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Abstract

Assessing rules with interestingness measures is the cor-

nerstone of successful applications of association rule dis-

covery. However, there exists no information-theoretic mea-

sure which is adapted to the semantics of association rules.

In this article, we present the Directed Information Ratio

(DIR), a new rule interestingness measure which is ba-

sed on information theory. DIR is specially designed for

association rules, and in particular it differentiates two

opposite rules a → b and a → b. Moreover, to our

knowledge, DIR is the only rule interestingness measure

which rejects both independence and (what we call) equili-

brium, i.e. it discards both the rules whose antecedent and

consequent are negatively correlated, and the rules which

have more counter-examples than examples. Experimental

studies show that DIR is a very filtering measure, which is

useful for association rule post-processing.

1 Introduction

Many data mining techniques produce results in the

form of rules. These are expressions of the type ”if an-

tecedent then consequent” where the boolean propositions

antecedent and consequent are conjunctions of assignment

expressions variable=value. Rules have the advantage of

being very intelligible for users since they model infor-

mation explicitly. They are also a major element of most

theories of knowledge representations in cognitive sciences

[10], and in particular they underlie many works in artificial

intelligence, such as the expert systems. In knowledge dis-

covery in databases, the main rule-based paradigms are the

classification rules, used in supervised learning to predict

a unique class variable as consequent, and the association

rules [1], which can have any combination of variables as

antecedent and consequent. Classification rules can be ge-

nerated by induction algorithms such as CN2 [9] or decision

tree algorithms such as C4.5 [18], while association rules

are mined by combinatorial algorithms such has Apriori [1].

Due to their unsupervised nature, association rule mi-

ning algorithms commonly generate large amounts of rules,

with much redundancy [25]. To help the user to find re-

levant knowledge in this mass of information, one of the

main solutions consists in evaluating and sorting the rules

with interestingness measures. There are two kinds of mea-

sures: the subjective (user-oriented) ones and the objective

(data-oriented) ones. Subjective measures take into account

the user’s goals and domain knowledge [14] [16], whereas

only the data cardinalities appear in the calculation of ob-

jective measures (surveys can be found in [22], [11], [24],

[2]). In this article, we are interested in the objective mea-

sures. We have shown in [4] that there are two different, but

complementary, aspects of the rule interestingness: the de-

viation from independence and the deviation from what we

call equilibrium (maximum uncertainty of the consequent

given that the antecedent is true). Thus, the objective mea-

sures of interestingness can be classified into two classes:

• the measures of deviation from independence, which

have a fixed value when the antecedent and consequent

are independent (p(ab) = p(a).p(b)), such as lift

[2], conviction [8], rule-interest [17], Loevinger index

[15], implication intensity [6];

• the measures of deviation from equilibrium, which

have a fixed value when examples and counter-

examples are equal in numbers (p(ab) = p(ab) =
1
2p(a)), such as confidence [1], Sebag and Schoenauer

index [19], IPEE [4].

Among the objective measures of rule interestingness,

the information-theoretic measures are particularly intelli-

gible and useful since they can be interpreted in terms of

information. More precisely, as pointed out by Smyth and

Goodman [21], there is an interesting parallel to draw bet-

ween the use of information theory [20] in communication

systems and the use of information theory to evaluate rules.

In communication systems, a channel has a high capacity if

it can carry a great deal of information from the source to

the receiver. As for a rule, the relation is interesting when

the antecedent provides a great deal of information about
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Table 1. Informationtheoretic measures of in
terestingness for a rule a → b

the consequent (Smyth and Goodman speak of the infor-

mation content of a rule [21]). The information-theoretic

measures commonly used to evaluate rule interestingness

are the Shannon conditional entropy [9], the average mutual

information [12] (often simply called mutual information),

the Theil uncertainty coefficient [23] [22], the J-measure

[21], and the Gini index [2] [12] (cf. the formulas in table

1). The Shannon conditional entropy measures the average

amount of information of the consequent given that the an-

tecedent is true (it is used in the CN2 algorithm). The ave-

rage mutual information (Shannon entropy decrease) mea-

sures the average information shared by the antecedent and

the consequent. The Theil uncertainty coefficient measures

the entropy decrease rate of the consequent due to the an-

tecedent. The J-measure is the part of the average mutual

information relative to the truth of the antecedent. Finally,

the Gini index is the quadratic entropy decrease.

Even if these measures are commonly used to evaluate

association rules (see [11], [22], [2]), they are all better

suited to evaluate classification rules. As pointed out by

Jaroszewicz and Simovici [12], an association rule should

be assessed only on the variable values which are com-

prised in the rule1, whereas the information-theoretic mea-

sures consider the full joint distribution of the antecedent

and consequent (this is relevant for classification rules since

in supervised learning, the user is interested in all the va-

lues of the consequent because it is the class variable).

Consequently, the information-theoretic measures do not

vary with the permutation of the values of a variable2. This

invariance is undesirable for association rules since the per-

mutation of values definitely transforms an association rule.

1Indeed, association rule mining algorithms transform each multiva-

lued variable into several binary variables called ”items”.
2More precisely, the Shannon conditional entropy and the J-measure

vary with the permutation of the values of a variable in the antecedent, but

not in the consequent.

We say that association rules are not only ”variable-based”

relations but also ”value-based” relations. If all the same

such measures are applied on association rules, then this

must be done carefully since it is not possible to distinguish

between positive and negative correlations [22].

To be appropriate to association rules, an interestingness

measure must respect their value-based semantics by not

systematically giving the same value to a rule a → b and

to its opposite a → b. Intuitively, if a → b is strong, then

a → b should be weak. In this article, we propose an inter-

estingness measure based on information theory which res-

pects the value-based semantics of association rules. This

new measure named DIR (for Directed Information Ratio)

allows to reject both the independence and equilibrium si-

tuations, i.e. with only one fixed threshold it allows to

discard both the rules whose antecedent and consequent

are negatively correlated, and the rules which have more

counter-examples than examples. To our knowledge, this

is a unique feature for a rule interestingness measure. In

the next section, we introduce the new measure DIR from

earlier works on the assessment of rules using information

theory. Section 3 will then review the properties of DIR.

Finally, in section 4 we compare DIR to other rule interes-

tingness measures within the framework of formal and ex-

perimental studies.

2 Measuring the information content of rules

2.1 Notations

We consider a set of objects described by boolean va-

riables. In the association rule terminology, the objects are

transactions stored in a database, the variables are called

items, and the conjunctions of variables are called itemsets.

An association rule is a couple (a, b) noted a → b where a
and b are two itemsets which have no items in common. The

examples of the rule are the objects which verify the ante-

cedent a and the consequent b, while the counter-examples

are the objects which verify a but not b. A rule is all the bet-

ter since it has lots of examples and few counter-examples.

In the following, we study two itemsets a and b that we sim-

ply call the variables.

The Shannon entropy of the variable a is:

H(a) = −p(a = 1). log2 p(a = 1)−p(a = 0). log2 p(a = 0)

The Shannon conditional entropy of the variable b given an

event a = 1 is defined by:

H(b/a = 1) = −p(b = 1/a = 1). log2 p(b = 1/a = 1)

−p(b = 0/a = 1). log2 p(b = 0/a = 1)

As can be seen, the entropic functions combine variables

and realizations of variables. In order to distinguish them,



Figure 1. Plot of the measure
j w.r.t. p(a = 1, b = 1)

Figure 2. Plot of the measure
i w.r.t. p(a = 1, b = 1)

Figure 3. Plot of the redu
ced entropy Ĥ(a)

(I refers to the statistical independence of a and b)

the realizations of a variable b must be noted b = 1 and

b = 0 in this article, and not b and b as commonly done in

the association rule literature. With these explicit notations,

an association rule should be written (a = 1) → (b = 1),
but we retain the classical notation a → b.

2.2 The amount of information that a = α gives
about b

Let us consider the amount of information that an event

a = α gives about a variable b (α ∈ {0; 1}). We note

M(a = α, b) the measures of this amount of information.

Blachman [3] studied the M(a = α, b) whose expectation

(when averaged over all α) is the average mutual informa-

tion between the variables a and b:

MI(a, b) = Eα{M(a = α, b)} (1)

The two most frequently used measures are the following

(see figures 1 and 2):

j(a = α, b) = p(b = 1/a = α). log2
p(b=1/a=α)

p(b=1)

+ p(b = 0/a = α). log2
p(b=0/a=α)

p(b=0)

i(a = α, b) = H(b) − H(b/a = α)

Blachman shows that j is the only non-negative

information-theoretic measure satisfying (1), while i
is the only antisymmetric3 information-theoretic measure

satisfying (1).

The measure j is the cross-entropy between the a priori

and a posteriori distributions of b. It is traditionally ac-

cepted as ”the” measure of the amount of information that

3i is antisymmetric with regard to the a priori and a posteriori dis-

tributions P = {p(b)} and Q = {p(b/a = α)} of the variable b:

i(P, Q) = −i(Q, P )

a = α gives about b. In particular, the J-measure (the

most commonly used information-theoretic measure within

the context of association rules) directly comes from j:

J = j × P(a = α) [21]. Although the meaning of the

measure i is much more obvious (it is the entropy decrease

of b due to the event a = α), one prefers j to i because

j vanishes only if the variables a and b are independent,

while i can vanish outside the independence (see figures 1

and 2). This behavior is due to the symmetrical nature of

the entropy H (it does not vary with the permutation of the

variable values).

2.3 Reduced entropy

In order to remove the symmetry introduced by the

entropy in the measure i, we propose to use a directed

entropic function Ĥ named reduced entropy [5] (see figure

3).

Definition 1 The reduced entropy Ĥ(a) of a variable a is

defined by:

• if p(a = 1) ≤ 1
2 then Ĥ(a) = 1,

• if p(a = 1) ≥ 1
2 then Ĥ(a) = H(a).

One similarly defines the conditional reduced entropy of the

variable b given the realization of a:

• if p(b = 1/a = 1) ≤ 1
2 then Ĥ(b/a = 1) = 1,

• if p(b = 1/a = 1) ≥ 1
2

then Ĥ(b/a = 1) = H(b/a = 1).

The entropy H(a) of a variable a can be written as the sum

of two reduced entropies:

H(a) = Ĥ(a)+Ĥ(a)−1, with a being the negation of a.



Figure 4. Plot of î w.r.t. p(a = 1, b = 0)
(I refers to the statistical independence of a and b)

Contrary to H , Ĥ is an asymmetric measure which diffe-

rently evaluates an imbalance in favor of a = 1 and an im-

balance in favor of a = 0: Ĥ(a) 6= Ĥ(a). More precisely,

if a = 1 is more frequent than a = 0, then:

• the reduced entropy Ĥ(a) measures the entropy of a:

Ĥ(a) = H(a);

• the reduced entropy Ĥ(a) is 1.

If a = 1 is less frequent than a = 0, then the roles are rever-

sed. In other words, Ĥ measures a ”directed uncertainty” in

favor of one of the values, in the sense that if this value is

not the more likely, then the uncertainty is considered as

maximal.

2.4 Directed Information Ratio

By introducing the reduced entropy Ĥ in the measure i,
we have:

i(a = 1, b) = Ĥ(b) + Ĥ(b)− Ĥ(b/a = 1)− Ĥ(b/a = 1)

Hence:

i(a = 1, b) = î(a = 1, b) + î(a = 1, b)

with î(a = 1, b) = Ĥ(b) − Ĥ(b/a = 1)

So the index i which measures the decrease of the entropy

H is the sum of two decreases of reduced entropy Ĥ:

• î(a = 1, b) which is the decrease of reduced entropy

of b due to a = 1,

• î(a = 1, b) which is the decrease of reduced entropy

of b due to a = 1.

Contrary to the measures i and j, the new index î(a =
1, b) is absolutely appropriate to evaluate the interestin-

gness of an association rule a → b:

î(a = 1, b) = î(a → b)

Indeed, î(a = 1, b) increases with the number of examples

(probability p(a = 1, b = 1)), decreases with the number of

counter-examples (probability p(a = 1, b = 0), see figure

4), and respects the value-based semantics of association

rules by differentiating opposite rules a → b and a → b.

The higher î(a = 1, b), the more the event a = 1 brings

information in favor of b = 1, and the more the interestin-

gness of the rule a → b is guaranteed. If î(a = 1, b) is

negative, this means that a = 1 brings no information in fa-

vor of b = 1, and even that it ”removes” some information

(the uncertainty is lesser by predicting b = 1 randomly ra-

ther than by predicting b = 1 using the rule a → b). In our

opinion, î is a measure of what Smyth and Goodman call

the information content of rules [21].

Like the directed contribution to χ2 [13], î allows to dis-

tribute the average mutual information of two variables over

the rules between them:

MI(a, b) = p(a = 1).̂i(a → b) + p(a = 1).̂i(a → b)

+ p(a = 0).̂i(a → b) + p(a = 0).̂i(a → b)

p(a = 1).̂i(a → b) is the directed contribution of the rule

a → b to the average mutual information. Each rule takes

part in the average mutual information by giving or remo-

ving its share of infomation. Like the χ2, the average mu-

tual information can also be written with the contributions

of the four opposite rules.

For all these characteristics, we propose to retain the

index î to evaluate the interestingness of association rules.

However, a drawback of î is that its maximal value is not

fixed but depends on p(b = 1), making the comparison of

rules with different consequents difficult. This maximal

value is obtained for logical rules, i.e. rules with no

counter-examples (p(a = 1, b = 0) = 0). In order to

facilitate the filtering of the most informative rules, we

normalize î by assigning the maximal value 1 to the logical

rules. This amounts to calculating the decrease rate of

reduced entropy.

Definition 2 The Directed Information Ratio (DIR) of

a rule a → b is defined by:

DIR(a → b) =
Ĥ(b) − Ĥ(b/a = 1)

Ĥ(b)
if p(b = 1) 6= 1

If p(b = 1) = 1, then Ĥ(b) = 0 and DIR is not de-

fined. However, such rules are obviously to be discarded

since they are completely expected (̂i is indeed 0 for these

rules). A rule is said to be informative if its DIR is strictly

positive.



(A) p(b = 1) ≥ 1
2

(B) p(b = 1) ≤ 1
2

Figure 5. Plot of DIR w.r.t. p(a = 1, b = 0)
(I refers to independence and E to equilibrium)

3 DIR properties

The main properties of DIR are given in table 2. It must

be noticed that DIR satisfies the three properties that de-

fine a good interestingness measure according to Piatetsky-

Shapiro [17]: it is 0 at independence, it increases with the

examples, and it decreases with the sizes of the antecedent

and consequent (variations with all other parameters fixed).

Furthermore, DIR has no symmetry:

• it does not assign the same value to a → b and to its

opposite a → b, since it respects the value-based se-

mantics of association rules;

• it does not either assign the same value to a → b and

to its converse b → a, which is better when the user

interprets association rules as quasi-implications [22].

As shown in figure 5, DIR is a convex decreasing func-

tion of the number of counter-examples. Among the rule

interestingness measures, it belongs to the demanding in-

dexes, i.e. the indexes which decrease quickly with the first

counter-examples and thus allow to better discriminate the

good rules (larger dispersion of values).

Range ] −∞ ; 1]

Value for logical rules 1

Value for independence 0

Value for equilibrium 1 − Ĥ(b)−1 ≤ 0

Variation w.r.t. p(a = 1, b = 1) ↗

Variation w.r.t. p(a = 1) ↘

Variation w.r.t. p(b = 1) ↘

Table 2. DIR properties

Let us consider a rule (a → b) described by the pro-

babilities p(a = 1), p(b = 1), and p(a = 1, b = 0) 4.

The independence is defined by p(a = 1, b = 0) =
p(a = 1).p(b = 0), while the equilibrium is defined by

p(a = 1, b = 0) = 1
2p(a = 1). By varying p(a = 1, b = 0)

with fixed p(a = 1) and p(b = 1), one can distinguish two

different cases for DIR:

• If p(b = 1) ≥ 1
2 , then

p(a = 1).p(b = 0) ≤ 1
2p(a = 1)

so the rule goes through the independence before going

through the equilibrium when p(a = 1, b = 0) in-

creases. The measure DIR vanishes at independence

and then admits negative values (figure 5.(A)).

• If p(b = 1) ≤ 1
2 , then

p(a = 1).p(b = 0) ≥ 1
2p(a = 1)

so the rule goes through the equilibrium before going

through the independence when p(a = 1, b = 0) in-

creases. The measure DIR vanishes but does not ad-

mit negative values (figure 5.(B)).

DIR allows to reject both the independence and equi-

librium situations. Indeed, in these situations, DIR is ei-

ther negative or worth zero (see table 2). By retaining only

strictly positive values of DIR (informative rules), the user

discards all the rules whose deviation from indepedence

is bad (rules between negatively correlated variables), and

also all the rules whose deviation from equilibrium is bad

(rules with more counter-examples than examples). So, the

measure must be used with a strictly positive threshold to

filter the rules. To our knowledge, DIR is the only rule in-

terestingness measure which can reject both independence

and equilibrium with a fixed threshold. This approach is

completely original for rule interestingness assessment.

4As often in the association rule literature, we choose the probability

of counter-examples as a parameter, but the results are the same with the

probability of examples since p(a = 1, b = 1) = p(a = 1) − p(a =
1, b = 0).



Figure 6. Informationtheoretic measures of

deviation from independence

4 Comparison to other measures

4.1 Formal comparison

In this section, we compare DIR to the information-

theoretic measures traditionally used to evaluate rule inter-

estingness (see table 1 for formulas):

• the Shannon conditional entropy [9], which measures

the deviation from equilibrium;

• the mutual information [12], the Theil uncertainty [23]

[22], the J-measure [21], and the Gini index [2] [12],

which measure the deviation from independence.

As the last four measures have similar behaviors (see figure

6), we only plot one of them in the comparisons below. We

choose the J-measure since it is used a lot within the context

of association rules (in particular it does not assign the same

value to a rule a → b and to its converse b → a). As

for the conditional entropy, it is not the function Hc of the

table 1 which is plotted in the comparisons below, but the

complementary function 1 − Hc. Indeed, Hc assigns its

smallest values to the best rules5. One generally prefers the

opposite behavior for a rule interestingness measure [17].

The figures 7.(A) and 7.(B) compare DIR to the condi-

tional entropy and to the J-measure when the probability

of counter-examples p(a = 1, b = 0) increases. The fi-

gures clearly illustrate that the conditional entropy and the

J-measure do not respect the value-based semantics of asso-

ciation rules, since they can increase even though the pro-

bability of counter-examples increases. Moreover, one can

see that DIR and the conditional entropy have the advan-

tage of systematically assigning the value 1 to the logical

rules, which are the best rules from an objective point of

5To generate relevant rules, the CN2 algorithm tries to minimize Hc,

and not to maximize it [9].

Items Objects Outputted rules

T10.I4.D5k 12 5000 97688

T10.I4.D100k 1000 100000 478894

BREAKDOWNS 92 2883 43930

PROFILES 30 2299 28938

Table 3. Data characteristics

view. This makes the comparisons among the rules easier,

and facilitates the choice of a threshold to filter the rules. On

the contrary, for the J-measure and the three other measures

of deviation from independence, a value can be assigned to

a good rule (lots of examples, few counter-examples), even

though on other data the same value would be assigned to a

bad rule. In fact, except for the value 0 which always corre-

ponds to independence, the values taken by these measures

cannot be interpreted in an absolute way, i.e. independently

of the data.

The figures 7.(A) and 7.(B) show that the conditional en-

tropy detects the equilibrium but not the independence (it

could even take high values at independence). On the other

hand, the J-measure detects the independence but not the

equilibrium. In all cases, filtering the rules on DIR with a

strictly positive threshold is enough to reject both indepen-

dence and equilibrium. As illustrated in figure 7.(B), DIR
is similar to the conditional entropy when p(b = 1) ≤ 1

2
(the functions are partly identical). This is what enables

DIR to detect the equilibrium when p(b = 1) ≤ 1
2 .

4.2 Experimental comparison

We compare the distributions of DIR to the distributions

of other interestingness measures on the association rules

mined from four datasets (described in table 3). The two

first datasets were generated using the IBM synthetic data

generator6 described in [1] which simulates purchases in a

supermarket. The two other datasets are a database of lift

breakdowns provided by a lift maintenance company, and

a database of workers’ psychological profiles used in hu-

man resource management. The rules were mined with the

Apriori algorithm [1] with a low support threshold to avoid

the premature elimination of potentially interesting rules.

As we want here to compare the distributions of mea-

sures, we choose measures which, as DIR, take the value 1

for the logical rules. Among the information-theoretic mea-

sures, only the conditional entropy satisfies this condition.

So, we add to our comparisons two reference measures of

rule interestingness which satisfy the condition: the confi-

dence [1] (p(b = 1/a = 1)) and the Loevinger index [15]

(1 − p(a=1,b=0)
p(a=1).p(a=0) ). They respectively measure the devia-

tion from equilibrium and from independence. As figures

6http://www.almaden.ibm.com/software/quest/Resources/index.shtml



(A) p(b = 1) ≥ 1
2 (B) p(b = 1) ≤ 1
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Figure 7. Plot of DIR, Jmeasure, and conditional entropy w.r.t. p(a = 1, b = 0)

8.(A-D) show, DIR is the most filtering index: for the four

datasets, whichever the threshold chosen between 0 and 1,

DIR prunes more rules than the others. This is especially

useful within the context of association rules where the mi-

ning algorithms often generate huge amounts of rules.

Let us explain why DIR is very filtering. In figure 8.(E)

in parallel coordinates, each line represents a rule. The fi-

gure shows representative rules from T10.I4.D5k that are

judged good by confidence but not by the Loevinger index

(they have a good deviation from equilibrium but not from

independence). On the other hand, figure 8.(F) shows repre-

sentative rules from BREAKDOWNS that are judged good

by the Loevinger index but not by confidence (they have

a good deviation from independence but not from equili-

brium). DIR gives bad values to all these rules, since it

takes into account both independence and equilibrium.

5 Conclusion

In this article, we have presented the Directed Infor-

mation Ratio (DIR), a new rule interestingness measure

which is based on information theory. DIR is specially

designed for association rules, and in particular it respects

their value-based semantics by differentiating the opposite

rules a → b and a → b. Moreover, to our knowledge,

DIR is the only rule interestingness measure which rejects

both independence and equilibrium, i.e. it discards both the

rules whose antecedent and consequent are negatively cor-

related, and the rules which have more counter-examples

than examples. Experimental studies have also shown that

DIR is a very filtering measure, which is useful for associa-

tion rule post-processing. To continue this research work,

we will integrate DIR into a data mining platform in order

to experiment with this new measure in real applications.

Like all the information-theoretic measures, DIR is a

frequential index. This means that it takes into account the

size of the data only in an relative way, and not in an ab-

solute way (see [4]). More generally, in order to have a

complete assessment of the rules, one has to measure not

only the deviations from equilibrium and independence, but

also the statistical significance of these two deviations. For

example, χ2 [7] or implication intensity [6] allow to mea-

sure the statistical significance of the deviation from inde-

pendence, while IPEE [4] allows to measure the statistical

significance of the deviation from equilibrium. These ap-

proaches are complementary to DIR.
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