−1∑

j=i

∆jv
∗
j (x− ej) + ∆0v

∗
i−1(x− e0)

(41)

[x − ej ]0 > z∗j − 1 implies that ∆jv
∗
j (x − ej) is increasing in x0/r from 3.c of Ṽj and

[x− e0]0 > z∗i−1 − 1 implies that ∆0v
∗
i−1(x− e0) is increasing in x0/r from 3.d of Ṽi−1.

For x0 > z∗n, ∆0nT̃kv(x) is increasing in x0/r from Condition 3.a of Ṽn. To conclude

that ∆0nT̃kv(x) is increasing in x0/r for x0 > z∗n− 1, we have to study now the limit points

x0 = z∗k, · · · , z∗n. Let i be such that k + 1 ≤ i ≤ n − 1 and assume that z∗i < z∗i+1. Let us

take x0 = z∗i , then

∆0nT̃kv(x + e0/r)−∆0nT̃kv(x) = ∆0v
∗
n−1(x + e0/r − e0)−∆0v

∗
n−1(x− e0)

=
n−1∑

j=i+1

∆jv
∗
j (x + e0/r − ej) + ∆0v

∗
i (x + e0/r − e0)−

n−1∑

j=i

∆jv
∗
j (x− ej)

−∆0v
∗
i−1(x− e0) (42)

≥
n−1∑

j=i+1

∆jv
∗
j (x + e0/r − ej) + ∆0v

∗
i (x + e0/r − e0)−

n−1∑

j=i

∆jv
∗
j (x + e0/r − ej)

−∆0v
∗
i−1(x− e0) (43)

= −∆iv
∗
i (x + e0/r − ej) + ∆0v

∗
i (x + e0/r − e0)−∆0v

∗
i−1(x− e0)

≥ −∆iv
∗
i (x + e0/r − ej) + ∆0v

∗
i (x + e0/r − e0) (44)

= ∆0iv
∗
i (w − ei) ≥ 0
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(42) comes from (41). (43) comes from the monotonicity of ∆jv
∗
j (x − ej) for x0 >

z∗j − 1 ≥ z∗i − 1 (Condition 3.c of Ṽj). (44) comes from the fact that ∆0v
∗
i−1(x− e0) ≤ 0 for

x0 = z∗i .

Let’s study the last limit point x0 = z∗k. Assume that z∗k = z∗k+1 = · · · = z∗s−1 < z∗s .

Then

∆0nT̃kv(x + e0/r)−∆0nT̃kv(x) = ∆0v
∗
n−1(x + e0/r − e0)−∆kv

∗
n−1(x− ek)

=
∑

j=s

∆jv
∗
j (x + e0 − ej) + ∆0v

∗
s−1(x + e0/r − e0)−

n−1∑

j=k

∆jv
∗
j (x− ej) (45)

≥
n−1∑

j=s

∆jv
∗
j (x + e0/r − ej) + ∆0v

∗
s−1(x + e0/r − e0)−

n−1∑

j=k

∆jv
∗
j (x + e0 − ej) (46)

= −
s−2∑

j=k

∆jv
∗
j (x + e0/r − ej)−∆s−1v

∗
s−1(x + e0/r − es−1) + ∆0v

∗
s−1(x + e0/r − e0)

≥ −∆s−1v
∗
s−1(x + e0/r − es−1) + ∆0v

∗
s−1(x + e0/r − e0) (47)

= ∆0s−1v
∗
s−1(w − es−1) ≥ 0 (48)

(45) comes from (40) and (41). (46) comes from 3.c of Ṽj . (47) comes from the fact that

∆jv
∗
j (x) ≤ 0 since v∗j ∈ Ũj . (48) comes from Condition 2 of Ṽs−1.

If z∗k = · · · = z∗n, there is no difficulty since ∆0nT̃kv(x) ≥ 0 for x0 > z∗n and ∆0nT̃kv(x) <

0 for x0 ≤ z∗n. We can use the same argument to the limit point x0 = z∗n even if we don’t

have z∗k = · · · = z∗n.

Let’s show now that ∆0nT̃kv is decreasing in xn. For x0 ≤ z∗n, ∆0nT̃kv(x) doesn’t depend

on xn from Condition 1 of Ṽn and for x0 > z∗n, ∆0nT̃kv(x) is decreasing in xn from Condition

3.b of Ṽn.

Let’s show now that ∆nT̃kv is increasing in x0/r.

∆nT̃kv(x) =





∆nv(x− ek) if x0 ≤ z∗k

∆nv(x− e0) if x0 > z∗k

First of all, for 0 ≤ k ≤ n, ∆nv(x− ek) = ∆nv(x− en) for x0 ≤ z∗n. Indeed

∆nv(x− ek)−∆nv(x− en) = ∆knv(x− ek − en)−∆knv(x− ek) = 0

since ∆knv(x) doesn’t depend on xn for [x + ek]0 ≤ z∗n from Condition 1 of Ṽn. Therefore,

when x0 ≤ z∗n, ∆nT̃kv(x) = ∆nv(x− en) is increasing in x0/r from 3.c. Also, ∆nT̃kv(x) is
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increasing in x0/r for x0 > z∗n from Condition 3.c of Ṽn. At the limit point x0 = z∗n,

∆nT̃kv(x + e0/r)−∆nT̃kv(x) = ∆nv(x− e0 + e0/r)−∆nv(x− en)

≥ ∆nv(x− e0 + e0/r)−∆nv(x− en + e0/r)

= ∆0nv(x + e0/r − e0 − en)−∆0nv(x + e0/r − e0)

≥ 0

(Use 3.c and then 3.b to prove it).

In addition ∆0c, ∆nc and ∆0nc doesn’t depend neither on xn, nor on x0. Finally T̃ v

verifies Condition 3 of Ṽn if v ∈ Ṽn. Furthermore we can conclude that v ∈ Ṽn implies that

T̃ v ∈ Ṽn and by value iteration that v∗ ∈ Ṽn.

F Proof of Theorem 1

As we mentioned it earlier, P (0) is true. Suppose that P (n − 1) is true. Lemma 1 states

the first part of P (n). From Lemma 2, using value iteration and the fact that the optimal

infinite horizon policy can be obtained as the limit of finite horizon optimal policies, the

second part of P (n) is also true. As a result, for all n-class problems, the optimal policy is

a WR policy.

Note furthermore that (1 − λn)v∗n−1 is the optimal value function corresponding to

P̃n−1(µ,λn−1, h + bn,bn−1 − bi1n−1, r, α). The optimal control only depends on the sign

of ∆ijv
∗
n−1 which is not affected by the factor (1− λn) which shows the second part of the

theorem.

G Heuristic Evaluation for the optimal rationing levels

For a k-class problem, if we consider the WR policy whose rationing work level vector is

(zk, z), the corresponding average cost g(z) can be written as (see Gayon et al. 2006a):

g(z) = E
[
ck−1(Xk−1)

]
− (bk − bk+1)E

[
k∑

i=1

Xi + bX0c
]

(49)

We momentarily consider that X0 and zk are integers and we can then approximate g(z)

by

g(z) ' P{X0 ≤ zk}gk−1 +
z∑

s=zk+1

(h + bk)sP{X0 = s} − (bk − bk+1)E

[
k∑

i=1

Xi + X0

]
(50)

36



where Y = z−∑k
i=1 Xi−X0 is an M/Er/1 queue-length process with arrival rate

∑k
i=1 λi.

When X0 > zk, Y = z − X0 because of the WR policy structure. No simple analytical

expressions for the distribution of Y exists though, except for the exponential case (r =

1). We use then a geometric tail approximation for the queue length distribution of an

M/G/1 queue (see Tijms 1994 , Karaesmen, Liberopoulos and Dallery 2003 ). Following

this approach, it is then possible to approximate the value of z which minimizes g(z).

Let us present briefly the approximation of the queue length distribution π(n) of an

M/G/1 queue described in detail in Tijms (1994). We denote by λ the arrival rate and by

ρ the utilization rate. Let f(t) be the probability density function of the processing time

and L∗ be its Laplace transform, then the approximation is given by

π(n) = σηn for n sufficiently large

where τ = 1/η is the smallest real solution strictly larger than 1 of the below equation

L∗(λ(1− τ)) = τ (51)

In the case of an r-Erlang processing time with 1/µ and utilization rate ρ = λ/µ, (51)

becomes (
r

r + ρ(1− τ)

)r

= τ (52)

In general, there is no closed form solution of the last equation but it’s possible to obtain a

numerical solution. Define the polynomial function f by:

f(x) = [r + ρ(1− x)]rx− rr

Then τ is the smallest real solution, strictly larger than 1, of the equation f(x) = 0. The

derivative f ′ of f is then given by:

f ′(x) = [r + ρ− ρx)]r−1[r + ρ− ρ(1 + r)x]

and

f ′(x) = 0 ⇔ x =
r + ρ

ρ(1 + r)
≡ x1 or x =

r + ρ

ρ
≡ x2

It is straightforward to show that f is decreasing on the interval [y1, y2] and that τ ∈ [y1, y2].

A dichotomy algorithm then gives a numerical expression of τ .

Tijms also proposes an expression for the constant σ that is asymptotically exact. In

order to simplify the final form, we simply assume that the approximation given by equation

(51) is valid for all n > 1 as in Jemai and Karaesmen (2003) and that π(0) = 1− ρ where

ρ is the utilization rate. With the normalization condition, we obtain

σ =
ρ

η
(1− η)

37



In section ??, Y is approximated by an M/Er/1 queue-length process with utilization

rate ρk =
∑k

i=1 λi/µ. With the queue size distribution heuristic introduced above, we have




P [Y = 0] = 1− ρk

P [Y = j] = ρk
ηk

(1− ηk)η
j
k if j > 0

(53)

where ηk is the real solution strictly smaller than 1 of the following equation
(

r

r + ρk(1− 1/ηk)

)r

= 1/ηk

In general, there is no closed form solution of the last equation but its numerical solution

is straightforward. It is also possible to obtain an approximate value η̃k of ηk by taking η̃k

such that the mean size of the approximate queue be equal to the exact mean size of the

M/G/1 queue given by the Pollaczek-Khintchine formula

ρk

1− ηk
= ρk +

ρ2
k(1 + c2

v)
2(1− ρk)

⇒ η̃k = ρk
2− ρk(1− c2

v)
2− ρ2

k(1− c2
v)

where cv is the coefficient of variation of the processing time. In the case of an r-Erlang

processing time, c2
v = 1/r. We have tested but not reported the performance of the heuristic

with an approximated η̃k. It works well when r is small and tends to deteriorate when r is

increasing.

Using (53), (50) becomes

g(z) = P{Y > z − zk}gk−1 +
z∑

s=zk+1

(h + bk)sP{Y = z − s} − (bk − bk+1)E [z − Y ]

= gk−1
ρk

ηk
ηz−zk

k + (h + bk)
z−1∑

s=zk+1

s
ρk

ηk
(1− ρk)ρz−s

k + (h + bk)(1− ρk)z

+ (bk − bk+1)
(

ρk

1− ηk
− z

)
(54)

We can then evaluate the difference ∆g(z) = g(z + 1)− g(z)

∆g(z) = −ρk

ηk
ηz−zk

k [(1− ηk)(gk−1 − (h + bk)zk) + ηk(h + bk)] + h + bk+1

which is nondecreasing in z. The cost g(z) is convex and its minimum is attained at

min{z ∈ IR|∆g(z) > 0}, that is at z where,

z = zk +
ln ηk

ρk

h+bk+1

ηk(h+bk)+(1−ηk)(gk−1−(h+bk)zk)

ln ηk
= zk+1 (55)

We do not round off z in order to keep track of the production information. Using the value

of zk+1 and (54), a direct computation leads to the expression of gk

gk =
ρk

ηk

[
(
ηk

ρk
zk+1 − ηk

1− ηk
)(h + bk+1) +

(
gk−1 − (zk − ηk

1− ηk
)(h + bk)

)
η

zk+1−zk

k

]

= (h + bk+1)
(

zk+1 +
1− ρk

1− ηk

)

38



If we replace gk by its value in equation (55), it gives

zk+1 = zk + logηk

ηk(h + bk+1)

ρk(h + bk)
[
ηk + (1− ηk)

1−ρk−1

1−ηk−1

]

When we have obtained all the work rationing levels, we do

zk =
brzk + 1c

r

in order to have zk ∈ INr. We initialize the algorithm with z1 = 1− 1/r and ρ1 = 1,η0 = 0.
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