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Summary. Finding interestingness measures to evaluate association rules has be-
come an important knowledge quality issue in KDD. Many interestingness measures
may be found in the literature, and many authors have discussed and compared
interestingness properties in order to improve the choice of the most suitable mea-
sures for a given application. As interestingness depends both on the data structure
and on the decision-maker’s goals, some measures may be relevant in some context,
but not in others. Therefore, it is necessary to design new contextual approaches in
order to help the decision-maker select the most suitable interestingness measures.
In this paper, we present a new approach implemented by a new tool, ARQAT, for
making comparisons. The approach is based on the analysis of a correlation graph
presenting the clustering of objective interestingness measures and reflecting the
post-processing of association rules. This graph-based clustering approach is used to
compare and discuss the behavior of thirty-six interestingness measures on two pro-
totypical and opposite datasets: a highly correlated one and a lowly correlated one.
We focus on the discovery of the stable clusters obtained from the data analyzed
between these thirty-six measures.

1 Introduction

As the number of discovered rules increases, end-users, such as data analysts
and decision makers, are frequently confronted with a major challenge: how
to validate and select the most interesting of those rules. Over the last decade
the Knowledge Discovery in Databases (KDD) community has recognized this
challenge – often referred to as interestingness – as an important and difficult
component of the KDD process (Klemettinen et al. [15], Tan et al. [30]).
To tackle this problem, the most commonly used approach is based on the
construction of Interestingness Measures (IM).

In defining association rules, Agrawal et al. [1] [2] [3], introduced two IMs
: support and confidence. These are well adapted to Apriori algorithm con-
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straints, but are not sufficient to capture the whole aspects of the rule inter-
estingness. To push back this limit, many complementary IMs have been then
proposed in the literature (see [5] [14] [30] for a survey). They can be classified
in two categories [10]: subjective and objective. Subjective measures explicitly
depend on the user’s goals and his/her knowledge or beliefs. They are com-
bined with specific supervised algorithms in order to compare the extracted
rules with the user’s expectations [29] [24] [21]. Consequently, subjective mea-
sures allow the capture of rule novelty and unexpectedness in relation to the
user’s knowledge or beliefs. Objective measures are numerical indexes that
only rely on the data distribution.

In this paper, we present a new approach and a dedicated tool ARQAT
(Association Rule Quality Analysis Tool) to study the specific behavior of a
set of 36 IMs in the context of a specific dataset and in an exploratory analysis
perspective, reflecting the post-processing of association rules. More precisely,
ARQAT is a toolbox designed to help a data-analyst to capture the most
suitable IMs and consequently, the most interesting rules within a specific
ruleset.

We focus our study on the objective IMs studied in surveys [5] [14] [30]. The
list of IMs is added with four complementary IMs (Appendix A): Implication
Intensity (II), Entropic Implication Intensity (EII), TIC (information ratio
modulated by contra-positive), and IPEE (probabilistic index of deviation
from equilibrium). Furthermore, we present a new approach based on the
analysis of a correlation graph (CG) for clustering objective IMs.

This approach is applied to compare and discuss the behavior of 36 IMs on
two prototypical and opposite datasets: a strongly correlated one (mushroom
dataset [23]) and a lowly correlated one (synthetic dataset). Our objective is to
discover the stable clusters and to better understand the differences between
IMs.

The paper is structured as follows. In Section 2, we present related works
on objective IMs for association rules. Section 3 presents a taxonomy of the
IMs based on two criteria: the ”subject” (deviation from independence or
equilibrium) of the IMs and the ”nature” of the IMs (descriptive or statistical).
In Section 4, we introduce the new tool ARQAT for evaluating the behavior
of IMs. In Section 5, we detail the correlation graph clustering approach. And,
Section 6 is dedicated to a specific study on two prototypical and opposite
datasets in order to extract the stable behaviors.

2 Related works on objective IMs

The surveys on the objective IMs mainly address two related research issues :
(1) defining a set of principles or properties that lead to the design of a good
IM, (2) comparing the IM behavior from a data-analysis point of view. The
results yielded can be useful to help the user select the suitable ones.
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Considering the principles of a good IM issue, Piatetsky-Shapiro [25] intro-
duced the Rule-Interest, and proposed three underlying principles for a good
IM on a rule a → b between two itemsets a and b : 0 value when a and b are
independent, monotonically increasing with a and b, monotonically decreasing
with a or b. Hilderman and Hamilton [14] proposed five principles: minimum
value, maximum value, skewness, permutation invariance, transfer. Tan et
al. [30] defined five interestingness principles: symmetry under variable per-
mutation, row/column scaling invariance, anti-symmetry under row/column
permutation, inversion invariance, null invariance. Freitas [10] proposed an
”attribute surprisingness” principle. Bayardo and Agrawal [5] concluded that
the most interesting rules according to some selected IMs must reside along
a support/confidence border. The work allows for improved insight into the
data and supports more user-interaction in the optimized rule-mining process.
Kononenko [19] analyzed the biases of eleven IMs for estimating the quality
of multi-valued attributes. The values of information gain, J-measure, Gini-
index, and relevance tend to linearly increase with the number of values of an
attribute. Zhao and Karypis [33] used seven different criterion functions with
clustering algorithms to maximize or minimize a particular one. Gavrilov et al.
[11] studied the similarity measures for the clustering of similar stocks. Gras et
al. [12] discussed a set of ten criteria: increase, decrease with respect to certain
expected semantics, constraints for semantics reasons, decrease with trivial
observations, flexible and general analysis, discriminative residence with the
increment of data volume, quasi-inclusion, analytical properties that must be
countable, two characteristics of formulation and algorithms.

Some of these surveys also address the related issue of the IM comparison
by adopting a data-analysis point of view. Hilderman and Hamilton [14] used
the five proposed principles to rank summaries generated from databases and
used sixteen diversity measures to show that: six measures matched five pro-
posed principles, and nine remaining measures matched at least one proposed
principle. By studying twenty-one IMs, Tan et al. [30] showed that an IM can-
not be adapted to all cases and use both a support-based pruning and stan-
dardization methods to select the best IMs; they found that, in some cases
many IMs are highly correlated with each other. Eventually, the decision-
maker will select the most suitable measure by matching the five proposed
properties. Vaillant et al. [31] evaluated twenty IMs to choose a user-adapted
IM with eight properties: asymmetric processing of a and b for an association
rule a → b, decrease with nb, independence, logical rule, linearity with nab

around 0+, sensitivity to n, easiness to fix a threshold, intelligibility. Finally,
Huynh et al. [16] introduced the first result of a new clustering approach for
classifying thirty-four IMs with a correlation analysis.
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3 A taxonomy of objective IMs

In this section, we propose a taxonomy of the objective IMs (details in Ap-
pendixes A and B) according to two criteria: the ”subject” (deviation from
independence or equilibrium), and the ”nature” (descriptive or statistical).
The conjunction of these criteria seems to us essential to grasp the meaning
of the IMs, and therefore to help the user choose the ones he/she wants to
apply.

In the following, we consider a finite set T of transactions. We denote an
association rule by a → b where a and b are two disjoint itemsets. The itemset
a (respectively b) is associated with a transaction subset A = T (a) = {t ∈
T, a ⊆ t} (respectively B = T (b)). The itemset a (respectively b) is associated
with A = T (a) = T − T (a) = {t ∈ T, a 6⊆ t} (respectively B = T (b)). In order
to accept or reject the general trend to have b when a is present, it is quite
common to consider the number nab of negative examples (contra-examples,
counter-examples) of the rule a → b. However, to quantify the “surprisingness”
of this rule, consider some definitions are functions of n = |T |, na = |A|,
nb = |B|, na = |A|, nb = |B|.

Let us denote that, for clarity, we also keep the probabilistic notations p(a)
(respectively p(b), p(a and b), p(a and b)) as the probability of a (respectively
b, a and b, a and b). This probability is estimated by the frequency of a:
p(a) = na

n (respectively p(b) = nb

n , p(a and b) = nab

n , p(a and b) =
nab

n ).

3.1 Subject of an IM

Generally speaking, an association rule is more interesting when it is sup-
ported by lots of examples and few negative examples. Thus, given na, nb and
n, the interestingness of a → b is minimal when nab = min(na, nb) and maxi-
mal when nab = max(0, na−nb). Between these extreme situations, there exist
two significant configurations in which the rules appear non-directed relations
and therefore can be considered as neutral or non-existing: the independence
and the equilibrium. In these configurations, the rules are to be discarded.

Independence

Two itemsets a and b are independent if p(a and b) = p(a)× p(b), i.e. n.nab =
nanb. In the independence case, each itemset gives no information about the
other, since knowing the value taken by one of the itemsets does not alter
the probability distribution of the other itemset: p(b\a) = p(b\a) = p(b) and
p(b\a) = p(b\a) = p(b) (the same for the probabilities of a and a given b or
b). In other words, knowing the value taken by an itemset lets our uncertainty
about the other itemset intact. There are two ways of deviating from the
independent situation: either the itemsets a and b are positively correlated
(p(a and b) > p(a) × p(b)), or they are negatively correlated (p(a and b) <
p(a) × p(b)).
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Equilibrium

We define the equilibrium of a rule a → b as the situation where examples
and negative examples are equal in numbers: nab = nab = 1

2na [7]. In this

situation, the itemset a is as concomitant with b as with b in the data. So a
rule a → b at equilibrium is as directed towards b as towards b. There are two
ways of deviating from this equilibrium situation: either a is more concomitant
with b than with b, or a is more concomitant with b than with b.

Deviation from independence and from equilibrium

As there exist two different notions of neutrality, the objective interestingness
of association rules must be measured from (at least) two complementary
points of view: the deviation from independence, and the deviation from equi-
librium. These are what we call the two possible subjects for the rule IMs.
These deviations are directed in favor of examples and in disfavor of negative
examples.

Definition 1. An IM m evaluates a deviation from independence if the IM
has a fixed value at the independence:

m(n, na, nb,
nanb

n
) = constant

Definition 2. An IM m evaluates a deviation from equilibrium if the IM has
a fixed value at the equilibrium:

m(n, na, nb,
na

2
) = constant

Independence is a function of four parameters n, na, nb and nab
1, whereas

equilibrium is a function of the two parameters na and nab. Thus, all the
IMs of deviation from independence depend on the four parameters, while the
IMs of deviation from equilibrium do not depend on nb and n generally. The
only exceptions to this principle are IPEE [7] and the Least Contradiction [4].
IPEE (see the formula in Appendix A) measures the statistical significance
of the deviation from equilibrium. It depends on n. The Least Contradiction
depends on nb (see the formula in Appendix B). This is a hybrid IM which
has a fixed value at equilibrium – as the IMs of deviation from equilibrium –
but decreases with nb – as the IMs of deviation from independence.

Comparison of the filtering capacities

We aim at filtering the rules with a threshold on the IMs (by retaining only
the high values of the IMs), and at comparing the numbers of rules that are

1 Here we have chosen n
ab

as a parameter, but we could have chosen another
cardinality of the joint distribution of the itemsets a and b, such as nab.
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rejected by the IMs of deviation from equilibrium and from independence. Let
us consider a rule with the cardinalities n, na, nb, and nab. By varying nab

with fixed n, na, and nb, one can distinguish two different cases:

• Case 1: nb ≥ n
2 . Then

nanb

n ≤ na

2 , and the rule goes through the indepen-
dence before going through the equilibrium when nab increases.

• Case 2: nb ≤ n
2 . Then

nanb

n ≥ na

2 , and the rule goes through the equilibrium
before going through the independence when nab increases.

Let us now compare an IM of deviation from equilibrium meql and an IM of
deviation from independence midp for these two cases. In order to have a fair
comparison, we suppose that the two IMs have similar behaviors: same value
for a logical rule, same value for equilibrium/independence, same decrease
speed with regard to the negative examples. For example, meql and midp

can be the Descriptive Confirmed-Confidence [18] and the Loevinger index
respectively [22] (Appendix B). As shown in figure 1, midp is more filtering
than meql in case 1, whereas meql is more filtering than midp in case 2. More
precisely, in case 1, midp contributes to rejecting the bad rules, while in case
2 it is meql. This confirms that the IMs of deviation from equilibrium and the
IMs of deviation from independence are complementary, the second ones not
being systematically ”better” than the first ones2. In particular, the IMs of
deviation from equilibrium must not be neglected when itemsets are rare (low
frequency). In this situation, case 2 is more frequent than case 1.

(a) case 1 (nb ≥ n

2
) (b) case 2 (nb ≤ n

2
)

Fig. 1. Comparison of Descriptive Confirmed-Confidence and Loevinger index
(E: equilibrium, I: independence)

In our IM taxonomy, the subject of an IM could be the deviation from
independence or the deviation from equilibrium. However, as some IMs do
not assess any of the two deviation, a third cluster must be added (”other
measures” in Tab. 1). The IMs of this cluster generally have a fixed value

2 Numerous authors consider that a good IM must vanish at independence (prin-
ciple originally proposed in [25]). This amounts to saying that IMs of deviation
from independence are better than IMs of deviation from equilibrium.



A graph-based clustering approach 7

only for the rules with no negative examples (nab = 0) or for the rules with
no examples (nab = 0). Most of them are similarity measures.

3.2 Nature of an IM

The objective IMs can also be classified according to their descriptive or sta-
tistical nature.

Descriptive IMs

The descriptive (or frequential) IMs do not vary with the cardinality expansion
(when all the data cardinalities are increased or decreased in equal propor-
tion). A descriptive IM m satisfies m(n, na, nb, nab) = m(α.n, α.na, α.nb, α.nab)
for any strictly positive constant α. These IMs take the data cardinalities
into account only in a relative way (by means of the frequencies p(a), p(b),
p(a and b)) and not in an absolute way (by means of the cardinalities na, nb,
nab).

Statistical IMs

The statistical IMs are those which vary with the cardinality expansion. They
take into account the size of the phenomena studied. Indeed, a rule is statis-
tically more valid when it is accessed on a large amount of data. Among the
statistical IMs, one can find the probabilistic IMs, which compare the observed
distribution to an expected distribution, such as the II measure presented in
Appendix A.

3.3 IM taxonomy

A taxonomy according to the nature and subject of the objective IMs is given
below (Tab. 1). On the column, we can see that most of the IMs are descriptive.
Another observation shows that IPEE is the only one statistical IM computing
the deviation from equilibrium.

4 ARQAT tool

ARQAT (Fig. 2) is an exploratory analysis tool that embeds thirty-six objec-
tive IMs studied in surveys (See Appendix B for a complete list of selected
IMs).

It provides graphical views structured in five task-oriented groups: ruleset
analysis, correlation and clustering analysis, interesting rules analysis, sensi-
tivity analysis, and comparative analysis.
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X
X

X
X

X
XX

Subject

Nature
Descriptive IMs Statistical IMs

Measures of

deviation from

equilibrium

– Confidence (5),
– Laplace (21),
– Sebag & Schoenauer (31),
– Example & Contra-Example (13),
– Descriptive Confirm (9),
– Descriptive Confirmed-Confidence (10),
– Least Contradiction (22)

– IPEE (16)

Measures of

deviation from

independence

– Phi-Coefficient (28),
– Lift (23),
– Loevinger (25),
– Conviction (6),
– Dependency (8),
– Pavillon (27),
– J-measure (18),
– Gini-index (14),
– TIC (33),
– Collective Strength (4),
– Odds Ratio (26),
– Yules’s Q (34),
– Yule’s Y (35),
– Klosgen (20),
– Kappa (19)

– II (15),
– EIIα = 1 (11),
– EIIα = 2 (12),
– Lerman (24),
– Rule Interest (30)

Other measures

– Support (32),
– Causal Support (3),
– Jaccard (17),
– Cosine (7),
– Causal Confidence (0),
– Causal Confirm (1),
– Causal Confirmed-Confidence (2),
– Putative Causal Dependency (29)

Table 1. Taxonomy of the objective IMs

The ARQAT input is a set of association rules R where each association
rule a → b must be associated with the four cardinalities n, na, nb, and nab.

In the first stage, the input ruleset is preprocessed in order to compute
the IM values of each rule, and the correlations between all IM pairs. The
results are stored in two tables: an IM table (R×I) where rows are rules and
columns are IM values, and a correlation matrix (I×I) crossing IMs. At this
stage, the ruleset may also be sampled (filtering box in Fig. 2) in order to
focus the study on a more restricted subset of rules.

In the second stage, the data-analyst can drive the graphical exploration of
results through a classical web-browser. ARQAT is structured in five groups
of task-oriented views. The first group (1 in Fig. 2) is dedicated to ruleset
and simple IM statistics to better understand the structure of the IM table
(R×I). The second group (2) is oriented to the study of IM correlation in
table (I×I) and IM clustering in order to select the most suitable IMs. The
third one (3) focuses on rule ordering to select the most interesting rules. The
fourth group (4) proposes to study the sensitivity of IMs. The last group (5)
offers the possibility to compare the results obtained from different rulesets.
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Fig. 2. ARQAT structure.

In this section, we focus on the description of the first three groups and
we illustrate them with the same ruleset: 123228 association rules extracted
by Apriori algorithm (support 12%) from the mushroom dataset [23].

4.1 Ruleset statistics

The basic statistics are summarized on three views of ARQAT. The first one,
ruleset characteristics, shows the distributions underlying rule cardinalities,
in order to detect ”borderline cases”. For instance, in Tab. 2, the first line
gives the number of ”logical” rules i.e. rules without negative examples. We
can notice that the number of logical rules is here very high (≈13%).

N Type Count Percent

1 n
ab

= 0 16158 13.11%

2 n
ab

= 0 & na < nb 15772 12.80%

3 n
ab

= 0 & na < nb & nb = n 0 0.00%

4 na > nb 61355 49.79%

5 nb = n 0 0.00%

Table 2. Some ruleset characteristics of the mushroom ruleset.

The second view, IM distribution (Fig. 3), draws the histograms for each
IM. The distributions are also completed with classically statistical indexes :
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minimum, maximum, average, standard deviation, skewness and kurtosis val-
ues. In Fig. 3, one can see that Confidence (line 5) has an irregular distribution
and a great number of rules with 100% confidence; it is very different from
Causal Confirm (line 1).

The third view, joint-distribution analysis (Fig. 4), shows the scatterplot
matrix of all IM pairs. This graphical matrix is very useful to see the details of
the relationships between IMs. For instance, Fig. 4 shows four disagreement
shapes: Rule Interest vs Yule’s Q (4), Sebag & Schoenauer vs Yule’s Y (5),
Support vs TIC (6), and Yule’s Y vs Support (7) (highly uncorrelated). On
the other hand, we can notice four agreement shapes on Phi-Coefficient vs
Putative Causal Dependency (1), Phi-Coefficient vs Rule Interest (2), Putative
Causal Dependency vs Rule Interest (3), and Yule’s Q vs Yule’s Y (8) (highly
correlated).

Fig. 3. Distribution of some IMs on the mushroom dataset.

4.2 Correlation analysis

This task aims at delivering IM clustering and facilitating the choice of a
subset of IMs that is best-adapted to describe the ruleset. The correlation
values between IM pairs are computed in the preprocessing stage by using the
Pearson’s correlation coefficient and stored in the correlation matrix (I×I).
Two visual representations are proposed. The first one is a simple summary
matrix in which each significant correlation value is visually associated with a
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Fig. 4. Scatterplot matrix of joint-distributions on the mushroom dataset.

different color (a level of gray). For instance, the furthest right dark cell from
Fig. 5 shows a low correlation value between Yule’s Y and Support. The other
seventy-nine gray cells correspond to high correlation values.

The second one (Fig. 6) is a graph-based view of the correlation matrix. As
graphs are a good means to offer relevant visual insights on data structure,
the correlation matrix is used as the relation of an undirected and valued
graph, called ”correlation graph”. In a correlation graph, a vertex represents
an IM and an edge value is the correlation value between two vertices/IMs.
We also add The possibility to set a minimal threshold τ (maximal threshold
θ respectively) to retain only the edges associated with a high correlation
(respectively low correlation); the associated subgraphs are denoted by CG+
and CG0.

These two subgraphs can then be processed in order to extract clusters of
IMs: each cluster is defined as a connected subgraph. In CG+, each cluster
gathers correlated or anti-correlated IMs that may be interpreted similarly:
they deliver a close point of view on data. Moreover, in CG0, each cluster
contains uncorrelated IMs: i.e. IMs that deliver a different point of view.

Hence, as each graph depends on a specific ruleset, the user can use the
graphs as data insight, which graphically help him/her select the minimal
set of the IMs best adapted to his/her data. For instance in Fig. 6, CG+
graph contains twelve clusters on thirty-six IMs. The user can select the most
representative IM in each cluster, and then retain it to validate the rules.
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Fig. 5. Summary matrix of correlations on the mushroom dataset.

A close observation on the CG0 graph (Fig. 6) shows an uncorrelated
cluster formed by II, Support and Yule’s Y measures (also the two dark cells
in Fig. 5). This observation is confirmed on Fig. 4 (7). CG+ graph shows
a trivial cluster where Yule’s Q and Yule’s Y are strongly correlated. This
is also confirmed in Fig. 4 (8), showing a functional dependency between the
two IMs. These two examples show the interest of using the scatterplot matrix
complementarily (Fig. 4) with the correlation graphs CG0, CG+ (Fig. 6) in
order to evaluate the nature of the correlation links, and overcome the limits
of the correlation coefficient.

4.3 Interesting rule analysis

In order to help a user select the most interesting rules, two specific views are
implemented. The first view (Fig. 7) collects a set of a given number of inter-
esting rules for each IM in one cluster, in order to answer the question: how
interesting are the rules of this cluster?. The selected rules can alternatively
be visualized with parallel coordinate drawing (Fig. 8). The main interest of
such a drawing is to rapidly see the IM rankings of the rules.

These two views can be used with the IM values of a rule or alternatively
with the rank of the value. For instance, Fig. 7 and Fig. 8 use the rank to
evaluate the union of the ten interesting rules for each of the ten IMs in the
C0 cluster (see Fig. 6). The Y-axis in Fig. 8 holds the rule rank for the cor-
responding IM. By observing the concentration lines on low rank values, one
can obtain four IMs: Confidence(5), Descriptive Confirmed-Confidence(10),
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Fig. 6. CG0 and CG+ graphs on the mushroom dataset (clusters are highlighted
with a gray background).

Example & Contra-Example(13), and IPEE (16) (on points 1, 2, 3, 4 respec-
tively) that are good for a majority of interesting rules. This can also be
retrieved from columns 5, 10, 13, 16 of Fig. 7. Among these four IMs, IPEE
is the most suitable choice because of the lowest rule ranks obtained.

Fig. 7. Union of the ten interesting rules of the cluster C0 on the mushroom dataset
(extract).

5 Focus on graph-based clustering approach

When considering a large set of IMs, the graph-based view of the correlation
matrix may be quite complex. In order to highlight the more ”natural” clus-
ters, we propose to construct two types of subgraphs : the correlated (CG+)
and the uncorrelated (CG0) partial subgraph. In this section we present the
different filtering thresholds for their construction. We also extend the correla-
tion graphs to graphs of stable clusters (CG0 and CG+) in order to compare
several rulesets.
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Fig. 8. Plot of the union of the ten interesting rules of the cluster C0 on the
mushroom dataset.

5.1 Principles

Let R(D) = {r1, r2, ..., rp} denote a set of p association rules derived from a
dataset D. Each rule a → b is described by its itemsets (a, b) and its cardi-
nalities (n, na, nb, nab). Let M be the set of q available IMs for our analysis
M = {m1,m2, ...,mq}. Each IM is a numerical function on rule cardinalities:
m(a → b) = f(n, na, nb, nab). For each IM mi ∈ M , we can construct a vector
mi(R) = {mi1,mi2, ...,mip}, i = 1..q, where mij corresponds to the calculated
value of the IM mi for a given rule rj .

The correlation value between any two IMs mi,mj{i, j = 1..q} on the set
of rules R is calculated by using a Pearson’s correlation coefficient ρ(mi,mj)
[27], where mi,mj are the average values calculated of vector mi(R) and
mj(R) respectively:

ρ(mi,mj) =

∑p
k=1[(mik − mi)(mjk − mj)]

√

[
∑p

k=1(mik − mi)2][
∑p

k=1(mjk − mj)2]

In order to make the interpretation of the large set of correlation values
easier, we introduce the following definitions:

Definition 3. Two IMs mi and mj are τ -correlated with respect to the
dataset D if their absolute correlation value is greater than or equal to a
given threshold τ : |ρ(mi,mj)| ≥ τ . And, conversely, two IMs mi and mj

are θ-uncorrelated with respect to the dataset D if the absolute value of their
correlation value is lower than or equal to a threshold value θ: |ρ(mi,mj)| ≤ θ.
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For θ-uncorrelated IMs, we use a statistical test of significance by choosing
a level of significance of the test α = 0.05 for hypothesis testing (common
values for α are: α = 0.1, 0.05, 0.005). The threshold θ is then calculated by the
following formula: θ = 1.960/

√
p in a population of size p [27]. The assignment

τ = 0.85 of τ -correlated is used because this value is widely acceptable in the
literature.

As the correlation coefficient is symmetrical, the q(q − 1)/2 correlation
values can be stored in one half of the table q × q. This table (I × I) can also
be viewed as the relation of an undirected and valued graph called correlation
graph, in which a vertex value is an IM and an edge value is the correlation
value between two vertices/IMs.

Fig. 9. An illustration of the correlation graph.

For instance, Fig. 9 can be the correlation graph obtained on five associ-
ation rules R(D) = {r1, r2, r3, r4, r5} extracted from a dataset D and three
IMs M = {m1,m2,m3} whose values and correlations are given in Tab. 3.

R × I m1 m2 m3

r1 0.84 0.89 0.91
r2 0.86 0.90 0.93
r3 0.88 0.94 0.97
r4 0.94 0.95 0.99
r5 0.83 0.87 0.84

I × I m1 m2 m3

m1 0.91 0.86
m2 0.96
m3

Table 3. Correlation values for three IMs and five association rules.

5.2 Correlated versus uncorrelated graphs

Unfortunately, when the correlation graph is complete, it is not directly
human-readable. We need to define two transformations in order to extract
more limited and readable subgraphs. By using definition 3, we can extract
the correlated partial subgraph (CG+): the subgraph composed of edges asso-
ciated with a τ -correlated. On the same way, the uncorrelated partial subgraph
(CG0) where we only retain edges associated with correlation values close to
0 ( θ-uncorrelated).
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These two partial subgraphs can then be used as a visualization support
in order to observe the correlative liaisons between IMs.

We can also observe the clusters of IMs corresponding with the connected
parts of the graphs.

5.3 Extension to graph of stable clusters

In order to facilitate the comparison between several correlation matrices, we
have introduced some extensions to define the stable clusters between IMs.

Definition 4. The CG+ graph (respectively CG0 graph) of a set of k
rulesets R = {R(D1), ..., R(Dk)} is defined as the average graph of intersec-
tion of the k partially correlated (respectively uncorrelated) subgraphs CG+k

(respectively CG0k) calculated on R. Hence, each edge of CG+ (respectively
CG0) is associated with the average value of the corresponding edge in the k
CG+k graphs. Therefore, the CG+ (respectively CG0) graph allows visual-
izing the strongly (respectively weakly) stable correlations, as being common
to k studied rulesets.

Definition 5. We call τ -stable (respectively θ-stable) clusters the con-
nected part of the CG+ (respectively CG0) graph.

6 Study of IM behavior on two prototypical and

opposite datasets

We have applied our method to two ”opposite” datasets: D1 and D2, in order
to compare correlation behavior and more precisely, to discover some stable
clusters.

6.1 Data description

Our experiments are based on the categorical mushroom dataset (D1) from
Irvine machine-learning database repository and a synthetic dataset (D2).
The latter is obtained by simulating the transactions of customers in retail
businesses, the dataset was generated using the IBM synthetic data generator
[3]. D2 has the typical characteristic of the Agrawal dataset T5.I2.D10k. We
also generate the set of association rules (ruleset) R1 (respectively R2) from
the dataset D1 (respectively D2) using the Apriori algorithm [2] [3]. For a
closer evaluation of the IM behavior of the most interesting rules from these
two rulesets, we have extracted R

′
1 (respectively R

′
2) from R1 (respectively

R2) as the union of the first 1000 rules (≈ 1%, ordered by decreasing IM
values) issued from each IM (see Tab. 4).

In our experiment, we compared and analyzed the thirty-six IMs defined
in Appendix B. We must notice that EII(α = 1) and EII(α = 2) are two
entropic versions of the II measure.
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Dataset Items Transactions Number of rules R(D) θ τ R(D)
(Average length) (support threshold)

D1 118 (22) 8416 123228 (12%) R1 0.005 0.85 R1

10431 (12%) R
′
1 0.020 0.85 R

′
1

D2 81 (5) 9650 102808 (0.093%) R2 0.003 0.85 R2

7452 (0.093%) R
′
2 0.012 0.85 R

′
2

Table 4. Description of the datasets.

6.2 Discussion

The analysis aims at finding stable relations between the IMs studied over the
four rulesets. We investigate in: (1) the CG0 graphs in order to identify the
IMs that do not agree for ranking the rules, (2) the CG+ graph in order to
find the IMs that do agree for ranking the rules.

Ruleset Number of correlations Number of clusters
τ -correlated θ-uncorrelated CG+ CG0

R1 79 2 12 34

R
′
1 91 15 12 21

R2 65 0 14 36

R
′
2 67 17 12 20

Table 5. Comparison of correlation.

CG+ and CG0

Fig. 10 shows four CG+ graphs obtained from the four rulesets. As seen be-
fore, the sample rulesets and the original rulesets have close results so we can
use the sample rulesets for representing the original rulesets. This observa-
tion is useful when we evaluate the CG+ graphs but not for CG0 graphs. For
example, with the CG+ graph of R1 (Fig. 10), one can choose the largest
cluster containing the fourteen IMs (Causal Support, Pavillon, Lift, Lerman,
Putative Causal Dependency, Rule Interest, Phi-Coefficient, Klosgen, Depen-
dency, Kappa, Gini-index, Cosine, Jaccard, TIC) for his/her first choice. In
this cluster one can also see the weak relation between TIC and the other IMs
of the cluster. Tab. 5 also shows the two opposite tendencies obtained from
the number of τ -correlated computed: 79(R1) → 91(R

′
1), 65(R2) → 67(R

′
2).

With the four CG0 graphs (Fig. 11), one can easily see that the number of
θ-uncorrelated increases when the most interesting rules are selected: 2(R1) →
15(R

′
1), 0(R2) → 17(R

′
2) (Fig. 11, Tab. 5).
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CG+ (R1) CG+ (R
′
1)

CG+ (R2) CG+ (R
′
2)

Fig. 10. CG+ graphs (clusters are highlighted in gray).

CG0 graphs: uncorrelated stability

Uncorrelated graphs first show that there are no θ-stable clusters that appear
on the four rulesets studied in Fig. 11. Secondly, there is no CG0 graph from
these datasets. A close observation of four CG0 graphs shows that at least
one IM in each cluster will later be clustered around in a τ -stable cluster of
CG+ graph (Fig. 11, Fig. 12) like Yule’s Y, Putative Causal Dependency,
EII(α = 2), Cosine, Laplace so that the stronger the θ-uncorrelated, the more
interesting the IM that participated in the θ-uncorrelated.

CG+ graph: correlated stability

From Tab. 5, we can see that, R
′
1 is approximately twice as correlated as R

′
2.

As seen in Fig. 12, five τ -stable clusters found come from the datasets studied.
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CG0 (R1) CG0 (R
′
1)

CG0 (R2) CG0 (R
′
2)

Fig. 11. CG0 graphs.

By briefly analyzing these τ -stable clusters, some interesting observations
are drawn.

(C1), the largest cluster, (Confidence, Causal Confidence, Causal Confirmed-
Confidence, Descriptive Confirmed-Confidence, Laplace) has most of its IMs
extended from Confidence measure. From this cluster, we can easily see a
highly connected component – each vertex must have an edge with the other
vertices – indicating the strong agreement of the five IMs.

According to the taxonomy (Tab. 1), this cluster is associated with de-
scriptive IMs that are sensible to equilibrium.

(C2), another cluster, has two highly connected components which are
formed by Phi-Coefficient, Lerman, Kappa, Cosine and Jaccard. Most of these
IMs are similarity measures. According to the taxonomy (Tab. 1) this cluster
is to measure the deviation from independence.
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(C3), this cluster (Dependency, Pavillon, Putative Causal Dependency)
is interesting because almost all the IMs of this cluster are reasonably well
correlated. The nature of these IMs are descriptive.

(C4), is a cluster formed by EII and EII 2, which are two IMs obtained
with different parameters of the same original formula. This cluster has many
extended directions to evaluate the entropy of II.

(C5), Yule’s Q and Yule’s Y, brings out a trivial observation because these
IMs are derived from Odds Ratio measure. Both IMs are descriptive and
measuring of deviation from independence.

In looking for τ -stable clusters, we have found the τ -correlated that exist
between various IMs and we have identified five τ -stable clusters. Each τ -stable
cluster forms a subgraph in a CG+ graph, also contains a highly connected
component. Therefore, we can choose a representative IM for each cluster.
For example, in our experiment, we have five representative IMs for all the
thirty-six IMs. How we can choose a representative IM is also an interesting
study for the future. In the first approach, we can select the IM that has
the highest number of relations with the others: Causal Confidence, Cosine,
Klosgen, EII(α = 2), and Yule’s Y. The stronger the τ -stable cluster, the
more interesting the representative IM. An important observation is that, the
existence of highly connected graphs represents a strong agreement with a τ -
stable cluster. We have reached significant information: τ -stable clusters can be
obtained from different IMs and rulesets. The different IMs imply taking into
account both their mathematical definitions and their respective significance.
The datasets are both highly correlated and lowly correlated.

7 Conclusion

We have studied and compared the various IMs described in the literature
in order to help the decision-maker to better understand the behavior of the
IMs in the stage of post-processing of association rules. A new approach called
correlation graph implemented by a new tool, ARQAT, with two types: CG+
and CG0 is proposed to evaluate IMs by using graphs as a visual insight on
the data.

With this approach, the decision-maker has a few IMs to decide and as
a graphical representation to select the most interesting rules to examine.
Another interesting result obtained from this work is that we have found
some stable clusters between IMs, five such τ -stable clusters have been found
with the CG+ graph. Our approach is highly related to the real value of the
dataset and the number of proposed IMs.

Our future research will investigate the two following directions: first, we
will improve the correlation analysis by introducing a better measure than
linear correlation whose limits are stressed in the literature; second, we will
also improve the IM clustering analysis with IM aggregation techniques to
facilitate the user’s decision making from the most suitable IMs.
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Fig. 12. CG+ graph.
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A Complementary IMs: II, EII, TIC, IPEE

A.1 Implication Intensity

Initially introduced by Gras [13], the implicative intensity II aims at quanti-
fying the ”surprisingness” of a rule.

Intuitively, it is more surprising to discover that a rule has a small number
of negative examples when the dataset is large. Hence, the objective of the
implicative intensity is to express the unlikelihood of nab in T .

More precisely, we compare the observed number of negative examples
nab with the number Nab of expected negative examples for an independence
hypothesis. Let us assume that we randomly draw two subsets U and V in
T with respectively na and nb transactions. Then, Nab =

∣

∣U
⋂

V
∣

∣ is the ran-
dom variable associated with the number of negative examples in this random
model.

Definition 6. The implicative intensity II of the rule a → b is defined by

II (a → b) = 1 − p
(

Nab ≤ nab

)

if na 6= n ; otherwise
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II (a → b) = 0

.

In practice, the distribution of Nab depends on the random drawing pat-

tern. We here consider a hyper-geometric law: p
(

Nab = k
)

=
C

nb−k
na

Ck
na

C
nb
n

. The

effective value of II can be easily computed with this recursive formula. Other
models based on the binomial law and the Poisson distribution have been pro-
posed.

A.2 Entropic Implication Intensity

Definition 6 essentially measures the surprisingness of the rule a → b. However,
taking the contrapositive b → a into account could reinforce the assertion of
the implication between a and b. Moreover, it could improve the quality of
discrimination of II when the transaction set T increases: if A and B are
small compared to T , their complementary sets are large and vice-versa.

For these reasons, we have introduced a weighted version of the implication

intensity (E (a, b) .II (a → b))
1/2

where E (a, b) measures the disequilibrium
between nab and nab – associated with a → b –, and the disequilibrium be-
tween nab and nab – associated with its contrapositive – [9]. Intuitively, the
surprise must be softened (respectively confirmed) when the number of nega-
tive examples nab is high (respectively small) for the rule and its contrapositive
considering the observed cardinalities na and nb.

A well-known index for taking the cardinalities into account non-linearly
is the Shannon conditional entropy. The conditional entropy Hb/a of cases (a

and b) and (a and b) given a is defined by

Hb/a = −nab

na
log2

nab

na
− nab

na
log2

nab

na

and, similarly, we obtain the conditional entropy Ha/b of cases (a and b)

and (a and b) given b. The complements of 1 for these uncertainties 1 − H
can be interpreted as the average information collected by the realization of
these experiments; the higher this information, the stronger the quality of the
implication and its contrapositive.

The expected behavior of the weighted version of II is determined in three
stages: (i) a slow reaction to the first negative examples (robustness to noise),
(ii) an acceleration of the rejection in the neighborhood of the equilibrium,
(iii) an increasing rejection beyond the equilibrium. The adjustment of 1−H
proposed in definition 6 satisfies these requirements.

Definition 7. Let α > 1 be a fixed number. The disequilibriums are
measured by E (a, b), is defined by
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E (a, b) =
(

(

1 − Hb/a

)α
.
(

1 − Ha/b

)α)1/2α

if
nab

n ∈
[

0, na

2n

[
⋂

[

0, nb

2n

[

;

E(a, b) = 0

otherwise.
And, the weighted version of the implication intensity – called the entropic

implication intensity – is given by

EII (a → b) = (E (a, b) .II (a → b))
1/2

Raising the conditional entropies to the power α reinforces the contrast
between the different stages presented above.

A.3 TIC

In [6], we introduced DIR (Directed Information Ratio), a new rule IM which
is based on information theory. DIR is the entropy decrease rate of the con-
sequent due to the truth of the antecedent, but it is not calculated with a
classical entropy function. We use an asymmetric entropy function which con-
siders that the uncertainty is maximal (entropy = 1) when the studied modal-
ity is not the more likely. This allows DIR to differentiate two opposite rules
a → b and a → b, which is not possible with the other information-theoretic
measures of rule interestingness. Moreover, to our knowledge, DIR is the only
rule IM which rejects both independence and equilibrium, i.e. it discards both
the rules whose antecedent and consequent are negatively correlated, and the
rules which have more negative examples than examples.

In [8], we proposed another IM, derived from DIR, which assesses the rules
by taking their contrapositives into account. This new IM called TIC (Taux
Informationnel modulé par la Contraposée, in French) is the geometric mean
of the values of DIR for a rule and its contrapositive (if one of the two values
of DIR is negative, then TIC is worth zero). Considering both the rule and its
contrapositive allows to discover rules that are closer to logical implication.

A.4 IPEE

As there was no statistical IMs evaluating the deviation from equilibrium,
we proposed the new measure IPEE in [7]. Following II, IPEE is based on a
probabilistic model. However, while II evaluates the statistical significance of
the deviation from independence, IPEE evaluates the statistical significance
of the deviation from equilibrium.
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B Formulas of IMs

N Interestingness measure f(n, na, nb, n
ab

) Reference

0 Causal Confidence 1 − 1
2
( 1

na
+ 1

n
b

)n
ab

[18]

1 Causal Confirm
na+n

b
−4n

ab
n

[18]

2 Causal Confirmed-Confidence 1 − 1
2
( 3

na
+ 1

n
b

)n
ab

[18]

3 Causal Support
na+n

b
−2n

ab
n

[18]

4 Collective Strength
(na−n

ab
)(n

b
−n

ab
)(nan

b
+nbna)

(nanb+nan
b
)(nb−na+2n

ab
)

[30]

5 Confidence 1 −
n

ab
na

[2]

6 Conviction
nan

b
nn

ab
[30]

7 Cosine
na−n

ab√
nanb

[30]

8 Dependency |
n

b
n

−
n

ab
na

| [18]

9 Descriptive Confirm
na−2n

ab
n

[18]

10 Descriptive Confirmed-Confidence 1 − 2
n

ab
na

[18]

11 EII (α = 1)

r
ϕ × I

1
2α [9]

12 EII (α = 2)

r
ϕ × I

1
2α [9]

13 Example & Contra-Example 1 −
n

ab
na−n

ab
[13]

14 Gini-index
(na−n

ab
)2+n2

ab
nna

+
(nb−na+n

ab
)2+(n

b
−n

ab
)2

nna
−

n2
b

n2 −
n2

b
n2 [30]

15 II 1 −Pn
ab

k=max(0,na−nb)

C
na−k
nb

Ck
n

b
C

na
n

[13]

16 IPEE 1 − 1
2na

Pn
ab

k=0
Ck

na
[7]

17 Jaccard
na−n

ab
nb+n

ab
[30]

18 J-measure
na−n

ab
n

log2
n(na−n

ab
)

nanb
+

n
ab
n

log2
nn

ab
nan

b
[30]

19 Kappa
2(nan

b
−nn

ab
)

nan
b
+nanb

[30]

20 Klosgen

r
na−n

ab
n

(
n

b
n

−
n

ab
na

) [30]

21 Laplace
na+1−n

ab
na+2

[30]

22 Least Contradiction
na−2n

ab
nb

[4]

23 Lift
n(na−n

ab
)

nanb
[26]

24 Lerman
na−n

ab
− nanb

nq
nanb

n

[13]

25 Loevinger 1 −
nn

ab
nan

b
[22]

26 Odds Ratio
(na−n

ab
)(n

b
−n

ab
)

n
ab

(nb−na+n
ab

)
[30]

27 Pavillon/Added Value
n

b
n

−
n

ab
na

[30]

28 Phi-Coefficient
nan

b
−nn

abp
nanbnan

b
[30]

29 Putative Causal Dependency 3
2

+
4na−3nb

2n
− ( 3

2na
+ 2

n
b

)n
ab

[18]

30 Rule Interest
nan

b
n

− n
ab

[25]

31 Sebag & Schoenauer
na
n

ab
− 1 [28]

32 Support
na−n

ab
n

[1]

33 TIC

q
DIR(a → b) × DIR(b → a) [8] [6]

34 Yule’s Q
nan

b
−nn

ab
nan

b
+(nb−n

b
−2na)n

ab
+2n2

ab

[30]

35 Yule’s Y

q
(na−n

ab
)(n

b
−n

ab
)−
q

n
ab

(nb−na+n
ab

)q
(na−n

ab
)(n

b
−n

ab
)+
q

n
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)
[30]



A graph-based clustering approach 27


