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On the discovery of significant temporal rules

Julien Blanchard, Fabrice Guillet, Régis Gras

Abstract— The assessment of the interestingness of sequential
rules (generally temporal rules) is a crucial problem in sequence
analysis. Due to their unsupervised nature, frequent pattern
mining algorithms commonly generate a huge number of rules.
However, while association rule interestingness has been widely
studied in the literature, there are few measures dedicated
to sequential rules. In this article, we propose an original
statistical measure for assessing sequential rule interestingness.
This measure named Sequential Implication Intensity (SII)
evaluates the statistical significance of the rules in comparison
with a probabilistic model. Numerical simulations show that
SII has unique features for a sequential rule interestingness
measure.

I. INTRODUCTION

Frequent pattern discovery in sequences of events1 (ge-
nerally temporal sequences) is a major task in data mining.
Research work in this domain consists of two approaches:

• discovery of frequent episodes in a long sequence of
events (approach initiated by Mannila, Toivonen, and
Verkamo [14] [13]),

• discovery of frequent sequential patterns in a set of
sequences of events (approach initiated by Agrawal and
Srikant [1] [18]).

The similarity between episodes and sequential patterns is
that they are sequential structures, i.e., a structure defined
with an order (partial or total). Such a structure can be, for
example:

breakfast then lunch then dinner

The structure is described by its frequency (or support) and
generally by constraints on the event position, like a maximal
time window "less than 12 hours stand between breakfast and
dinner" [18] [15] [6] [11] [19].

The difference between episodes and sequential patterns
lies in the measure of their frequency: frequency of episodes
is an intra-sequence notion [15] [6] [20] [11] [19] [21], while
frequency of sequential patterns is an inter-sequence notion
[1] [18] [17] [22] [9] (see [12] for a synthesis on the different
ways of assessing frequency). Thus, the frequent episode
mining algorithms search for structures which often recur
inside a single sequence. On the other hand, the frequent
sequential pattern mining algorithms search for structures
which recur in numerous sequences (independently of the
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1Here we speak about sequences of qualitative variables. Such sequences
are generally not called time series.

repetitions in each sequence). These last algorithms are ac-
tually an extension to sequential data of the frequent itemset
mining algorithms, used among other things to generate
association rules [2] [10].

Just as the discovery of frequent itemsets leads to
the generation of association rules, the discovery of epi-
sodes/sequential patterns is often followed by a sequential
rule generation stage which enables predictions to be made
within the limits of a time window [18] [15] [6] [17] [22] [20]
[11] [19]. Such rules have been used to predict, for example,
stock market prices [6] or events in a telecommunication
network [15] [19]. A sequential rule can be for instance:

breakfast
6h−−−→ lunch

This rule means "if one observe breakfast then one will
certainly observe lunch less than 6 hours later".

In this article, we study the assessment of the interes-
tingness of sequential rules. This is a crucial problem in
sequence analysis since the frequent pattern mining algo-
rithms are unsupervised and can produce a huge number of
rules. While association rule interestingness has been widely
studied in the literature (see [3] and [4] for a survey), there
are few measures dedicated to sequential rules. In addition
to frequency, one mainly finds an index of confidence (or
precision) that can be interpreted as an estimation of the
conditional probability of the conclusion given the condition
[18] [15] [6] [17] [22] [20] [11] [19]. A measure of recall
is sometimes used too; it can be interpreted as an estimation
of the conditional probability of the condition given the
conclusion [20] [19]. In [6] and [11], the authors have
proposed an adaptation to sequential rules of the J-measure
of Smyth and Goodman, an index coming from mutual
information2. Finally, an entropic measure is presented in
[21] to quantify the information brought by an episode in a
sequence, but this approach only deals with episodes and not
with prediction rules.

These measures have several limits. First of all, the J-
measure is not very intelligible since it gives the same value
to a rule a

ω−−−→ b and to its opposite a
ω−−−→ b, whereas

these two rules make conflicting predictions. Confidence and
recall, vary linearly, which makes them rather sensitive to
noise. Above all, these measures increase with the size of the
time window chosen. This behavior is absolutely counter-
intuitive since a rule with a too large time window does
not contribute to making good quality predictions. Indeed,
the larger the time window, the greater the probability of

2The J-measure is the part of the average mutual information relative to
the truth of the condition.



observing the conclusion which follows the condition in data,
and the less significant the rule. Another major problem,
which concerns confidence, recall, and J-measure, is that
these indexes are all frequency-based: the phenomena studied
in data are considered only in a relative way (by means
of frequencies) and not in an absolute way (by means
of cardinalities). Thus, if a sequence is made longer by
repeating it x times one after the other, the indexes do not
vary3. Statistically, the rules are all the more reliable since
they are assessed on long sequences yet. In the end, a good
interestingness measure for sequential rules should therefore
decrease when the size of the time window is too large,
and increase with sequence enlargement. These essential
properties have never been highlighted in the literature.

Following the implication intensity for association rules
[7] [8] [5], we propose in this article an original statistical
measure for assessing sequential rule interestingness. More
precisely, this measure evaluates the statistical significance
of the rules in comparison with a probabilistic model. The
next section is dedicated to the formalization of the notions
of sequential rule, example of a rule, and counter-example
of a rule, and to the presentation of the new measure, named
Sequential Implication Intensity (SII). In section 3, we study
SII in several numerical simulations and compare it to other
measures.

II. MEASURING THE STATISTICAL SIGNIFICANCE OF

SEQUENTIAL RULES

A. Context

Our measure, SII , evaluates sequential rules extracted
from one unique sequence. This approach can be easily
generalized to several sequences, for example by computing
an average or minimal SII on the set of sequences. Rules are
of the form a

ω−−−→ b, where a and b are episodes (these ones
can even be structured by intra-episode time constraints).
However, in this article, we restrict our study to sequential
rules where the episodes a and b are two single events.

The studied sequence is a continuous sequence of instan-
taneous events (adaptation to discrete sequences is trivial).
It is possible that two different events occur at the same
time. This amounts to using the same framework as the
one introduced by Mannila, Toivonen, and Verkamo [15]. To
extract the appropriate cardinalities from the sequence and
compute SII , one only needs to apply their episode mining
algorithm named Winepi [14] [15] (or one of its variants).
In the following, we stand at the post-processing stage by
considering that Winepi has already been applied on the
sequence, and we directly work on the episode cardinalities
that have been discovered. Here again, our approach could
be generalized to other kinds of sequences, for which other
episode mining algorithms have been proposed. For example,
Höppner has studied sequences with time-interval events that
have a non-zero duration and can overlap [11].

3We consider here that the size of the time window is negligible compared
to the size of the sequence, and we leave aside the possible side effects which
could make new patterns appear overlapping the end of a sequence and the
beginning of the following repeated sequence.

Fig. 1. A sequence S of events from E = {a, b, c} and its window F of
size ω beginning at TF .

B. Notations

Let E = {a, b, c...} be a finite set of event types. An event
is a couple (e, t) where e ∈ E is the type of the event and
t ∈ R+ is the time the event occurred. It must be noted that
the term event is often used to refer the event type without
reducing intelligibility.

An event sequence S observed between the instants Tstart

and Tend is a finite series of events

S =
(

(e1, t1), (e2, t2), (e3, t3), ...(en, tn)
)

such that:

∀i ∈ {1..n}, (ei ∈ E ∧ ti ∈ [Tstart, Tend])
∀i ∈ {1..n − 1}, ti ≤ ti+1

∀(i, j) ∈ {1..n}2, ti = tj ⇒ ei �= ej

The size of the sequence is L = Tend − Tstart.

A window on a sequence S is a subsequence of S. For
instance, a window F of size ω ≤ L beginning at the instant
tF ∈ [Tstart, Tend − ω] contains all the events (ei, ti) from
S such as tF ≤ ti ≤ tF + ω.

In the following, we consider a sequence S of events from
E.

C. Sequential rules

We establish a formal framework for sequence analysis by
defining the notions of sequential rule, example of a rule,
and counter-example of a rule. The examples and counter-
examples of a sequential rule have never been defined in the
literature about sequences.

Definition 1: A sequential rule is a triple (a, b, ω) noted
a

ω−−−→ b where a and b are events of different types and ω
is a strictly positive real number. It means: "if an event a
appears in the sequence then an event b certainly appears
within the next ω time units".

Definition 2: The examples of a sequential rule a
ω−−−→ b

are the events a which are followed by at least one event



b within the next ω time units. Therefore the number of
examples of the rule is the cardinality noted nab(ω):

nab(ω) =
∣∣∣∣(a, t) ∈ S | ∃(b, t′) ∈ S, 0 ≤ t′ − t ≤ ω

∣∣∣∣
Definition 3: The counter-examples of a sequential rule

a
ω−−−→ b are the events a which are not followed by any

event b during the next ω time units. Therefore the number of
counter-examples of the rule is the cardinality noted nab(ω):

nab(ω) =
∣∣∣∣(a, t) ∈ S | ∀(b, t′) ∈ S, (t′ < t ∨ t′ > t + ω)

∣∣∣∣
Contrary to association rules, nab and nab are not data
constants but depend on the parameter ω.

The originality of our approach is that it treats condition
and conclusion in very different ways: the events a are
used as references for searching the events b, i.e. only
the windows which begin by an event a are taken into
account. On the contrary, in the literature about sequences,
the algorithms like Winepi move a window forward (with
a fixed step) over the whole sequence [15]. This method
amounts to considering as examples of the sequential rule
any window that has an event a followed by b, even if it
does not start by en event a. In comparison, our approach
is algorithmically less complex.

Fig. 2. Among the 3 windows of size ω beginning on events a, one can
find 2 examples and 1 counter-example of the rule a

ω−−→ b.

Let us note na the number of events a in the sequence.
We have the usual equality na = nab + nab. A sequential
rule a

ω−−−→ b is completely described by the quintuple
(nab(ω), na, nb, ω, L). The examples of a sequential rule
now being defined, we can specify our measure for the
frequency of the rules:

Definition 4: The frequency of a sequential rule a
ω−−−→ b

is the proportion of examples compared to the size of the
sequence:

frequency(a ω−−−→ b) =
nab(ω)

L

With these notations, the confidence, recall, and J-measure
are given by the following formula:

confidence(a ω−−−→ b) =
nab(ω)

na

recall(a ω−−−→ b) =
nab(ω)

nb

J−measure(a ω−−−→ b) =
nab(ω)

L log2
nab(ω)L

nanb
+

nab(ω)

L log2
nab(ω)L

na(L−nb)

D. Random model

Following the implication intensity for association rules
[8] [5], the sequential implication intensity SII measures
the statistical significance of the rules a

ω−−−→ b. To do so, it
quantifies the unlikelihood of the smallness of the number of
counter-examples nab(ω) with respect to the independence
hypothesis between the types of events a and b. Therefore,
in a search for a random model, we suppose that the types of
events a and b are independent. Our goal is to determine the
distribution of the random variable Nab (number of counter-
examples of the rule) given the size L of the sequence, the
numbers na and nb of events of types a and b, and the size
ω of the time window which is used.

We suppose that the arrival process of the events of type
b satisfies the following hypotheses:

• the times between two successive occurrences of b are
independent random variables,

• the probability that a b appears during [t, t + ω] only
depends on ω.

Moreover, two events of the same type cannot occur si-
multaneously in the sequence S (see section II-B). In these
conditions, the arrival process of the events of type b is a
Poisson process of intensity λ = nb

L . So, the number of b
appearing in a window of size ω follows Poisson’s Law with
parameter ω.nb

L . In particular, the probability that no event
of type b appears during ω time units is:

p = P(Poisson(
ω.nb

L
) = 0) = e−

ω
L nb

Therefore, wherever it appears in the sequence, an event a
has the fixed probability p of being a counter-example, and
1 − p of being an example. Let us repeat na times this
random experiment to determine the theoretical number of
counter-examples Nab. If ω is negligible compared to L,
then two randomly chosen windows of size ω are not likely
to overlap, and we can consider that the na repetitions of the
experiment are independent. In these conditions, the random
variable Nab is binomial with parameters na and p:

Nab = Binomial(na, e−
ω
L nb)

When permitted, this binomial distribution can be approxi-
mated by another Poisson distribution (even in the case of
"weakly dependent" repetitions –see [16]) .

Definition 5: The sequential implication intensity (SII)
of a rule a

ω−−−→ b is defined by:

SII(a ω−−−→ b) = P(Nab > nab(ω))

Numerically, we have:

SII(a ω−−−→ b) = 1−
nab(ω)∑

k=0

Ck
na

(e−
ω
L nb)k(1− e−

ω
L nb)na−k



Fig. 3. SII , confidence, recall, and J-mesure w.r.t. the number of counter-
examples. (na = 50, nb = 130, ω = 10, L = 1000)

Fig. 4. SII with sequence enlargement. (na = 50, nb = 130, ω = 10)

III. PROPERTIES AND COMPARISONS

SII quantifies the unlikelihood of the smallness of the
number of counter-examples nab(ω) with respect to the
independence hypothesis between the types of events a and
b. In particular, if SII(a ω−−−→ b) is worth 1 or 0, then it
is unlikely that the types of event a and b are independent
(deviation from independence is significant and oriented in
favor of the examples or of the counter-examples). This new
index can be seen as the complement to 1 of the p-value of a
hypothesis test. However, following the implication intensity
[8] [5], the aim here is not testing a hypothesis but actually
using it as a reference to evaluate and sort the rules.

In the following, we study SII in several numerical
simulations and compare it to confidence, recall, and J-
measure. These simulations point out the intuitive properties
of a good interestingness measure for sequential rules.

A. Counter-example increase

In this section, we study the measures when the number
nab of counter-examples increases (with all other parameters
constant). For a rule a

ω−−−→ b, this can be seen as making the

Fig. 5. SII , confidence, recall, and J-mesure with sequence enlarge-
ment. (na = 50, nb = 130, nab = 10, ω = 10)

Fig. 6. SII with sequence repetition. (na = 50 × γ, nb = 130 × γ,
ω = 10, L = 1000 × γ)

events a and b more distant in the sequence while keeping the
same numbers of a and b. This operation transforms events
a from examples to counter-examples.

Fig. 3 shows that SII clearly distinguishes between accep-
table numbers of counter-examples (assigned to values close
to 1) and non-acceptable numbers of counter-examples (assi-
gned to values close to 0) with respect to the other parameters
na, nb, ω, and L. On the contrary, confidence and recall vary
linearly, while J-measure provides very little discriminative
power. Due to its entropic nature, the J-measure could even
increase when the number of counter-examples increases,
which is disturbing for a rule interestingness measure.

B. Sequence enlargement

We call sequence enlargement the operation which makes
the sequence longer by adding new events (of new types)
at the beginning or at the end. For a rule a

ω−−−→ b, such
an operation does not change the cardinalities nab(ω) and



(a) nab = 12 × γ (b) nab = 16 × γ

Fig. 7. SII , confidence, recall, and J-mesure with sequence repetition. (na = 50 × γ, nb = 130 × γ, ω = 10, L = 1000 × γ)

nab(ω) since the layout of the events a and b remain the
same. Only the size L of the sequence increase.

Fig. 4 shows that SII increases with sequence enlarge-
ment. Indeed, for a given number of counter-examples, a
rule is more surprising in a long sequence rather than in a
short one since the a and b are less likely to be close in
a long sequence. On the contrary, measures like confidence
and recall remain unchanged since they do not take L into
account (see Fig. 5). The J-measure varies with L but only
slightly. It can even decrease with L, which is counter-
intuitive.

C. Sequence repetition

We call sequence repetition the operation which makes the
sequence longer by repeating it γ times one after the other
(we leave aside the possible side effects which could make
new patterns appear by overlapping the end of a sequence
and the beginning of the following repeated sequence). With
this operation, the frequencies of the events a and b and the
frequencies of the examples and counter-examples remain
unchanged.

Fig. 6 shows that the values of SII are more extreme
(close to 0 or 1) with sequence repetition. This is due to
the statistical nature of the measure. Statistically, a rule
is all the more significant when it is assessed on a long
sequence with lots of events: the longer the sequence, the
more one can trust the imbalance between examples and
counter-examples observed in the sequence, and the more
one can confirm the good or bad quality of the rule. On
the contrary, the frequency-based measures like confidence,
recall, and J-measure do not vary with sequence repetition
(see Fig. 7).

D. Window enlargement

Window enlargement consists of increasing the size ω of
the time window. As the function nab(ω) is unknown (nab

is given by a data mining algorithm, it depends on the data),

Fig. 8. A sequence where the events b are regularly spread.

we model it in the following way:

nab(ω) = na − nanb

L
ω , if ω ≤ L

nb

nab(ω) = 0 , otherwise.

This is a simple model, considering that the number of
examples observed in the sequence is proportional to ω:
nab(ω) = nanb

L ω. The formula is based on the following
postulates:

• According to definitions 2 and 3, nab must increase with
ω and nab must decrease with ω.

• If ω = 0 then there is no time window, and the data
mining algorithm cannot find any example4. So we have
nab = 0 and nab = na.

• Let us consider that the events b are regularly spread
over the sequence (Fig. 8). If ω ≥ L

nb
, then any event a

can capture at least one event b within the next ω time
units. So we are sure that all the events a are examples,
i.e. na = nab and nab = 0.

In practice, since the events b are not regularly spread over
the sequence, the maximal gap between two consecutive
events b can be greater than L

nb
. So the threshold ω ≥ L

nb
is

not enough to be sure that na = nab. This is the reason why
we introduce a coefficient k into the function nab(ω):

nab(ω) = na − nanb

L

ω

k
, if ω ≤ kL

nb

nab(ω) = 0 , otherwise.

4We consider that two events a and b occurring at the same time do not
make an example.



Fig. 9. Model for nab(ω).

The coefficient k can be seen as a non-uniformity index for
the events b in the sequence. We have k = 1 only if the
events b are regularly spread over the sequence (Fig. 8).

With this model for nab(ω), we can now study the interes-
tingness measures with regard to ω and k. Several interesting
behaviors can be pointed out for SII (see illustration in Fig.
10):

• There exists a range of values for ω which allows SII to
be maximized. This is intuitively satisfying5. The higher
the coefficient k, the smaller the range of values.

• If ω is too large, then SII = 0. Indeed, the larger the
time window, the greater the probability of observing
a given series of events in the sequence, and the less
significant the rule.

• As for the small values of ω (before the range of values
which maximizes SII):

– If k ≈ 1, then nab increases fast enough with ω to
have SII increase (Fig. 10 at the top).

– If k is larger, then nab does not increase fast enough
with ω. SII decreases until nab becomes more
adequate (Fig. 10 at the bottom).

On the other hand, confidence (idem for recall) increases
linearly with ω (see Fig. 11 with a logarithmic scale). Above
all, the three measures confidence, recall, and J-measure do
not tend to 0 when ω is large6. Indeed, these measures
depend on ω only through nab, i.e. the parameter ω does
not explicitly appear in the formulas of the measures. If ω
is large enough to capture all the examples, then nab = 0
is fixed and the three measures become constant functions
(with a good value since there is no counter-example). This
behavior is absolutely counter-intuitive. Only SII takes ω
explicitly into account and allows rules with too large time
window to be discarded.

5When using a sequence mining algorithm to discover a specific pheno-
menon in data, lots of time is spent to find the "right" value for the time
window ω.

6This does not depend on any model chosen for nab(ω).

IV. CONCLUSION

In this article, we have studied the assessment of the
interestingness of sequential rules. First, we have formalized
the notions of sequential rule, example of a rule, and counter-
example of a rule. We have then presented the Sequential
Implication Intensity (SII), an original statistical measure for
assessing sequential rule interestingness. SII evaluates the
statistical significance of the rules in comparison with a pro-
babilistic model. Numerical simulations show that SII has
interesting features. In particular, SII is the only measure
that takes sequence enlargement, sequence repetition, and
window enlargement into account in an appropriate way.

To continue this research work, we are developing a rule
mining platform for sequence analysis. Experimental studies
of SII on real data (Yahoo Finance Stock Exchange data)
will be available soon.
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