Comparison of Different Strategies on DNA Chip Fabrication and DNA-Sensing: Optical and Electrochemical Approaches
Résumé
New strategies for the construction of DNA chips and the detection of DNA hybridization will be discussed in this review. The focus will be on the use of polypyrrole as a linker between a substrate and oligonucleotide probes. The modification step is based on the electrochemical copolymerization of pyrrole and oligonucleotides bearing a pyrrole group on its 5′ end. This strategy was employed for the immobilization of oligonucleotides on millimeter-sized electrodes, microelectrode arrays, as well as for the local structuring of homogeneous gold surfaces. Our approaches for the localized patterning of gold surfaces will be also discussed. Localized immobilization was achieved by using an electrospotting technique, where a micropipette served as an electrochemical cell where spot sizes with 800 μm diameters were fabricated. The use of a microcell using a Teflon covered metal needle with a cavity of 100 μm resulted in immobilized probe spots of 300 μm. Scanning electrochemical microscopy (SECM) was also used, and surface modifications of 100 μm were obtained depending on the experimental conditions. Different detection methods were employed for the reading of the hybridization event: fluorescence imaging, surface plasmon resonance imaging (SPRI), photocurrent measurements, and voltamperometric measurements using intercalators. Their advantages concerning the various immobilization strategies will also be discussed.