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Assessing rules with interestingness measures is the cornerstone of successful applications of 

association rule discovery. However, as numerous measures may be found in the literature, 

choosing the measures to be applied for a given application is a difficult task. In this chapter, we 

present a novel and useful classification of interestingness measures according to three criteria: 

the subject, the scope, and the nature of the measure. These criteria seem to us essential to grasp 

the meaning of the measures, and therefore to help the user to choose the ones (s)he wants to 

apply. Moreover, the classification allows one to compare the rules to closely related concepts 

such as similarities, implications, and equivalences. Finally, the classification shows that some 

interesting combinations of the criteria are not satisfied by any index. 
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INTRODUCTION 
 

Most of association rule mining algorithms are unsupervised algorithms, i.e. they do not need any 

endogenous variable but search all the valid associations existing in the data. This makes the 

main interest of association rules, since the algorithms can discover relevant rules that the user 

didn't even think of beforehand. However, the unsupervised nature of association rules causes 

their principal drawback too: the number of rules generated increases exponentially with the 

number of variables. Then a very high number of rules can be extracted even from small datasets. 

To help the user to find relevant knowledge in this mass of information, many Rule 

Interestingness Measures (RIM) have been proposed in the literature. RIMs allow one to assess, 

sort, and filter the rules according to various points of view. They are often classified into two 

categories: the subjective (user-oriented) ones and the objective (data-oriented) ones. Subjective 

RIMs take into account the user's goals and user's beliefs of the data domain (Silberschatz & 

Tuzhilin, 1996; Padmanabhan & Tuzhilin, 1999; Liu et al., 2000). On the other hand, the 

objective RIMs do not depend on the user but only on objective criteria such as data cardinalities 

or rule complexity. In this chapter, we are interested in the objective RIMs. This category is very 

heterogeneous: one can find both elementary measures based on frequency and sophisticated 

measures based on probabilistic models, as well as information-theoretic measures or statistical 

similarity measures. In practice, the use of RIMs is problematic since: 

• the RIMs are too numerous, and sometimes redundant (Bayardo & Agrawal, 1999; Tan et 

al., 2004; Blanchard et al., 2005a; Huynh et al., 2006; Lenca et al., 2007); 



• the meanings of the RIMs are often unclear, so that it is hard to know precicely what is 

measured; 

• finally, choosing the RIMs to apply for a given study remains a difficult task for the user. 

The main contribution of this chapter is to present a novel and useful classification of RIMs 

according to three criteria: the subject, the scope, and the nature of the measure. These criteria 

seem to us essential to grasp the meaning of the RIMs, and therefore to help the user to choose 

the ones (s)he wants to apply. Moreover, the classification allows one to compare the rules to 

closely related concepts such as similarities, implications, and equivalences. Finally, the 

classification shows that some interesting combinations of the criteria are not satisfied by any 

index. 

The remainder of the chapter is organized as follows. In the next section, after introducing the 

notations, we formalize the concepts of rule and interestingness measure, and then take inventory 

of numerous measures traditionally used to assess rules. Section 3 defines the three classification 

criteria, presents our classification of rule interestingness measures, and describes two original 

measures that we specifically developed to complement the classification. Section 4 discusses the 

related works. Finally, we give our conclusion in section 5. 

 

RULES AND INTERESTINGNESS MEASURES 
 
Notations 
 
Table 1. Contingency table for two boolean variables a and b. 0 and 1 refer to true and false. 

 

 

 

We consider a set O of n objects described by boolean variables. In the association rule 

terminology, the objects are transactions stored in a database, the variables are called items, and 

the conjunctions of variables are called itemsets. 

Let a be a boolean variable which is either an itemset, or the negation of an itemset1. The 

variable a* is the negation of a. We note A the set of objects that verify a, and na the cardinality 

of A. The complementary set of A in O is the set A* with cardinality na*. The probability of the 

event "a is true" is noted P(a). It is estimated by the empirical frequency: P(a)=na/n. 

 

 

 

                                                 
1
 In general, association rule mining algorithms do not handle negations of items or itemsets. In this chapter, in order 

to study the meaning of the interestingness measures, we have to consider negations too. 



Figure 1. Venn diagram for the rule a → b. 

 

 

 

In the following, we study two boolean variables a and b. The repartition of the n objects in O 

with regard to a and b is given by the contingency Table 1, where the value nab is the number of 

objects that verify both a and b. 

 

Rules 
 

In this chapter, we study the rule interestingness measures as mathematical functions. To do so, 

we need a general mathematical definition of the concept of rule that does not rely on any data 

mining algorithm2. 

Definition 1. A rule is a couple of boolean variables (a, b) noted a → b. The examples of the 

rule are the objects which verify the antecedent a and the consequent b, while the counter-

examples are the objects which verify a but not b (Figure 1). A rule is better when it has many 

examples and few counter-examples. 

With this definition, an association rule is a special kind of rule. This is simply a rule where a 

and b are two itemsets which have no items in common. 

 

Rule connections 
 

From two variables a and b, one can build eight different rules: 
● a → b, ● b → a, 
● a → b*, ● b → a*, 
● a* → b, ● b* → a, 
● a* → b*, ● b* → a*. 

For a rule a → b, a → b* is the opposite rule, b → a is the converse rule, and b* → a* is the 

contrapositive rule. 

 

                                                 
2
 The concept of rule defined here can refer to association rules as well as classification rules. Classification rules are 

generated for example by induction algorithms such as CN2 (Clark & Boswell, 1991) or decision tree algorithms 

such as C4.5 (Quinlan, 1993). 



Rule modeling 
 

In the same way that the contingency table of two boolean variables is determined by four 

independent cardinalities, a rule can be modeled with four parameters. Commonly, in the 

literature, the parameters are na, nb, n and one cardinality of the joint distribution of the two 

variables such as nab or nab*
3. Like Piatetsky-Shapiro (1991), we choose as fourth parameter the 

number of examples nab. So each rule a → b is modeled by (nab, na, nb, n). In the following, we do 

not differentiate between a rule and its model: (a → b)=(nab, na, nb, n). The set R of all the 

possible rules is the following subset of ℵ
4: 

R={ (nab, na, nb, n) | na ≤ n, nb ≤ n, max(0, na+nb-n) ≤ nab ≤ min(na, nb) } 

The choice of the modeling parameters is important since it determines the way of studying 

rules by inducing a particular point of view for their variations. For example, let us assume that 

we are interested in the behavior of a rule when nab varies. If nab and na are among the chosen 

modeling parameters, then one will tend to fix na and therefore to consider that nab*=na-nab 

decreases when nab increases. On the other hand, if nab and nab* are among the chosen modeling 

parameters, then one will tend to fix nab* and therefore to consider that na=nab+nab* increases 

with nab, which is a totally different scenario. Unfortunately, the choice of the modeling 

parameters is generally not specified in the literature about rule interestingness (this is an implicit 

assumption). Few authors have alluded to this problem (see for example (Freitas, 1999)). 

 

Rule interestingness 
 

A huge number of indexes can be found in the literature to assess associations between 

categorical variables. Before giving a definition of the rule interestingness measures, we explain 

why some of these indexes are not appropriate to assess rules. 

 

Associations measures between categorical variables 
 

We differentiate two kinds of association measures between two nominal categorical variables 

(see Table 2): 

• the association measures between (possibly) multivalued variables, in which all the values 

of the variables are treated in the same way; 

• the association measures between (necessarily) binary variables, in which the two values are 

not treated in the same way. 

An association measure between two multivalued variables is not altered by a permutation among 

the values of a variable. On the other hand, an association measure between binary variables is 

altered. For such a measure M and two binary variables v1 and v2, let us denote v1* and v2* the 

variables coming from v1 and v2 by permutation of the values (v1* and v2* are the negations of v1 

and v2 in the boolean case). Then we have: 

M(v1, v2) ≠ M(v1, v2*)      and      M(v1, v2) ≠ M(v1*, v2) 

 

 

                                                 
3
 Certain authors assume that n is constant, therefore they use only three parameters. However, this prevents from 

comparing rules coming from different datasets. 



Table 2. Examples of association measures between two nominal categorical variables. 

 

 

 

As a rule concerns boolean variables, measures between multivalued variables are few 

appropriate to rule assessment. Indeed, by treating identically all the values, these measures do 

not differentiate true and false, and in particular examples and counter-examples. They 

systematically give the same score to a → b, a → b*, and a* → b. However, if a → b is a strong 

rule, then intuitively a → b* and a* → b should be weak (a → b and a → b* have opposite 

meanings). As pointed out by Jaroszewicz and Simovici (2001), a rule should not be assessed on 

the full joint distribution of the antecedent and consequent. 

 

Interestingness measures 
 

The two basic rule interestingness measures are support and confidence (Agrawal et al., 1993). 

Support evaluates the generality of the rule; it is the proportion of objects which satisfy the rule 

in the dataset: 

support(a → b) = nab/n 

Confidence evaluates the validity of the rule (success rate); it is the proportion of objects which 

satisfy the consequent among those which satisfy the antecedent: 

confidence(a → b) = nab/na 

Support and confidence are simple measures, but they are very commonly used. This populariry 

can be explained by two major reasons: they are highly intelligible, and they are at the root of the 

association rule mining algorithms. 

Nevertheless, it is now well-known that the support-confidence framework is rather poor to 

evaluate rule interestingness (Brin et al., 1997a; Bayardo & Agrawal, 1999; Tan et al., 2004). 

Numerous rule interestingness measures have been proposed to complement this framework (lists 

can be found for example in (Tan et al., 2004; Geng & Hamilton, 2007)). To unify all the 

approaches, we propose below a definition of the concept of rule interestingness measure. 

Definition 2. A rule interestingness measure (RIM) is a function M(nab,na,nb,n) from R to ℜ 

which increases with nab and decreases with na when the other parameters are fixed. The 

variations are not strict. 

In this chapter, we have taken inventory of numerous measures which are traditionally used as 

RIM. They are listed in the Table 3. The Definition 2 is general enough to include all the 

measures of the Table 3. The definition is also specific enough to discard all the association 

measures between multivalued variables (these measures cannot satisfy the variations in the 



Table 3. The main RIMs. 

 

 



definition because of their symmetries). Information-theoretic measures are not studied in this 

chapter because they are generally association measures between multivalued variables. The 

reader can refer to (Blanchard et al., 2005b) for a specific survey on this kind of measures. 

The variations of a RIM with regard to nab and na were originally mentioned by Piatetsky-

Shapiro (1991) as desirable features of a measure. Here we consider them as the foundations of 

the concept of RIM. Piatetsky-Shapiro considers that a good measure has to decrease with nb too, 

but this requirement is too restricting to appear in a general definition of RIM. More precisely, 

with regard to nb or n, RIMs have no particular behavior: some increase, others decrease, and 

others do not depend on these parameters. 

 

Comparison to similarity measures 
 

Similarity measures are indexes used in data analysis to study objects described by binary 

variables. They allow one to assess the likeness between two objects or two variables. Lerman 

gives the following definition for similarity measures (Lerman, 1981). 

Definition 3. We note S the following subset of ℵ
4: S={ (nab, nab*, na*b, n) | nab+nab*+na*b≤ n }. A 

similarity measure is a function S(nab,nab*,na*b,n) from S to ℜ which is positive, symmetrical 

with nab* and na*b, increases with nab and decreases with nab* when the other parameters are fixed. 

The variations are strict. 

Within the Table 3, the similarity measures are the indexes of Russel and Rao (support), Sokal 

and Michener (causal support), Rogers and Tanimoto, Jaccard, Dice, Ochiai, and Kulczynski. 

Below we prove that a similarity measure is a RIM. 

Proof 1. Let S be a similarity measure. Given (nab, na, nb, n) ∈ R, we have (nab, na-nab, nb-nab, n) ∈ 

S. Thus we can define the following function I from R to ℜ: 

∀ (nab,na,nb,n) ∈ R, I(nab,na,nb,n)=S(nab,na-nab,nb-nab,n) 

The function I is a RIM if it increases with nab and decreases with na when the other parameters 

are fixed. Let us make nab increase while na, nb, and n are fixed. na-nab and nb-nab decrease. As S 

increases with its first parameter and decreases with its second and third parameters, we conclude 

that I increases. Let us make na increase while nab, nb, and n are fixed. S decreases with its second 

parameter, so I decreases.  

On the other hand, a RIM is not systematically a similarity measure, even if it is positive and 

symmetrical with a and b. For example, the lift can decrease when nab increases while nab*, na*b, 

and n are fixed. 

 

CLASSIFICATION OF INTERESTINGNESS MEASURES 
 
In this section, we present an original classification of RIMs according to three criteria: the 

subject, the scope, and the nature of the measure. In brief, the subject is the notion measured by 

the index, the scope is the entity concerned by the result of the measure, and the nature is the 

descriptive or statistical feature of the index. These criteria seem to us essential to grasp the 

meaning of the measures, and therefore to help the user to choose the ones (s)he wants to apply. 

 

 



Subject of a RIM 
 

An rule is better when it has many examples and few counter-examples (Definition 1). Thus, 

given the cardinalities na, nb, and n, the interestingness of a → b is maximal when nab=min(na, 

nb) and minimal when nab=max(0, na+nb-n). Between these extreme situations, there exist two 

significant configurations in which the rules appear non-directed relations and therefore can be 

considered as neutral or non-existing: the independence and the equilibrium. If a rule is in this 

configuration, then it must be discarded. 

 

Independence 
 

Table 4. Cardinalities at independence between a and b. 

 

 

 

The binary variables a and b are independent iff P(a ∩ b)=P(a)×P(b), i.e. n.nab=nanb. In this 

case, each variable gives no information about the other, since knowing the value taken by one of 

the variables does not alter the probability distribution of the other variable: P(b \ a)=P(b \ 

a*)=P(b) and P(b* \ a)=P(b* \ a*)=P(b*) (same for the probabilities of a and a* given b or b*). 

In other words, knowing the value taken by a variable lets our uncertainty about the other 

variable intact. 

Given two variables a and b, there exists only one independence situation, common to the 

eight rules a → b, a → b*, a* → b, a* → b*, b → a, b → a*, b* → a, and b* → a*. The 

contingency table of two independent variables is given in Table 4. There are two ways of 

deviating from the independence: 

• either the variables a and b are positively correlated (P(a ∩ b) > P(a)×P(b)), and the four 

rules a → b, a* → b*, b → a, and b* → a* appear in data (Table 5); 

• or they are negatively correlated (P(a ∩ b) < P(a)×P(b)), and the opposite four rules appear 

in data: a → b*, a* → b, b → a*, and b* → a (Table 6). 

This dichotomy between the rules and their opposites is due to the fact that two opposite rules are 

contravariant, since the examples of the one are the counter-examples of the other and vice versa. 

 

 

 

 

 

 

 

 



Table 5. Positive correlation between a and b with a degree of freedom ∆>0. 

 

 

 

Table 6. Negative correlation between a and b with a degree of freedom ∆>0. 

 

 

 

Equilibrium 
 

We define the equilibrium of a rule a → b as the situation where examples and counter-examples 

are equal in numbers: nab=nab*=na/2 (Blanchard et al., 2005a). This corresponds to the maximum 

uncertainty of b given that a is true. In this situation, the event a=1 is as concomitant with b=1 as 

with b=0 in the data. So a rule a → b at equilibrium is as directed towards b as towards b*. 

 

Table 7. Cardinalities at the equilibrium of b with regard to a=1. 

 

 

 

 

 

 

 

 

 

 



Table 8. Imbalance of b in favor of b=1 with regard to a=1 (degree of freedom ∆>0). 

 

 

 

Table 9. Imbalance of b in favor of b=0 with regard to a=1 (degree of freedom ∆>0). 

 

 

 

The equilibrium nab=nab* is not defined for the two variables a and b but for the variable b 

with regard to the literal a=1. Thus, with two variables, there exist four different equilibriums, 

each being common to two opposite rules. Table 7 gives the cardinalities for the equilibrium of b 

with regard to a=1 under the form of a contingency half-table. There are two ways of deviating 

from the equilibrium: 

• either a=1 is more concomitant with b=1 than with b=0, and the rule a → b appears in data 

(Table 8); 

• or a=1 is more concomitant with b=0 than with b=1, and the opposite rule a → b* appears 

in data (Table 9). 

 
Deviations from independence and equilibrium 
 

The fact that there exist two different notions of neutrality for the rules proves that rule 

interestingness must be assessed from (at least) two complementary points of view: the deviation 

from independence and the deviation from equilibrium (Blanchard, 2005). These deviations are 

directed in favor of examples and in disfavor of counter-examples. 

Definition 4. The subject of a RIM M is the deviation from independence iff the measure has a 

fixed value at independence: 

M(nanb/n,na,nb,n) = constant 

Definition 5. The subject of a RIM M is the deviation from equilibrium iff the measure has a 

fixed value at equilibrium: 

M(na/2,na,nb,n) = constant 

Any rule such as M(a → b) ≤ constant has to be discarded. Also the constant values can be used 

as reference for setting thresholds to filter the rules. Relevant thresholds are above the constant 

value. 

Regarding the deviation from independence, a rule a → b with a good deviation means: 



"When a is true, then b is more often true." 

(more than usual, i.e. more than without any information about a) 

On the other hand, regarding the deviation from equilibrium, a rule a → b with a good deviation 

means: 

"When a is true, then b is very often true." 

Deviation from independence is a comparison relatively to an expected situation (characterized 

by nb), whereas deviation from equilibrium is an absolute statement. From a general point of 

view, the measures of deviation from independence are useful to discover relations between a and 

b (do the truth of a influence the truth of b?), while the measures of deviation from equilibrium 

are useful to take decisions or make predictions about b (knowing or assuming that a is true, is b 

true or false?). 

Example. Let us consider a rule smoking → cancer assessed by means of confidence and lift. Its 

deviation from equilibrium is measured by a 30% confidence, which means that 30% of smokers 

have cancer; its deviation from independence is measured by a lift of 10, which means that 

smoking increases the risk of cancer by a factor of 10. A smoker that wants to know whether 

(s)he could have cancer is more interested in deviation from equilibrium. On the contrary, 

somebody that does not smoke but hesitates to start is more interested in deviation from 

independence.  

Independence is defined by means of the four parameters nab, na, nb and n, whereas 

equilibrium is defined only by means of the two parameters nab and na. Thus, all the measures of 

deviation from independence depend on the four parameters, whereas there is no reason for any 

measure of deviation from equilibrium to depend on nb or n. To the best of our knowledge, the 

only exceptions to this principle are the inclusion index (Blanchard et al., 2003) and least-

contradiction (Aze & Kodratoff, 2002): 

• The inclusion index depends on nb and n because it combines two measures. One is for the 

direct rule (function of nab and na), and the other is for the contrapositive rule (function of 

na*b* and nb*, i.e. n-na-nb+nab and n-nb). This is the contribution of the contrapositive which 

introduces a dependency regarding nb and n. 

• The least-contradiction depends on nb. This is an hybrid measure which has a fixed value at 

equilibrium thanks to its numerator –as the measures of deviation from equilibrium– but 

decreases with nb thanks to its denominator –as the measures of deviation from 

independence. 

Some RIMs evaluate neither the deviation from equilibrium, nor the deviation from 

independence. These measures are the similarity indexes of Russel and Rao (support), Sokal and 

Michener (causal support), Rogers and Tanimoto, Jaccard, Dice, Ochiai, and Kulczynski. They 

generally have a fixed value only for the rules with no counter-examples (nab*=0) or for the rules 

with no examples (nab=0). In our classification, we have to create a third class for the similarity 

measures. They can have various meanings: 

• support evaluates the generality/specificity of the rule; 

• causal support can also be considered as a measure of generality/specificity, but for a rule 

and its contrapositive; 

• Ochiai index is the geometric mean of the confidences of a → b and b → a; 

• Kulczynski index is the arithmetic mean of the confidences of a → b and b → a. 

The signification of the other similarity measures cannot be easily expressed in terms of rules. 

 



Preorder comparison 
 

Figure 2. Two possible cases for equilibrium and independence. 

 

 (a) nb ≥ n/2 (b) nb ≤ n/2 

 

 

 

 

 

 

 

Let Midp and Meql be two RIMs which measure the deviations from independence and equilibrium 

respectively. The fixed values at independence and equilibrium are noted vidp and veql: 

Midp(nanb/n,na,nb,n) = vidp       (1) 

Meql(na/2,na,nb,n) = veql       (2) 

Here we want to exhibit two rules r1 and r2 which are differently ordered by Midp and Meql, i.e. 

Midp(r1) ≤ Midp(r2) and Meql(r1) ≥ Meql(r2). To do so, we present below two categories of rules 

which are always ordered differently. 

Let us consider a rule (nab, na, nb, n). By varying nab with fixed na, nb, and n, one can 

distinguish two different cases (see Figure 2): 

• If nb ≥ n/2 (case 1), then nanb/n ≥ na/2, so the rule goes through the equilibrium before going 

through the independence when nab increases. 

• If nb ≤ n/2 (case 2), then nanb/n ≤ na/2, so the rule goes through the independence before 

going through the equilibrium when nab increases. 

Let us assume that nab is between na/2 and nanb/n. The rule is between equilibrium and 

independence. More precisely: 

• In case 1, we have na/2 ≤ nab ≤ nanb/n. Since a RIM increases with nab when the other 

parameters are fixed, from (1) and (2) we get that 

Midp(nab,na,nb,n) ≤ vidp   and   Meql(nab,na,nb,n) ≥ veql       (3) 

The rule is to be discarded according to its deviation from independence, but it is acceptable 

according to its deviation from equilibrium. 

• In case 2, we have nanb/n ≤ nab ≤ na/2. In the same way, from (1) and (2) we get that 

Midp(nab,na,nb,n) ≥ vidp   and    Meql(nab,na,nb,n) ≤ veql       (4) 

The rule is to be discarded according to its deviation from equilibrium, but it is acceptable 

according to its deviation from independence. 

Thus, to exhibit two rules r1 and r2 which are ordered differently by Midp and Meql, one only needs 

to choose r1 between equilibrium and independence in case 1 and r2 between equilibrium and 

independence in case 2, i.e.: 

r1=(nab1, na1, nb1, n1)  with  na1/2 ≤ nab1 ≤ na1nb1/n1   and   nb ≥ n1/2 

r2=(nab2, na2, nb2, n2)  with  na2nb2/n2  ≤ nab2 ≤ na2/2  and   nb2 ≤ n2/2 

(n1=n2 if one wants to choose two rules coming from the same dataset) 



The inequalities (3) and (4) applied to r1 and r2 respectively lead to: 

Midp(r1) ≤ vidp ≤ Midp(r2)    and    Meql(r2) ≤ veql ≤ Meql(r1) 

Example. Let us consider the rules r1=(800, 1000, 4500, 5000) and r2=(400, 1000, 1000, 5000) 

assessed by means of confidence (measure of deviation from equilibrium) and lift (measure of 

deviation from independence). Confidence is worth 0.5 at equilibrium and lift is worth 1 at 

independence. We obtain 

confidence(r1)=0.8    and    lift(r1)=0.9 

confidence(r2)=0.4    and    lift(r2)=2. 

The rule r1 is good according to confidence but bad according to lift, whereas the rule r2 is good 

according to lift but bad according to confidence. We do have that confidence(r1) ≥ 

confidence(r2) and lift(r1) ≤ lift(r2).  

A measure of deviation from independence and a measure of deviation from equilibrium do 

not create the same preorder on R. This demonstrates that a RIM (unless being constant) cannot 

measure both the deviations from independence and equilibrium. This also confirms that the two 

deviations are two different aspects of rule interestingness. A rule can have a good deviation from 

equilibrium with a bad deviation from independence, and vice versa. Surprisingly, even if this 

idea underlies various works about association rules, it seems that it has never been claimed 

clearly that rule objective interestingness lies in the two deviations. 

 

Comparison of the filtering capacities 
 

RIMs can be used to filter rules by discarding those that do not satisfy a minimal threshold. We 

now compare the filtering capacities of a measure of deviation from equilibrium Meql and of a 

measure of deviation from independence Midp. For the comparison to be fair, we assume that the 

two measures have similar behaviors: same value for zero counter-examples, same value for 

equilibrium/independence, same decrease speed with regard to the counter-examples. For 

example, Meql and Midp can be the Ganascia and Loevinger indexes (cf. the definitions in Table 

3). 

Let us consider the cases 1 and 2 introduced in the previous section. As shown in Figure 3, 

Midp is more filtering than Meql in case 1, whereas Meql is more filtering than Midp in case 2. In 

other words, in case 1, it is Midp which contributes to rejecting the bad rules, while in case 2 it is 

Meql. This shows that the measures of deviations from equilibrium and from independence have 

to be regarded as complementary, the second ones not being systematically "better" than the first 

ones4. In particular, the measures of deviation from equilibrium must not be neglected when the 

realizations of the studied variables are rare. Indeed, in this situation, should the user not take an 

interest in the rules having non-realizations (which is confirmed in practice), case 2 is more 

frequent than case 1. 

 

 

 

                                                 
4
 Numerous authors consider that a good interestingness measure must vanish at independence (principle P1 

originally proposed in (Piatetsky-Shapiro, 1991), see the "Related Works" section). This principle totally denies the 

deviation from equilibrium. It amounts to say that measures of deviation from independence are better. 



Figure 3. Comparison of Ganascia and Loevinger indexes. (E: equilibrium, I: independence) 

 

 (a) case 1 (nb ≥ n/2) (b) case 2 (nb ≤ n/2) 

 

 

 

 

 

 

 

 

 

 

 

 

Scope of a RIM 
 

Quasi-implication 
 

At first sight, one can think that a rule is an approximation of the logical implication (also called 

material implication) which accepts counter-examples. However, rules and implications are 

actually not so similar. This can be seen by comparing the Tables 10.(a) and (b), which are the 

contingency table of the rule a → b and the truth table of the logical implication a ⊃ b. 

 

Table 10. Comparison of a rule to the logical implication. 

 

 (a) Contingency table (b) Truth table 

 of the rule a → b. of the logical implication a ⊃ b. 

 

 

 

The cases with the same role for the rule and the implication are the cases (a=1 and b=1) and 

(a=1 and b=0): the first ones satisfy the rule and the implication, while the second ones 

contradict them. On the other hand, the cases (a=0 and b=1) and (a=0 and b=0) do not play the 

same role for a → b and a ⊃ b: they satisfy the implication but are not examples of the rule. 

Actually, a rule only conveys the tendency of the consequent to be true when the antecedent is 

true. The fact that cases (a=0 and b=1) and (a=0 and b=0) satisfy the implication is often 

considered as a paradox of logical implication (a false antecedent can imply any consequent). 

Paradoxes like this one have motivated the development of nonclassical logics aiming at 



representing the common sense "logic" more faithfully. In these logics, the implication does not 

give rise (or gives less rise) to counter-intuitive statements. These are the modal logics, the 

conditional logics, and the relevant logics (Dunn, 1986). 

 A logical implication a ⊃ b is equivalent to its contrapositive b* ⊃ a*. Thus, the following 

deductions are possible: 

• either by affirming the antecedent a (Modus ponens) –the direct form of the implication is 

used, 

• or by denying the consequent b (Modus tollens) –the contrapositive of the implication is 

used. 

On the other hand, in the general case, a rule a → b is not equivalent to its contrapositive b* → 

a*: the tendency of the consequent to be true when the antecedent is true is not systematically 

identical to the tendency of the antecedent to be false when the consequent is false. In particular, 

some RIMs can measure very different interestingness for a rule and its contrapositive5. The user 

can nevertheless interpret that the meaning of the rule lies both in the direct and contrapositive 

forms, as for a logical implication. In this case, one can legitimately assess the relation 

discovered in data not as a rule stricto sensu. More precisely, behind the notation a → b, 

Kodratoff (Kodratoff, 2000) distinguishes two types of relations with implicative meaning that 

can be discovered in data: 

• Some associations noted a → b express a rule for the user, such as "crows are black" (crows 

→ black). They must be invalidated each time that (a=1 and b=0) is observed, and validated 

each time that (a=1 and b=1) is observed. In accordance with Hempel's paradox6, the cases 

(a=0 and b=0) which validate the contrapositive are not taken into account. 

• Some associations noted a → b express a quasi-implication for the user, such as "smoking 

causes cancer" (smoking → cancer). Their meaning is more causal. They must be 

invalidated each time that (a=1 and b=0) is observed, and validated each time that (a=1 and 

b=1) or (a=0 and b=0) is observed. 

We note the quasi-implications a ⇒ b. By considering the cases (a=0 and b=0) as examples, a 

quasi-implication is not a rule stricto sensu since it conveys both the rule a → b and the 

contrapositive b* → a* (similarly to logical implication). 

Definition 6. A quasi-implication is a couple of boolean variables (a, b) noted a ⇒ b. The 

examples of the quasi-implication are the objects in A ∩ B and A* ∩ B*, while the counter-

examples are the objects in A ∩ B* (see Table 11). So a ⇒ b is equivalent to its contrapositive b* 

⇒ a*. A quasi-implication is better when it has many examples and few counter-examples. 

Since quasi-implications rather express a causality for the user, it must be possible to use them 

to do "quasi-deductions" in the direct way or in the contrapositive way. So the measures M used 

to assess quasi-implications must render the interestingness of the two rules: M(a ⇒ b)=M(a → 

b)=M(b* → a*). 

 

 

 

                                                 
5
 For example with (nab,na,nb,n)=(750; 800; 900; 1000), one have a confidence(a→ b)=93% and confidence(b*→ 

a*)=50%. 
6
 Hempel's paradox lies in the fact that a statement such as "All the crows are black" (logically equivalent to 

"Something not black is not a crow") is validated by the observation of anything which is not black: a white shoe, a 

traffic jam... 



Table 11. Contingency table of the quasi-implication a ⇒ b. 

 

 

 

Definition 7. The scope of a RIM M is quasi-implication iff M(a → b)=M(b* → a*), i.e. 

M(nab, na, nb, n)=M(n-na-nb+nab, n-nb, n-na, n). 

In practice, if the user is sure that contrapositive rules are not relevant for the current 

application, then (s)he should not apply RIMs whose scope is quasi-implication since the 

resulting scores are interfered by the interestingness of the contrapositive. 

 

Quasi-conjunction 
 

Table 12. Comparison of a quasi-conjunction to the logical conjunction. 

 

 (a) Contingency table (b) Truth table 

 of the quasi-conjunction a ↔ b. of the logical conjunction a ∧ b. 

 

 

 

Following the quasi-implication which approximates the logical implication, we define the quasi-

conjunction which approximates the logical conjunction7. 

Definition 8. A quasi-conjunction is a couple of boolean variables (a, b) noted a ↔ b. The 

examples of the quasi-conjunction are the objects in A ∩ B, while the counter-examples are the 

objects in A ∩ B* and A* ∩ B. So a ↔ b is equivalent to its converse b ↔ a. A quasi-conjunction 

is better when it has many examples and few counter-examples. 

                                                 
7
 One can think that the counterpart of the implication is not the conjunction but the equivalence. However, it must 

be recalled that the implication a ⇒ b is the disjunction a* ∨ b. 



The contingency table of the quasi-conjunction a ↔ b and the truth table of the logical 

conjunction a ∧ b are given in Tables 12.(a) and (b). As for quasi-implication and its logical 

counterpart, 75% of the cases play the same role: 

• the cases (a=1 and b=1) satisfy the quasi-conjunction and the conjunction, 

• the cases (a=1 and b=0) and (a=0 and b=1) contradict the quasi-conjunction and the 

conjunction, 

• only cases (a=0 and b=0) are considered differently: they contradict the conjunction but 

have no precise role for the quasi-conjunction. 

A quasi-conjunction a ↔ b conveys both the rule a → b and its converse b → a. Similarly to 

quasi-implication, we propose to assess quasi-conjunctions with RIMs that render the 

interestingness of both a → b and b → a. 

Definition 9. The scope of a RIM M is quasi-conjunction iff M(a → b)=M(b → a), i.e. 

M(nab, na, nb, n)=M(nab, nb, na, n). 

If the user intuitively gives sense to the rule b → a when (s)he reads a rule a → b, then RIMs 

whose scope is quasi-conjunction should be applied. 

The scope of a similarity measure is quasi-conjunction, since a similarity measure is a RIM 

(see Proof 1) and is symmetrical with a and b. On the other hand, a RIM whose scope is quasi-

conjunction (even a positive RIM such as lift) is not a similarity measure according to the 

Definition 3. 

 

Quasi-equivalence 
 

Table 13. Comparison of a quasi-equivalence to the logical equivalence. 

 

 (a) Contingency table (b) Truth table 

 of the quasi-equivalence a ⇔ b. of the logical equivalence a ≡ b. 

 

 

 

Definition 10. A quasi-equivalence is a couple of boolean variables (a, b) noted a ⇔ b. The 

examples of the quasi-equivalence are the objects in A ∩ B and A* ∩ B*, while the counter-

examples are the objects in A ∩ B* and A* ∩ B. So a ⇔ b is equivalent to its contrapositive b* 

⇔ a* and to its converse b ⇔ a. A quasi-equivalence is better when it has many examples and 

few counter-examples. 

The contingency table of the quasi-equivalence a ⇔ b and the truth table of the logical 

equivalence a ≡ b are given in Tables 13.(a) and (b) (see also (Zembowicz & Zytkow, 1996)). 

The analogy is strong since all the cases play the same role: 



• the cases (a=1 and b=1) and (a=0 and b=0) satisfy the quasi-equivalence and the 

equivalence, 

• the cases (a=1 and b=0) and (a=0 and b=1) contradict the quasi-equivalence and the 

equivalence. 

A quasi-equivalence lies on the four rules a → b, b → a, b* → a*, and a* → b*. We propose to 

assess quasi-equivalence with RIMs that render the interestingness of the four rules. 

Definition 11. The scope of a RIM M is quasi-equivalence iff M(a → b)=M(b → a)=M(b* → 

a*)=M(a* → b*), i.e.    M(nab, na, nb, n)=M(nab, nb, na, n)=M(n-na-nb+nab, n-nb, n-na, n) 

 =M(n-na-nb+nab, n-na, n-nb, n) 

If the scope of a RIM is quasi-equivalence, then it evaluates both a quasi-implication and a 

quasi-conjunction. The scope of a similarity measure is not necessarily quasi-equivalence. 

Among the measures of Table 3, only the Sokal-Michener and Rogers-Tanimoto indexes evaluate 

quasi-equivalence. 

 

Nature of a RIM 
 

Our last classification criterion is the descriptive or statistical nature of RIMs. 

 

Descriptive measures 
  

Definition 12. The nature of a RIM M is descriptive (or frequency-based) iff the measure does 

not vary with cardinality expansion (when all the data cardinalities are increased or decreased in 

equal proportion), i.e. 

∀ α > 0, M(nab, na, nb, n)=M(α.nab, α.na, α.nb, α.n) 

Descriptive measures take the data contingencies into account only in a relative way (by 

means of the probabilities P(a), P(b), P(a ∩ b)) an not in an absolute way (by means of the 

cardinalities na, nb, nab). 

 

Statistical measures 
 

Definition 13. The nature of a RIM M is statistical iff the measure varies with cardinality 

expansion. 

Statistical measures take into account the size of the phenomena studied. Indeed, a rule is 

statistically all the more reliable since it is assessed on a large amount of data. 

Among the statistical measures, there are some measures based on a probabilistic model. They 

compare the observed data distribution to an expected distribution. Two probabilistic measures 

come from the LLA method (likelihood linkage analysis), a method developed by Lerman in 

1981 for the hierarchical clustering of variables (Lerman, 1981): 

• the likelihood linkage index of Lerman P(Nab < nab)   (Lerman, 1993), 

• the implication intensity of Gras P(Nab* > nab*)   (Gras, 1996; Gras & Kuntz, 2008), 

where Nab and Nab* are the random variables for the numbers of examples and counter-examples 

under the hypothesis H0 of independence between a and b. These measures respectively quantify 

the unlikelihood of the greatness of the number of examples nab and the unlikelihood of the 

smallness of the number of counter-examples nab*, with respect to the hypothesis H0. Although 



they can be seen as the complement to 1 of the p-value of a hypothesis test, the aim is not testing 

the hypothesis H0 but actually using it as a reference to evaluate and sort the rules. 

Lerman (1981) proposed three possible random models for H0. According to the model 

chosen, the random variables Nab and Nab* can be hypergeometric, binomial, or poissonian. To 

analyze rules, the most appropriate model is the poissonian one which is the most asymmetric. 

Then the likelihood linkage index LLI and implication intensity II are: 

LLI(a → b)=P(Poisson(nanb/n) < nab) 

II(a → b)=P(Poisson(nanb*/n) > nab*) 

With the poissonian model, LLI evaluates the quasi-conjunction a ↔ b while II evaluates the 

quasi-implication a ⇒ b. Of course they both measure deviation from independence. As the two 

measures are probabilities, they have the advantage of referring to an intelligible scale of values 

(scale of probabilities). This is not the case for many RIMs. Also, LLI and II facilitate the choice 

of a threshold for filtering the rules, since the complement to 1 of the threshold has the meaning 

of the significance level of a hypothesis test (generally in a test, one chooses α ∈ {0.1%, 1%, 

5%}). 

As they are statistical, the probabilistic measures take into account the size of the phenomena 

studied. However, this is also their main limit: the probabilistic measures have a low 

discriminating power when the size of the phenomena is large (beyond around 104) (Elder & 

Pregibon, 1996). Indeed, with regard to large cardinalities, even minor deviations can be 

statistically significant. 

 
Classification 
 

The classification of RIMs according to subject, scope, and nature is given in Table 14 

(Blanchard, 2005). Some cells are empty. First, as a similarity index is symmetrical with a and b, 

it can evaluate neither a single rule, nor a quasi-implication. Then, there exists no measure of 

quasi-conjunction or quasi-equivalence for deviation from equilibrium. Such RIMs could be 

developed, but they would require to combine rules whose equilibriums are not the same. 

Contrary to independence, the equilibrium of a rule a → b is indeed neither the equilibrium of b 

→ a, nor the one of b* → a*, nor the one of a* → b*. The only RIM which combines different 

equilibriums (rule and contrapositive) is the inclusion index. 

Whereas one generally considers that RIMs are very numerous, or even too numerous, the 

classification shows that there are actually few measures whose scope is a single rule. In 

particular, the only measure of deviation from independence whose scope is a rule stricto sensu is 

Bayes factor (Jeffreys, 1935). Also the classification shows that there is no statistical RIM 

measuring the deviation from equilibrium. 



 

Table 14. Classification of RIMs. 
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 Laplace varies only slightly with cardinality expansion. This is the reason why we classify it among the descriptive measures. 



Two original RIMs 
 

Using the previous classification, we were able to identify gaps and propose two novel RIMs 

with unique features in (Blanchard et al., 2005a) and (Blanchard et al., 2005b). 

 

Probabilistic measure of deviation from equilibrium IPEE (Blanchard et 
al., 2005a) 
 

IPEE evaluates the deviation from equilibrium while having a statistical nature, which is a unique 

feature for a RIM according to our classification. More precisely, IPEE is based on a probabilistic 

model and measures the statistical significance of the deviation from equilibrium (whereas 

implication intensity or likelihood linkage index, for example, measure the statistical significance 

of the deviation from independence). The measure has the advantage of taking into account the 

size of the phenomena studied, contrary to the other measures of deviation from equilibrium. 

Experimental studies show that IPEE is efficient even to assess rules with no counter-examples, 

and well adapted to the search for specific rules ("nuggets"). 

 

Directed Information Ratio DIR (Blanchard et al., 2005b) 
 

Information-theoretic measures are particularly useful to assess rules since they can be 

interpreted in terms of information. More precisely, as pointed out by Smyth and Goodman 

(1992), there is an interesting parallel to draw between the use of information theory in 

communication systems and the use of information theory to evaluate rules. In communication 

systems, a channel has a high capacity if it can carry a great deal of information from the source 

to the receiver. As for a rule, the relation is interesting when the antecedent provides a great deal 

of information about the consequent. The main drawback of information-theoretic measures is 

that they do not respect the value-based semantics of association rules, i.e. they systematically 

give the same value to a → b and to its opposite a → b*. However, if a → b is strong, then 

intuitively a → b* should be weak. 

In (Blanchard et al., 2005b), we presented a new RIM based on information theory which 

respects the value-based semantics of association rules. This new measure named DIR is the only 

RIM which rejects both independence and equilibrium. In other words, with only one fixed 

threshold DIR discards both the rules whose antecedent and consequent are negatively correlated, 

and the rules which have more counter-examples than examples9. Formal and empirical 

experiments show that DIR is a very filtering measure, which is useful for association rule post-

processing. 

 

COMPARISON WITH RELATED WORKS 
 

In 1991, Piatetsky-Shapiro has proposed three principles for an objectively "good" RIM M 

(Piatetsky-Shapiro, 1991): 

• P1. M(a → b)=0 if a and b are statistically independent; 

                                                 
9
 According to the classification presented in this chapter, DIR is a mesure of deviation from independence (it 

vanishes at independence). Nevertheless, as DIR is always negative or zero at equilibrium, any strictly positive 

threshold is enough to reject both independence and equilibrium. 



• P2. M monotically increases with nab when all other parameters remain the same; 

• P3. M monotically increases with na or nb when all other parameters remain the same10. 

We think that the principles P1 and P3 (concerning nb) are too restricting. They lead to discard a 

wide range of RIMs whereas practical experiment can show that these measures are useful for 

certain applications. For example, it is well-known that confidence is an appropriate RIM to 

analyze market basket data, and more generally sparse data. Nevertheless, these principles have 

been used in many later works (Brin et al., 1997a; Freitas, 1999; Yao & Zhong, 1999; Tan & 

Kumar, 2000; McGarry, 2005). 

More recently, more general works have been conducted to study RIM properties with formal 

or empirical experiments. Bayardo (1999) showed that several RIMs are redundant when nb is 

fixed. In this case, using support and confidence is enough to discover the best rules. Tan et al. 

(2004) compared 20 symmetrical or symmetrized11 RIMs according to different formal criteria 

and on synthetic rule sets. The measures show to be sometimes redundant, sometimes conflicting, 

and none is significantly better than all the others. Closer to our work is the paper of Lenca et al. 

(2007) who study 20 RIMs according to the eight following formal criteria: 

• C1. symmetry with regard to a and b; 

• C2. decrease with nb; 

• C3. value at independence; 

• C4. value for rules with no counter-example; 

• C5. linearity with nab* around 0+; 

• C6. sensitivity to n; 

• C7. easiness to fix a threshold; 

• C8. intelligibility. 

The criteria C1 and C3 can be retrieved from our classification. In our opinion, the other criteria, 

although interesting, do not seem closely related to the meaning of the measures, i.e. they do not 

help to understand what is measured. With these criteria, Lenca et al. partition the 20 RIM in two 

ways: first they build a formal partition from the matrix measures×criteria, then they build an 

experimental partition by comparing the measure behaviors on real rule sets. It is interesting to 

notice that the resulting clusters tend to greatly confirm our classification, especially regarding 

subject and scope: 

• measures with different subjects belong to different clusters; 

• measures of quasi-implication and measures of quasi-conjunction/quasi-equivalence belong 

to different clusters. 

Another approach close to our work is the experimental study of Huynh et al. (2006) 

performed on 36 RIMs. From two datasets, they mine the association rules and then partition the 

RIMs using their correlations. If the datasets are considered singly, the resulting clusters differ 

from our classification. On the other hand, if the partitions are merged by intersecting clusters, 

then the clusters tend to confirm our classification, again especially regarding subject and scope. 

The comparison of our semantics-based classification to data-based partitions needs to be 

explored further with numerous datasets. Indeed, the results of data-based approaches depend on 

                                                 
10

 This statement is not precise enough since the modeling parameters are not given. For example, we could use 

(nab, na, nb, n) as well as (nab, na, nb, na*b*) or even (nab, na, nb, nb*), which alters the principles. As explained in the 

section "Rule Modeling", the choice of the modeling parameters is generally an implicit assumption in the literature 

about rule interestingness. 
11

 The measures do not assess a rule stricto sensu since they estimate a rule and its converse identically: M(a → b) = 

M(b → a). 



the data and on the biases induced by the parameters of the association rule mining algorithms 

(support threshold, confidence threshold, maximum number of items, considering of item 

negations). Actually, a formal classification like ours can be seen as a data-based analysis 

performed on a rule set that would be the unbiased theoretical set R. 

 

CONCLUSION 
 

By defining the notions of rule and rule interestingness measure, this chapter provides a formal 

framework to study rules. Within this framework, we are able to compare the rules to closely 

related concepts such as similarities, implications, and equivalences. Also we make a novel and 

useful classification of interestingness measures according to three criteria: the subject, the scope, 

and the nature of the measure. 

• The subject is the notion measured by the index. It can be either the deviation from 

equilibrium, or the deviation from independence, or a similarity. Deviations from 

equilibrium and from independence are two different but complementary aspects of rule 

interestingness. 

• The scope is the entity concerned by the result of the measure. It can be either a single rule, 

or a rule and its contrapositive (quasi-implication), or a rule and its converse (quasi-

conjunction), or a rule and its contrapositive and converse (quasi-equivalence). 

• The nature is the descriptive or statistical feature of the index. 

Finally, the classification shows that some interesting combinations of the criteria are not 

satisfied by any index. Hence we provide two innovative measures specifically developed to 

complement the classification: the probabilistic measure of deviation from equilibrium IPEE, and 

the directed information ratio DIR which rejects both equilibrium and independence. 

The subject, scope, and nature seem to us essential to grasp the meaning of rule interestingness 

measures. Thus, the classification can help the user to choose the measures (s)he wants to apply 

for a given application. For example, the classification leads to wonder whether the user is 

interested only in single rules, or whether the contrapositive and converse can make sense. Also it 

is relevant to question whether the user wants to measure deviations from equilibrium or 

deviations from independence, or both. Without information from the user, we think that a 

judicious solution is using together a descriptive measure of deviation from equilibrium, a 

statistical measure of deviation from equilibrium, a descriptive measure of deviation from 

independence, and a statistical measure of deviation from independence. According to us, such a 

quadruplet of indexes allows one to measure four strongly "orthogonal" aspects of rule 

interestingness. 
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