
HAL Id: hal-00421158
https://hal.science/hal-00421158v3

Preprint submitted on 7 Apr 2010 (v3), last revised 14 Jun 2010 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Untyping Typed Algebraic Structures and Colouring
Proof Nets of Cyclic Linear Logic

Damien Pous

To cite this version:
Damien Pous. Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic.
2010. �hal-00421158v3�

https://hal.science/hal-00421158v3
https://hal.archives-ouvertes.fr

Untyping Typed Algebraic Structures
and Colouring Proof Nets of Cyclic Linear Logic

Damien Pous?

CNRS (LIG, UMR 5217)

Abstract. We prove “untyping” theorems: in some typed theories (semir-
ings, Kleene algebras, residuated lattices, involutive residuated lattices),
typed equations can be derived from the underlying untyped equations.
As a consequence, the corresponding untyped decision procedures can
be extended for free to the typed settings. Some of these theorems are
obtained via a detour through fragments of cyclic linear logic, and give
rise to a substantial optimisation of standard proof search algorithms.

1 Introduction

Motivations. The literature contains many decidability or complexity results
for various algebraic structures. Some of these structures (rings, Kleene alge-
bras [18], residuated lattices [26]) can be generalised to typed structures, where
the elements come with a domain and a codomain, and where operations are
defined only when these domains and codomains agree according to some sim-
ple rules. Although such typed structures are frequently encountered in practice
(e.g., rectangular matrices, heterogeneous binary relations, or more generally,
categories), there are apparently no proper tools to easily reason about these.

This is notably problematic in proof assistants, where powerful decision pro-
cedures are required to let the user focus on difficult reasoning steps by leaving
administrative details to the computer. Indeed, although some important theo-
ries that can be decided automatically in Coq or HOL (e.g., Presburger arith-
metic [24], elementary real algebra [13], rings [12]), there are no high-level tools
to reason about heterogeneous relations or rectangular matrices.

In this paper, we show how to extend the standard decision procedures from
the untyped structures to the corresponding typed structures. In particular, we
make it possible to use standard tools to reason about rectangular matrices or
heterogeneous relations, without bothering about types (i.e., matrix dimensions
or domain/codomain information). The approach we propose is depicted below:
we study “untyping” theorems that allow one to prove typed equations as fol-
lows: 1) erase type informations, 2) prove the equation using standard, untyped,

? Work partially funded by the French ANR projet blanc “Curry-Howard pour la
Concurrence” CHOCO ANR-07-BLAN-0324

decision procedures, and 3) derive a typed proof from the untyped one.

untyped setting: â
decide

b̂
rebuild types

��
typed setting:

erase types

OO

a ? b

Besides the theoretical aspects, an important motivation behind this work comes
from a Coq library [4] in which we developed efficient tactics for partial axioma-
tisations of relations: the ideas presented here were used and integrated in this
library to extend our tactics to typed structures, for free.

Overview. We shall mainly focus on the two algebraic structures we mentioned
above, since they raise different problems and illustrate several aspects of these
untyping theorems: Kleene algebras [17] and residuated lattices [16].

– The case of Kleene algebras is the simplest one. The main difficulty comes
from the annihilating element (0): its polymorphic typing rule requires us to
show that equational proofs can be factorised so as to use the annihilation
laws at first, and then reason using the other axioms.

– The case of residuated structures is more involved: due to the particular form
of axioms about residuals, we cannot rely on standard equational axiomati-
sations of these structures. Instead, we need to exploit an equivalent cut-free
sequent proof system (first proposed by Ono and Komori [26]), and to notice
that this proof system corresponds to the intuitionistic fragment of cyclic lin-
ear logic [32]. The latter logic is much more concise and the corresponding
proof nets are easier to reason about, so that we obtain the untyping theo-
rem in this setting. We finally port the result back to residuated lattices by
standard means.

The above sequent proof systems have the sub-formula property, so that they
yield decision procedures, using proof search algorithms. As an unexpected ap-
plication, we show that the untyping theorem makes it possible to improve these
algorithms by reducing the set of proofs that have to be explored.

Outline. We introduce our notations and make the notion of typed structure
precise in §2. We study Kleene algebras and residuated lattices in §3 and §4,
respectively. We conclude with applications, related work, and directions for
future work in §5.

2 Notation, typed structures

Let X be an arbitrary set of variables, ranged over using letters x, y. Given a
signature Σ, we let a, b, c range over the set T (Σ + X) of terms with variables.
Given a set T of objects (ranged over using letters n,m, p, q), a type is a pair
(n,m) of objects (which we denote by n→ m, following categorical notation), a
type environment Γ : X → T 2 is a function from variables to types, and we will

2

define type judgements of the form Γ ` a : n → m, to be read “in environment
Γ , term a has type n→ m, or, equivalently, a is a morphism from n to m”. By
Γ ` a, b : n→ m, we mean that both a and b have type n→ m; type judgements
will include the following rule for variables:

Γ (x) = (n,m)

Γ ` x : n→ m
Tv

Similarly, we will define typed equality judgements of the form Γ ` a = b : n →
m: “in environment Γ , terms a and b are equal, at type n→ m”. Equality judge-
ments will generally include the following rules, so as to obtain an equivalence
relation at each type:

Γ (x) = (n,m)

Γ ` x = x : n→ m
v

Γ ` a = b : n→ m
Γ ` b = c : n→ m

Γ ` a = c : n→ m
t

Γ ` a = b : n→ m

Γ ` b = a : n→ m
s

By taking the singleton set as set of objects (T = {∅}), we recover standard,

untyped structures: the only typing environment is ∅̂ : x 7→ (∅, ∅), and types
become uninformative (this corresponds to working in a one-object category;
all operations are total functions). To alleviate notations, since the typing en-

vironment will always be either ∅̂ or an abstract constant value Γ , we shall
leave it implicit in type and equality judgements, by relying on the absence or
the presence of types to indicate which one to use. For example, we shall write
` a = b : n → m for Γ ` a = b : n → m, while ` a = b will denote the

judgement ∅̂ ` a = b : ∅ → ∅.

The question we study in this paper is the following one: given a signature
and a set of inference rules defining a type judgement and an equality judgement,
does the implication below hold, for all a, b, n,m such that ` a, b : n→ m?

` a = b entails ` a = b : n→ m .

In other words, in order to prove an equality in a typed structure, is it safe to
remove all type annotations, so as to work in the untyped underlying structure?

3 Kleene algebras

We study the case of residuated lattices in §4; here we focus on Kleene algebras.
In order to illustrate our methodology, we actually give the proof in three steps,
by considering two intermediate algebraic structures: monoids and semirings.
The former admit a rather simple and direct proof, while the latter are sufficient
to expose concisely the main difficulty in handling Kleene algebras.

3

3.1 Monoids

Definition 1. Typed monoids are defined by the signature {·2, 10}, together
with the following inference rules, in addition to the rules from §2.

` 1 : n→ n
To

` a : n→ m ` b : m→ p

` a · b : n→ p
Td

` 1 = 1 : n→ n
o

` a = a′ : n→ m ` b = b′ : m→ p

` a · b = a′ · b′ : n→ p
d

` a : n→ m

` 1 · a = a : n→ m
od

` a : n→ m ` b : m→ p ` c : p→ q

` (a · b) · c = a · (b · c) : n→ q
da

` a : n→ m

` a · 1 = a : n→ m
do

In other words, typed monoids are just categories: 1 and · correspond to identities
and composition. Rules (o) and (d) ensure that equality is reflexive at each type
(point (i) below) and preserved by composition. As expected, equalities relate
correctly typed terms only (ii):

Lemma 2. (i) If ` a : n→ m, then ` a = a : n→ m.
(ii) If ` a = b : n→ m, then ` a, b : n→ m.

Moreover, in this setting, type judgements enjoy some form of injectivity (types
are not uniquely determined due to 1, which is typed in a polymorphic way):

Lemma 3. If ` a : n→ m and ` a : n′ → m′, then we have n = n′ iff m = m′.

We need another lemma to obtain the untyping theorem: all terms related by
the untyped equality admit the same type derivations.

Lemma 4. If ` a = b; then for all n,m, we have ` a : n→ m iff ` b : n→ m.

Theorem 5. If ` a = b and ` a, b : n→ m, then ` a = b : n→ m.

Proof. We reason by induction on the derivation ` a = b; the interesting cases
are the following ones:

– the last rule used is the transitivity rule (t): we have ` a = b, ` b = c,
` a, c : n → m, and we need to show that ` a = c : n → m. By

Lemma 4, we have ` b : n → m, so that by the induction hypotheses, we
get ` a = b : n→ m and ` b = c : n→ m, and we can apply rule (t).

– the last rule used is the compatibility of · (d): we have ` a = a′, ` b = b′,
` a · b, a′ · b′ : n → m, and we need to show that ` a · b = a′ · b′ : n → m.

By case analysis on the typing judgements, we deduce that ` a : n → p,
` b : p→ m, ` a′ : n→ q, ` b′ : q → m, for some p, q. Thanks to Lemmas 3
and 4, we have p = q, so that we can conclude using the induction hypotheses
(` a = a′ : n→ p and ` b = b′ : p→ m), and rule (d). �

Note that the converse of Theorem 5 (` a = b : n → m entails ` a = b) is
straightforward, so that we actually have an equivalence.

4

3.2 Non-commutative semirings

Definition 6. Typed semirings are defined by the signature {·2,+2, 10, 00}, to-
gether with the following rules, in addition to the rules from Def. 1 and §2.

` 0 : n→ m
Tz

` a, b : n→ m

` a+ b : n→ m
Tp

` a = a′ : n→ m ` b = b′ : n→ m

` a+ b = a′ + b′ : n→ m
p

` 0 = 0 : n→ m
z

` a : n→ m

` a+ 0 = a : n→ m
pz

` a, b : n→ m

` a+ b = b+ a : n→ m
pc

` a, b, c : n→ m

` (a+ b) + c = a+ (b+ c) : n→ m
pa

` a : n→ m ` b, c : m→ p

` a · (b+ c) = a · b+ a · c : n→ p
dp

` a : n→ m

` a · 0 = 0 : n→ p
dz

` a : n→ m

` 0 · a = 0 : p→ m
zd

` a : n→ m ` b, c : p→ n

` (b+ c) · a = b · a+ c · a : p→ m
pd

In other words, typed semiring are categories enriched over a commutative
monoid: each homset is equipped with a commutative monoid structure, and
composition distributes over these monoid structures.

Lemma 2 is also valid in this setting: equality is reflexive and relates correctly
typed terms only. However, due to the presence of the annihilator element (0),
Lemmas 3 and 4 no longer hold: 0 has any type, and we have ` x · 0 · x = 0 while
x · 0 ·x only admits Γ (x) as a valid type. Moreover, some valid proofs cannot be
typed just by adding decorations: for example, 0 = 0 ·a ·a = 0 is a valid untyped
proof of 0 = 0; however, this proof cannot be typed if a has a non-square type.
Therefore, we have to adopt another strategy: we reduce the problem to the
annihilator-free case, by showing that equality proofs can be factorised so as to
use rules (pz), (dz), and (zd) at first, as oriented rewriting rules.

Definition 7. Let a be a term; we denote by a↓ the normal form of a, obtained
with the following convergent rewriting system:

a+ 0→ a 0 + a→ a 0 · a→ 0 a · 0→ 0

We say that a is strict if a↓ 6= 0. We let `+ = : → denote the strict
equality judgement obtained by removing rules (dz) and (zd), and requiring a
to be strict in rules (dp) and (pd).

On strict terms, we recover the injectivity property of types we had for monoids.
Then, using the same methodology as previously, one easily obtain the untyping
theorem for strict equality judgements.

Lemma 8. For all strict terms a such that ` a : n → m and ` a : n′ → m′,
we have n = n′ iff m = m′.

Proposition 9. If `+ a = b and ` a, b : n→ m, then `+ a = b : n→ m.

5

Note that the patched rules for distributivity, (dp+) and (pd+) are required in
order to obtain the counterpart of Lemma 4: if a was not required to be strict, we
would have `+ 0 · (x+ y) = 0 · x+ 0 · y, and the right-hand side can be typed
in environment Γ = {x 7→ (3, 2), y 7→ (4, 2)} while the left-hand side cannot.

We now have to show that any equality proof can be factorised, so as to
obtain a strict equality proof relating the corresponding normal forms:

Proposition 10. If ` a = b, then we have `+ a↓ = b↓.

Proof. We first show by induction that whenever ` a = b, a is strict iff b is
strict (†). Then we proceed by induction on the derivation ` a = b, we detail
only some cases:

(d) we have `+ a↓ = a′↓ and `+ b↓ = b′↓ by induction; we need to show
that `+ (a · b)↓ = (a′ · b′)↓. If one of a, a′, b, b′ is not strict, then (a · b)↓ =
(a′ · b′)↓ = 0, thanks to (†), so that we are done; otherwise, (a · b)↓ = a↓ · b↓,
and (a′ · b′)↓ = a′↓ · b′↓, so that we can apply rule (d).

(dz) trivial, since (a · 0)↓ = 0.

(dp) we need to show that `+ (a · (b+ c))↓ = (a · b+ a · c)↓; if one of a, b, c is not
strict, both sides reduce to the same term, so that we can apply Lemma 2(i)
(which holds in this setting); otherwise we have (a · (b+ c))↓ = a↓ · (b↓+ c↓)

and (a · b+ a · c)↓ = a↓ · b↓ + a↓ · c↓, so that we can apply rule (dp+) (a↓ is
obviously strict). �

Since the normalisation procedure preserves types and respects equalities, we
finally obtain the untyping theorem.

Lemma 11. If ` a : n→ m, then ` a↓ : n→ m and ` a = a↓ : n→ m.

Theorem 12. In semirings, for all a, b, n,m such that ` a, b : n→ m, we have
` a = b iff ` a = b : n→ m.

3.3 Kleene algebras

Kleene algebras are idempotent semirings equipped with a star operation [17];
they admit several important models, among which binary relations and regular
languages (the latter is complete [21,18]; since equality of regular languages is
decidable, so is the equational theory of Kleene algebras). Like previously, we
type Kleene algebras in a natural way, where star operates on “square” types:
types of the form n→ n, i.e., square matrices or homogeneous binary relations.

Definition 13. Typed Kleene algebras are defined by the signature {·2,+2, ?1, 10, 00},
together with the following rules, in addition that from Defs. 1 and 6, and §2),
and where ` a ≤ b : n→ m is an abbreviation for ` a+ b = b : n→ m.

` a : n→ n

` a? : n→ n
Ts

` a = b : n→ n

` a? = b? : n→ n
s

` a : n→ m

` a+ a = a : n→ m
pi

` a : n→ n

` 1 + a · a? = a? : n→ n
sp

` a · b ≤ b : n→ m

` a? · b ≤ b : n→ m
sl

` b · a ≤ b : n→ m

` b · a? ≤ b : n→ m
sr

6

The untyped version of this axiomatisation is that from Kozen [18]: axiom (pi)
corresponds to idempotence of +, the three other rules define the star opera-
tion (we omitted the mirror image of axiom (sp), which is derivable from the
other ones [4]). One can extend the proofs from the previous section without
unexpected difficulties: we add the rule 0? → 1 to the rewriting system used for
normalising terms, and we require b to be strict in the strict versions of rules
(sl) and (sr). We do not give more details here: complete proofs are available
as Coq scripts [28].

Theorem 14. In Kleene algebras, for all a, b, n,m such that ` a, b : n → m,
we have ` a = b iff ` a = b : n→ m.

4 Residuated lattices

We now move to our second main example, residuated lattices. These structures
also admit binary relations as models; they are of special interest since they make
it possible to reason algebraically about well-founded relations. For example, one
can use residuation to prove Newman’s Lemma in relation algebras [9]. We start
with a simpler structure.

A residuated monoid is a tuple (X,≤, ·, 1, \, /), such that (X,≤) is a partial
order, (X, ·, 1) is a monoid whose product is monotonic (a ≤ a′ and b ≤ b′ entail
a · b ≤ a′ · b′), and \, / are binary operations, respectively called left and right
divisions, characterised by the following equivalences:

a · b ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b

Accordingly, divisions can be typed in a natural way using following rules:

` c : n→ m ` a : n→ p

` a\c : p→ m
Tl

` c : n→ m ` b : p→ m

` c/b : n→ p
Tr

Although we can easily define a set of axioms to capture equalities provable in
residuated monoids [16], the transitivity rule (T) becomes problematic in this
setting (there is no counterpart to Lemma 4). Instead, we exploit a character-
isation due to Ono and Komori [26], based on a Gentzen proof system for the
full Lambek calculus [22]. Indeed, the “cut” rule corresponding to this system,
which plays the role of the transitivity rule, can be eliminated. Therefore, this
characterisation allows us to avoid the problems we encountered with standard
equational proof systems. In some sense, moving to cut-free proofs corresponds
to using a factorisation system, like we did in the previous section (Prop. 10).

4.1 Gentzen proof system for residuated monoids

Let l, k, h range over lists of terms, let l; k denote the concatenation of l and
k, and let ε be the empty list. The Gentzen proof system is presented below;

7

it relates lists of terms to terms. It is quite standard [16]: there is an axiom
rule (V), and, for each operator, an introduction and an elimination rule.

x ` x
v

ε ` 1
Io

l ` a l′ ` a′

l; l′ ` a · a′
Id

l; b ` a
l ` a/b

Ir
b; l ` a
l ` b\a

Il

l; l′ ` a
l; 1; l′ ` a

Eo
l; b; c; l′ ` a
l; b · c; l′ ` a

Ed
k ` b l; c; l′ ` a
l; c/b; k; l′ ` a

Er
k ` b l; c; l′ ` a
l; k; b\c; l′ ` a

El

The axiom rule can be generalised to terms (i), the cut rule is admissible (ii),
and the proof system is correct and complete w.r.t. residuated monoids (iii).

Proposition 15. (i) For all a, we have a ` a.
(ii) For all l, k, k′, a, b such that l ` a and k; a; k′ ` b, we have k; l; k′ ` b.

(iii) For all a, b, we have a ` b iff a ≤ b holds in all residuated monoids.

Proof. Point (i) is easy; see [26,25,16] for cut admissibility and completeness. �

Type decorations can be added to the proof system rather easily (see Fig. 2
in the appendix). However, using this proof system, we were able to prove the
untyping theorem only for the unit-free fragment: we needed to assume that
terms have at most one type, which is not true in presence of 1. This proof was
rather involved, so that we did not manage to circumvent this difficulty in a nice
and direct way. Instead, as hinted in the introduction, we have to move to the
following more symmetrical setting.

4.2 Cyclic MLL

The sequent system for residuated monoids actually corresponds to a non-commu-
tative version of intuitionistic multiplicative linear logic (IMLL) [11]: the product
(·) is a non-commutative tensor (⊗), and left and right divisions (\, /) are the
corresponding left and right linear implications (−◦, ◦−). Moreover, it happens
that this system is just the intuitionistic fragment of cyclic multiplicative linear
logic (MLL) [32]. The untyping theorem turned out to be easier to prove in this
setting, which we describe below.

We assume a copy X⊥ of the set of variables (X), and we denote by x⊥

the corresponding elements which we call dual variables. From now on, we shall
consider terms with both kinds of variables: T (Σ+X+X⊥). We keep an algebraic
terminology to remain consistent with the previous sections; notice that using
terminology from logic, a term is a formula and a variable is an atomic formula.

Definition 16. Typed MLL terms are defined by the signature {⊗2,`2, 10,⊥0},
together with the following typing rules:

Γ (x) = (n,m)

` x : n→ m
Tv

` 1 : n→ n
T1

` a : n→ m ` b : m→ p

` a⊗ b : n→ p
T⊗

Γ (x) = (n,m)

` x⊥ : m→ n
Tv⊥

` ⊥ : n→ n
T⊥

` a : n→ m ` b : m→ p

` a` b : n→ p
T`

8

Γ (x) = (n,m)

` x⊥;x : m
A

` 1 : n
1

` l : n
` ⊥; l : n

⊥
` l; a : n ` b; k : n

` l; a⊗ b; k : n
⊗

` a; b; l : n
` a` b; l : n

`
` a : n→ m ` l; a : m

` a; l : n
E

Fig. 1. Typed Sequents for Cyclic MLL.

Tensor (⊗) and par (`) are typed like the previous dot operation; bottom (⊥)
is typed like the unit (1); dual variables are typed by mirroring the types of the
corresponding variables. We extend type judgements to lists of terms as follows:

` ε : n→ n
Te

` a : n→ m ` l : m→ p

` a; l : n→ p
Tc

(be careful not to confuse ` a, b : n → m, which indicates that both a and b
have type n → m, with ` a; b : n → m, which indicates that the list a; b has
type n→ m). Linear negation is defined over terms and lists of terms as follows:

(x)⊥ , x⊥ 1⊥ , ⊥ (a⊗ b)⊥ , b⊥ ` a⊥ (a; l)⊥ , l⊥; a⊥

(x⊥)⊥ , x ⊥⊥ , 1 (a` b)⊥ , b⊥ ⊗ a⊥ ε⊥ , ε

Note that since we are in a non-commutative setting, negation has to reverse
the arguments of tensors and pars, as well as lists. Negation is involutive and
mirrors type judgements:

Lemma 17. For all l, l⊥⊥ = l; for all l, n,m, ` l : n→ m iff ` l⊥ : m→ n.

If we were using a two-sided presentation of MLL, judgements would be of the
form l ` k : m → n, intuitively meaning “l ` k is derivable in cyclic MLL, and
lists l and k have type m → n”. Instead, we work with one-sided sequents to
benefit from the symmetrical nature of MLL. At the untyped level, this means
that we replace l ` k with ` l⊥; k. According to the previous intuitions, the
list l⊥; k has a square type n → n: object m is hidden in the concatenation, so
that it suffices to record the outer object (n). Judgements finally take the form
` l : n, meaning “the one-sided MLL sequent ` l is derivable at type n→ n”.

Definition 18. Typed cyclic MLL is defined by the sequent calculus from Fig. 1.

Except for type decorations, the system is standard: the five first rules are the
logical rules of MLL [11]. Rule (E) is the only structural rule, this is a restricted
form of the exchange rule, yielding cyclic permutations: sequents have to be
thought of as rings [32]. As before, we added type decorations in a minimal way,
so as to ensure that derivable sequents have square types, as explained above:

Lemma 19. For all l, n, if ` l : n then ` l : n→ n.

9

We now give a graphical interpretation of the untyping theorem, using proof
nets. Since provability is preserved by cyclic permutations, one can draw proof
structures by putting the terms of a sequent on a circle [32]. For example, a proof
π of a sequent ` l0, . . . , li will be represented by a proof net whose interface is
given by the left drawing below.

l0
l1

l2

li

. .
.

l0
l1

l2

li

. .
.

n1

n2

n0

ππ

Suppose now that the corresponding list admits a square type: ` l : n → n,
i.e., ∀j ≤ i, ` lj : nj → nj+1, for some n0, . . . , ni+1 with n = n0 = ni+1. One
can add these type decorations as background colours, in the areas delimited by
terms, as we did on the right-hand side.

The logical rules of the proof system (Fig. 1) can then be represented by
the proof net constructions below (thanks to this sequent representation, the ex-
change rule (E) is implicit). Since these constructions preserve planarity, all proof
nets are planar [2], and the idea of background colours makes sense. Moreover,
they can be coloured in a consistent way, so that typed derivations correspond
to proof nets that can be entirely and consistently coloured.

n

l1

1
n

l1li

n

l1

li k1

kj

⊥

li

n

x
n

x⊥
m

π π

`⊗

. .
.. . .

ππ′

a ` b

.

a⊗ b

Therefore, one way to prove the untyping theorem consists in showing that any
proof net whose outer interface can be coloured can be coloured entirely. As an
example, we give an untyped derivation below, together with the corresponding
proof net. Assuming that Γ (x) = n→ m and Γ (y) = m→ p, the conclusion has
type p→ p, and the outer interface of the proof net can be coloured (here, with
colours p and n). The untyping theorem will ensure that there exists a typed
proof; indeed, the whole proof net can be coloured in a consistent way.

` x
⊥

; x
A

` y; y
⊥ E,A

` x
⊥

; (x⊗ y); y
⊥ ⊗

` x
⊥

; (x⊗ y)` y
⊥ `

` y; y
⊥ E,A

` x
⊥

; ((x⊗ y)` y
⊥

)⊗ y; y
⊥ ⊗

` ⊥; x
⊥

; ((x⊗ y)` y
⊥

)⊗ y; y
⊥ ⊥

` y
⊥

;⊥; x
⊥

; ((x⊗ y)` y
⊥

)⊗ y
E

` y
⊥ `⊥` x

⊥
; ((x⊗ y)` y

⊥
)⊗ y

`

n

`

⊗

`

`

p

p
p

m

⊗

We now embark in the proof of the untyping theorem for cyclic MLL; the
key property is that the types of derivable sequents are all squares:

Proposition 20. If ` l and ` l : n→ m, then n = m.

10

Proof. We proceed by induction on the untyped derivation ` l, but we prove
a stronger property: “the potential types of all cyclic permutations of l are
squares”, i.e., for all h,k such that l = h; k, for all n,m such that ` k;h : n→ m,
n = m. The most involved case is that of the tensor rule. Using symmetry
arguments, we can assume that the cutting point belongs to the left premise:
the conclusion of the tensor rule is ` l; l′; a⊗ b; k, we suppose that the induction
hypothesis holds for l; l′; a and b; k, and knowing that ` l′; a⊗ b; k; l : n → m,
we have to show n = m. Clearly, we have ` l′; a : n → p, ` b; k : p → q, and
` l : q → m for some p, q. By induction on the second premise, we have p = q,

so that ` l′; a; l : n → m. Since the latter list is a cyclic permutation of l; l′; a,
we can conclude with the induction hypothesis on the first premise. �

Theorem 21. In cyclic MLL, if ` l : n→ n, then we have ` l iff ` l : n.

Proof. The right-to-left implication is straightforward; for the direct implication,
we proceed by induction on the untyped derivation. The previous proposition
is required in the case of the tensor rule: we know that ` l; a, ` b; k, and
` l; a⊗ b; k : n → n, and we have to show that ` l; a⊗ b; k : n. Necessarily,

there is some m such that ` l; a : n → m and ` b; k : m → n; moreover, by
Prop. 20, n = m. Therefore, we can apply the induction hypotheses (so that
` l; a : n and ` b; k : n) and we conclude with the typed tensor rule. �

4.3 Intuitionistic fragment

To deduce that the untyping theorem holds in residuated monoids, it suffices to
show that the typed proof system from Fig. 2 corresponds to the intuitionistic
fragment of that from Fig. 1. This is well-known for the untyped case, and type
decorations do not add particular difficulties. Therefore, we just give a brief
overview of the extended proof.

The idea is to define the following families of input and output terms (Danos-
Regnier polarities [30,3]), and to work with sequents composed of exactly one
output term and an arbitrary number of input terms.

i ::= x⊥
∣∣ ⊥ ∣∣ i` i ∣∣ i⊗ o ∣∣ o⊗ i

o ::= x
∣∣ 1

∣∣ o⊗ o ∣∣ i` o ∣∣ o` i
Negation (−⊥) establishes a bijection between input and output terms. Terms of
residuated monoids (IMLL formulae) are encoded into output terms as follows.

ba · bc , bac ⊗ bbc ba/bc , bac` bbc⊥ bxc , x
b1c , 1 ba\bc , bac⊥ ` bbc

This encoding is a bijection between IMLL terms and output MLL terms; it
preserves typing judgements:

Lemma 22. For all a, n,m, we have ` a : n→ m iff ` bac : n→ m.

11

(Note that we heavily rely on overloading to keep notation simple.) The next
proposition shows that we actually obtained a fragment of typed cyclic MLL;
it requires the lemma below: input-only lists are not derivable. The untyping
theorem for residuated monoids follows using Thm. 21.

Lemma 23. If ` l, then l contains at least one output term.

Proposition 24. If ` l, a : n→ m, then l ` a : n→ m iff ` blc⊥; bac : m.

Proof. The forward implication is proved by an induction on the sequent deriva-
tion. For the reverse direction, we actually prove the following stronger prop-
erty, by induction on the untyped MLL derivation: “for all h, a, k such that
` bhc⊥; bac; bkc⊥, for all n,m such that ` h; k : n → m and ` a : n → m, we

have h; k ` a : n→ m”. Prop. 20 and Lemma 23 are required for the tensor rule;
the generalisation with two lists h, k is required to handle the exchange rule. �

Corollary 25. In residuated monoids, if ` l, a : n→ m, then we have l ` a iff
l ` a : n→ m.

4.4 Residuated lattices: additives.

The Gentzen proof system we presented for residuated monoids was actually de-
signed for residuated lattices [26], obtained by further requiring the partial order
(X,≤) to be a lattice (X,∨,∧). Binary relations fall into this family, by consid-
ering set-theoretic unions and intersections. The previous proofs scale without
major difficulty: on the logical side, this amounts to considering the additive
binary connectives (⊕,&). By working in multiplicative additive linear logic
(MALL) without additive constants, we get an untyping theorem for involutive
residuated lattices [31]; we deduce the untyping theorem for residuated lattices
by considering the corresponding intuitionistic fragment (see [28] for proofs).

On the contrary, and rather surprisingly, the theorem breaks if we include
additive constants (0,>), or equivalently, if we consider bounded residuated lat-
tices. The corresponding typing rules are given below, together with the logical
rule for top (there is no rule for zero).

` 0 : n→ m
T0 ` > : n→ m

T>
` l : m→ n

` >; l : n
>

The sequent x⊥ ⊗>; y⊥;>⊗ x gives a counter-example. This sequent basically
admits the two following untyped proofs:

` y⊥;>
E,>

` x;x⊥
E,A

` >
>

` x;x⊥ ⊗>
⊗

` y⊥;>⊗ x;x⊥ ⊗>
⊗

` x⊥ ⊗>; y⊥;>⊗ x
E

` >
>

` x;x⊥
E,A

` >; y⊥
>

` x;x⊥ ⊗>; y⊥
⊗

` > ⊗ x;x⊥ ⊗>; y⊥
⊗

` x⊥ ⊗>; y⊥;>⊗ x
E,E

However, this sequent admits the square type m → m whenever Γ (x) = (n,m)
and Γ (y) = (p, q), while the above proofs cannot be typed unless n = q or n = p,

12

respectively. Graphically, these proofs correspond to the proof nets below (where
the proof net construction for rule (>) is depicted on the left-hand side); these
proof nets cannot be coloured unless n = q or n = p.

nn

mm mpq m p

⊗
>

⊗
nn

n ⊗m

l1 li

⊗
q

. . .

This counter-example for MALL also gives a counter-example for IMALL: the
above proofs translate to intuitionistic proofs of y · (>\x) ` > · x, which is also
not derivable in the typed setting, unless n = q or n = p. The problem is actually
even stronger: while S ·(>\R) ⊆ >·R holds for all homogeneous binary relations
R,S (by the above proofs, for example), this law does not hold for arbitrary
heterogeneous relations (take, e.g., the empty relation from the empty set to {∅}
for R, and an arbitrary non-empty relation for S). This shows that we cannot
always reduce the analysis of typed structures to that of the underlying untyped
structures. Here, the equational theory of heterogeneous binary relations does
not reduce to the equational theory of homogeneous binary relations.

5 Conclusions and directions for future work

We proved untyping theorems for several standard structures, allowing us to
extend decidability results to the typed settings. All results have been formally
checked [28] with the Coq proof assistant. We conclude by discussing applica-
tions, related work, and directions for future work.

5.1 Applications

Improving proof search for residuated structures. The sequent proof systems we
mentioned in this paper have the sub-formula property, so that provability is
decidable in each case, using a simple proof search algorithm [25]. Surprisingly,
the concept of types can be used to cut off useless branches. Indeed, recall
Prop. 20: “the types of any derivable sequent are squares”. By contrapositive,
given an untyped sequent l, one can easily compute an abstract ‘most general
type and environment’ (n→ m,Γ), such that Γ ` l : n→ m holds (taking N as
the set of objects, for example); if n 6= m, then the sequent is not derivable, and
proof search can fail immediately on this sequent.

We did some experiments with a simple prototype [28]: we implemented fo-
cused [1] proof search for cyclic MALL, i.e., a recursive algorithm composed of
two phases: an asynchronous phase which is deterministic, and a synchronous
phase, where branching occurs (e.g., when applying rule (⊗)). The optimisation
consists in checking that the most general type of the sequent is square before
entering the synchronous phase. The overall complexity remains exponential—
provability is NP-complete [27]—but we get an exponential speed-up: the op-
timisation allows one to abort proof search immediately on approximately two

13

sequents over three. Even on small examples (sequents with twenty leaves over
ten variables), we gain an order of magnitude; see Fig. 3 in the appendix.

Decision of typed Kleene algebras in Coq. The untyping theorem for typed Kleene
algebras is quite important in the ATBR Coq library [4]: it allows one to use
our tactic for Kleene algebras [5] in typed settings, and, in particular, with
heterogeneous binary relations. The underlying decision procedure being quite
involved, we can hardly imagine proving its soundness w.r.t. typed settings. Even
writing a type-preserving version of the algorithm seems challenging.

At another level, we used the untyping theorem for semirings in order to
formalise Kozen’s completeness proof [18] for Kleene algebras (which we had
to formalise to reach all models). Indeed, this proof heavily relies on matrix
constructions, so that having adequate lemmas and tactics for working with
possibly rectangular matrices was a big plus: this allowed us to avoid the ad-hoc
constructions Kozen used to inject rectangular matrices into square ones.

5.2 References and related work

The relationship between residuated lattices and substructural logics is due to
Ono and Komori [26]; see [16] for a detailed survey about these structures. Cyclic
linear logic was suggested by Girard and studied by Yetter [32]. To the best of
our knowledge, the idea of adding types to the above structures is new. The
axiomatisation of Kleene algebras is due to Kozen [18].

Our typed structures can be seen as very special cases of partial algebras [6],
where the domain of partial operations is defined by typing judgements. Simi-
larly, one could use many-sorted algebras [14] to mimic types using sorts. Sev-
eral encodings from partial algebras to total ones were proposed in the liter-
ature [23,7]. Although they are quite general, these results do not apply here:
these encodings do not preserve the considered theory since they need to intro-
duce new symbols and equations; as a consequence, ordinary untyped decision
procedures can no longer be used after the translation. Dojer has shown that
under some conditions, convergent term rewriting systems for total algebras can
be used to prove existence equations in partial algebras [8]. While it seems appli-
cable to semirings, this approach does not scale to Kleene algebras or residuated
lattices, for which decidability does not arise from a term rewriting system.

Closer to our work is that from Kozen, who first proposed the idea of un-
typing typed Kleene algebras, in order to avoid the aforementioned matrix con-
structions [20]. He provided a different answer, however: using model-theoretic
arguments, he proved an untyping theorem for the Horn theory of “1-free Kleene
algebras”. The restriction to 1-free expressions is required, as shown by the fol-
lowing counter-example: ` 0 = 1 ⇒ a = b is a theorem of semirings, although
there are non trivial typed semirings where 0 = 1 holds at some types (e.g.,
empty matrices), while a = b is not universally true at other types.

14

5.3 Handling other structures

Action algebras [29,15] are a natural extension of the structures we studied in
this paper: they are also called residuated Kleene algebras; they combine the in-
gredients from residuated lattices and Kleene algebras. Although we do not know
whether the untyping theorem holds in this case, we can think of two strategies
to tackle this problem: 1) find a cut-free extension of the Gentzen proof system
for residuated lattices and adapt our current proof—such an extension is left as
an open question in [15], it would entail decidability of the equational theory of
action algebras; 2) find a “direct” proof of the untyping theorem for residuated
monoids, without using a Gentzen proof system, so that the methodology we
used for Kleene algebras can be extended.

Kleene algebras with tests [19] are another extension of Kleene algebras, which
is useful in program verification. Their equational theory is decidable, and al-
though the details have to be checked, the untyping theorem is likely to hold: a
possible difficulty could appear with the complement operation from the Boolean
algebras of tests, but tests are inherently homogeneous.

Our proofs about semirings can be adapted to handle the cases of allegories
and distributive allegories [10] (see [28] for proofs); however, the case of division
allegories, where left and right divisions are added, remains open.

5.4 Towards a generic theory

The typed structures we focused on can be described in terms of enriched cat-
egories, and the untyping theorems can be rephrased as asserting the existence
of faithful functors to one-object categories. It would therefore be interesting to
find out whether category theory may help to define a reasonable class of struc-
tures for which the untyping theorem holds. In particular, how could we exclude
the counter-example with additive constants in MALL?

For structures that are varieties, another approach would consist in using
term rewriting theory to obtain generic factorisation theorems (Lemma 10, which
we used to handle the annihilating element in semirings, would become a par-
ticular case). This seems rather difficult, however, since these kind of properties
are quite sensitive to the whole set of operations and axioms that are considered.

Acknowledgements

We warmly thank Olivier Laurent and Tom Hirschowitz for the highly stimulat-
ing discussions we had about this work. More generally, we are grateful to all
members of the Choco band.

15

http://choco.pps.jussieu.fr/

References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic and
Comput., 2(3):297–347, 1992.

2. G. Bellin and A. Fleury. Planar and braided proof-nets for MLL with mix. Archive for Math.
Log., 37:309–325, 1998.

3. G. Bellin and P. J. Scott. On the pi-calculus and linear logic. TCS, 135(1):11–65, 1994.
4. T. Braibant and D. Pous. Coq library: ATBR, algebraic tools for binary relations.

http://sardes.inrialpes.fr/~braibant/atbr/, May 2009.
5. T. Braibant and D. Pous. An efficient coq tactic for deciding Kleene algebras. In Proc. ITP,

LNCS. Springer, 2010. (to appear).
6. P. Burmeister. Algebras and Orders, chapter Partial Algebra. Kluwer Ac. Pub., 1993.
7. R. Diaconescu. An encoding of partial algebras as total algebras. Inf. Process. Lett., 109(23-

24):1245–1251, 2009.
8. N. Dojer. Applying term rewriting to partial algebra theory. Fund. Inf., 63(4):375–384, 2004.
9. H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical

induction. TCS, 179(1-2):103–135, 1997.
10. P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.
11. J.-Y. Girard. Linear logic. TCS, 50:1–102, 1987.
12. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in Coq. In

Proc. TPHOL ’05, volume 3603 of LNCS, pages 98–113. Springer, 2005.
13. J. Harrison. A HOL decision procedure for elementary real algebra. In HUG, volume 780 of

LNCS, pages 426–435. Springer, 1993.
14. P. J. Higgins. Algebras with a scheme of operators. Math. Nachrichten, 27:115–132, 1963.
15. P. Jipsen. From semirings to residuated Kleene lattices. Studia Logica, 76(2):291–303, 2004.
16. P. Jipsen and C. Tsinakis. A survey of residuated lattices. Ordered Algebraic Structures, 2002.
17. S. C. Kleene. Representation of events in nerve nets and finite automata. In Automata Studies,

pages 3–41. Princeton University Press, 1956.
18. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular events. Inf.

and Comput., 110(2):366–390, 1994.
19. D. Kozen. Kleene algebra with tests. Trans. Prog. Lang. and Sys., 19(3):427–443, 1997.
20. D. Kozen. Typed Kleene algebra. Technical Report TR98-1669, Cornell University., 1998.
21. D. Krob. Complete systems of B-rational identities. TCS, 89(2):207–343, 1991.
22. J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154–170, 1958.
23. T. Mossakowski. Relating CASL with other specification languages: the institution level. TCS,

286(2):367–475, 2002.
24. M. Norrish. Complete integer decision procedures as derived rules in hol. In TPHOLs, volume

2758 of LNCS, pages 71–86. Springer, 2003.
25. M. Okada and K. Terui. The finite model property for various fragments of intuitionistic linear

logic. J. Sym. Log., 64(2):790–802, 1999.
26. H. Ono and Y. Komori. Logics without the contraction rule. J. Sym. Log., 50(1):169–201,

1985.
27. M. Pentus. Lambek calculus is NP-complete. TCS, 357(1-3):186–201, 2006.
28. D. Pous. Web appendix to this paper, 2010. http://sardes.inrialpes.fr/~pous/utas/.
29. V. R. Pratt. Action logic and pure induction. In JELIA, volume 478 of LNCS, pages 97–120.

Springer, 1990.
30. L. Regnier. Lambda-calcul et réseaux. Thèse de doctorat, Université Paris VII, 1992.
31. A. M. Wille. A Gentzen system for involutive residuated lattices. Alg. Univ., 54:449–463, 2005.
32. D. N. Yetter. Quantales and (noncommutative) linear logic. J. Sym. Log., 55(1):41–64, 1990.

16

http://sardes.inrialpes.fr/~braibant/atbr/
http://sardes.inrialpes.fr/~pous/utas/

A Additional material

Γ (x) = (n,m)

x ` x : n→ m
v

ε ` 1 : n→ n
Io

` b : m→ p l; b ` a : n→ p

l ` a/b : n→ m
Ir

l ` a : n→ m l′ ` a′ : m→ p

l; l′ ` a · a′ : n→ p
Id

` b : p→ m b; l ` a : p→ n

l ` b\a : m→ n
Il

l; l′ ` a : n→ m

l; 1; l′ ` a : n→ m
Eo

` l′ : m→ q k ` b : n→ m l; c; l′ ` a : p→ q

l; c/b; k; l′ ` a : p→ q
Er

l; b; c; l′ ` a : n→ m

l; b · c; l′ ` a : n→ m
Ed

` l : p→ m k ` b : m→ n l; c; l′ ` a : p→ q

l; k; b\c; l′ ` a : p→ q
El

Fig. 2. Typed Sequents for Residuated Monoids.

synchronous phase asynchronous phase

without optimisation 12 400 kc 3 390 kc
with optimisation 500 kc 133 kc

square sequents 164 k -

Fig. 3. Number of recursive calls to the focused proof search algorithm, with and
without the optimisation from §5.1 (tests performed in MALL without additive
constants, by running the algorithm on 10 000 random sequents with 20 leaves
and 10 distinct variables; 1kc=1000 calls).

17

	Untyping Typed Algebraic Structures and Colouring Proof Nets of Cyclic Linear Logic

